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Abstract 
Hot gas path turbine components are exposed to very severe 
and complex boundary conditions and many other sources of 
variation during their design, production, and operation.  
Consequently, the useful life of these components can exhibit 
considerable scatter.  A complex, multi-physics environment 
has been created to automate the bulk creep life assessment of a 
gas turbine airfoil for a land-based, heavy duty power 
generation unit.  An uncertainty assessment using the combined 
response surface Monte Carlo method is conducted with the 
developed environment.   Results of this study are given and 
found to be in agreement with a more theoretical solution using 
power series approximation.  Some widely used assumptions in 
conducting component level reliability assessments are 
investigated and discussed. 

Introduction 
Given that components of systems such as gas turbines can 
show considerable scatter in their actual lives, methods are 
sought and have been applied to quantify this uncertainty.  One 
approach to predicting such dispersion is to combine 
probabilistic analysis with deterministic simulations.  Thus, 
existing computer simulation models are utilized without 
requiring newly derived and implemented probabilistic models.  
However, accurate deterministic predictions of the life of such 
components can involve tremendous computational and 
personnel resources.  Further complicating this is the fact that 
probabilistic analyses increase the dimensionality of the 
problem, which can easily become prohibitive given the already 
time-consuming deterministic analysis.  Fortunately, several 
probabilistic methods exist, which show promise in providing 
efficient probabilistic results for components requiring long-
running deterministic analyses.  These include approximation 
methods, such as statistical response surface, analytical 
sensitivity-based methods, as well as variance reduction 

techniques (VRT) based on Monte Carlo simulation.  Haldar 
and Mahadevan (2000)1, among others, have given a thorough 
summary of the methods currently used.   

The objective of this study was to conduct an uncertainty 
assessment of a nominal gas turbine airfoil using the statistical 
response surface approximation method and Monte Carlo 
simulation.  The multi-disciplinary life assessment environment 
used for predicting the gas turbine airfoil life is described 
including a sophisticated computational environment created to 
automate this process.  An overview of the response surface 
method coupled with Monte Carlo simulation is given.  Results 
of the study are examined and several comparisons made. 

Life Assessment Environment 
A sophisticated creep life simulation environment for a land-
based, gas-turbine engine turbine bucket has been developed.  
The component selected is a mid-stage turbine bucket from a 
heavy-duty gas turbine engine.  The bucket material is a cast 
and equiaxed, nickel-based super–alloy.  This particular bucket 
design includes eight radial cooling holes supplied by 
compressor bleed air.  

Several mechanisms can contribute to the failure of such a 
component.  Examples of such failure mechanisms include low 
cycle fatigue, creep, oxidation, overstress, and fatigue crack 
growth leading to fracture.  For the purpose of demonstrating 
the method pursued, only the creep life response is considered 
and is done so in a section average sense at various airfoil 
sections of interest (see Figure 1). 

The calculation of the bucket creep life requires the integration 
of numerous complex analyses using multiple variables.  The 
structure of the analysis steps and data flow for the bucket 
creep life analysis is depicted in Figure 2. The analyses 
parameterized by the environment are identified by the dashed 
line.  They include a preliminary external boundary condition 
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analysis, cooling-hole analysis, thermal solid analysis, 
mechanical analysis, and finally a creep life analysis. For the 
cooling hole analysis, a 1-D compressible-flow network solver 
is used to determine the internal heat transfer boundary 
conditions based on metal wall temperatures, flow passage 
geometric and frictional properties, and coolant flow properties.  
Recognizing that the metal wall temperature is an input to the 
coolant flow analysis and the internal heat transfer properties an 
input to the thermal solid analysis, a coupling routine was 
necessary.  The coupling routine, as shown in Figure 4, iterates 
between the coolant flow analysis and 3-D thermal solid 
analysis until the wall temperatures across the heat load surface 
converge.  The wall temperatures are calculated using a steady-
state, 3-D finite element thermal solid analysis. 

