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The tail tendons from wallabies (Macropus rufogriseus)
suffer creep rupture at stresses of 10 MPa or above,
whereas their yield stress in a dynamic test is about
144 MPa. At stresses between 20 and 80 MPa, the time-to-
rupture decreases exponentially with stress, but at 10 MPa,
the lifetime is well above this exponential. For comparison,
the stress on a wallaby tail tendon, when its muscle
contracts isometrically, is about 13.5 MPa. Creep lifetime
depends sharply on temperature and on specimen length,
in contrast to strength and stiffness as observed in dynamic
tests. The creep curve (strain versus time) can be
considered as a combination of primary creep (decelerating
strain) and tertiary creep (accelerating strain). Primary
creep is non-damaging, but tertiary creep is accompanied

by accumulating damage, with loss of stiffness and
strength. ‘Damage’ is quantitatively defined as the
fractional loss of stiffness. A creep theory is developed in
which the whole of tertiary creep and, in particular, the
creep lifetime are predicted from measurements made at
the onset of creep, when the tendon is undamaged. This
theory is based on a ‘damage hypothesis’, which can be
stated as: damaged material no longer contributes to
stiffness and strength, whereas intact material makes its
full contribution to both.

Key words: creep, creep rupture, temperature, specimen length,
damage, wallaby, Macropus rufogriseus.

Summary
A creep test involves the application of a sustained, constant
stress. Such a stress, applied in longitudinal tension to a
wallaby tail tendon, results in rupture even when the stress is
far below the ultimate stress of a dynamic test. This
phenomenon, termed ‘creep rupture’ (or ‘static fatigue’), is
found in many materials including polymers (Ogorkiewicz,
1970; McKenna and Penn, 1980; Progelhof and Throne, 1993),
fibre-reinforced composites (Poursartip et al. 1982), metals
(Zhurkov, 1965; Regel and Leksovsky, 1967), concrete
(Lorrain and Loland, 1983) and bone (Carter and Caler, 1985).
Damage accumulates during creep and can be followed
through changes in mechanical properties and/or direct
structural observation. This is the first report of creep rupture
in tendon.

Previous investigations of the time-dependent mechanical
properties of tendon have not been concerned with rupture.
Rigby et al. (1959) carried out stress–relaxation experiments
with rat tail tendon. In such experiments, a selected strain is
applied and then kept constant. This does not lead to rupture.
Hooley and co-workers (Hooley et al. 1980; Hooley and
Cohen, 1979) studied the viscoelastic properties of human
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hand tendons by initiating creep and then applying a sudden
change in temperature. They carried out a series of
experiments with the same tendon using different creep
stresses. Clearly rupture and, indeed, damage had to be
avoided. Nemetschek and co-workers (Nemetschek et al.
1978; Folkhard et al. 1987) carried out creep experiments as
part of their wide-ranging investigations, by X-ray diffraction,
into changing the 67 nm repeat of the collagen molecule.
However, it appears that they did not allow their tests to
continue to failure. Many studies aim to describe the time-
dependent mechanical properties of tendons and ligaments
using mathematical models, either directly by expressing
stress as a function of strain history or indirectly by analogy
to an array of springs and dashpots. Viidik (1980) reviews
both versions. The models assume that the tendon material is
unaltered by creep, just as a dashpot demonstrates creep but
is not thereby damaged. The parameters required by a model
are best measured by applying a range of tests to the same
tendon, whilst avoiding damage.

In this paper we are mainly concerned with later stages of
creep where significant damage occurs.
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Symbols
A, B parameters in equation 1 relating lifetime 

and stress
A9, B9 parameters in equation 3 relating

minimum strain rate and stress
D ‘damage’ defined by equation 5
E Young’s modulus (slope of the linear

portion of a stress–strain plot)
s stiffness, i.e. load/extension
t time
T lifetime, i. e. time-to-rupture
« strain
s stress; in particular, the stress on intact

material (equation 4)
D denotes ‘difference’ or ‘change in’
brackets a function: e.g. sr(t) denotes sr considered

as a function of time
subscript 0 denotes ‘initial value’: e.g. sr 0 ≡ sr(0)
subscript E denotes ‘elasticity’ (D«E is change in

strain due to elasticity)
subscript r denotes ‘ratio’ (sr is ‘current stiffness/

initial stiffness’)
dot over variable denotes differentiation with respect to

time: e.g., ṡ r ≡ dsr/dt
subscript min denotes ‘minimum of creep rate’ (ṡ r min is

the value of ṡ r when «̇ is at its 
minimum)

Materials and methods
Tendons

The creep experiments were performed on the tail tendons
from six wallabies (Macropus rufogriseus (Desmarest), see
Table 1). Additional wallabies were used for two
investigations into the architecture of tail tendons (see below).
Wallaby carcasses were supplied by a zoo. Some had been
culled in the course of population control and some had died
from natural causes. They were stored in plastic bags at 220 ˚C
Table 1. The mass of the wallabies and the experiments in
which they were used

Wallaby Mass Experiments in which the 
number (kg) tail tendons were used

I Unknown Lifetime and stress (Fig. 4)
Minimum creep rate (Fig. 13)

II 20 Lifetime and stress
(Figs 4, 8, room temperature; 

Fig. 8, 37 °C)

III 25 Lifetime and stress (Figs 4, 8)

IV 13.0 Lifetime and stress (Fig. 4)
Effect of length (Figs 5, 6, 7)

V 18.6 Effect of temperature (Fig. 9)

VI 12.6 Stiffness ratio (Figs 10, 11, 12)
until required. Ker (1981) found no significant effect of
freezing on the elastic properties of tendons from sheep (Ovis
aries). Unfortunately, we do not know the ages of the
wallabies, except that in culling the obviously young are
avoided and, when given a choice, we selected the larger tails.

Tendons were taken from parts of the sacrocaudalis muscles.
We did not use the most proximal of the tendons, which are
the shortest (and thickest). Nor did we use the most distal,
which are the very thinnest of the long tail tendons. This left
about 60 tendons from each tail. In work on rupture, where one
specimen can be used for only one experiment, the availability
of so many similar tendons from the same animal is a great
advantage. These tendons are long (300–500 mm) and thin
(cross-sectional area about 1 mm2). These attributes reduce the
possible errors related to clamps, especially in measurements
of stiffness. The cross-sectional areas of the tendons were
found by weighing a measured length and assuming a density
of 1120 kg m23 (Ker, 1981).

