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SUMMARY

An analysis of the slow permeation of fluids through assemblages of elliptic

cylinders based upon a cell flow model is developed and applied to flow through

mats of noncircular synthetic fibers. The aim of the investigation was to

determine what effect fiber cross-sectional shape has on the resistance to flow

through a fiber mat. An elliptic cylinder was chosen as a fiber model because

the shape of the elliptic cross section can be varied from circular to nearly

flat with a mathematical description of the contour easily specified by using

confocal elliptic coordinates.

The cell used as a model of the porous space consists of two confocal

elliptic cylinders, the inner one representing the solid fiber and the outer

one a virtual surface within the fluid. The virtual boundary is positioned

such that the cell porosity equals the mat porosity. The no-slip condition is

assumed on the solid cylinder, while zero vorticity is stated as a condition on

the fluid surface in the manner of the analysis by Kuwabara for circular

cylinders.

The creeping motion equations are applied to flow through the model cell,

and solutions are determined for flow parallel to the central fiber axis, flow

perpendicular to the central axis and to the minor cross-sectional axis, and

flow perpendicular to the central axis and to the major cross-sectional axis.

A novel approximate method for solving Poisson equation problems using a poly-

nomial form is successfully utilized and shown to be reasonably accurate.

Using the Kozeny factor from the Kozeny-Carman theory as an indicator of

relative resistance to flow through the assemblage, expressions for each flow

direction are developed as functions of porosity and cross-sectional axis

ratio. Several mat structures are considered and composite mat Kozeny factors

are estimated. These composite Kozeny factors are compared to experimental

data for noncircular fiber mats and to previous analyses.
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The principal conclusion is that the flow resistance for an isotropic mat

of fibers is not greatly affected by the fiber cross-sectional shape until a

fairly flat axis ratio is used. For example, at porosity 0.90 the Kozeny

factor for a mat of circular fibers is very close to that for fibers of axis

ratio 0.10; at porosity 0.75, going from circular fibers to an axis ratio of

0.30 causes a change of only ten percent in the mat Kozeny factor.

The contact area between fibers in a mat is considered as a means for

correcting the surface area of the porous mat for that area not passed by the

fluid. Although valid, this correction is seen to be insignificant for the

fiber mats of interest to this work. The contact area estimate is developed

from the theory of two isotropic elastic bodies in contact and relates the

contact area to the fiber elastic properties as well as to mat characteristics.
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INTRODUCTION AND HISTORICAL REVIEW

The flow of fluids through fiber mats is of importance in many processes,

including the filtration of air with high porosity synthetic fiber filters,

water filtration with fiber mats formed from fiber slurries, and water removal

on a paper machine forming section. The large majority of existing studies

which have explored the basic relationships guiding such flow have been

empirical or semiempirical in approach. Few analyses from a theoretical

standpoint have contributed significantly because of the extreme difficulties

in defining the structure and properties of the porous mat of fibers. Some

analytical studies of regular arrays of fiberlike cylinders have been completed,

but these are of little practical importance to the abovementioned processes

where the fiber assemblage is not well ordered. The effect of fiber character-

istics, such as fiber cross-sectional shape, deformability, etc., on the flow

behavior has not been clearly determined either.

Obviously, the subject of fluid flow through fiber mats needs considerable

attention from investigators before widely applicable, well defined relation-

ships are obtained. This thesis attempts to contribute to this area by

applying the fundamental principles of hydrodynamics to a model of the porous

space in order to determine the effect of fiber shape on flow resistance.

Neither experiment nor analysis should be overlooked in studies in this

area. Both are essential for further insight into the governing relationships.

Because of the complexity of the flow in a fiber assemblage, empirical studies

often appear to provide a faster means for resolving questions than an analytical

approach does. But the results from such empiricism are limited to the

specific set of conditions employed in the study, while an analytical approach



based upon valid reasoning can relate the variables of interest over a wide

range of conditions. New theories, however, certainly need verification by

experimental measurement before confidence in them is obtained and they are

accepted as sound. The approach in this thesis is primarily theoretical, but

laboratory data are compared with the analytical results in an effort to

demonstrate the usefulness of the theory.

FUNDAMENTAL RELATIONSHIPS

Porous media possess numerous and varied physical forms, but all are

characterized by the fact that the apparent volume of the material is greater

than the true solid volume because of "pores" or void spaces present within

the structure. The properties of a porous medium are highly dependent upon

the ratio of void space to solid volume, as well as on the manner in which the

void space is distributed within the medium. In most cases the "pores"

are randomly interconnected so that fluids can permeate the structure in all

directions.

A thick mat of fibers is the porous medium of interest to this work.

The characteristics of a fiber mat depend greatly on what type of fibers are

in it and how the mat was formed. No fiber mat of practical importance has

a regular, ordered structure. As a result, it is very difficult to describe

in exact terms the porous structure of a mat, which would be desirable for

hydrodynamic analysis.

The basic principles of hydrodynamics, i.e., the differential equations

of the conservation relationships, describe the motion of fluids in any

geometric system. But mathematical solutions for only a very few flow cases

involving fairly simple geometries have been obtained. This is because more
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complicated flow problems present extreme difficulties in specifying the most

suitable coordinate system for equations and their boundary conditions, a

step necessary for rigorous solutions. For these reasons, most of the studies

to date on flow through porous media have utilized empirical or semiempirical

approaches.

DARCY'S EQUATION

The fundamental relationship describing slow, steady-state, isothermal

flow of an incompressible fluid through a homogeneous porous medium is the

equation of Darcy (1),

where - ;U-= superficial velocity

Q = volumetric flow rate

A = cross-sectional area of porous medium presented to flow

;Ap =,pressure drop across the medium

L = thickness of the medium

K = proportionality factor
-o

dp/dx = pressure gradient

The Darcy equation simply states that the flow rate is directly proportional

to the pressure drop. It is applicable for laminar flow where inertial effects

are negligible and where the resistance to flow, as expressed by 1/K , is due

entirely to the viscous drag of the fluid. Also, the fluid must be nonreactive

with the porous structure.

The proportionality factor, K , combines the structural properties of

the porous medium and the characteristics of the permeating fluid. The fluid
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properties are separated from those of the medium by the commonly accepted

Scheidegger (2) relationship

K = K/p, (2)

where p is the dynamic viscosity of the fluid and K is termed the permeabil-

ity coefficient, which is dependent only on the porous structure and not on

the fluid properties. The dimension of K is that of length squared. The

Darcy equation becomes

U = - (K/p) dp/dx. (3)

Darcy's law was empirically determined in 1856, but recently a theoretical

basis for it has been demonstrated. Irmay (3) showed that the equation was

valid on a macroscopic scale by obtaining a space average of the microscopic

flow obeying the creeping flow form of the Navier-Stokes equation. A theo-

retical derivation of Darcy's law was presented by Whittaker (4), who applied

the conservation principles to the flow in an anisotropic porous medium and

derived the Darcy equation.

KOZENY-CARMAN THEORY

Since the permeability coefficient is structure dependent, efforts have

been made to relate K to the properties of the porous medium by assuming a

model of the structure. One of the more widely known theories of this type

is represented by the Kozeny-Carman equation (5), a semiempirical relation-

ship based upon the assumption that the medium is analogous to a system of

parallel capillary channels. The size of the channels is represented by the

hydraulic radius, m, defined as the ratio of cross-sectional area to wetted

perimeter. In a porous medium of porosity E (volumetric void fraction), the
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hydraulic radius is the ratio of E to the specific surface, S

per unit volume of the medium). The Kozeny-Carman

with k referred to as the Kozeny factor. Originally k was termed the Kozeny

constant but later work has demonstrated its variability with medium proper-

ties. Carman (5) suggests that the Kozeny factor is the product of a pore

shape factor and the square of a tortuosity factor, with a value between 4

and 6 for most porous beds. The specific surface of the medium, S , is con-

verted to specific surface based on particle volume, S (area per unit volume

of solid fraction), assuming point contact between particles, by

Thus the permeability coefficient is

and the Darcy equation is

For porous mats with constant porosity, specific surface, viscosity, and flow

rate, a higher value of the Kozeny factor means that a greater pressure

gradient is required. Because of this, k can be used as a relative measure

of the resistance to flow through a porous sample and can serve as a basis for

comparing similar mats.

Other approaches to flow through porous media exist, but the purpose

of this discussion is not to critically review the area. The monographs by
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Scheidegger (2), Davies (6), and Carman (7) cover the subject in considerably

more detail. Bliesner (8) also reviews the prior work.