A steady-state finite element thermal solid analysis is 
conducted to solve the thermal solid solution.  The solution is 
repeated during the cooling hole coupling routine until a 
converged thermal solid solution is reached.  A linearly-elastic 
steady-state mechanical analysis is conducted subsequent to the 
thermal solid solution using the thermal solution as input to the 
temperature-dependent material properties.  Therefore, the 
thermo-mechanical results are obtained in an uncoupled 
fashion.  However, the creep life is calculated as a function of 
both stress and temperature.  The calculation of creep is desired 
at several sections along the bucket bucket.  Section average 
solid temperatures (T) and stresses (S) in the radial direction 
were computed from the FEA solutions at eleven sections of 
interest, identified at 5%, 10%, 20%, 30%, 40%, 50%, 60%, 
70%, 80%, 90%, and 95% (see Figure 1).   

The material creep life function used in this study is the Orr-
Sherby-Dorn (OSD) three-term function based on the 
Arrhenius rate equation2.  The OSD creep life function gives 
the time to a specified amount of creep strain as a function of 
bulk section stress, S, and bulk section temperature, T, and is 
given as 
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where the parameters A, B, and –Q/R are empirically 
determined creep constants corresponding to the time at which 
the accrual of a pre-defined amount of creep strain is reached.  
Several tests at various levels of stress and temperature must be 
performed to determine the creep-strain limit constants.  They 
are unique both to the type of material used as well as the creep 
strain limit specified.  As a result, the creep life at each bucket 
cross-section of interest can be determined as a function of 
several upstream variables such as bucket external and internal 
heat transfer boundary conditions, material properties, 
geometry, and cooling passage frictional characteristics. 
Additional material characterization information for creep life 
modeling of nickel-based super alloys is given by Daleo et al.3,4 

An Automated Bucket Life Environment (ABLE) was 
developed to automate the creep life analysis.  The 
environment, depicted in Figure 3, consists of a set of modular 
PERL scripts run by a single parent PERL script.  Each child 

script automates one of the major analyses.  Collectively, they 
orchestrate the passing of numerous input and output data files 
between each analysis.  Several ANSYS Parametric Design 
Language (APDL) programs were written to automate the FEA 
steps including mapping of internal boundary conditions, the 
parameterization of the cooling-hole diameters, as well as the 
processing of the section temperatures, stresses, and finally the 
creep life calculation.  A brief description of the RSE/MC 
method which was executed utilizing the ABLE environment is 
now given. 

(a) 

 

 
(b) 

Figure 1:  Turbine airfoil finite element mesh (a) and nodal 
cross-sections of interest (b). 
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Figure 2:  Complex Interrelationship between contributing analyses for conducting part failure assessments. 
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Figure 3:  PERL Environment for Linking Analysis Codes 
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Figure 4:  Coupled Cooling Hole Flow and Blade Thermal 
Solid FEA Analysis 

Response Surface Monte Carlo Method 
The Response Surface Method (RSM) method is an applied 
statistical modeling technique used to create an explicit 
functional representation of a more complex physical model.  
The Design-Of-Experiments method (DOE) is employed within 
the RSM method to select an appropriate combination of 
variable settings to efficiently sample the actual response space 
for the regression step.  Statistical measures are then taken to 
gain a more quantitative understanding of the actual response 
space and potential predictive models of that space.  These 
methods were first introduced by Box and Wilson5 and 
developed to a more useable form by Box and Hunter6.  A more 
recent description of RSM is given by Cornell7. 
 
The DOE typically used is a three level central composite 
design (Figure 5).  This particular type of DOE permits the 
modeling of interactions between several of the main factors as 
well as quadratic main effects.   
 
