
\ W Division of Engineering

BROWN UNIVERSITY

PROVIDENCE, R. I.

J ENGINEERING MATERIALS RESEARCH LABORATORY

CREEP OF POLYURETHANE

"UNDER VARYING TEMPERATURE FOR

NONLINEAR UNIAXIAL STRESS

J. S. Y. [AI and W. N. FINDLEY

I/ t

Materials Research Program

Brown University ;

ARPA SD-86 :

ARPA E-76

EMRL-44 February 1971 "



CREEP OF POLYURETHANE UNDER VARYING TEMPERATURE

FOR NONLINEAR UNIAXIAL STRESS

by
by•* 

TrOHNIOAL LIBRARY

J. S. Y. Lai and W. N. Findley BLDG. 805

A0ERDEENRO-vIG GROUND, 0)

BTEAP-TL

Summary

Two methods are described to account for varying temperature during creep.

Both employ the modified superposition principle. One uses a reduced time involv-

ing a shift factor which is a function of both stress and temperature history.

The other considers the strain to be a function of the current values of stress

and temperature.

Experiments on polyurethane include constant stress creep and recovery at

several temperatures in the nonlinear range and an experiment in which the stress

was held constant while the temperature increased at a constant rate, then the

stress was removed and the temperature decreased at a constant rate. The strain

in this experiment was predicted by means of the theories from the results of the

constant temperature creep tests.

The strains in the constant temperature creep and recovery tests were

described by means of the multiple integral representation and the modified super-

position principle. Most of the nonlinearity and temperature effect were found

in the coefficient of the time-dependent term.

Assistant Professor of Civil Engineering, University of Utah, Salt Lake City,

Utah; formerly Research Associate, Brown University, Providence, Rhode Island.

Professor of Engineering, Brown University, Providence, Rhode Island.



Introduction

In a recent paper [1] the authors described the results of creep experi-

ments in the nonlinear range on polyurethane in torsion at various temperatures.

The results showed that the time dependence could be described adequately by a

power function whose exponent was independent of stress and temperature. In the

present paper tension creep experiments in the nonlinear range performed on the

same specimen of polyurethane as part of the same series of experiments are re-

ported for several temperatures. Constitutive equations describing these results

are employed to predict the behavior under a constant rate of temperature rise (and

fall) during creep (and recovery) at constant stress.

Previous investigations of nonlinear viscoelasticity have mostly been con-

fined to room temperature. However, Bernstein, Kearsly and Zapas [2] and Lianis

[3] have extended the concept of a thermorheologically simple viscoelastic mate-

rial to the nonlinear range. Earlier investigations by the authors [4 to 9] on

poly (vinyl chloride) and polyurethane at room temperature under combined tension

and torsion showed that the creep strain could be separated into time-dependent

and time-independent parts. The latter could be expressed as a power function

whose exponent was independent of stress state. The time-independent term was

nearly linear, but the time-dependent coefficient was strongly nonlinear. It was

found that the nonlinear behavior could be adequately described by the first three

terms of a multiple integral series. For varying loads either the modified super-

position method [5,10] for the mixed time parameters in the kernel functions or

the product form [6,10] gave satisfactory results.

NNumbers in brackets identify references listed at the end of this paper.
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Material and Specimen

The material used in the experiments was the same as employed in previous

work [8,9,11,12]. It was a full density solid polyurethane having a specific

gravity of 1.25. This material, identified as XR6-77, was produced by CPR Divi-

sion, the Upjohn Company, and Supplied by the Lawrence Radiation Laboratory. The

material was prepared from the prepolymer and combined with toluene diisocyanate.

The polyester resin was derived from a dicarboxylic acid and a triol. The carbon

content was 59 per cent, hydrogen 6.5 per cent, nitrogen 7.5 per cent, chlorine

less than 0.3 per cent, ash 0.05 per cent, and the balance oxygen. The material

was cured at a temperature of 250 0 F for two hours.

The specimen was a tubular type with enlarged threaded ends machined from

a solid rod. The average outside diameter was 0.9971 in., with a maximum devia-

tion of 0.0003 in., the average wall thickness was 0.05928 in., with a maximum

deviation of 0.0005 in., and the gage length was 4.00 in. All experiments were

performed on the same specimen.