FLOW THROUGH FIBER MATS

The permeation of fluids through mats of fibers is a special type of

flow through porous media. The general considerations presented above are

applicable to fibrous mats. In this section studies concerned primarily with

fiber assemblages, rather than any porous medium, will be discussed. A recent

review of fiber mat permeation is given by Han (9). The Darcy equation combined

with the Kozeny-Carman equation, Equation (7), will be used as the basic rela-

tionship for flow through fiber mats. The primary concern will be the elucida-

tion of the Kozeny factor in terms of mat and fiber properties.

CIRCULAR FIBERS

Because of the availability of synthetic fibers of circular cross section

and because of the simpler analysis of flow past such fibers, the flow through

beds of circular fibers has received much attention.

Empirical Approaches

For beds of fibers used for air filters over the porosity range 0.70 to

0.994, Davies (10) demonstrated the dependence of Kozeny factor on bed porosity

and expressed his findings by the equation

where kl1 and k2 have values of 4.0 and 56, respectively.

Ingmanson and associates (11) performed water permeability experiments

with mats of nylon and glass fibers of circular cross section oriented principally
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in the plane normal to flow. Their measurements yielded the values 3.5 and

57 for kl and k2, respectively. The difference between these values and those

of Davies probably results from fiber orientation effects, since Davies'

fibers are believed to have had more alignment parallel to flow.

Carroll (12) has presented a three-parameter correlation of Kozeny factor

and porosity for beds of cylindrical synthetic fibers which fits the data

below a porosity of 0.80 better than does the more widely used Davies-

Ingmanson equation. The Carroll relationship is*

One drawback to this equation is the failure to approach infinity as the

porosity goes to unity. Both the Davies-Ingmanson and Carroll equations are

plotted in Fig. 1.

Theoretical Approaches

The choice of a regular array of circular cylinders enables analytical

solutions to the hydrodynamic flow -equations to be obtained as one way to

study the flow past fiberlike objects. Emersleben (13) solved the Navier-

Stokes equation for the problem of flow parallel to a square array of infinitely

long parallel circular cylinders of equal radii. This analytical solution

yields a rigorous permeability equation based on fundamental principles which

can be compared with the Kozeny-Carman equation. Because of the mathematics

of the analysis, Emersleben's equation applies well above a porosity of 0.80,

but becomes poorer as the porosity is reduced. At a porosity of 0.90,

Emersleben obtained a Kozeny factor of 6.3, while at 0.80 his k was 3.5.
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A similar flow problem was considered by Sparrow and Loeffler (14), with

laminar flow parallel to the cylinders arranged in square and equilateral tri-

angular arrays. The square array case is the same as that of Emersleben. The

analytical solution by Sparrow and Loeffler was obtained using series expres-

sions, and has the advantage of being applicable at porosities below 0.80. At

E = 0.50, they found a Kozeny factor of 3.5 for the equilateral array and 2.9

for the square array.

A comparison of these two approaches for regular arrays is given by

Happel and Brenner (15), while Carman (7) discusses Emersleben's analysis in

detail.

Hasimoto (16) solved the two-dimensional problem of flow perpendicular

to the longitudinal axes of an infinite square array of circular cylinders by

obtaining periodic fundamental solutions of the Stokes equations of motion

with the aid of Fourier series. Converting his drag force expression to

Kozeny factor yields

2

Values from this analysis are compared in Table II with another approach.

Results of this method are valid only for square arrays at porosities above

0.80.

A real fiber mat is an irregular assemblage of fibers. Even with some

preferred fiber orientation, the actual structure is too complex to be

easily described mathematically. Nevertheless, analytical applications of the

basic hydrodynamic principles to irregular fiber assemblages have been com-

pleted. One method by which this is done is the cell model technique. In

this method, the fiber bed is considered to be composed of a great number of
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individual cells, each consisting of a fiber segment surrounded by a fluid

envelope bounded by a virtual fluid surface. For the analysis, an average

cell is assumed with the quantity of fluid in the cell sufficient to make

the cell porosity equal the bed porosity. Boundary conditions are specified

on the solid surface and the virtual fluid surface. The fluid boundary has

a shape similar to that of the particle in the cell, for example, a cylinder

concentric with the solid cylindrical fiber. The cell model technique has

been successfully applied to beds of spheres (17-19) as well as to assemblages

of cylinders (18,20).

Two separate but similar analyses of flow through arrays of circular

cylinders using the cell model method were published in 1959 by Kuwabara (18)

and Happel (20). The difference between the two is in the choice of boundary

conditions.

In the Happel analysis the cell model consisted of two concentric cylin-

ders, the inner one representing the solid surface and the outer one the virtual

fluid surface. Boundary conditions were specified for the solid cylinder

moving within the fluid,.with the no-slip condition identified on the solid

surface and the conditions of zero normal velocity and zero shear stress

assumed on the fluid boundary. Two flow problems were treated: flow parallel

to the cylinder and flow perpendicular to the cylinder. In the parallel case,

Happel applied the complete Navier-Stokes equation, obtaining as the differential

equation to be solved

where r is the radius and v the velocity in the x-direction, using the

conditions
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The solution for v was

By integrating v over the entire annular region between the cylinders, the

flow rate Q is obtained. From the Darcy equation, the permeability coefficient

was found to be

Applying the Kozeny-Carman theory, Equation (4), with the hydraulic radius,

m, defined as

the Kozeny factor for parallel flow, k(p), was obtained, as follows:

Table I compares values for the parallel Kozeny factors from the analyses of

Happel, Sparrow and Loeffler, and Emersleben. For high porosities, the Happel

result is equivalent to the findings of Sparrow and Loeffler for regular

arrays, which demonstrates the success of the cell model approach in describing

parallel flow past arrays of circular cylinders.



TABLE I

COMPARISON OF KOZENY FACTORS FOR PARALLEL FLOW PAST

REGULAR ARRAYS OF CIRCULAR CYLINDERS

Porosity

Analysis 0.90 0.80 0.50

Square array:

Emersleben 6.3 3.5 --

Sparrow and Loeffler 7.3 5.0 2.9

Happel 7.3 5.2 3.7

Equilateral triangular array:

Sparrow and Loeffler 7.3 5.2 3.5

Happel 7.3 5.2 3.7

The analysis by Happel for the perpendicular flow case was based on the

creeping flow equations, obtained by omitting the inertia terms from the

Navier-Stokes equation. Using cylindrical coordinates and introducing the

stream function, i, defined by

the creeping motion equations in two dimensions reduce to the biharmonic

equation

with the boundary conditions as follows:

These are stated for the cylinder moving in the fluid. A solution for this is

-14-
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in which the factors C, D, E, and F are determined from the boundary condi-

tions. The drag on the solid cylinder is

and D was found to be

2

If the cylinder is stationary, the drag on a cell is related to the pressure

drop by

Equation (23) may be compared with the Darcy equation to determine the permea-

bility coefficient K:

2

The effect of porosity on k(p) and k(t) from Happel's analysis is demon-

strated in Fig. 2.

The analysis by Kuwabara is like that of Happel except that zero vorticity

was assumed on the virtual fluid surface instead of zero shear stress as a

boundary condition. Kuwabara only considered the perpendicular flow problem,

but in the parallel flow case both the zero vorticity and the zero shear stress

conditions yield mathematically identical conditions. For perpendicular flow,

Kuwabara's solution was
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The resulting Kozeny factor for the Kuwabara analysis is

This relationship is plotted in Fig. 2 along with the Happel results. The re-

sults are similar, but the Kuwabara equation predicts higher values for the

Kozeny factor. Surprisingly, the Kuwabara transverse flow Kozeny factor is

exactly twice Happel's parallel flow Kozeny factor.

The flow patterns obtained in the Happel and Kuwabara analyses are

similar. Streamlines (curves of constant stream function) for perpendicular

flow through the cell at a porosity of 0.75 are demonstrated in Fig. 3. Near

the solid surface the streamlines are very close. As the outer surface is ap-

proached the two begin to differ, but not by much.

The question of which condition, zero vorticity or zero shear stress, is

more valid has not been clearly settled. Happel and Brenner suggest that the

Happel model is more physically reasonable since the Kuwabara model cell ex-

changes energy with neighboring cells, whereas the zero shear stress model

does not. For flow past spheres, the model of Happel agrees better with

experimental data; but for assemblages of cylinders, the Kuwabara approach

fits the observed behavior better (21).