A representative quadratic, polynomial metamodel commonly 
used is given as 
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where bi are regression coefficients for the 1st degree terms, bii 
are the coefficients for the pure quadratic terms, bij are the 
coefficients for the cross-product terms, xi, xj are the design 
variables and xixj denotes first order interaction between two 
design variables, and ε is the error term vector of which its 
components are assumed to be independent and normally 
distributed with constant variance.  Equation 2 belongs to the 
class of Response Surface Equations (RSE) which are 
multivariate closed form expressions that are determined 
through regression.  Through the execution of a balanced DOE, 
numerous statistical analyses can be performed to check the 
accuracy, validity, and usefulness of the RSE for both 
understanding the sampled response or for predictive purposes.  
The predictive capability of RSEs is paramount to this study 
since complex, time-consuming analyses can be replaced by an 
explicit functional relationship between the turbine airfoil life 
and several life parameters.  This is extremely beneficial when 
probabilistic analyses are conducted since numerous 
evaluations can be performed over a short amount of time.  
However, RSEs are applicable to problems with only a few 

variables.  Screening approaches based on DOE or sensitivity 
analyses can be used to reduce the set of variables to those that 
are the strongest drivers of the response of interest.  
Alternatively, RSEs have been applied by Koch et al.8 in a 
hierarchical fashion to create a metamodel of an entire 
commercial turbofan engine model requiring the use of several 
variables. 

 
Figure 5:  Typical Design of Experiments Sample Point 
Scheme:  Central Composite Design. 

 

Probabilistic simulation analyses of the creep life requiring 
numerous evaluations of the bucket model are now highly 
feasible using an RSE metamodel of the life of the gas turbine 
airfoil.  The probabilistic method chosen is the Monte Carlo 
simulation method (MC) which is the most general and most 
accurate probabilistic method given enough simulations.  The 
RSM/MC method can model not only the variation of the 
control variables, but their underlying statistical distribution 
and joint randomness as well.  Therefore, the combined 
RSM/MC method is considered an accurate probabilistic 
realization of the creep life of the component in question 

Results 
Initially, sixteen potential creep life variables were chosen 
based on engineering experience and judgement.  Since over a 
dozen variables were identified, it was deemed necessary to 
reduce the number of variables under consideration.  This was 
accomplished using a DOE screening study.  A 2-level 
fractional factorial DOE requiring 30 cases was executed and 
the response for each case evaluated.  Using Analysis of 
Variance (ANOVA)9, the relative contribution to the variation 
of creep life was quantified.  The result of this step is shown in 
Figure 6.  Notice that five variables were found to be the 
primary contributors to creep while the remaining variables 
were found to be relatively insignificant.  These five variables 
contribute to more than 80% of the variation of creep life over 
the ranges of the sixteen variables initially considered.  

The five primary variables include the external hot gas 
temperature field (SEXTT), external heat transfer coefficient 
field (SEXTh), creep constant variation parameter (CN), 
friction factor multiplier for cooling holes 2 through 5 
(SFM25), and the friction factor multiplier for cooling holes 6 
through 8 (SFM68).  The control variables SFM25 and SFM68 
are scalar values that operate on a one-dimensional field of 
internal cooling hole friction factor values for cooling holes 2 
through 5 and 6 through 8, respectively.  The friction factor 
multiplier variable for the first cooling hole was determined 
through simulation to be insignificant for the range of the 

fractional 
factorial 
points 

center 
points 
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variables considered.  SEXTh and SEXTT are scalar values that 
represent a 3-D field of convective heat transfer coefficients 
and gas adiabatic wall temperatures for the external surface of 
the bucket, respectively.  The CN parameter is an additional 
constant added to the exponential term in the creep life 
expression as follows 
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where the CN parameter represents a composite variation of the 
three creep constants, A, B, and –Q/R and the Sc parameter is a 
material specific constant determined through specimen testing.  
The appropriate range of each variable was also chosen using a 
combination of engineering judgement and available data.  The 
remaining variables were set to their expected, baseline value. 