Experimental Apparatus

The testing machine was designed to test tubular specimens under combined

tension, torsion, and internal pressure [13]. It has been used to investigate

creep and stress relaxation behavior under various loading conditions for plastics

[4-12] and metals [14-16] and plasticity [17].

The loading and measuring devices are as follows. Tension and torsion

were produced by dead weights or servo control acting through levers and pulleys.

Dead weights were used in the present work. The tensile strain measurement was

accomplished by using pairs of rods attached to the upper and lower gage points

of the test specimen to transmit the motion of the gage points below the furnace.

The lower ends of one pair of the rods were attached to the core and the ends
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of the other pair were attached to the coil of a differential transformer. Rela-

tive motion of the upper and lower gage points during the test caused an output

of the differential transformer which was directly related to the strain. The

sensitivity of the strain measurement was 2 x 10-6 in./in.

In order to perform creep tests of polyurethane above room temperature,

the following heating devices were added. The specimen was heated in an electric

split-tube furnace which was maintained at constant temperature by a C. N. S.

Instruments' Sirect Mark III proportional temperature controller. Due to the poor

conductivity of polyurethane a second heating source inside the specimen tube was

used to achieve a more uniform temperature distribution. Two small resistor heat-

ing cores were attached at both ends of a copper bar and inserted inside the

specimen. It was found that the smaller the spacing between the copper bar and

the inner surface of the specimen the better the temperature was controlled. One

thermocouple was embedded in each end of the copper bar. These served as the heat

sensing device in the control system. Temperature in the copper bar was controlled

by two Research Incorporated Thermac Model TC5192 temperature controllers operating

on the two heaters.

During each of the tests, temperature was measured at six positions by

means of chromel-alumel thermocouples with fused hot junctions. Two of these

thermocouples were cemented on the inner surface of the specimen at positions

slightly beyond the gage length. Four thermocouples were attached with spring

clips on the outer surface at equal distances within the gage length of the speci-

men. It was observed that the temperature could be maintained constant throughout

the testing period within ± 1/2 0 F. The temperature variation along the gage length

was uniform at 75 0 F and 1020 F, but increased to 20F on the outside and 70F on the

on the inside of the specimen at 1500 F.
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Experimental Procedure and Results

The rate of heating the specimen was controlled to about 20F per minute.

After reaching the test temperature the specimen was kept at this temperature for

one hour before the load was applied. Pilot tests indicated that a soaking period

from 0.5 hr. to 5.0 hr. at the test temperature (75 0 F to 160 0 F) did not show a

significant difference in the creep response under the same loading conditions.

Except for one experiment the temperature was maintained at a constant value

throughout the testing period. Some adjustments of the set points of the con-

trollers were required, however.

In performing the constant stress creep tests, the specimen was loaded for

a one-hour period for each test. After unloading at the end of one hour, the

specimen was left to recover at zero stress at the same test temperature for about

one hour. After that, heat was gradually turned down until it reached room tem-

perature, and the specimen was left to recover at room temperature until the strain

had returned to less than 40 x 10-6 in./in. or appeared to have stabilized before

proceeding to the next test. Tests 69; 46; 48; 84; 91; and 97 followed tests whose

recovery stabilized at £12 = 102 ; £12 = 78 ; c11 = 95 ; £11 = 120 and £12 = 90;

£11 = -84 ; and c11 = 63 x 10-6 in./in., respectively. The zero strain for each

test was taken to be the strain reading at temperature just prior to loading.

Thermal expansion has two effects on tensile strain: it shows up as an

apparent creep strain during temperature changes, and it alters the gage length of

the strain measuring instrument. The former was taken into account in the con-

stant rate of temperature rise test, but the latter was ignored in all tests. The

gage length was fixed at 75OF and no correction was made for change in gage length

-6
with temperature. The thermal expansion was found to be 35.2 x 10 in./in./OF.

Thus at 160OF the gage length increased about 0.3 per cent.
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The test program of the present investigation is shown in Table I. The

tensile strain versus time curves from these tests are shown in Fig. 1 and 2. A

constant stress creep test was also conducted in which the temperature increased

at a nearly constant rate, then decreased at a nearly constant rate while the

stress was removed when the temperature started to decrease. The strain versus

time, together with the programmed and measured temperature, are shown in Fig. 3.