Kirsch and Fuchs (21) investigated the pressure drop in models of fibrous

filters composed of parallel rows of circular cylinders oriented perpendicular

to the flow direction and compared the experimental data to the models of

Kuwabara and Happel. A conclusion from this study was that the Kuwabara

analysis fits the data well down to a porosity near 0.73, while the Happel

analysis underestimates the pressure drop over the porosity range considered.





In another study of perpendicular flow past a system of parallel cylin-

ders, Kirsch and Fuchs (22) experimentally observed the flow patterns around

the cylinders and compared the results to the streamlines predicted by the

Happel and Kuwabara analyses. Again, the zero vorticity model agreed with

the observations better than the zero shear stress model did.

The cell model analyses for perpendicular flow agree well with the re-

sults obtained by Hasimoto for perpendicular flow through a square array of

circular cylinders, although the agreement worsens below a porosity of 0.80.

Table II summarizes a few Kozeny factors from these approaches. Kuwabara's

zero vorticity model is closer to the Hasimoto values than is Happel's zero

shear stress model for porosities above 0.80, suggesting that the choice of

zero vorticity as an outer boundary condition may be more acceptable for

arrays of circular cylinders, at least at higher porosities.

TABLE II

KOZENY FACTORS FOR PERPENDICULAR FLOW THROUGH

ARRAYS OF CIRCULAR CYLINDERS

Square Array Cell Models

Porosity Hasimoto Kuwabara Happel

0.99 61.6 62.1 53.8

0.90 14.2 14.6 11.0

0.80 9.46 10.2 7.46

0.70 6.61 8.80 6.19

A comparison of the curves in Fig. 1 and 2 shows that the empirical

correlations of Davies-Ingmanson and Carroll fall between the parallel and

perpendicular Kozeny factor curves from the cell model analyses. This ob-

servation supports the validity of the cell concept as applied to fibermats.

Meyer (23) suggested that the two directional values be mixed by employing a

weighting function, w(e), in the following manner:
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A real fiber mat has fiber segments oriented at various angles to the flow

direction. The flow velocity and drag vectors can be resolved into components

both parallel and perpendicular to the fiber segment, thereby providing a basis

for the weighting method. Combining the directional values in this manner

yields a porosity-dependent correlation for the Kozeny factor based upon the

analytical results. The weighting factor chosen-by Meyer was

The Kozeny factor curve using this approach fits the experimental data as

well as the Davies-Ingmanson correlation, as seen in Fig. 1. The weighting

technique demonstrates that rigorous analysis of idealized cases can be useful

and complementary to empirical observations.

In addition to the application of the cell model approach to the permea-

bility of fiber mats; it has been employed by Fuchs and Stechkina (24) as the

basis for a theory of aerosol filtration using fibrous filters and by Pich

(25) who extended the theory to include slip flow at the fiber surface.

The cell method used by Happel and Kuwabara has attracted the attention

of investigators recently who are interested in extending the results beyond

the creeping flow region to higher Reynolds numbers. LeClair and Hamielec

(26) used the cell model concepts of Happel and Kuwabara for flow through

assemblages of circular cylinders, solving the Navier-Stokes equation by

finite difference methods to cover the ranges of Reynolds number from 0.1

to 500 and of porosity from 0.4 to 1.0. El-Kaissy and Homsy (27) performed

a similar analysis in extending the cell model results to intermediate

particle Reynolds numbers by a regular perturbation technique.,
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Approaches other than treating regular arrays of cylinders or looking

at the flow in a model cell have been presented by various researchers.

Iberall (28) utilized a drag theory approach in considering the permea-

bility of glass wool and similar highly porous media. The cell model method

is one form of a drag theory, but Iberall's analysis preceded the cell

analyses. By assuming the porous medium to consist of randomly distributed

uniform circular cylinders, Iberall proposed that the permeability is related

to the drag force on individual elements. With the fibers oriented randomly,

the pressure drops for each of the three orthogonal directions past an element

were merely added together to give the overall pressure drop. For flow

parallel to a fiber element, the equation for drag force derived by

Emersleben was used. For perpendicular flow, Lamb's solution of Oseen's

equations (29) was used. The result of Iberall for a random assemblage of

cylinders in terms of the Kozeny factor is

and is applicable for flow up to a particle Reynolds number (Re) of about 1.0.

When Iberall studied experimental data, he found that the above result was

valid if different constants were used. In his paper, Iberall compares the

hydraulic radius theories, such as the Kozeny-Carman analysis, with the drag

theories, concluding that neither is good for the entire porosity range of

interest.' The hydraulic radius method works best at lower porosities, while

the drag theory is best at higher porosities where interference from other

particles is minimized.

A recent analysis by Spielman and Goren (30) applies a model different

from the cell approaches to flow through fibrous media. The technique is the
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one proposed by Brinkman (31) originally for;swarms of spheres. The model

assumes that a particle within the porous medium is subjected to a damping

force due to the effect of surrounding objects in addition to the viscous

and pressure forces. The damping force is linearly proportional to velocity

and is treated analytically by adding the Darcy term to the creeping motion

equation. The Brinkman model becomes invalid at low porosities because a

simple damping term cannot then adequately account for the numerous inter-

actions among the particles. Neither does the model hold for very high

porosities where the behavior can be treated as flow past isolated cylinders.

Spielman and Goren considered four orientation distributions expected in

fiber mats, as follows: all fibers in planes perpendicular to the flow but

random in those planes; all fibers parallel to flow; all fibers in planes

parallel to flow but random in those planes; and, fibers randomly oriented.

For the first case above, the predicted pressure drop was compared to the

estimates from the cell model analyses of Happel and Kuwabara for perpendicular

flow, and the empirical analysis of Davies. For porosities above 0.9, the

present model predicts pressure drops below the values from both the cell

models and is close to Davies' results. This model estimates higher resis-

tances than the Happel and Kuwabara models below porosities of 0.87 and 0.79,

respectively. The Spielman and Goren model shows a stronger dependence on

porosity than any of the other three studies.

A different approach to flow through fibrous beds was employed by Kyan,

Wasan, and Kintner (32)', who developed a pore model to account for the high

pressure drop despite high porosities. They base their model on two assump-

tions which explain the higher than expected pressure drops. First, they

propose that a portion of the void space within the medium is occupied by

stagnant fluid so that the flow occurs in only a fraction of the void volume.
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Second, they suggest that the deflection of individual fibers within the mat

as a result of the flow absorbs energy, thereby increasing the actual pressure

drop. The resulting model is complicated and involves several parameters de-

pendent on mat and fiber properties.

Another pore model was used by Clarenburg and Piekaar (33) in developing

a theory for the pressure drop across fibrous filters. Their model is based

on geometrical considerations. An equation for the pressure drop is the

result of the analysis, but it is an involved function of filter, fiber, and

flow characteristics, and its applicability to real fiber mats is questionable.

NONCIRCULAR FIBERS

Many natural fibers and some commercially available synthetic fibers have

cross-sectional shapes that deviate considerably from a circular shape. Fibers

such as wood and cotton possess numerous cross-sectional shapes because of the

hollow center, or lumen, which can collapse under pressure. Since the permea-

bility of wood fiber mats is of importance to the paper industry, the question

of what effect fiber shape has on the flow resistance through a fiber mat has

arisen. The application of the results of studies with circular fibers to the

permeation of mats of noncircular fibers is of questionable value pending

further analysis. Consequently, some investigators have studied the permea-

bility of fiber mats made from noncircular fibers.

Empirical Approaches

Several experimental programs have been conducted in which the permea-

bility of wood fiber mats was the principal concern. For a discussion of

these, refer to the reviews by Meyer (34) and Han and coworkers (35). With

wood fibers, the permeability measurements are complicated not only because
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of their irregular shape but also because they swell in water dependent upon the

compressive stress. This makes estimates of specific volume and specific sur-

face difficult to obtain.

One study (36) of the cross-sectional shape of wet wood fibers which had

been freeze-dried so that the lumens would not collapse indicated that the

ratios of largest to smallest diameters were generally below 3.5 to 1. After

drying, the lumen collapses and the ratio can increase to near 10 to 1.

An investigation of the factors affecting air permeation of plugs of

textile fibers was reported by Lord (37). Using a number of different natural

fibers, the Kozeny factors were determined experimentally. Lord's findings

confirm the strong dependence of Kozeny factor on porosity. The possibility

of an effect of fiber cross-sectional shape on the Kozeny factor was suggested,

but no definitive conclusion was obtained.