 

 
 

Figure 6:  Pareto plot showing contributing creep life factors 

 
The next step in the process involved creating a higher 
resolution DOE using the five variables selected during the 
screening process.  A 3-level, resolution 4, fractional-factorial, 
central-composite DOE was created, which required 43 bulk 
creep life evaluations. The levels chosen were high, medium, 
and low corresponding to the -3σ, mean, and +3σ values for 
each of these five variables.  These cases included one center 
point where all the variables were set to their mean expected 
value.  The other variables that were determined to be 
negligible still were required during the analysis for each of 
these cases.  Their values were set to their expected mean value 
throughout all 43 evaluations.   
 
Least squares regression was applied to fit a quadratic response 
surface equation (RSE) to the bulk creep life data from the 
DOE sample points previously determined.  A goodness of fit 
parameter known is the coefficient of determination, or R2, is 
used as a means of assessing the accuracy of the model in 
predicting the values of the sampled points.  The R2 for this step 
was found to be 0.914396.  Although for experimental studies 
this would be acceptable, it is not so for response values 
determined using a deterministic model providing a unique 

solution.  The statistical assessment of the bulk creep life DOE 
points suggest that a highly non-linear relationship exists 
between the variables and the bulk creep life.  This is explained 
physically since creep life tests of this class of material follow 
an exponential function4 (reference equation 1).   
 
Since the quadratic function didn’t approximate the data 
properly, another functional form was pursued.  The problem 
was to determine the functional form of the approximator.  In 
this case the selection of the proper function is trivial.  The bulk 
creep life is exponential and therefore a logarithmic 
transformation function was chosen.  The quadratic response 
approximation was fit to the logarithm of the actual bulk creep 
life, known as a dependent variable transformation, using the 
life values already determined.  Not surprisingly, this proved to 
be highly accurate in predicting the log of bulk creep life 
behavior.  The R2 was perfect being very close to unity.  
Assumptions of zero mean error and constant error variance of 
the model are were also verified to ensure that the necessary 
statistical model assumptions were met.  The predicted values 
must be transformed back to the life scale to to assess the actual 
accuracy of the model and make useful life predictions.  The 
maximum error of the fitted model after transforming the 
predicted logarithmic lives back to actual creep lives was 0.4%.  
The mean error was found to be 7.24E-7%.  Hence, the error, 
although amplified by the exponential transformation, is still 
minimal. 
 

Finally, the model had to be tested over numerous points across 
the spectrum of possible variable value combinations to ensure 
that the transformed model was an accurate general 
approximation of the bulk creep life. Thirty randomly generated 
cases were executed to do this.  The maximum error between 
the predicted versus actual bulk creep life over all 73 cases was 
still 0.6% with a mean error of 0.03%, suggesting that the 
approximation is an accurate representation of the bulk creep 
life.   

Once the accuracy and validity of the response surface equation 
is verified, several useful activities can be carried out using this 
equation.  Given that the closed-form approximation, or 
response surface equation (RSE), is an accurate representation 
of the more complex physical model, it can be utilized by 
simulation approaches to generate a population of bulk creep 
lives necessary to determine its probabilistic characteristics.  
The Monte Carlo method was then applied to conduct the 
probabilistic analyses using the RSE generated.  The analysis 
consisted of choosing the statistical characteristics of the five 
primary random variables selected during the prior screening 
study.  The variable characteristics used in this study are given 
in Table 1, where COV stands for the coefficient of variation 
which is defined as the ratio of the standard deviation and the 
mean.  The COV of the friction factor parameters was set to a 
very large value representing considerable scatter in the friction 
characteristics of the blade cooling holes as compared to the 
other parameters.  Actual measured cooling hole flow rate data 
was available that suggested such a high variation.  This was 
accounted for using the friction factor multipliers variables 
SFM25 and SFM68.  Each parameter (Table 1) was assumed to 
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follow a normal distribution with constant mean and variance.  
In addition, the variables were considered to be statistically 
independent of each other.  A total of 100,000 simulations were 
run to generate an accurate estimation of the characteristics of 
the resulting bulk creep life distribution.  Rather than run the 
complete and time-consuming physical model, the previously 
generated RSE was used instead.  This approach was quite 
efficient considering that 100,000 simulations of the response 
surface equation took only a few minutes of CPU time versus 
months even years had the original physical model been used.   