In previous work on the same material at room [8,9,11] and elevated [1]

temperature, it was found possible to describe the results of creep strain versus

time under constant stress by a power law with a constant exponent n ,

o + n()
ii CEl + C+lt n

0 +

where c and £11 are functions of stress and n is a constant. From the

results shown in Fig. 1 and 2, it seems that (1) can be used to describe the

strain versus time relationship of the present tests also. The effect of tempera-

ture on 0, £ , n in (1) was determined by first obtaining the best fit of

each data set to (1) by a least squares method. As in the companion tests in tor-

sion it was found that there was considerable scatter in n but no definite trend
0

as a function of either stress or temperature. coi showed scatter and about the
0

same modest temperature effect observed in torsion [1]; £1 /a increased from

about 0.19 to 0.23 from 75OF to 1600 F. However, ell showed a strong effect;

it more than doubled over the same temperature range, the same as in torsion and

for the same reason [1].

In view of the scatter in n resulting from the individual determin-

ations the value n = 0.143 used in earlier work [8,11] with this material

at room temperature and in the companion work in torsion at elevated tempera-

ture [1] was chosen as a common value for all stresses and temperatures.

Numbers in parentheses identify equations.
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0

Also consistent with the work on torsion [1] e was taken to be independent of
0

temperature in view of the much smaller apparent effect of temperature on ci0

+ 0 +

than on l. Employing these restrictions values of E and El were re-

calculated and are shown in Table I. In the analysis in following sections equa-
0 +

tion (1) with the values of l , E and n in Table I were employed rather

than the experimental data.

Discussion of Results

Several experiments were repeated one or more times at intervals during

the series of 118 creep tests under tension, torsion and combined tension and tor-

sion. These repeated experiments were used to indicate how much the creep behavior

was changing as a result of the history of stress and temperature on the single

specimen employed. As described in [1] the effect of history was greater in tor-

sion than tension. The results of the repeated tests in tension are summarized

in Table II. Examination of all the data showed that there were changes which

generally resulted in increased strains. The greatest changes occurred during the

early tests and again when the largest stresses were applied. Possible causes were

discussed in [1]. There was, however, an extensive period in which changes were

small. Compare, for example, tests 39 and 76 and tests 41 and 67 in Table II.

In the analysis of the effect of temperature the data from the first 20

experiments were ignored because of the changes which were occurring. Also some

of the last tests were omitted and a few others whose strains were so out of line

as to suggest errors of observation. The experiments employed in the analysis were

undoubtedly influenced to some extent by the prior history of stress and tempera-

ture. These history effects were ignored in the analysis.



-7--

Analysis

Nonlinear Constitutive Equation

A nonlinear constitutive equation in the multiple integral form has been

described by several investigators; see for example [4]. For uniaxial stress

a11  a the following equation can be obtained for the creep strain Eii = £ ,

£F f R(t-& 1 ;T)W( 1 dE

00+ f f w~t-ý lt-E;T)d I% W& 2)d& 1dE

+ J 6 0 , (2)000

where t is time, T is temperature E an arbitrary time prior to t and

6(&) =aa(&)a . In this equation only terms from the first three orders have

been retained. The kernel functions R , M , N of (2) depend on temperature

(under different isothermal conditions) and time arguments as indicated. Under

constant stress a(t) = aH(t) * , where H(t) has the value 1 when t , 0 and

0 when t < 0 . Thus under isothermal conditions and constant stress (2)

becomes

2 3
£(t,T) = R(t,T)a + M(t,T)ao + N(t,T)a . (3)

Determination of Kernel Functions

Comparison of (3) with (1), representing the test data, suggests that the

kernel functions R , M , N may have the following forms

H(t) is the Heaviside unit function.
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R(t,T) = a1 + b (T)tn

M(t,T) a2 + b 2(T)tn

N(t,T) a a3 + b3(T)tn (4)

where n = 0.143 , a1 , a2 , a3 are independent of temperature, and b. , b2

b are functions of temperature as suggested by the test results. Inserting3

(4) into (3) and comparing with (1) results in

o 2 3
c =a +aa +a 3 (5a)

+ 2 3

b1(T)a + b2(T)a 2 +b(3 Ma (5b)

From the results in Table I, the time-independent and the time-dependent coeffi-

cients (5a) and (5b), respectively, were determined as follows.