Bliesner (8) investigated the permeability of thick mats of wood pulp

fibers. In interpreting his data, he proposed that the collapse of the

fibers under pressure partially explained his findings. Since he was using

the Kozeny-Carman analysis, he became concerned about the effect of fiber shape

on the value of the Kozeny factor, k. In an attempt to determine if k were

indeed changing as the fibers changed shape, Bliesner performed water permea-

bility measurements with beds of synthetic fibers of three different cross-

sectional shapes. One set of fibers was 15-denier nylon with a circular cross

section (axis ratio = ratio of minor to major axes of cross section = 1.0).

Another set was prepared from the circular fibers by softening in a hot water

bath and then passing the monofilament strands through the steel rolls of a

rolling mill, a procedure which yielded an approximately elliptic cross section
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of axis ratio 0.344. The third set was 10-denier orlon with a flattened, "dog-

bone" cross section of axis ratio 0.242. From the flow rate and pressure drop

data, the permeability coefficient, K, was computed; the experimental Kozeny

factor was then found by using the Kozeny Carman equation. The results, which

are plotted in Fig. 4, indicate no obvious conclusion about the effect of fiber

shape on Kozeny factor. Bliesner reasoned that the flatter noncircular fibers

could overlap more easily than round ones, thereby excluding more surface area

from the permeating fluid as a result of interfiber contact. To account for

this, he corrected his data and found a significant dependence on fiber shape,

as seen from the corrected curves in Fig. 4. His contact area analysis,

based on the fiber network model of Onogi and Sasaguri (38), produced estimates

of interfiber contact for the orlon fiber of axis ratio 0.242 at 0.70 porosity

of 23% of the total surface area. Since Bliesner was. not primarily interested

in this question, he did not pursue the matter further.

As a result of the findings of Bliesner, Labrecque (39) proceeded to in-

vestigate further the effect of fiber shape on mat permeability. A synthetic

fiber manufacturer produced four experimental batches of nylon 6 monofilaments

of approximately elliptic cross sections. After drawing and cutting the fibers,

the axis ratios were 1.00, 0.379, 0.243, and 0.213. Labrecque encountered some

experimental problems in his early efforts to form mats at room temperature

because the fibers tended to curl and prevent good mat formation. To overcome

this problem, he resorted to a procedure in which he first dispersed the

fibers in absolute ethanol at near -50°C, then formed the mat from the cold,

dilute fiber slurry. After mat formation, the temperature was increased to

about 5°C, the ethanol was displaced with distilled water, and the apparatus

was then warmed to room temperature and the permeability measurements were begun.
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The Kozeny factors calculated from these experimental tests have been

analyzed by a curvilinear regression analysis, as summarized in Appendix I;

the regression curves for Labrecque's experimental data are plotted in Fig. 5.

At a porosity below 0.70, the circular fiber values deviate significantly from

similar previous measurements by others, as seen by comparison with the Carroll

correlation. The elliptic fiber data also show.: a trend similar to the unex-

pected circular fiber values. Because of the lack of agreement for the round

fibers at lower porosities, the data obtained by Labrecque are of questionable

validity. The correction for interfiber contact was also used by Labrecque,

modifying the Bliesner approach with some refinements and corrections of errors.

The area excluded from the fluid was estimated to be about 9% for the fiber of

axis ratio 0.243 at porosity 0.70, as compared to the Bliesner estimate of 23%

under similar conditions. Labrecque also estimated the surface area available

to the fluid by a light scattering procedure.

Theoretical Approaches

Very few theoretical analyses have been reported in which noncircular

fibers were the object of consideration. The choice of an elliptic cylinder

as a model of a noncircular fiber can be treated mathematically without ex-

cessive difficulties, and by changing the axis ratio of the elliptic cross

section, the fiber cross-sectional shape can be varied from very nearly round

to almost flat.

Because of the success of the cell models of Happel and Kuwabara in de-

scribing the flow through assemblages of circular cylinders, and more

practically through fiber mats, Meyer (23) began to extend the cell model

analysis to the case ofelliptic cylinders. The problem of parallel flow

along the cylinder was solved by an approximate method. The perpendicular flow

problem for an elliptic cylinder cell model was also set up.
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Carroll Correlati
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Recently Masliyah and Epstein (40-42) published the results of an analysis

of perpendicular flow past arrays of elliptic cylinders based on the cell

models. They put the complete steady-state Navier-Stokes equation in a finite

difference form and solved it using a relaxation scheme at a few combinations

of axis ratio, porosity, and Reynolds number. Results for creeping flow were

obtained by choosing a small Reynolds number. They covered the porosity range

0.4 to 1.0 for axis ratios 1.0, 0.9, 0.5, and 0.2, and considered flow along

both the minor and major cross-sectional axes. As expected, the resistance

to flow along the major axis is much lower than that along the minor axis.

Results in terms of Kozeny factor are shown in Fig. 6. The shape of the cylin-

der seems to have a significant effect on Kozeny factor. Some limitations of

this analysis are that the parallel case was not.considered and that the calcu-

lation of Kozeny factor at a particular combination of porosity and axis ratio

requires a lengthy computer run.

An analysis for perpendicular flow at small Reynolds numbers through a

regular square array of elliptic cylinders was developed by Kuwabara (43) by

solving the two-dimensional equation of Oseen. The creeping flow values can be

approximated by choosing a small Reynolds number (e.g., 0.08). For the limiting

case of a circular cylinder, Kuwabara's resulting Kozeny factors agree fairly

well with those of Hasimoto above a porosity of near 0.93. For example, at a

porosity of 0.95, the Kozeny factors 23.6 and 21.2 were obtained, respectively,

by Kuwabara and Hasimoto, while the values in the same order at 0.99 porosity

were 63.1 and 61.6.
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POROSITY

Figure 6. Perpendicular Flow Kozeny Factors from Cell Model

Analysis of Masliyah and Epstein
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STATEMENT OF THE PROBLEM

The question of what effect the cross-sectional shape of a fiber has on

the resistance to fluid permeation through fiber mats has not yet been satis-

factorily answered, despite two experimental approaches to the problem and

one theoretical analysis as reviewed in the preceding section. The experimental

work of Bliesner (8) indicated the existence of a relationship between Kozeny

factor, a measure of relative resistance, and fiber cross-sectional shape, but

the study was limited in scope. Also, it suggested the complicating consider-

ation of correcting the surface area because of interfiber contact. Labrecque

(39) attempted to clarify the question by further experimental effort, but

encountered some difficulties which made his data questionable. The only

theoretical study, that of Epstein and Masliyah (40) concerning assemblages

of elliptic cylinders, utilized an involved numerical solution procedure so

that Kozeny factors are available at only a few elliptic axis ratios and

porosities. Consequently these results are not widely applicable to fiber

mats where the fibers can possess any axis ratio between 1 and 0.1.

The primary objective of this thesis program is to clarify the effect

of fiber cross-sectional shape on the permeability of fiber mats. To do this,

a cell model analysis for creeping flow through assemblages of elliptic

cylinders will be developed. This is to be similar to the cell model analyses

for circular cylinders completed by Happel (20) and Kuwabara (18).

Upon completion of the cell model analysis, the theoretical results will

be applied to the permeation of real fiber mats and compared to experimental

data in order to ascertain the effect of fiber shape on Kozeny factor. The

surface area correction for interfiber contact will be reconsidered to deter-

mine if it is valid and significant.
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THEORETICAL ANALYSIS OF FLOW THROUGH

ASSEMBLAGES OF ELLIPTIC CYLINDERS

CELL MODEL OF FLOW

The steady, isothermal, creeping flow of fluids relative to assemblages

of elliptic cylinders is analyzed by employing a cell model technique similar

to that used by both Happel (20) and Kuwabara (18) in their analyses of flow

past arrays of circular cylinders. The cell model approach considers the

cluster of cylinders to be a collection of individual cells each composed

of a solid cylinder segment surrounded by a fluid envelope. The cell which

is treated analytically is an "average" of all the individual cells within

the array of particles.

Two confocal ellipses serve as the typical cell, the inner one repre-

senting the surface of the solid cylinder segment and the outer one a virtual

fluid surface. The position of the outer, virtual surface is such that the

ratio of fluid volume to cell volume equals the porosity of the assemblage of

cylinders. On the solid surface, the no-slip condition is assumed, while on

the virtual surface the condition of zero normal velocity and one other condi-

tion are assumed. The other condition can be that of zero vorticity, as used

by Kuwabara, or that of zero shear stress, as used by Happel. Elliptic cylin-

drical coordinates (~, q, z) are used to simplify the mathematical description

of boundaries and boundary conditions. A discussion of these coordinates and

their relation to Cartesian coordinates is given in Appendix III. The surfaces

of constant ~ are confocal ellipses, while those of constant q are confocal

hyperbolas. The cell model is illustrated in Fig. 7. The two ellipses have a

focal length of c. The inner ellipse, the solid cylinder, has major and minor

half-axes of a and b , respectively, and is described by i = t . The virtual
0





three flow problems is considered individually in the following pages, al-

though the latter two cases are very similar in approach and solution method.