Uniformity of tail tendons

Tail tendons slide freely within their tail. This makes them
easy to extract, without damage, for testing. More
fundamentally, it means that the longitudinal tension to which
a tail tendon is subjected is constant throughout its length and,
therefore, evolution seems likely to result in a uniform design.
Excluding the ends (where a wider, thinner shape may be
appropriate for attachment to muscle or bone), tail tendons
appear to be uniform. We, and Miss Katie Deaton (personal
communication), attempted to establish more objectively
whether the tendons were adequately uniform for our purposes.
Tendons were cut into lengths of 50–70 mm. These were
weighed to obtain their mass per unit length and were subjected
to tensile testing, using the method described below, to assess
the compliance per unit length. Instead of tensile testing, some
specimens were allowed to dry and were reweighed, to allow
for the possibility of variations in water content. These
measurements proved to be insufficiently reliable to allow an
unambiguous conclusion to be drawn. To minimise errors
introduced by any systematic non-uniformity, we used fairly
short test-pieces, usually 100–150 mm long, for the creep
experiments.

Estimate of stresses in life

To assess the possible relevance of the creep properties of
the tail tendons to their function, it is helpful to have some idea
of the stresses to which they may be subjected in life. We used
the method of Ker et al. (1988). Dissecting one side of a tail
and part of the back of a wallaby gave 12 separable portions
of the sacrocaudalis muscle, each of which was weighed.
Measured lengths of the attached tendons were also weighed.
The other side was fixed prior to dissection to aid measurement
of the lengths of the muscle fascicles. Thus, using published
values (see Ker et al. 1988) for the densities of muscle and of
tendon, the cross-sectional areas of muscle fascicles and of
attached tendons were found. A muscle and its tendon are
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Fig. 1. Schematic cross section of the apparatus used for creep tests
at low loads. The liquid paraffin bath was a copper cylinder 450 mm
long and 55 mm in diameter. LVDT, linear-variable-differential
transformer.
subjected to the same forces and so the ratio of the cross-
sectional areas is the inverse of the ratio of the stresses. The
stress in a muscle has an upper limit and, therefore, this ratio
gives an indication of the maximum stress which can be
applied to a tendon in life.

Tensile tests

Two broad types of tensile tests were undertaken which will
be termed ‘dynamic’ and ‘creep’. In a dynamic test, the load
was altered continuously, the time from minimum (often near-
zero) to maximum load being of the order of 1 s. In a creep
test, a constant load was maintained. The minimum time-to-
rupture in our creep tests with tendon was 3 min, and most took
very much longer. Our dynamic and creep tests are thus clearly
distinguishable. Obviously, at shorter times the distinction
ceases to be sharp: a dynamic test involves creep, since loads
are applied for finite times; and a creep test requires an initial
dynamic ‘test’ to establish the required load.

An Instron 8031 servo-hydraulic testing machine was used
for all the dynamic tests and some of the creep tests. The
tendon was immersed in liquid paraffin to prevent any change
in hydration. An aqueous medium would cause swelling and
was therefore avoided. The solubility of water in liquid
paraffin is not strictly zero, so a thin tendon placed in a large
volume of liquid paraffin eventually dries. To avoid this
potential problem, drops of water, buffered to pH 7, were
placed in the liquid paraffin. These sink to the bottom, but
ensure saturation of the medium with water, so that even the
thinnest tendons did not dry.

At each end, the tendon was clamped between a pair of flat
steel plates bolted firmly together. This apparatus is described
more fully by Wang et al. (1991). One clamp was attached to
the actuator and the other to the load cell. Readings of load and
of displacement of the actuator were available as functions of
time. When required, load could be plotted against
displacement: the slope of the load–displacement plot is the
stiffness of the specimen. Ker et al. (1986) describe this as the
direct method of measuring stiffness. The machine was
operated in load control. For dynamic tests, a two-channel
digital recorder was used to follow rapid changes. For creep
tests, a chart recorder was used to plot extension as a function
of time.

For the creep tests with the lowest loads and longest times,
we found it convenient to use a specially constructed static
machine in which the constant load was provided by a fixed
weight (Fig. 1). The extension of the tendon during creep was
followed by a linear-variable-differential transformer (LVDT)
connected to a chart recorder. The same liquid paraffin bath
and clamps were used as for the dynamic tests. The heating
element (Fig. 1) was included for tests carried out at raised
temperatures. The supply to the heating coil was taken via a
temperature controller operating with a platinum resistance
thermometer. The temperature was monitored using a
thermocouple placed near the middle of the liquid paraffin
bath.

For some tests, the apparatus was further simplified by
dispensing with the lever and hanging the copper cylinder and
its contents (plus extra weights as required) directly from the
tendon.

Clamping

The greatest problem encountered in fracture tests with
tendon is that of premature failure in or near the clamps.
Tendon consists of collagenous fibres in a matrix of low
stiffness. To obtain valid mechanical tests, the tendon must
be squeezed by the clamp so that each fibre is effectively
independently held (Ker, 1992). This causes distortion and
stress concentrations near the clamp. Fracture involves the
pulling out of fibres over a considerable distance (about
50 mm) and, consequently, even fractures that appear to
happen at a distance of several millimetres from a clamp may
have been aided by stress concentrations in the clamp.
Dynamic tests to failure give variable results and
underestimate strength (see Bennett et al. 1986).

Creep rupture, at modest stresses, usually occurs in the
central region of the tendon and does not appear to be caused
by the clamps. The reason for this advantageous feature may
be that the clamped portion of the tendon cannot undergo much
creep.

However, to use higher stresses and to obtain results from
dynamic tests for comparison with creep tests, we faced the
problem of clamp-induced failure. This was substantially
overcome by the technique of preparing the tendon for testing
by air-drying its ends whilst the rest of the tendon was wrapped
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Fig. 2. Stress–strain plot (or hysteresis loop) for a wallaby tail tendon.
Young’s modulus denotes the slope of the linear portion of the loading
curve. The linear region extends from about 20 MPa up to the yield
point at a stress of about 150 MPa. This plot was recorded during
sinusoidal oscillations at a frequency of 1.6 Hz under position control.
Load control was used for creep experiments but, with a specimen
which buckles, the machine cannot operate in load control at the
lowest loads included in this plot.
in paper tissues moistened with liquid paraffin. (Haut, 1983,
describes the use of dried ends.) We carried out two checks to
confirm the viability of results obtained with dried ends. (i) We
assessed the end-effect in compliance measurements by using
successively shorter test-pieces from the same specimen.
Doing this with a fresh tendon (moist throughout) shows that
the effective length of the specimen is slightly longer than the
‘daylight’ length between the tips of the clamps, as previously
reported by Bennett et al. (1986). However, no significant end-
effect was obtained with dried ends. (ii) We carried out a creep
test at a stress of 50 MPa on a tendon which had been dried
throughout its length. After modest initial creep, the strain
reached an asymptote. No further extension occurred in a time
far longer than would have led to rupture with a tendon of
lifelike wetness.