The data of cz for each stress as given in Table I shows that E cano o

be approximated as a linear function of stress. Therefore

e 0 a= al 2

a 1 0.195 per cent/ksi. , a2 = a3 = 0 . (6)

+

The time-dependent part of the strain + from Table I versus temperature

T was plotted for each stress level as shown in Fig. 4. Then +/a versus a

for each of several temperatures (75 0 F, 1000 F, 120OF and 140 0 F) was plotted as
+

shown in Fig. 5. In Fig. 5 values of E for temperatures 1000 F, 120OF and

140OF at all stress levels were obtained from the lines of Fig. 4.

From (5b)

+ (aT1 = b (Tl) + b (T )a + b (T )a2 (7a)

a 1w1 2T1 31

where T 1=T - 750F . The reference temperature was chosen as 750F because
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T = 75 0 F was the lowest temperature used in this study. In Fig. 5, curves of

c +/a versus a at different temperatures are parallel straight lines. Thus

the curve for different temperatures can be obtained by a vertical shift of the

S+/a versus a curve for T1 = 0 . This implies that only b1  depends on tem-

perature, b2 and b3 are independent of temperature. Therefore (7a) can be

rewritten as

Ee(a,TI)2
c += b + b a + bCy2 + F(T) 

(7b)
a1 2 3 1 (b

where bI , b 2 , b 3 are independent of temperature, F(T ) is the vertical
+

shift, and F(0) = 0 . bI , b 2 , b 3 were determined graphically from c /c

versus a , in Fig. 5, at T = 0 with the result

bI 0.017, per cent/ksi

b = 0.004, per cent/(ksi)2

b3 0 . (7c)

F(T ) was determined from the amount of vertical shift of £+ / versus temper-

ature as shown in Fig. 6. Thus F(T ) was approximated by

F(TI) = 81T + 8 2 (7d)
11 2

where 81 = 0.00038 per cent/ksi OF and 82 = 0.000,0045 per cent/ksi(OF) 2

From (7a), (7b), (7c), (7d) the time-dependent part of the strain can be repre-

sented by

+ 2 2
£ (c,T) = (b1 + 0 1 T1 + 82 T1 )a + b2 a . (8)

Thus the constitutive relation of creep strain under constant stress,

constant temperature as characterized in this section may be summarized as fol-

lows by introducing (4) through (8) into (3)
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Sa al + [(b + 61T + T2T)a + b a2]t,
1 1 1 1 2 1 2

or

£ = 0.195a + [(0.017 + 0.00038T + 0.000,0045T2)a

11

+ O.O0a 2 ]t 0 . 14 3  (9)

where c is in per cent, a in ksi, and t in hours. Creep strains were cal-

culated from (9) for each stress and temperature and are shown in Fig. 1 and 2.

Recovery at Constant Temperature

The modified superposition method [5] for multi-step load histories can

be expressed as follows for tensile loading a

p

€il(t) = I [f(ailt-ti) -O i-l1t-ti t > t (10)i=0

where for the present experiments

f(a,tT) = R(t,T)a + M(t,T)a2 + N(t,T)a 3 , (11)

which becomes (9) when numerical values are supplied. Thus the recovery at zero

stress after a period tI = 1 hr. at constant stress a is from (10) for iso-
0

thermal conditions

Cl1(t) = f(aot) - f(aot-t1 ) , (12)

where f has the form of (9) and the ala term vanishes.

The recovery strains following constant stress creep were predicted from

(9) by means of (12). The results for some of the tests are shown in Fig. 7.

During recovery the contribution of the nonlinear terms is very small. Agreement

between the theory and test data for tension (Fig. 7) is not as good as for tor-

sion [1]. With the exception of one test the actual strains during recovery were

smaller than the strains predicted from the tension tests.