A review of the equations of state for Newtonian fluids in creeping flow

in generalized orthogonal curvilinear coordinates is presented in Appendix II.

Also listed are some transformations relating the curvilinear and Cartesian

coordinate systems.

FLOW PARALLEL TO ELLIPTIC CYLINDER

The analysis Of steady creeping flow parallel to the central axis of the

elliptic cylinder (z-direction) in the cell requires that only one pressure

gradient, dp/dz, and one velocity component, v , be accounted for. The

equation of continuity, written in full in Equation (205), reduces to

The equation of motion has only one component, given by Equation (211),

which reduces for this case to

z

The Laplacian operator, Equation (207), has become
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with the third term dropped because of the continuity equation. In a re-

arranged form, Equation (32) becomes

This is the equation to be solved to complete the analysis of flow parallel

to the elliptic cylinder in the cell, using the following boundary conditions:

The first condition is simply the no-slip requirement on the solid surface.

The second condition, on the virtual fluid surface, satisfies both Happel's

zero shear stress requirement and Kuwabara's zero vorticity condition.

Equation (34) is a Poisson equation, or an inhomogeneous Laplace equation,

and is not separable.

EXACT SOLUTION

An exact solution to the above boundary value problem using a Green's

function method was outlined by Nelson (44). Consider the Poisson equation,

Equation (34), to be of the form
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leading to the choice

The boundary conditions, Equations (35) and (36), provide that W(E ) = 0

The function

satisfies these conditions, with

The eigenvalues are thus

and the eigenfunctions are

where N is a normalization factor, defined as

jk

except for j = 0, where the factor is

The Green's function, G, is

or, substituting for the eigenfunctions and eigenvalues,
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G = -

Njk 2[(kr/26) 2 + j 2]

The solution, v , is
-z

Define

and substitute for G and f to obtain

where A is the integral

Evaluation of the integrals and rearrangement produces the following expression

for the velocity distribution:

(54)

(55)

APPROXIMATE SOLUTION .

An approximate solution to the boundary value problem for parallel flow

has also been completed. This solution, due to Meyer (23), expresses the

(49)

(50)

(51)

(52)
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velocity distribution as a third degree polynomial. The approximate solution

is outlined below.

In addition to the boundary conditions as stated in Equations (35) and (36),

an exact solution would also satisfy the conditions

producing from Equation (34),

The integration of Equation (34) over G from Go to El together with the second

boundary condition yields the following:

where the function g(z)(n) is

Since both EG and 1l are independent of n, Equation (58) becomes the ordinary

differential equation

which is a fourth condition in addition to those of Equations (35), (36), and

(57). The velocity, v, is expressed as a third degree polynomial,
z

(61)
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where the factors al, a2, and a3 are functions of n determined from the above

conditions. They are found to be

The velocity distribution is thus

(62)

(63)

(64)

(65)

The function g( )(n) is unknown but can be determined by introducing

(65) into Equation (60) and seeking a solution that is periodic with

of the symmetry in the flow model. Upon defining

Equation

IT because

(66)

(67)

(68)

the differential equation for g(z)(n) becomes

(69)

where the prime indicates differentiation with respect to q. The desired

particular solution is

g(z)() = - B2 + Bln 2(cos 2n)/(n 2 + 4). (70)

The approximate solution for the velocity distribution is as follows:

(71)

r
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DETERMINATION OF KOZENY FACTOR

The Kozeny factor, k(z), for parallel flow through the assemblage of

elliptic cylinders is determined from the velocity distribution by using the

following two independent equations for the flow rate, Q:

The first of these states that the flow rate equals the product of the mean

velocity, v, and the cross-sectional area of flow. The second integrates the

local velocity over the ranges of C and n, using the Jacobian

because of integration over curvilinear coordinates. By equating the two

expressions for the flow rate, an equation for the pressure drop, dp/dz, can

be obtained, which is inserted in the Kozeny-Carman equation

to determine the Kozeny factor. The hydraulic radius, m, is defined as

where C is the circumference of the solid ellipse, which is approximated by
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The flow rate in Equation (74) is determined by using the velocity distribu-

tion, v , and integrating, resulting in the following:

while for the approximate solution, P* is

where .

Equation (231) defines a . Using the above equations and some of the relation-

ships in Appendix III, the equation for the Kozeny factor becomes

The values for the Kozeny factor for parallel flow obtained in this analysis

for both solution methods will be presented in a later section.



-42-

FLOW PERPENDICULAR TO ELLIPTIC CYLINDER

The steady creeping flow past an elliptic cylinder of a cell in an array

and perpendicular to the cylinder's central axis is treated as a two-dimen-

sional symmetric flow problem, with the velocity, v, as follows:

This flow is described by the equation of continuity, which reduces from

Equation (205) to

and by the E and n components of the equation of motion, given in full by

Equations (209) and (210). Upon introducing the stream function, i, defined by

the components of the equation of motion become

where the Laplacian operator is as defined in Equation (33). By cross-

differentiation of the two component equations, the pressure is eliminated.

The result can be expressed simply by the linear, fourth-order, biharmonic

equation

(91)where
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For statement of the boundary conditions, the perpendicular flow

analysis is divided into two problems, one for flow along the minor cross-

sectional axis and one along the major cross-sectional axis. The solutions

for these two problems follow a method outlined by Meyer (45), and are

considered separately.

ALONG MINOR CROSS-SECTIONAL AXIS

Assume the solid cylinder is moving with velocity U in the direction

of its minor axis (y-direction) while the surrounding fluid is at rest.

The no-slip condition on the solid surface provides that

Transforming these to elliptic cylindrical coordinates by using Equation

(216), these conditions become

or, in terms of the stream function,

On the virtual surface, it is assumed that the normal velocity, vi, vanishes,

or, since h is nonzero,

(94)
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The fourth boundary condition can either be the zero vorticity condition

of Kuwabara or the zero shear stress condition of Happel. Only the z-

direction component of the vorticity, w, is nonzero; its magnitude is

If the .vorticity is zero on the virtual surface, the equation

is the fourth boundary condition. The zero shear stress condition requires

that the equation

be satisfied. Because of the mathematical difficulty that would be en-

countered by using the zero shear stress condition relative to the zero

vorticity condition, Equation (96) is chosen as the fourth boundary condition.

Solution for the Stream Function

The solution to this boundary value problem can be expressed as

where (1) and 2
(2) are defined by

in which w also is a solution of the Laplace equation

(101)
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Equation (99) is solved by separation of variablesyielding the solution

Because of the similarity of Equations (101) and (99), the solution for w is

seen to be

The vorticity is a maximum at q = 0 and is zero at n = T/2, conditions which

are satisfied by the cosine function in Equation (103) when j = 1, 3, 5, ....

Considering the boundary conditions, which do not require series expansion,

put j = 1 and omit the series notation. Using the condition of vanishing

vorticity on the imaginary surface, the vorticity equation becomes

where B(y) is a parameter that cannot yet be determined. Rewriting the

boundary conditions in terms of p(') and p(2) produces the following:

Assuming that

and
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and putting j = 1, a = 0, and b = - Uc in Equation (102), the conditions in

Equations (105) and (106) are satisfied and

is the desired particular solution. Equation (107) now becomes

which on integrating yields

where the integration constant is zero so that ) is zero on i = 1l.

The Poisson equation, Equation (100), remains to be solved subject to the

boundary conditions. Because no appropriate Green's function was found, an

approximate solution method is used. Rewriting Equation (100),

and integrating between £0 and 1l, the following equation results:

The function g(y)(n) is defined as
-(y(

Before Equation (115) can be solved for g(r(n), a general form of 4(2) must

be assumed. A polynomial in £ is indicated with the number of terms carried

dependent on the number of boundary conditions. Thus far, the available condi-

tions are Equations (113), (116), and (108). Another equation which an exact

solution satisfies is
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Now that four conditions are available, a fourth degree polynomial for 0(2j

can be written. Equation (110) suggests the form

where the coefficients c12, a3, a4, and as are functions of r). Using the above

conditions, four equations result which are solved simultaneously to yield

the following:

where 6 is as defined by Equation (42). Now that the expression for p(2) is

complete, the integrals in Equation (115) are evaluated. The results are as

follows:

with
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The introduction of Equations (123) and (124) into Equation (115) provides

an equation for g(y)(n), which simplifies to the following:

where

Equation (127) is solved for g(y)(n), yielding

where

The only remaining operation necessary for the solution for the stream

function to be complete is the determination of the factor B(y). An additional

condition for this purpose that has not yet been used is obtained from the bi-

harmonic equation, Equation (90), which is valid everywhere in the porous space

including the solid surface:

Expanding this yields the expression
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Upon substitution for a2, a3, c4, a2', and a2", an equation results which is

integrated over n from 0 to 2w to eliminate the dependence on n. This

procedure yields an expression in which B(y) is the only unknown quantity.