Drying the portions of the ends to be clamped greatly helps
in achieving high stress. In none of our tests was it
disadvantageous and, as the work progressed, the procedure
was included in the standard protocol.

Experiments

Possible variables in a creep test are (1) the magnitude of
the fixed stress, (2) the temperature and (3) the length of the
specimen. In each set of experiments, two of these quantities
were kept constant and the third was varied between tests.
Since the tests are to the point of rupture, only one test could
be carried out with each specimen. However, a single tendon
could yield two or three specimens. Whenever possible, we
used the tendons from a single tail for each set of experiments,
which greatly reduced the variability of the material.

In each creep test, the output is a plot of extension against
time, from which the time to failure was noted and, in some
cases, the minimum strain rate was calculated. The ranges of
stress, length and temperature over which the experiments
were conducted are given in the Results section.

Dynamic tests were interpolated into creep tests with the
Instron machine in the following ways. (1) Each creep test
started with the application of the selected load over a period
of 1 or 2 s. This loading constituted a dynamic test of stiffness
for which we plotted load against extension (i.e. actuator
displacement) using the digital recorder. The extension at the
end of the initial loading period was available from this record,
whereas, on the slow chart recorder plot, the transition from
loading to creep was not so obvious. In addition, the slope of
the plot gave the stiffness of the specimen, from which, since
the cross-sectional area and length are known, its Young’s
modulus (i.e. the tangent modulus in the linear region) could
be calculated. (2) In one set of experiments (see Fig. 10), the
variation of stiffness during creep was measured by
superimposing dynamic tests in which the load was briefly
reduced. These measurements were carried out at regular
intervals of creep strain. (3) A group of tendons was subjected
to a period of creep and then, after recovery, to a dynamic test
of stiffness and strength (see Fig. 11). For comparison,
dynamic stiffness and strength were also measured with fresh
tendons, which had not been subjected to creep.
For tests described in 2 and 3 of the previous paragraph,
which were at room temperature, the apparatus was simplified
by omitting the full liquid paraffin bath. Instead, the specimen
was wrapped in a tissue soaked in liquid paraffin. This tissue
was itself wrapped in plastic film.

Results
Stress–strain curve

Fig. 2 shows the results of a typical test with sinusoidal
loading. The loop is formed in a clockwise direction, indicating
the dissipation of energy. The area inside the loop is small
(energy dissipation about 8 %), as is characteristic of tendon
(Ker, 1981). As with all tendons, this plot shows a ‘toe-region’
at low stress. This is a consequence of crimp in the collagen
fibres. Once the crimp has been straightened out, the
stress–strain curve is linear. The Young’s modulus, for tendons
from wallaby IV, is 1.60±0.21 GPa (mean ± S.D., N=63; see
Fig. 6). This is within the range typical of mammalian tendons
(Bennett et al. 1986). The transition to the linear region is at a
stress of the order of 20 MPa.

Stress applied to tail tendons in life

The stresses in a muscle, and in the tendon attached to it, are
inversely proportional to the respective cross-sectional areas.
From our measurements during the dissection of a tail, the ratio
of muscle to tendon cross-sectional area is 45±15 (mean ± S.D.,
N=12). Assuming a muscle stress of 0.3 MPa, which is the
maximum isometric stress according to Wells (1965), the
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Fig. 3. A creep test. A load ramp was applied for the first 2 s.
Thereafter, the stress was constant at 30 MPa until rupture. Wallaby
II. Temperature 37 ˚C. Specimen length 150 mm.
tendon stress is 13.5MPa. Thus, even when allowance is made
for the possibility of somewhat higher stresses during negative
work, the maximum stress in the tendon hardly reaches the
linear region of the stress–strain curve (Fig. 2). Restriction, in
life, to low stresses is characteristic of the majority of tendons.
Among limb tendons, only those that are used as springs in
locomotion are subjected to strikingly higher stresses (Ker et
Fig. 4. Lifetimes in creep for wallaby tail tendons at room temperature
from 10 to 80 MPa: between 20 and 80 MPa, each tail gives results which
II and III are not significantly different and their data have been combi
(N=32) is for wallaby I. The single test at stress 10 MPa did not reach
(B) The 95 % confidence intervals (dotted) of the regression lines from
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al. 1988). It will be necessary to bear this in mind when
considering the functional relevance of our creep results (see
Discussion).

Creep

The results presented in this section refer to specimens of
length at least 100 mm. Fig. 3 is a creep curve: a plot of strain
versus time, under a constant load. This is similar in general
shape to the creep curves given by ductile polymers (Progelhof
and Throne, 1993). Creep curves are sometimes broadly
divided into three regions: primary or initial creep with
decelerating strain, secondary or steady-state creep with
constant strain rate and tertiary or rupture creep with
accelerating strain (Teoh and Cherry, 1984). Wallaby tail
tendons (and some polymers) do not show an obvious region
of secondary creep, in contrast to metals (Piatti and
Bernasconi, 1978) and bone (Carter and Caler, 1985). We have
previously used the word ‘secondary’ where we are here using
‘tertiary’ (Wang and Ker, 1994), because counting 1, 2 seemed
more natural than counting 1, 3. We have changed to the
nomenclature adopted here to accord with the situation found
with other materials. The terms primary, secondary and tertiary
are purely descriptive of the creep curve and do not necessarily
imply a succession of creep mechanisms. In applying models
to creep, the measured curve is often considered to be the sum
of contributions from two (or more) mechanisms that may
 (approximately 20 ˚C). (A) Tendons from three tails covering stresses
 fit to a straight line on this semi-logarithmic plot: the lines for wallabies
ned to give the upper regression line (N=16): the lower regression line
 rupture: the lifetime is a lower limit only, as indicated by the arrow.
 A and additional data from wallaby IV (N=6).
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general impression of trends. Three outliers [A (60,50); C (60,1.3),
(82,0.27)] were disregarded in drawing the lines. Values are for
wallaby IV at room temperature.
overlap in time. In the Discussion, we will consider the total
strain, in plots such as Fig. 3, to be the sum of three
components, one elastic and two creep, primary and tertiary.

Most of the tendons broke in the central third of the length
between the clamps. Results from tendons that broke near or
in the clamp have been discarded (<10 % of the total).

Lifetimes in creep (i.e. times-to-rupture), at room
temperature, are shown in Fig. 4. Results from four wallabies
are included and details are given in the legend. For tendons
from any one tail, at stresses between 20 and 80 MPa, a straight
line fits a plot of log(lifetime) against stress. However,
lifetimes can differ, between tails, by an order of magnitude.
Time-to-rupture in creep does not appear to be determined with
much precision by evolution. Different lifetimes must be
related to differences in material structure, but we are unable
to give any information about this: it is a possible field for
future investigation.