TE0O11IIOAL LIBRARY

BLDG 305
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Creep under Continuously Varying Temperature

Method A

In the analysis of the creep behavior of linear viscoelastic material at

different but constant temperatures, the effects of temperature and time for cer-

tain classes of material can be combined into a single parameter through the

"time-temperature superposition principle" which may be stated as follows:

J(T,C) = J(T ,t) , (13)
o

S= t/aT(T) , (14)

where J is the creep compliance, ý is the reduced time, aT is the tempera-

ture shift factor, T is the reference temperature and t is the real time.

o

Thus, the determination of aT as a function of temperature T will provide the

necessary information for determination of the reduced time. For tests involving

varying temperature during loading, the definition given by Morland and Lee [18]

for reduced time is
ft

f J dý (15)

0

where t is the current time, • is any prior time, and t = 0 corresponds to

the first application of stress.

Aside from the work reported in [2] and [3], no similar method is avail-

able to describe nonlinear viscoelastic behavior under varying temperature during

loading. it is intended in this section to explore a possible way of describing

the effect of nonlinear creep behavior under varying temperature by generalizing

the constitutive relation obtained through creep tests under different but con-

stant temperatures.

Consider a general constitutive relation under constant stresses and tem-

peratures, as follows:
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S= Jo + JO , (16)
C j0 a+jt

where

J = F (T) + F 2(T)a + T 3(T)a 2  (16a)

S[F(T) + F(T)a + F(T)a2 G(t) (16b)

In (16) it is assumed that the total creep strain can be separated into a time-

independent part J 0a and a time-dependent part Jt a . Equation (9) can be con-

sidered as a special case of (16). Rearrange (16b) such that

J t = [a 1 + a2 a+a 3a2 + 8 1 (T1 ) + 82 (T1 )a + 83(T)a 2 ]G(t) (17)

Rearranging by factoring out the temperature-independent terms yields

Jt = [al + a 2a + a 3a2] f(Tla)G(t) (18)

where Fi 2

81 (TI) + 82 (T 1 )a + 8 3(T )a2

f(Tl~a ) =_ ++ 2

and a 1 ' a2 ' a3 are independent of temperature, while 8l 82 83 are

functions of temperature T1 = T-To Ind a 1 =$ 2 = 3 0atT=T 0 orT 1 =0

f(T 1 ,O)G(t) in (18) can be combined into G(c) by defining a reduced

time C

t (19)a T a(TlO) '

where a T(T la) is a shift factor depending on both temperature and stress.

Therefore,

c= 0o + [a 1a + a2a2 + a3]G(C) • (20)

Equation (20) can be interpreted as a time-temperature superposition principle

[20] provided that the shift factor aT depends on both temperature and stress.
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For continuously varying temperature and/or stress, (18) and (19) can

be used to redefine the reduced time C as follows:

ft ds (21)

aT[Tl(s),a(t)]

0

where s is time prior to the current time t and t = 0 at the time stress

is first applied.

For describing creep behavior under an arbitrary stress history, it has

been found that the concept of a "modified superposition principle," proposed by

Findley and Lai [5] in summation formh and employed in integral form by Pipkin and

Rogers [19], yields satisfactory agreement with experiment.

The modified superposition method considers that the strain following a

change in stress at time t1  is the sum of: (a) the strain that would have

occurred had the stress not been changed, (b) minus the strain that would have

occurred had the prior stress been applied at the time t to a previously

unstressed material, (c) plus the strain that would have occurred had the current

stress been applied at time t to the previously unstressed material.

In integral form the modified superposition principle can be written as

follows

t =tT da dE (22)f aQa(E),t T dE(•

0

Introducing (20) into (22) for Q[o(E),t-E,T] provides a means of account-

ing for creep behavior under continuously varying stress and temperature as

follows:

C(t) Ja(t) + + a [) + qSC(c ) 3 ]G(•- )} aa( ) dý

0

(23)
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where
C t ds (24)

Sa aT[TI(s),G(t)]
0

= ds (25)

ST aT[Tl(S),0(0)]
0

For T = T , a constant,(23) reduces to the form originally proposed for
0

the modified superposition method as follows:

C(t) J (t) + f+{[ala(E) + ) + a3 3G(tE)} aa(E) dE
0 aa 2

0 (26)

since as defined in (18) for T = T , f(T,a) = 1 , • = t , and C E0

For T > T but constant, and for varying stress a = a(t) , the strain
0

may be described by (23) provided that

Tt ds t 
(27)a T LT[T110•]" a T[LTl,(t)]

0

' • ds = . (28)

a T a[Tl'CF(E)] aT[TlO(Y)]

0

For varying temperature but constant stress a a H(t) . Thus (23)
0

reduces to

E(t) a J + a [ala + a 2a 2+aa3 ]G()3 (29)

where

ft ds (30)

ST aT[Tl(s),Oo]
0

and C is not involved.