Solving for B(y),

with

The solution for 4 for perpendicular flow .along the minor axis is now complete.

Stream Function for Stationary Cylinder

The preceding development for the stream function is for the case of a

cylinder moving within the fluid along with a moving reference system. For
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consideration of the streamlines around the cylinder and for a simpler drag

force analysis, the stream function for a fixed reference system with flow

past a stationary cylinder is desired; call this I. The fluid velocity now

is given by u, which is related to v, the fluid velocity for the moving

cylinder case, by

The i and,nr components of u are found to be

The stationary cylinder stream function is defined by

An expression for I, is found by integrating either of these two defining

equations, substituting for v and v using Equation (87), with the result

so that

The stream function for flow past a stationary cylinder is thus the polynomial

(2)
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Derivation of Drag Force

The drag force due to flow past a stationary cylinder is determined by

integrating the stress over the solid surface (15), as follows:

The body surface is represented by s, while I is the stress tensor defined as

where I is the idemfactor and A is the rate of deformation tensor. The drag

force is thus

Only the y-component of F is nonzero; this provides

The rate of deformation tensor for an incompressible fluid is defined

as :(5)

where t signifies the transpose. For this problem, A is

with

By the equation of continuity it can be shown that
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The dot products in Equation (154) are

The dot products of unit vectors are equal to

The drag force becomes

since

The expression for d is transformed to one involving the stream

function, p(2), and is evaluated at i = o0, the solid surface, with the result

An expression for the pressure, p, is developed from the equation of

creeping motion, Equation (201), which leads to the equation

The Laplacian of 
V
(2) is

(169)

(161)

(162)

(163)

(164)

(165)

(166)
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Introducing this into the pressure derivative yields

which, after integration, produces

where p is a reference point pressure.

Evaluation of the integrals in Equation (165) provides the following

equation for the drag force:

Recalling

F(y) simplifies to

Determination of Kozeny Factor

The drag force resulting from flow in the cell is related to the pressure

drop by

where x is the direction of motion. Stated simply, this says that the

pressure drop across the cell equals the drag force, the only cause of flow

resistance, divided by the cell volume. The Kozeny-Carman equation, Equation

(76), relates the pressure drop to the Kozeny factor, k. Combining these two

equations and solving for k gives
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(176)

Recall Equations (77), (78), (79), and (174), and note that

(177)

The Kozeny factor is thus

(178)

ALONG MAJOR CROSS-SECTIONAL AXIS

The analysis for flow parallel to the major cross-sectional axis of the

elliptic cylinder and perpendicular to the long axis is similar to the above

analysis for flow along the minor axis. Equation (90) describes this flow

situation too. The boundary conditions are fundamentally identical, although

their form is different. Again, the cylinder is assumed to be moving in a

stationary fluid, in this case in the x-direction with velocity U. The no-slip

condition on the solid surface requires that

which become, in elliptic coordinates,

which become, in elliptic coordinates,

q

In terms of the stream function,

On the imaginary surface, the conditions are zero normal velocity and zero

vorticity, as before, stated by Equations (94) and (96). The solution for i

(179)

(180)
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is developed as before; the details are summarized in Appendix IV. For flow

along the major cross-sectional axis, the drag force is

and the Kozeny factor is

where G( ) is defined in Equation (273).

PATTERNS OF FLOW

The three directional analyses presented above for flow within the model

cell provide solutions to the respective boundary value problems which de-

scribe the flow patterns around the solid cylinder. An investigation of the

resultant flow patterns is useful because it demonstrates the significance of

the boundary conditions and because it produces a means for a subjective check

on the accuracy of the solutions.

The analysis of flow parallel to the central axis of the solid elliptic

cylinder in the cell produces a distribution of velocities in the annular

region between the two cylinders. The velocity is zero at the solid surface

and maximum at the virtual surface. Figure 8 illustrates the velocity

distributions along the x-axis (n = 0) and along the y-axis (n = 7/2) for a

cylinder of o = 0.50 and a porosity of 0.75. The peak velocity varies as a

function of . between the two values presented in the graph. Both the exact

and approximate solutions are plotted. Near the solid surface the two are

almost identical, with more of a difference emerging as the fluid boundary

is approached.
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Exac

Velocity Distribution in Annulus of Cell Model for
Flow Parallel to Elliptic Cylinder
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For flow perpendicular to the elliptic cylinder of the cell, the

analysis does not yield velocity distributions but rather stream function

distributions. The stream function is related to the two velocity compo-

nents as previously explained. Curves of constant stream function are

streamlines and indicate the direction of flow at a point. For a cylinder

of axis ratio 0.20 at porosity 0.75, the pattern for flow past the cylinder

along the minor axis is presented in Fig. 9, while Fig. 10 shows the

pattern for flow along the major axis. The streamlines are symmetric

with respect to both the x and y axes.

RESULTS OF THEORETICAL ANALYSES

The theoretical analyses for flow in the cell result in expressions

for directional Kozeny factors, which vary with the porosity and with the

axis ratio of the solid cylinder's cross section. Appendix V presents

tables of these values for many axis ratios at several porosity points

over the range of practical interest. In order to demonstrate the trends,

Fig. 11 for parallel flow and Fig. 12 for perpendicular flow show how the

Kozeny factor is affected by porosity and axis ratio. An axis ratio of one

for a circular cylinder cannot be handled by the analyses, so a value of

0.999 is used instead.

Figure 11 for parallel flow indicates that the porosity has a strong

influence on the Kozeny factor, while the effect of the axis ratio is only

slight. Only values from the exact solution are used in the graph and in

the Appendix. A later section compares the results from the exact and the

approximate solutions.
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Streamlines in Model Cell for Perpendicular Flow

Along Minor Cross-Sectional Axis.

Porosity = 0.75, Axis Ratio = 0.200
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+

Figure 10. Streamlines in Model Cell for Perpendicular Flow

Along Major Cross-Sectional Axis.

Porosity = 0.75, Axis Ratio = 0.200
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= 0.999

POROSITY,

Figure 11. Theoretical Kozeny Factors for Parallel Flow

as a Function of Porosity
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Kuwabara's Values
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Figure 12. Perpendicular Flow Kozeny Factors from Creeping Flow

Zero Vorticity Cell Model Analysis
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The two cases of perpendicular flow are both included in Fig. 12. For

a circular cylinder, the two directional perpendicular Kozeny factors are

identical; but this is not so for elliptic cylinders where the difference

between the two increases as the cylinders become flatter. Again the

porosity has a strong impact on the Kozeny factor, but so does the axis ratio.

The computer program which generates the directional Kozeny factors is

listed in Appendix VI.
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DISCUSSION

The theoretical analyses of the preceding section have been developed

in order to study the flow through mats of elliptic fibers. Before real mats

of fibers are considered though, some discussion of the validity of the

theoretical' approach seems appropriate.

VALIDITY OF THEORETICAL ANALYSIS

CELL MODEL APPROACH

The use of a cell containing one fiber segment and its surrounding fluid

as a model for treating the flow through a fiber mat may seem to be of

questionable value at first glance. Such a cell model approach could be

easily rationalized for a regular array of cylinders where all cells within

the structure are'identical. But for an irregular assemblage like a fiber mat

where cells of various shapes and porosities could be-identified, the cell

model approach presumes that one typical cell can be defined that is descrip-

tive in a statistical sense of all the cells of the assemblage. By analyzing

the flow though this typical cell, the properties of the flow through the

entire assemblage can be estimated. The interaction of one cell with another

is neglected, except as accounted for by the boundary conditions. The effect

of two cylinders in close proximity or in contact is overlooked, even though

such an arrangement would significantly affect the drag estimate. Assumptions

like these are valid at high porosities, since the fibers then would generally

be far apart with few contact points. As lower porosities are reached, the

validity of applying the cell model to a fiber mat is reduced. Happel (20)

suggests for circular cylinders that his analysis is valid ony at porosities
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above 0.50. Since fiber mats often are more than 50% porous, such a limita-

tion is not serious from a practical standpoint.