The tendon subjected to a stress of 10 MPa (Fig. 4) showed
little strain and no sign of rupture after 15 days, when the test
was abandoned. Even this lower limit to the lifetime is well
above the extrapolated regression line for its tail. This
resistance to creep rupture, at a stress relevant to natural
conditions, seems likely to be of biological significance (see
Discussion). Two further experiments at a stress of 10 MPa will
be mentioned below.

If the linear regressions of Fig. 4 are written as
logT=a1+a2s, where T is lifetime (in s) and s is stress (in
MPa), the best fit parameters (± S.E.M.) are for wallaby I,
a1=4.823 and a2=20.0274±0.0013 and, for wallabies II and
III, a1=5.912 and a2=20.0364±0.0020. The slopes, a2, of the
regression lines are significantly different. The t-statistic for
the difference is 3.89: d.f. 44. Converting to exponential form
and introducing parameters A and B:

T = AeBs . (1)

For wallaby I, A=6.653104 s and B=20.0631±0.0030 MPa21.
For wallabies II and III, A=8.173105 s and B=20.0838±
0.0046 MPa21.

Clearly an exponential relationship cannot apply at very low
stress for, at zero stress, the time to failure is given by equation
1 as A (in s), whereas it ought to be infinite. A fit to
T=A/(eBs21) would be physically meaningful at low stresses,
but is not significantly different from the exponential fit of
equation 1 at stresses of 20 MPa or greater. Incidentally, the
‘lower limit’ lifetime at a stress of 10 MPa (Fig. 4) lies above
even this curve.

Exponential fits of creep lifetime to stress have been applied
for metals and polymers, e.g. Zhurkov (1965), Regel and
Leksovsky (1967) and McKenna and Penn (1980). Carter and
Caler (1985) applied a power law fit for bone. Our data fits a
power law much less well than an exponential (and that of
Carter and Caler fits an exponential less well than a power
law).

Creep and length: strength and length

Fig. 5 shows creep lifetime, at room temperature, as a
function of specimen length at three stresses, 40, 60 and
80 MPa. The dependence on test-specimen length is very
marked at lengths less than 80 mm, but is not significant at
lengths greater than 100 mm. This dependence on specimen
length is in contrast to the results from dynamic tests. Young’s
modulus (in the linear region) shows no systematic variation
with length (Fig. 6).

A complication arises in considering dynamic tests of
strength. Many of our stress–strain plots depart slightly from
linearity at very high stresses, with the tendon becoming less
stiff; i.e. it yields. We will use the term ‘yield stress’ to describe
the maximum stress in the linear region. Assuming that yield
involves damage, it seems reasonable to compare the stresses
used in creep experiments with the yield stress rather than with
the higher ultimate tensile stress. The data in Fig. 7 show a yield
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stress of 144±20 MPa (mean ± S.D., N=19). The mean ultimate
tensile stress from these 19 tests was 202±28 MPa. These values
are greater than most published measurements of tendon
strength, which may be an indication of the advantage of drying
the clamped regions. Without drying, we have obtained lower
values (120 MPa or less) for the ultimate tensile stress of
wallaby tail tendons. Note, however, that even with dried ends
the fracture region was usually near a clamp. Further evidence
as to the strength of wallaby tail tendons is given below.

Creep and temperature

Fig. 8 shows an order of magnitude reduction in lifetime
when the temperature is raised from room temperature to
37 ˚C. The parameters of equation 1, for wallaby II at a
temperature of 37 ˚C, are A=6.023104 s and B=20.0703±
0.0037 MPa21 (± S.E.M.). The test at stress 10 MPa and 37 ˚C
resulted in creep rupture after 2.6 days. This lifetime is well
above the extrapolated exponential fit of equation 1 and even
above the fit, at stresses of 20 MPa or above, to T=A/(eBs21).

Fig. 9 shows lifetime in creep as a function of temperature
at a stress of 60 MPa. For the point at 53 ˚C, the tendon was,
in effect, cooked and appeared rubbery, but it still withstood
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Fig. 11. Correlation between stiffness ratio, sr, and the yield stress.
Each point is taken from a separate experiment. In each, the stiffness
was measured at the beginning of creep. After a period of creep, the
load was removed and a dynamic ramp test was carried out to rupture
to determine the yield stress of the damaged tendon. The stiffness
recorded during the second ramp test was less than the initial stiffness
(see Fig. 10): sr is the ratio of the two. These 14 points cover creep
at a range of stresses between 30 and 90 MPa. The filled circles refer
to experiments in which creep was stopped at a point when the creep
rate was high and the end was obviously imminent. For the open
circles, creep was stopped much earlier. The two sets of points give
regression lines which do not differ significantly and the linear
regression line plotted is for all the points taken together. Note that
the origin is included within the 95% confidence limits. The intercept
at sr=1 (dashed line) is at 143 MPa. Values are for wallaby VI at room
temperature.
the stress of 60 MPa for 132 s. The line drawn in Fig. 9 has not
been extended as far as this point, since the material was so
obviously different. This marked variation in creep lifetime
again contrasts with stiffness measured in dynamic tests, which
shows no significant change with temperature over the same
range (Wang et al. 1991).

Creep and changes in stiffness and strength

The results in this section refer to tests at room temperature
with specimens longer than 100 mm.

Fig. 10 shows a sequence of load–extension plots taken by
interrupting a creep experiment with brief dynamic tests. The
legend gives fuller details of the procedure. The stiffness of the
tendon (i.e. the slope of the loading curve) reduces
progressively during creep.

The stiffness ratio and the yield stress are correlated
(Fig. 11: correlation coefficient 0.94). Clearly, creep inflicts
damage on the tendon. It seems reasonable to use the fractional
loss of stiffness as a measure of the damage incurred. This
approach will be followed below in the Discussion.
Extrapolation of the linear regression line in Fig. 11 to a
fractional stiffness of 1 indicates the strength of the undamaged
tendon to be about 143 MPa. This agrees well with the strength
values reported above.