Table 1:  Parameter Statistics 

 
 
The result of the Monte Carlo Simulation in the form of a 
probability density function is given in Figure 7, with the best 
fit lognormal and Weibull parameters found using maximum 
likelihood theory.  The resulting distribution is, not-
surprisingly, lognormal; which follows bulk creep life 
experience and can also be proven mathematically using 
analytical statistics.  The best-fit Weibull distribution is 
obviously (see Figure 7b) inferior to the lognormal distribution 
for modeling this data set.   
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Figure 7:  Lognormal (a) and Weibull (b) Distributions Fit to 
the Monte Carlo Simulation Life Data. 
 
 
A useful result of the Monte Carlo simulation is the 
probabilistic calculation of the sensitivity of the bulk creep life 
to each of the individual parameters.  Figure 8 shows the 
relative sensitivity of the bulk creep life with respect to each 
parameter.  The sensitivity was calculated by normalizing the 
square of the correlation coefficients between the bulk creep 
life and each of the variables.  As expected, the bulk creep life 

variation is most sensitive to the external gas field parameters 
and the creep constant variation.  The sensitivity analysis 
results in the same ranking as that determined using the Pareto 
analysis during the design of experiment study.  However, the 
major difference between the two methods is that the DOE 
Pareto sensitivity method uses only the response values of a 
few pre-selected DOE cases to calculate the relative 
sensitivities; while the probabilistic sensitivity calculation uses 
the entire population of bulk creep lives produced during the 
Monte Carlo simulation.  Unlike the Pareto plot, the probability 
sensitivity calculation using Monte Carlo is a function of not 
only the deterministic model used but also the distributions of 
the life variables.  Therefore, non-normal input variable 
distributions could produce a different sensitivity result. 

 
 

 
 
Figure 8:  Probabilistic Sensitivity Indices. 
 
Another important result of such a probabilistic analysis is the 
determination of the life corresponding to a low probability of 
failure.  Such an approach is used to ensure that the majority of 
the distribution lies beyond the intended useful life of the 
component.  However, this tail-end of the probabilistic 
distribution can be quite sensitive to both the probabilistic 
method used, as well as the variables considered in the analysis.  
The global sensitivity of the probabilistic distribution with 
respect to considering more and more variables is shown in 
Figure 9.  Each of the five dominant parameters was added 
sequentially and the Monte Carlo simulation repeated for each 
case.  Notice that both the location and scale of the distribution 
are affected by the choice of random variables.  The low-
probability region of the cumulative distribution function 
history is given in Figure 10 to illustrate just how sensitive it is 
to the variables considered.  Interestingly, the distribution 
appears to stabilize as all of the five dominant parameters are 
considered.  This gives credence to the decision made to screen 
out other variables since their consideration will likely not vary 
the resulting low probability of failure life by much.  Reducing 
the dimensionality of probabilistic analyses is important when 
considering those of complex components requiring long-
running analyses.  

 
 
.   

 

Random Variable Distribution Mean COV 
CN normal 0 1
SEXTh normal nominal 5%
SEXTT normal nominal 0.77% 
SFM25 normal nominal 60%
SFM68 normal nominal 75%
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Figure 9:  Probability Density Functions Generated As More 
and More Variables are Considered. 
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Figure 10:  Cumulative Distribution Functions Generated As 
More and More Variables are Considered. 
 
 
A more rigorous analytical solution can be obtained using 
classical statistics.  The analytical class of probabilistic 
methods uses first and second-order approximations of the 
deterministic response and probability density function integral.  
Approximations are generally determined using power series 
expansion such as the following Taylor series expansion about 
the mean input vector, X, given as 
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where X  is the vector of variable values at a suspect point 
which is usually the mean vector.  The Taylor series expansion 
of the probability integral was pursued as follows.   