The complex structure of a fiber mat provides a good reason for employing

the cell model approach. The boundaries of a porous fiber mat cannot be

specified mathematically unless an elaborate, involved procedure is used.

Because of this, the solution of a hydrodynamics problem for flow through a

mat would be very difficult. The use of a simple model of the porous space

helps overcome this problem and enables mathematical analysis of the flow to

be accomplished.

The application of the cell model technique to assemblages of elliptic

cylinders follows similar studies with spheres and circular cylinders. The

success of the cell model approach in these previous studies indicates that

the method can be used to obtain reasonable results. A similar analysis with

elliptic cylinders should also be expected to yield acceptable results.

The selection of the zero vorticity condition on the virtual surface is

arbitrary. This condition was used in Kuwabara's analysis with circular

cylinders, which fits experimental observation (21) better than Happel's

analysis with the alternate zero shear stress condition. Also, the zero

vorticity requirement leads to simpler mathematics. If the shear stress were

assumed zero on the virtual boundary, the problem would have been intractable

for elliptic cylinders. An argument for one condition or the other using a

physical basis is difficult. Happel and Brenner (15) support Happel's choice,

reasoning that the zero vorticity cell requires energy exchange with neighboring

cells whereas the zero shear stress cell does not interact from an energy

standpoint with other cells.
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APPROXIMATE SOLUTION PROCEDURE

The solutions to the Poisson equations developed in the two analyses for

perpendicular flow are not exact solutions to the boundary value problems,

but rather are approximate ones designed to satisfy the boundary conditions.

The accuracy of the approximate solutions should be briefly considered.

The parallel flow problem was solved by both an exact method and an

approximate method. The velocity distributions from the two solutions are

compared in Fig. 8. Near the solid surface both are nearly identical. As

the outer, virtual surface is approached, the two diverge slightly with the

difference dependent on n. The difference between the two does not seem

large for any n. Another comparison between the two can be based on the

theoretical Kozeny factors; some values for the two methods are given in

Table III. The approximate values are greater than the exact ones but the

two become closer at lower porosities. Above 0.90 porosity, the difference

is sizeable. The exact values agree well with Happel's results, verifying

the exact solution method. The elliptic axis ratio seems to have little

effect on the quality of the approximate solution. From these comparisons,

the approximate method appears to be sufficiently accurate for the needs of

this study.

The approximate method for the perpendicular flow analyses is similar

in approach to the parallel flow approximate solution. For perpendicular

flow no exact solution was found, so there is no direct way of gauging the

reliability of the results. But because of the similarity, the perpendicular

results should be reliable since the parallel values are. Perhaps the high

porosity values (for e >0.9) are somewhat in error, but this is not a

serious drawback. The values for all axis ratios should be equally reliable.
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TABLE III

COMPARISON OF KOZENY FACTORS FROM EXACT AND

APPROXIMATE SOLUTION METHODS FOR FLOW

PARALLEL TO ELLIPTIC CYLINDERS

Axis Ratio

0.999

0.500

0.200

Porosity

0.95
0.90

0.80

0.70
0.60

0.50

0.95
0.80

0.60

0.95
0.90

0.80

0.70
0.60

0.50

Kozeny Factor

Exact Approximate Happel (o=1)

10.79 11.79 10.75

7.34 7.79 7.31
5.27 5.44 5.23
4.42 4.51 4.42

3.97 4.01 3.96
3.68 3.70 3.67

10.76 11.71

5.41 5.57
4.10 4.14

10.49 11.21

7.70 8.00

5.85 5.95
5.03 5.07

4.58 4.60
4.31 4.32

The streamlines obtained from the approximate perpendicular solutions

appear realistic (see Fig. 9 and 10), indicating that the solutions are sound.

For the limit of the circular cylinder, the elliptic cylinder analysis produces

streamlines that almost coincide with those from Kuwabara's analysis (at

porosity 0.75). For noncircular cylinders there is no basis for a similar

comparison, but the flow patterns for all porosity and axis ratio combina-

tions seem physically reasonable.

The perpendicular flow Kozeny factors for a nearly circular cylinder

are compared to those from the analysis of Kuwabara in Fig. 12. Since the

zero vorticity condition is used in both this analysis and Kuwabara's, the

two should give values that are the same. The actual difference is fairly

small, verifying the analysis for elliptic cylinders in the ciruclar limit.
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The small deviation could be due to either the approximate nature of the

solution or to computational inaccuracies.

The method used to construct the approximate solutions can be of

potential value in many areas wherever a similar boundary value problem

is encountered and no exact solution can be found for it.

COMPARISON WITH PREVIOUS ANALYSES

Circular Cylinders

The theoretical analyses for flow through assemblages of elliptic

cylinders cannot accommodate cylinders of circular cross section (o = 1)

because a division by zero would be involved. But a very nearly circular

cylinder can be considered, such as one with an axis ratio of 0.999. The

comparisons between the results of the elliptic cylinder analysis for the

nearly circular case and the results of the circular cell model analysis

of Kuwabara are discussed above for both parallel and perpendicular flow;

the conclusion is that the method of this thesis yields reliable values

for the Kozeny factor for circular cylinders. Since the Kuwabara approach

is compared with other investigations in a previous section, there is no

need to repeat such a comparison for the results from the elliptic analysis

with nearly circular cylinders.

Noncircular Cylinders

An analysis similar to the one developed here has been reported re-

cently by Masliyah and Epstein (40,41), who applied the cell model technique

to clusters of elliptic cylinders by solving numerically the Navier-Stokes

equation. Creeping flow estimates were obtained by assuming a small Reynolds

number (0.01). Both the zero vorticity outer boundary condition and the zero



-68-

shear stress one were considered, but only the former is of interest presently.

Only a few combinations of axis ratio and porosity were used in the calcula-

tions. In Fig. 13, some of the Kozeny factors from their analysis are compared

with the results from the analysis developed above. The two analyses differ a

good bit but give similar trends relative to the effect of axis ratio and

porosity. Like results from the two analyses are not necessarily expected be-

cause of the fundamentally different approach and solution techniques. The

analysis of this thesis is based on the creeping flow equation, whereas

Masliyah's work only approximates this case. Also, the mathematical solution

of this thesis approximates the exact solution by a power series type of

approach, while Masliyah used a finite difference expression and solved it

using a relaxation procedure. The difference between the two sets of values

may be attributed to inertial forces, which are ignored in the creeping flow

analysis.

The results of the analyses for perpendicular flow past clusters of

elliptic cylinders can be compared to the values from the study by Kuwabara

(43) for flow through a regular square array of elliptic cylinders. The

square array analysis is valid only at high porosities; as the cylinders be-

come flatter, the porosity below which the approach is invalid moves closer

to 1.0. For flow parallel to the minor cross-sectional axis, Table IV

compares the elliptic cell model Kozeny factors to Kozeny factors for the

square array and to Kuwabara's circular cell model values. For circular

cylinders, the circular cell results are somewhat lower probably because of

the approximate solution, which becomes less accurate as the porosity ap-

proaches 1.0; this effect was noticed in the similar parallel flow approximate

solution. For elliptic cylinders the two approaches give similar trends, and

at high porosities the values do not differ greatly.
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Axis Ratio =0.20

Axis Ratio=0.50
020

Axis Ratio 0.0

Creeping Flow Analysis

5 - - Masliyah a Epstein

4-

I I I I
0.4 0.5 0.6 0.7 0.8 0.9 1.0

POROSITY

Figure 13. Comparison of Two Zero Vorticity Cell Model Analyses

for Perpendicular Flow Along Minor Cross-Sectional Axis
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TABLE IV

COMPARISON OF KOZENY FACTORS FROM CELL MODEL ANALYSIS AND

REGULAR ARRAY ANALYSIS FOR ELLIPTIC CYLINDERS

Kuwabara

Square Array

154.9
63.1
39.6
30.9
26.2
23.6

162.6
69.5
45.9
37.8
33.6
31.8

138.1
80.7
98.3

566.6

Elliptic

Cell Model

125.2

54.1
34.8
27.3
23.1

20.4

134.3
58.1
37.4
29.4

25.0
22.1

128.2

49.8
31.8
25.8

Kuwabara

Circular

Cell Model

153.1

62.1

38.4
29.4
24.6
21.5

APPLICATION TO FIBER MATS

The application of the theoretical analyses for directional Kozeny

factors to the permeation of a fluid through a mat of uniform synthetic fibers

is of primary interest. The structure of the mat influences the relative

contribution of the directional Kozeny factors, and must be considered before

applying the cell model analyses to flow through a fiber mat.