Is it possible to relate changes in stiffness to changes in
strain during a creep test? If this can be done, it will be
possible to associate a change in strain with a corresponding
amount of creep-inflicted damage. Fig. 12 tackles this
question. In Fig. 12A, ‘stiffness ratio’, sr (see Fig. 10), is
plotted against ‘extra strain’, D« (labels to curves in Fig. 10),
which is the difference between the total strain, immediately
before a stiffness test, and the elastic strain imposed by the
initial loading. A linear regression fits Fig. 12A reasonably
well. The slope (stiffness ratio against fractional strain) is
28.59±0.39. Note that the intercept at a stiffness ratio of 1.0
is non-zero (it is 0.66 %). It seems reasonable to assign this
creep strain, which occurs without change in stiffness, to
primary (or initial) creep. Primary creep does not inflict
damage. Fig. 12B includes results at other applied stresses.
Near sr=1.0, the points appear to be fairly similar for all five
stresses. The intercept of the regression line for a stress of
40 MPa is out of place compared with the others. However,
the two points nearest sr=1.0 are not much out of place. It
seems reasonable to give these the greatest weight in assessing
the intercept, especially as there is no a priori reason to predict
a straight-line relationship. The extent of primary, non-
damaging, creep appears to be largely independent of stress.

The mean slope of the five lines in Fig. 12B is 26.91±1.2
(S.D.). These cannot properly be merged into a single line for
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proper calibration gives results which fit in well with the general pattern. None the less, we felt it necessary to omit these data. Values are for
wallaby VI at room temperature.
the slopes are significantly different at the 99 % confidence
level. The Fs ratio of the variances among the regressions to
the variances within the regressions (see Sokal and Rohlf,
1981) is 5.2, which is to be compared with values from
statistical tables of F0.01(4,25)=4.18 and F0.001(4,25)=6.49. The
answer to the question posed above is therefore no; we cannot,
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Fig. 13. Minimum rate of change of strain (strain rate) versus stress.
The data are taken from the same extension–time charts as part of Fig.
4A. Values are for wallaby I at room temperature.
on the basis of the evidence we have, relate values of stiffness
to strain in a reliable and general way. However, as mentioned
above, the region near sr=1.0 appears less divergent and, in
particular, the intercepts at sr=1.0 are very similar. At four of
the stresses (30, 40, 70 and 80 MPa), readings were taken at
D« values both near 1 % and at 2 %. These produced two
groups of points in Fig. 12B centred on (0.0105, 0.983) and
(0.02, 0.912) respectively (fractional creep strain, stiffness
ratio). The line between these points has a slope of 27.47 and
the intercept at sr=1.0 is at D«=0.0082. Our ‘best guess’ for the
relationship is:

sr = a + bD« , (2)

where a=1.06 and b=27. When sr=1, D«=0.0086 (or 0.86 %).
This equation is least unreliable at values of sr only a little less
than 1.0. sr starts with the value 1.0, and the dashed lines in
Fig. 12 have been included to show this. We have no evidence
as to the value of sr in this region. It is not impossible for sr to
be greater than 1, for creep could cause alignment of structural
material, leading to increased stiffness, prior to significant
damage. Any deduction sensitive to the value of b should
obviously be viewed with caution.

Values of the minimum creep rate will be required in the
Discussion and will therefore be given here. The rate of change
of strain at first decreases, reaches a minimum and then
increases. The minimum is fairly flat, so measurement of the
minimum rate of strain is therefore straightforward. Values of
minimum rate of change of strain were measured from creep
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curves such as Fig. 3 and are shown, on a logarithmic scale, in
Fig. 13. The straight line in Fig. 13 implies an exponential
relationship between minimum creep rate, «̇min, and stress, s0:

«̇min = A9eB9s0 , (3)

where A9 and B9 are parameters relating minimum strain rate
and stress. Linear regression gives A9 as 1.3431027 s21 and
B9 as 0.0786±0.0028 MPa21 (± S.E.M.).

Taking Figs 4 and 13 together, lifetime and minimum rate
of creep strain are clearly correlated. The correlation
coefficient between the logarithms of these quantities is
20.95.

Discussion
Creep rupture and its functional relevance

This paper demonstrates that the phenomenon of creep
rupture applies to wallaby tail tendons. However, in their
studies of creep, Hooley et al. (1980) and Nemetschek
(Nemetschek et al. 1978; Folkhard et al. 1987) do not mention
rupture. We believe that this can be explained by the different
conditions of the tests, without any necessity for assuming that
wallaby tail tendons differ from the human hand tendons or rat
tail tendons used, respectively, by Hooley and Nemetschek.
The non-creep mechanical properties of wallaby tail tendons
are comparable to those of other tendons. Our results for
Young’s modulus and for energy loss during oscillations
(hysteresis) are entirely typical. Our values for strength are
above those previously reported (see Bennett et al. 1986).
However, we consider that this is unlikely to be because
wallaby tail tendons are unusually strong, but rather because
previous measurements have been underestimates, due to stress
concentrations in the clamps.

Hooley et al. (1980) do not state the magnitude of the
stresses in their tests. However, they give the loads used and
the mass per unit length of their specimens. For example, the
results of their Fig. 4 are for a tendon with mass per unit
length of 0.073 g cm21 and at a maximum load of 10 kg. By
our calculations, this implies a maximum stress of about
15 MPa. Creep was measured at a temperature of 28 ˚C for a
time of 60 s. For our wallaby tail tendons, these conditions
would lead to negligible damage and certainly no sign of
rupture. ‘Negligible damage’ is a requirement of their protocol
and will have been achieved. Hooley’s tests are concerned
with primary creep and his results are not immediately
comparable with ours for tertiary creep.

Nemetschek et al. (1978) do not state the stress in their creep
experiments. However, they give the initial strain and,
elsewhere in the paper, they give the relationship between
initial strain and stress. The maximum stress appears to be
about 30 MPa and the maximum time allowed was 3600s. The
temperature was not stated. For comparison, the shortest creep
lifetime at room temperature and 30 MPa in our tests was
9200 s, and many lifetimes were much longer than this. It is
therefore understandable that rupture did not occur in
Nemetschek’s tests. The purpose of their work was to observe
X-ray diffraction patterns and rupture would not have been
helpful.

In life, tail tendons are not subjected to the prolonged stress
of a creep test. However, with inanimate materials, the
damage due to creep is cumulative. In living tissue, repair
processes may be able to rectify limited damage. Is such repair
likely to be necessary because of creep damage in wallaby tail
tendons? In the Results section, an estimate of about 14 MPa
was given for the stress on a tendon when its muscle contracts
isometrically. Higher instantaneous stresses might be
achieved during running because of the possibility of the tail
muscles delivering negative work, i.e. being stretched when
active. The loading during running is oscillatory, and therefore
tests with oscillating loads, i.e. fatigue tests, are more directly
relevant to function than are creep tests. Such tests are
reported by Wang et al. (1995), who show that the fatigue
lifetime for wallaby tail tendons is shorter than would be
expected from the accumulation of creep damage alone.
Overall, it appears that the stresses encountered during life
may be at the borderline where some repair becomes
necessary. This is clearly relevant to the design of tail tendons.
If the tendons were thinner, there could be a risk of damage
accumulating too fast. (Ker et al. 1988 give another
explanation for the existence of thick tendons.) This raises a
question concerning those relatively few, but important,
tendons that are loaded in life to much higher stresses, over
50 MPa in the human Achilles tendon and in the toe flexor
tendons of ungulates (Ker et al. 1988). Since these tendons
normally function successfully, they are presumably much
more resistant to creep rupture than are tail tendons. We are
currently investigating this question.