By taking the logarithm of equation 4 and setting the variables 
to their mean values a transformed response is given as 
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The location of the resulting lognormal distribution can be 
calculated as 
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where each random variable is set to its mean value.  The mean 
of CN is zero for this application so the third term drops out.    
However, the calculation of the variance of the bulk creep life 
is not as simple.  The first term of a Taylor series expansion can 
be used to approximate the complex variance integration as 
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Performing this expansion the mean vector and computing the 
individual partial derivatives yields the following result 
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The mean and variance of each input variable were the same as 
those specified at the start of this study.  The mean stress and 
temperature were determined from the baseline analysis which 
was conducted with each of the five primary variables to their 
respective mean.  The resulting lognormal distribution using 
the analytical approach is plotted in Figure 11 superimposed 
over the distribution produced using the RSE method.   

Figure 11:  Comparison of both probabilistic methods. 
 
It is apparent that the RSE/MC method agrees very well with 
the analytical solution.  Hence, one would conclude that the 
analytical method is far superior to the RSE/MC result in terms 
of the amount of required statistical knowledge and execution 
time, especially since the analytical solution required only one 
evaluation of the response.  However, this method was used 
solely for validation purposes.  Further, the method is limiting 
in that it assumes that the input random variables are 
independent and symmetrically distributed.  Should one venture 
from this condition then the RSE/MC method would quickly 
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become more appealing.  Interestingly, Wallace and Mavris10 
quantified such local variable statistical behavior for a similar 
component in an airborne gas turbine and found that strong 
correlation exists amongst parameters such as core and coolant 
flow temperature.  Further, they conducted a Bera-Jarque11 test 
for normality which determined with significant evidence that 
many of the local parameters were in fact non-normally 
distributed.  This finding is of particular relevance to this study 
so an initial yet partial consideration of variable joint 
randomness was performed. 
 
Joint randomness and distribution information of the primary 
input variables was not available during this study.  Instead, a 
sample case was pursued to illustrate the effect of neglecting 
such conditions.  It can be argued that the heat transfer 
coefficient and gas temperature fields are at least moderately 
and positively correlated.  A correlation coefficient of +0.5 was 
assumed for this variable pair and the RSE/MC method re-
executed.  The resulting distribution is compared to the original 
distribution in Figure 12.  The distribution produced with the 
assumed correlation has greater dispersion.  Considering that 
positive correlation between these variables is to be expected, 
the original low probability result is therefore not conservative.  
On the whole, the variation of the life across the entire 
distribution is insignificant; however, for low-probability cases 
(important to reliability engineers) the result is surprising.  
Future work is recommended to quantify the local input 
variable statistical behavior to improve the probabilistic 
assessment of such components. 
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Figure 12:  Effect of joint randomness on response distribution. 

Conclusions 
Using a screening DOE study of a complex airfoil thermo-
mechanical simulation only five of sixteen variables were 
found to be strong contributors to the calculated creep life.  A 
highly accurate metamodel (RSE) of the time-consuming gas 
turbine airfoil creep life model was then created as a function of 
these primary variables.  The RSE created was successfully 
used in a Monte Carlo simulation to perform the necessary 
probabilistic analysis.  The part life under bulk creep failure 
was found to be lognormally distributed and was validated via a 
solution determined using analytical statistics.  Due to the 
symmetry of the input variable distributions, the ranking of the 
primary input parameters using probabilistic sensitivity indices 
resulted in the same order of importance as that of a Pareto 
ranking using statistical DOE sampling.  The effect of 
successfully considering additional parameters on the resulting 
distribution was explored suggesting that the composite 
response distribution can be found rapidly using solely the 
primary variables selected during the screening exercise as 
opposed to the entire variable set.  Finally, a simple exercise of 
introducing input parameter dependency was conducted 
suggesting that neglecting variable dependency in a part life 
probabilistic study can lead to non-conservative low-probability 
predictions.  Future work is recommended to develop and apply 
methods to characterize the local parameter statistical space for 
improving such probabilistic part life predictions. 
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