H(t) is the Heaviside function. It has the value one when t > 0 and zero
when t < 0
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Equation (30) was used to predict the creep strain (total strain minus

strain due to thermal expansion) for the test program shown in Fig. 3, as

follows. In this program the stress was constant a = 4000 psi , and the tem-

perature T (t) = T - 75 0 F = 60t where t is time in hours.

Equation (9) may be expressed in the form of (18) as follows

e T + .8 T'
E(t) = a1 a + (b1a + b2a2) 1 +b2a tn (31)

1 21

Comparing (31) with (18) shows that

G(t) =tn ,

0ITI + T2T]

f(T,) + b1i+ b 2 a

Therefore

r e T + e T21G(C) n at 81T 1 82 1TI
= = = f(Tl,a)G(t) = + b b (32)

ýi T b 1 +b2a

Hence (31) becomes

c(t) = 1aa + (b1a + b2 a2 )On (33)

(32) implies that

(ln•] 1TI + 2T1]

= + blI + b2 a

or

81OTI. + 02 TI n

aT[Tl,] + b I + b j 2 (34)

For varying temperature in which T = 60t , and a = 0 4 ksi the reduced

time c is defined from (34) in (30) as
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21
t 0 (60s) + e2(60s) n

b + b 2(4) ds . (35)
f b 1 +b2(4

0

Equation (35) was evaluated numerically by using Simpson's rule. Then

the creep strain was calculated by using (35) in (33) with values of a1  b,

b 2 e, 1 , 2 , n given in (9). The total strain c T(t) is

£T(t) = aT1 + C(t) , (36)

where a = 35.2 x 10-6 in./in./OF is the observed value of the coefficient of

thermal expansion determined by measuring the thermally induced strain at zero

load.

In (36) it was assumed that the thermal expansion coefficient was inde-

pendent of the stress.

The values of e(t) and T(t) predicted from (33,35) were calculated

and are shown in Fig. 3. The strains were also evaluated numerically from the

actual temperature instead of T = 60t as shown in Fig. 3. For this calculation

the temperature change was approximated as steps.

Method B

A more direct means of describing the effect of temperature (both constant

temperature and varying temperature) on the time-dependent part of the strains

(16b) is as follows. Consider that temperature only affects the coefficients

F1 (T) , F2(T) and F3(T) of (16b). Employing the modified superposition method

the creep behavior under varying load and temperature can be described from (16)

and the modified superposition principle (22) as follows

e(t) aJ(t) + 3{J[(t_),)()T(t)])(•)} do(.)(37)

0

where
Jt() (a 1 + a 2 a + a 3 or 2 'f(Tl(t),a)G(t-&)
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For the present material the temperature and stress function in Jt is

given by the function in square brackets in (9). In the test program shown in

Fig. 3 a = 4000 psi , and T - 75 = T1 = 60t . Since the stress was constant,

integration of (37) by means of the Heaviside function and making use of (9)

yielded the following prediction of strains during this part of the experiment:

E(t) = a1a + {[b 1 + e1 (60t) + e 2 (60t) 2]o + b2 a • (38)

The corresponding total strain is

CT(t) = i(60t) + E(t) . (39)

The results calculated from (38,39) using the values of a1 , bI , b 2 , el, e2

n given in (9) are also plotted on Fig. 3.

Also shown in Fig. 3 are the strains calculated from (38) and (39) using

the actual temperature instead of T1 = 60t .