Our more detailed results at higher stresses are relevant to
the study of tendon as a material rather than to its function in
life.

Specimen length

In the dynamic tests, stiffness and strength were found to be
independent of specimen length (Figs 6 and 7 respectively). In
contrast, Haut (1986) reported lower stiffness at shorter lengths
using rat tail tendon. As in our tests, Haut used dried ends and
measured extensions clamp-to-clamp. However, Haut wrapped
the ends to be clamped in masking tape to prevent slippage and
premature failure. Could this masking tape be responsible for
the difference between his results and ours? Shear of the tape
and its adhesive would have a relatively greater effect at
reduced lengths and so appear as reduced stiffness.

Fig. 5 shows creep lifetime to be strongly dependent on
specimen length. However, we do not claim that these results
represent a full investigation of this question. The main
practical effect of Fig. 5 is to emphasise the need to consider
specimen length when undertaking creep experiments. The
same does not apply for dynamic experiments.

With brittle materials, longer specimens are sometimes
found, on average, to be weaker. The reason is that failure is
initiated at flaws and, on average, long specimens have more
flaws (Jayatilaka, 1979). The statistical analysis of this
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approach was first given by Weibull (1939). The independence
of strength, in a dynamic test, from specimen length indicates
that Weibull’s approach does not apply to tendon. In any case,
it seems improbable for a non-brittle material, where damage
is widespread rather than being localised at flaws.

A length effect would be observed if tendons tapered
regularly. With a tapered tendon, the maximum stress, which
is at the thinnest point, is greater than the measured average
stress. The influence of stress is so marked that even a small
taper could lead to a significant effect. As mentioned in
Materials and methods, we attempted to look for taper. Our
results were not conclusive, but we think that taper is unlikely
to be the reason for the dependence of creep lifetime on
specimen length. The shape of the curves of Fig. 5 does not
appear to be entirely appropriate: taper would give a reduced
slope at greater lengths, but not a slope of zero.

A third possibility is the presence of a ‘structural unit’ about
80 mm long. With hindsight, some length effect seems
probable given the mode of failure of tendon, which involves
interdigitating fibres pulling out over a length of 50–80 mm.
The absence of a length effect on dynamic strength is possibly
more surprising. If the specimen is shorter than the pull-out
observed with long specimens, the dried ends and the clamps
are bound to interfere with rupture. Clamps are usually thought
to encourage rupture, because of stress concentrations but, in
the case of short specimens, they may delay rupture by
gripping ends which would otherwise have pulled out. No
information is available for the length of collagen fibrils in
mammalian tendons. In a sea urchin ligament, Trotter and
Koob (1989) isolated intact collagen fibrils and found lengths
varying from 0.04 to 0.57 mm. This ligament has special
properties and mammalian fibrils might well be very different.
Furthermore, the length of the ‘structural unit’ seems likely to
vary between mammalian tendons.

Damage theory
Background

Since the work of Palmgren (1924), damage models have
often been used in connection with fatigue (i.e. cyclic loading
over an extended period) and, somewhat later, creep (see, for
example, Beaumont, 1989, for artificial fibre composites; Caler
and Carter, 1989, for bone; and Lorrain and Loland, 1983, for
concrete). Our results agree with the concept of damage due to
tertiary creep affecting the bulk of the specimen and
accumulating with time.

In tertiary creep, tendon behaves as if the cross-sectional
area of the intact material was being progressively reduced. We
find it conceptually helpful to introduce a ‘damage hypothesis’:
damaged material no longer contributes to stiffness or strength,
whereas material not yet damaged (‘intact’) makes its full
contribution to both. In this hypothesis, reduction in the
stiffness ratio sr mirrors a reduction in the ‘intact’ cross-
sectional area and a corresponding increase in the stress s on
the intact material with:

s = s0/sr , (4)
where s0 is the initial stress. The damage hypothesis is
consistent with Fig. 11, which shows the stiffness ratio to be
proportional to the ‘nominal’ strength; i.e. the yield stress
based on the total cross-sectional area. A model allowing
graded damage would no doubt be possible. However, in this
first damage theory for tendon, it seems unnecessary to invoke
a more complex model.

In damage models, different authors use different definitions
of a ‘damage parameter’ D according to what suits their
materials and measurements. For our purposes, it is useful to
define D as the ratio of loss of stiffness to the initial stiffness:

D = (1 2 sr) . (5)

This definition of D has been used for concrete (reviewed by
Lorrain and Loland, 1983) and for carbon-fibre composites
(Poursartip et al. 1982). D=0 initially and D=1 when the whole
tendon is damaged and it has no stiffness or strength. However,
this situation is not reached. In a creep test, the stress on the
remaining intact material increases as the effective cross-
sectional area is reduced and rupture occurs rapidly once the
yield stress of the material is achieved. At rupture, D=12s0/sf,
where sf is the yield stress of the material. D reaches a higher
value prior to rupture for creep at a lower nominal stress. This
approach has been applied with concrete (for rupture in
general, not only by creep or fatigue) by Lorrain and Loland
(1983). In damaged concrete, cohesion between the particles
is lost. The damaged portion becomes a pile of rubble lacking
strength and stiffness. Caler and Carter (1989), for bone, and
Poursartip et al. (1982), for carbon-fibre composites, used a
different failure criterion. In their analyses, failure occurs when
D reaches a critical value independent of stress. A possible
model is the accumulation of microcracks until, somewhere in
the specimen, a critical crack is formed so that the specimen
has lost all its strength even though its stiffness just prior to
failure is non-zero. This model may be appropriate for a brittle
material but does not seem to be appropriate for tendon. It does
not fit with our observation that strength and stiffness are
proportional (Fig. 11). A material such as bone, which has an
extended yield region in a ramp test to failure, might well not
show this proportionality. During yield, damage occurs, but the
bone does not become weaker. Correspondingly, in creep,
intermediate levels of damage may not be accompanied by a
loss of strength.