Figure 3 shows that (38) and (39) (Method B) are closer to the experimental

data than (33-36) (Method A). Also shown by square points in Fig. 3 are the

strains at the indicated time from creep tests at a constant stress of 4000 psi

and the constant temperature indicated. Comparing these with the data for constant

stress but increasing temperature it is observed that the four points nearly coin-

cide with Method B, as would be expected from the nature of Method B, but they

lie below and nearly parallel to the increasing temperature test instead of above

as would be expected. This fact may result from differences in temperature dis-

tribution between the two types of tests. The prediction of Method A lies still

farther below the test data for the increasing temperature test.

Recovery under Continuously Varying Temperature

After the rising temperature reached the programmed value of 1350F at one

hour the temperature was caused to decrease gradually. Also, the load was re-

moved at one hour. The temperature and strain during this period of recovery at
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decreasing temperature were as shown in Fig. 8. The strain corresponding to the

recovery at decreasing temperature was computed for both Methods A and B by using

the modified superposition principle to account for the abrupt removal of the

stress at one hour. That is, the actual history was considered to be equivalent to

(a) creep at constant stress through the entire period but at the actual variation

in temperature, minus (b) the creep at the same stress applied at one hour with the

decreasing temperature that actually occurred from one hour on. Since the tempera-

ture variation did not occur at a constant rate, especially during falling tempera-

ture, the temperature variation was approximated by a series of appropriate steps

of constant temperature. This method accounted for the small variations from con-

stant rate of temperature rise shown in Fig. 3. The results for the rising portion

by the step method were nearly the same as for T1 = 60t as shown in Fig. 3.

Computation of the recovery strain by Method A u3ing the modified super-

position principle was as follows:

E(t) = (bla + b2a )[G() -G( - (40)

t > 1 hr.

where a 0 4 ksi , G() = and G(C - C = 1- n and

where t =0 was taken to be the time at which the first stress was applied, and

(41,C2) were evaluated by Simpson's rule.

The calculated values of strain by Methods A and B for the recovers, at

decreasing temperature are shown in Fig. 8. Figure 8 shows that in the early
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stage of recovery the test data lie between predictions of the two methods but

closest to Method A. However, the shape is predicted more accurately by Method B.

Conclusions

The following conclusions may be drawn from the experiments and analyses

presented in this paper.

(1) Results of the constant stress creep tests at different temperatures

indicate that creep strains are separable into time-independent and time-dependent

parts. The time-independent part of the strain was found to be independent of

temperature and linearly proportional to the stress. The time-dependent part of

the strain was represented by a power law of time with a constant exponent inde-

pendent of temperature. It was found that the time-dependent strain was a

strongly nonlinear function of stress and temperature.

(2) Two methods were considered to account for varying temperature by

using the constitutive relation derived from different constant temperatures.

One method employed a reduced time involving a shift factor which was a function

of both stress and temperature history. The other considered the strain to be a

function only of the current temperature not its past history. Both employ the

modified superposition principle. The latter method agrees somewhat better than

the former with the trend of experiments on varying temperature and recovery. It

is also the easier to employ.
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TABLE I

Tension Creep Experiments

TEST TENSILE TEMPERATURE, = c0 + t n, n = 0.143

STRESS, OF 0 +

ksi + %

38 1.0 75 0.195 0.017

40 1.0 100 " 0.028

51 1.0 130 " 0.053

52 1.0 140 0.062

53 1.0 150 0.068

54 1.0 160 0.092

63 2.0 75 0.390 0.052

65 2.0 102 " 0.081

41 2.0 115 " 0.100

46 2.0 130 0.118

72 2.0 135 0.125

48 2.0 140 0.142

77 3.0 75 0.585 0.083

47 3.0 130 " 0.185

50 3.0 140 " 0.267

84 4.0 75 0.780 0.133

92 4.0 102 " 0.178

91 4.0 115 " 0.216

78 4.0 126 " 0.268

81 4.0 135 " 0.298

97 4.0 145 " 0.328



TABLE II

Repeated Experiments in Tension

TEST STRESS, TEMPERATURE, STRAIN AT 1 hr.,
psi OF Per Cent

39 2000 75 0.4341

63 if "l 0.4419+

76 " i 0.4368

41 " 115 0.4902+

67 0.4925

49 " 150 0.6368

114 " 0.5894

2 3000 75 0.6439

77 " " 0.6672+

87 4000 115 1.0843

91 " " 0.9957+

+ Used in Fig. 1, 2.
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