Prediction of lifetime

The aim is to predict time-to-rupture as a function of
nominal stress from observations made at the beginning of
creep, when damage is only just starting. The link is the
damage hypothesis introduced above. Intact material,
subjected to a stress of s is assumed to behave like undamaged
tendon subjected to the same stress (denoted, for undamaged
material, by s0). In particular, if the initial rate of change of
damage Ḋ0 is known, as a function of stress, this can be applied
to intact material at any time during creep. Mathematically this
statement is:

Ḋ0(s0) = Ḋ(s) . (6)
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Fig. 14. Theoretical lifetime predictions: equation 11, with values for
A9 and B9 from wallaby I. The solid line is for sf=144 MPa, the
measured value. The dashed line shows the effect of setting
sf=100 MPa. The triangles are the measurements for wallaby I (from
Fig. 4).
The rest of this section will be concerned with obtaining an
empirical estimate of Ḋ0(s0) and then with integrating Ḋ(s) to
give lifetime, T, as a function of the nominal stress, s0.

In principle, Ḋ0 could be measured directly, since, from
equation 5, Ḋ0=2ṡ r 0. However, it would be difficult to achieve
adequate accuracy in measuring changes in stiffness. An
alternative, less direct, route is to use equations 2 and 3. The
advantage is that the change measured is in strain and this can
be assessed reliably (Fig. 13). (See the Appendix for further
consideration of the combined use of equations 2 and 3.)
Differentiation of equation 2, noting that D«̇=«̇ and
substitution into equation 3, gives:

ṡ r min = bA9eB9s0 , (7)

where ṡ r min relates to the time when «̇ is near its minimum.
The theory requires a value for ṡ r 0 rather than for ṡ r min, but,
because of the overlap of primary (non-damaging) and tertiary
(damaging) creep, we cannot measure a relevant value of «̇ at
the onset of damage. The best approximation is to measure
«̇min, which will be somewhat of an overestimate. The slight
acceleration, over a substantial time (say T/4) beyond the time
of minimum strain rate, encourages the hope that ṡ r min is an
adequate estimate of ṡ r 0. This is considered further in the
Appendix, which is intended to be read once the theory has
been established. Thus, assuming ṡ r min to be an adequate
estimate of ṡ r 0 and substituting 2Ḋ0 for ṡ r 0 in equation 7, we
finally obtain:

Ḋ0 = 2bA9eB9s0 , (8)

where the parameters have the values (see Results) A9=
1.3431027 s21, B9=0.079 MPa21 and b=27.

According to the damage hypothesis (equation 6), the same
function will apply throughout creep, giving:

Ḋ = 2bA9eB9s . (9)

But, from equations 4 and 5, and, by differentiation:

Eliminating Ḋ between equations 9 and 10, rearranging and
integrating gives the time to rupture, T, as:

Using Simpson’s composite algorithm, we have computed
T as a function of s0, when the constants A9, B9 and b have the
values given above and sf=144 MPa. The result is shown by
the solid line in Fig. 14 for stresses from 20 to 144 MPa.
Experimental values from Fig. 4 are also shown in Fig. 14. The
theory successfully predicts the correct order of magnitude for
the time to rupture, although the rate of variation with stress is
somewhat overestimated.

Equation 11 is not applicable at low stresses since equation
3 is not then physically realistic. As s0 approaches sf, there is

(11)
⌠

⌡

T

0
dt = 2

⌠

⌡

sf

s0

ds .
A9b

e2B9s

s2
T =

(10)
s2

Ḋ = ṡ .
s0

s0
no comparable physical barrier to applicability and, although
no data are available for stresses above 80MPa, the theoretical
curve has been extended in Fig. 14 because the behaviour of
equation 11 as s0 tends to sf is of interest. To illustrate this,
the curve for s0=100 MPa has been added as a dashed line to
Fig. 14. The difference over the experimental region is only
slight, because of the extreme steepness of the creep curve as
rupture approaches. A ‘target’ stress of 144 MPa is reached
very soon after 100 MPa is passed. The most important of the
measured parameters in determining the shape of the
theoretical curve is B9, because it is involved in an exponential
term. A9 and b affect T linearly and thus do not influence the
slope of the semi-logarithmic plot in Fig. 14. Their lack of
importance, relative to B9, is fortunate in view of the
uncertainty in b.

Prediction of D(t)

From equations 9, 4 and 5:

Ḋ = 2A9beB9s0/(12D) . (12)

This is closely related to equation 11 and can, similarly, be
integrated numerically, for any given value of s0, to find the
time t to any specified value of damage, D(t)[ø(12s0/sf)]. As
an illustration, Fig. 15 shows the damage–time curve thus
obtained with s0=50 MPa. The initial slope, at this and other
stresses, is the input to the theory and must necessarily be in
agreement with experiment; equation 12 becomes equation 9
when D=0. Thereafter, the theory predicts steadily increasing
acceleration of damage through to rupture. No extra
mechanism, other than that which applies at the onset of
damage, is needed to cover the full sweep of tertiary
(damaging) creep. The theory does not lead from damage to
the magnitude of the accompanying strain. Empirically,



843Creep of tendons

0.8

0.6

0.2

0.4

D
am

ag
e

1000 2000 3000 4000

Rupture

Time (s)

0
0

Fig. 15. Theoretical damage curve: equation 12 for s0=50 MPa, with
A9 and B9 from wallaby I, b=27 and sf=144 MPa. The slope at the
origin is an empirical estimate, as this is the input to the theory.
equation 3 suggests a linear relationship between D and D«.
Under these conditions, with no theoretical relationship and a
rather uncertain empirical relationship, especially at higher
strains, we are content to note the general similarity of Fig. 15
to observed creep curves, without going into detail.

Summary of damage theory and further comments

The theory predicts the time course of damage through to
rupture from measurements made on intact tendons. The basis
is the damage hypothesis: damaged material no longer
contributes to stiffness and strength, whereas intact material
makes its full contribution to both. A graded theory, with
partial damage, would no doubt be possible, but seems
unnecessary.

On this hypothesis, the damage parameter, D, defined as the
fractional change in stiffness, represents the proportion of
damaged material. Fig. 11, showing that strength and stiffness
are correlated, underlies the hypothesis. The damage
hypothesis leads to the expectation of fracture when the stress
on intact material reaches the yield stress of the tendon (as
measured in dynamic tests, too rapid to allow significant
creep). The resulting equation for ‘time-to-rupture’, T
(equation 11), has four measured parameters (A9, B9, b and sf;
three, if A9b is considered as a single parameter), but no
arbitrary parameters for fitting. The agreement with
experiment, as to the order of magnitude of the lifetime, is
therefore encouraging.

The purpose of the theory, as presented here, is to assist in
understanding creep behaviour. A narrower use is to predict,
from creep experiments, the damage caused by applying loads
which vary during a test. For this phenomenological purpose,
the underlying hypothesis is not of concern; all that is relevant
is that the equations fit the results of creep experiments, so the
parameters are best obtained by fitting. The theory is used in
this way by Wang et al. (1995).

During creep, three components to strain are envisaged: (1)
elastic; (2) non-damaging (primary) creep; and (3) damaging
(tertiary) creep.

Elastic creep. Our tests are in the linear region of the
stress–strain plot. The initial loading straightens (from crimp)
and stretches the collagen fibrils. In the damage hypothesis, the
intact material is, thereafter, subject to increased stress and,
therefore, to increased elastic strain. The change in elastic
strain, D«E, is related to sr by:

We have calculated D«E for the results shown in Fig. 12. D«E

increases, as a proportion of the total strain as s0 increases and
as sr decreases. When s0=80 MPa, the extra strain is 6 % and
D«E is then 3.1 %, more than half the total (equation 13, with
E=1.6 GPa and sr=0.615).

Primary creep. Non-damaging, primary creep clearly lies
outside the scope of the theory. Fig. 12 is surprising in its
suggestion that the extent of non-damaging creep is

(13)
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independent of s0. An analogy could be to a ship moored with
a slack rope, for which the achievable displacement is largely
independent of force. Primary, decelerating, creep is obvious
near the beginning of the creep curve. Does extra primary
creep occur subsequently, as the stress on the intact material
increases? A priori, this seemed probable, but, if primary
creep is largely independent of stress, any extra may be
slight.

Tertiary creep. The damage hypothesis gives no indication
of the magnitude of the strain which accompanies damage. We
can only assess this empirically via equation 2. It is possible
to imagine a scenario in which the extra elastic and extra
primary strain accounted for the whole extra strain. However,
the comments above make this seem unlikely.

This work has not dealt with the details of the damage
mechanism. However, we will attempt to indicate some
generalities, consistent with the results and theory which have
been presented. In a fibre-reinforced material, stress is
transferred laterally to each fibre by longitudinal shear in the
matrix or by more specific links. Assume that damage involves
failure of this transfer. The stress in a portion of fibre is then
reduced so that it becomes less extended than neighbouring
fibres. This causes a concentration of longitudinal shear stress
in the matrix, and the region of failure runs along the specimen.
The result is to take out a macroscopic portion of material and
the division between intact, more highly stressed, and
damaged, non-contributing, material is established.

This picture is very different from the localised damage
(necking) caused during creep of some ductile materials (e.g.
unplasticized polyvinylchloride, Progelhof and Throne, 1993)
or the proliferation of partially transverse microcracks
observed with many harder materials including bone (Zioupos
and Currey, 1994). The damage envisaged is widespread, but
hardly uniform. We tried two observational approaches with
the aim of assessing the uniformity of creep. In one, we
inserted five fine steel pins transversely through the tendon and
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then photographed them at intervals during creep. The hope
was to demonstrate similar strains in each of the four regions
thus defined. The results were not clear-cut. A major problem
was the tendency of the pins to twist away from their original
90 ˚ orientation. The second approach involved examining the
remains of the tendon, after creep, for the presence of crimp
using polarised light or scanning electron microscopy. Tendon
that has been subjected to a high longitudinal strain does not
regain its characteristic crimp on removal of the load. Some
specimens seemed to lose crimp virtually throughout but, in
many, irregular patches of crimp remained. The observations
from both approaches are understandable, on the basis of the
proposed mode of failure.

Failure in creep results in pull-out of long fine fibres over
some 50–80 mm. This is consistent with failure of the
intervening matrix. It may also explain why shorter specimens
appear to be more resistant to creep. A few, very long,
longitudinal cracks in the matrix might take out a long section
in a long specimen. In a sufficiently short specimen, this long
section may remain under load as a result of being attached to
the clamps at both ends. In this case, further damage on a finer
scale would be needed before strength and stiffness were
impaired.

Appendix: assessing Ḋ0 from «̇min

Two complications merit further consideration. First, in
arriving at equation 7, «̇(=D«̇) was eliminated between
equations 2 and 3. Are these equations mutually compatible?
Equation 2 applies for D« >0.86 %. Equation 3 relates to the
minimum of «̇, but is acceptable over a range of times and
strains because of the flatness of the minimum. We examined
the creep curves, from which Fig. 13 is derived, and found that
the broad region of the minimum is approached when D« is
between about 0.5 % (30 MPa) and 1.2 % (80 MPa). Thus,
equations 2 and 3 apply in similar regions and can be used
together.

Second, in going from equation 7 to equation 8, ṡ r min was
assumed to be an adequate estimate of ṡ r 0. The theory
developed in the Discussion allows the discrepancy between
ṡ r min and ṡ r 0 to be estimated. We will assume here that damage
starts with the application of load and occurs concurrently with
primary creep. A later start would lead to a smaller
discrepancy. ṡ r=2Ḋ, and so equation 12 can be used to
calculate values of ṡ r at any time, since the values of D(t) are
now known. In particular, the ratio of ṡ r 0 to ṡ r min can be found,
at each stress, given the times of the observed minima in strain
rate. From the creep curves, we found that these times range
from about 14 % of lifetime (when s0=30 MPa) to about 22 %
(80 MPa). The theoretical ratios ṡ r 0/ṡ r min are then between
0.92 (30 MPa) and 0.81 (80 MPa).

In obtaining equation 8, equation 7 was multiplied by a ratio
of 1.0 at all stresses. Using instead the ratios obtained in the
previous paragraph (0.92 and 0.81), equation 8 would not
remain a strict exponential, since the ratios vary with stress.
This change of mathematical form is, of course, spurious:
equation 8 can remain an exponential; in which case, the
equivalent to equation 7 (and hence also equation 3) would
cease to be precisely exponential but, because of the scatter of
points in Fig. 13, would be just as good a fit to the measured
values. One way of achieving an equivalent change is to
multiply each measured value of «̇min by the ratio for the
relevant stress. An exponential fit gives new values for A9 and
B9, for use in equation 8 and subsequent equations. The new
values of A9 and B9 are 1.33310–7 s21 and 0.076 MPa21

respectively, compared with 1.34310–7 s21 and 0.079 MPa21

previously. Using these new values in equation 11, slightly, but
noticeably, improves the agreement between theory and
experiment in Fig. 14. However, the change seems to be
insufficient to justify presentation of revised versions of
Figs 13, 14 and 15. The general conclusions, obtained when
ṡ r min is used as an estimate of ṡ r 0 , are not altered.

Obtaining these new values of A9 and B9 represents the first
step in a potential iterative procedure. However, the next step,
using these values to find newer ones, generates insignificant
further changes.
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