STRUCTURE OF FIBER MATS

The orientation of fibers within a mat depends upon how the mat was

originally formed as well as the compressive history of the mat. Formation

by slow filtration from a dilute fiber suspension produces a mat with the

central axes of most fibers lying generally in the plane of the mat; with

Axis

Ratio

1.00

0.50

0.10

Porosity

0.997
0.99
0.98
0.97
0.96

0.95

0.997
0.99
0.98
0.97
0.96
0.95

0.997
0.99
0.98
0.97



-71-

elliptic fibers the greater cross-sectional axis is preferentially aligned

parallel to the mat plane. This orientation results because the fibers

before deposition on the mat become oriented in the fluid so that the drag

is maximized. Fibrous mats of practical importance do not usually have as

ordered a structure as just described, but tend more toward a random

structure. The compression of a mat of fibers can alter the original

structure; Elias (46) discusses the causes of this.

The orientation of an elliptic fiber within a mat is discussed in

Appendix VII. Two angles are defined as follows: 0 is the angle between

the fiber's central axis and the normal to the plane of the mat; ( is the

angle of rotation about the fiber's central axis between the major cross-

sectional axis and the plane of the mat, increasing in counterclockwise

direction. (See Fig. 20 and 22.)

KOZENY FACTORS FOR FIBER MATS

Composite Kozeny Factor

The Kozeny factor of a fiber mat should be a combination of the three

directional Kozeny factors previously determined, with the relative contri-

bution of each dependent on the fiber orientation within the mat. In

Appendix VII a composite Kozeny factor for a fiber mat is derived, with the

result as follows:

Special Cases

Several special cases of fiber orientation within the mat are of interest.

Using the above equation for a composite Kozeny factor, the resistance to flow

through an oriented mat can be predicted for these cases.
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Case I: All fiber central axes parallel to flow; 0 = 0. The

Kozeny factor is simply k(z). This case is not of practical importance

for fiber mats but may be for some flow process.

Case II: All fiber central axes perpendicular to flow; e = 7/2.

This case is occasionally of practical interest. Fibrous filters are often

prepared so that as many fibers as possible lie in the plane of the filter

(see Case IV). Three possibilities are considered, as follows:

A: Major cross-sectional axis parallel to flow; $ = 0, k= .

B: Minor cross-sectional axis parallel to flow; , = 7/2, k = k( ).

C: Cross-sectional axes at angle to flow; k = k( )sin 2$ + k( )cos 2.

Case III: Distribution of orientations. In a real fiber mat there is

no regular, ordered structure; instead the fibers assume various orientations.

By identifying the orientation distribution, the composite Kozeny factor can

be determined in the following manner:

where k(t), the transverse flow Kozeny factor, is found in a similar way:

The distribution of fiber orientations is expressed by means of the frequency

functions g(6) and h(r), which must satisfy the normalization criterion:
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One particular distribution, that for an isotropic mat, is of interest.

The choice of g(Q) = sin e provides such a mat in which the probability of a

fiber end falling at any point on a sphere around the fiber center is con-

stant (35). Two possible choices for h(o) are as follows:

A. By choosing h(() = 2/7T, all values of j are equally probable. This

choice produces an isotropic mat in which there is no preferred cross-

sectional arrangement. The composite Kozeny factor for this mat is

Some Kozeny factors for isotropic mats are presented below.

B. The selection h(o) = cos ( describes a mat in which the probability

is greatest that the fiber is oriented with its major cross-sectional axis

normal to flow. The composite k for this case is

Case IV: A mat formed slowly from a dilute fiber suspension, as dis-

cussed above, has the fibers generally in the mat plane. For such a mat,

average 8 and $ values can be chosen to use in Equation (183) for the composite

Kozeny factor, since the exact fiber orientation distribution is not known.

The choices e = 75° and $ = 20° seem reasonable. The 0 estimate follows from

Elias' experimental data for fibers of a length/diameter ratio of near 100.

Using these values, the k value becomes



Isotropic Mats

Case III-A above discusses the Kozeny factor for an isotropic mat where

all fiber orientations are equally likely to occur. Equation (188) has been

used to calculate k values for such mats; these Kozeny factors are plotted

in Fig. 14 and 15. The effect of porosity at a few axis ratios is seen in

Fig. 14, while the effect of axis ratio at several porosities is seen in

Fig. 15. The fibers of the mat can be flattened a fair amount, dependent

on the porosity, before the fiber cross-sectional shape begins to signifi-

cantly affect the Kozeny factor. At higher porosities more flattening is

permissible before the effect becomes large. For example, at a porosity of

0.90, a mat of fibers of axis ratio 0.10 has a Kozeny factor only slightly

different from that for a mat of circular fibers. At 0.75 porosity, the

fibers can be flattened to near 0.30 axis ratio before a ten percent change

in k occurs.

Lord (37) experimentally determined the Kozeny factors for air permeation

through a carefully randomized mat in which an effort was made to uniformly

distribute the fibers. This mat should closely approximate the isotropic

case. The data for silk fibers of nearly circular cross section are seen in

Fig. 16 compared to the theoretical results for an isotropic mat of circular

fibers. The experimental and theoretical curves are similar, but the former

is lower, indicating that there is actually less resistance to flow than the

cell model theory predicts. Reasons for this are discussed in the following

section.

Real Mats

The slowly formed fiber mat covered by Case IV above is of interest be-

cause it approximates the mats formed by Bliesner in his permeation experiments
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with noncircular fibers, as well as the mats used for the Davies-Ingmanson and

Carroll correlations for circular fibers. Because of this, the Kozeny factors

computed from Equation (190) are expected to be generally valid for these mats.

To test this assumption, the data of Bliesner and the expected k values are

compared below. Bliesner's data appear to be sound, at least for circular

fibers in the porosity range covered, since his circular fiber mat k's are

close to the empirical correlations. Accepting the noncircular data because

the circular data appear good may be questionable, although no reason for

rejecting the noncircular k's is apparent. The measured Kozeny factors of

Bliesner should not necessarily be viewed as the true values because of the

limited scope of the experimental program and because of the potential for

errors inherent in the experimental procedure.

First consider flow through mats of circular fibers. Figure 17 presents

Bliesner's experimental data, the isotropic and oriented k curves based on

mat structure, and the two empirical correlations. As with the Lord data,

the expected mat Kozeny factors determined from the cell model theory using

Equation (190) are greater than the experimental values, although the trend

with porosity is the same. While this comparison is disappointing, two

reasons may account for the discrepancy, one an experimental problem and one

a deficiency in the theory.

Experimentally, a uniform mat cannot be obtained; instead, any real mat

contains local regions of resistance lower than the rest of the mat and

porosity above the mat average because of pinholes, fiber curling, uneven

deposition of fibers, edge effects, etc. These nonuniformities exist to some

extent in any real mat regardless of the effort to eliminate the problems.

Since the fluid follows the path of least action, the disturbed areas have a
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stronger influence on flow properties than their volume fraction might indicate.

A meaningful estimate of the error introduced by mat nonuniformity is very

difficult to obtain because of imprecise means of gauging the local porosity.

However, the effect of the nonuniformities should be to lower the observed

experimental Kozeny factors, thereby explaining partially the discrepancy

between theory and experiment.

The second reason for the difference between the expected Kozeny factors

and the experimental data concerns the cell model approach where flow past a

fiber segment is studied. Areas of fiber contacts are not considered, al-

though two fibers crossing or in close proximity to each other cause less drag

than if the two segments were apart. The sum of the drag on two isolated

cylinders resulting from perpendicular flow past the cylinders is more than

the drag due to flow past two cylinders situated near each other with their

cross-sectional centers forming a line parallel to the flow direction. Happel

and Brenner (15) discuss such interference effects between particles, summa-

rizing the influence on cylinders as follows:

"Thus with two cylinders of equal radii with one

behind the other, the front cylinder experiences

a greater drag than the rear cylinder. ... The

drag acting on each of the two cylinders is less

than when they are present alone."

Since the drag on two fibers in contact is less than that if the fibers were

apart, the overall pressure drop for flow through the mat is below that

predicted by the cell model analysis. In other words, the theory is over-

estimating the pressure drop because the effect of fiber contacts is ignored.

This translates into a Kozeny factor that is greater than the true value for

the mat considered. The magnitude of this effect cannot be easily estimated.

Perhaps the application of the cell technique to the fiber crossing regions



would supply information in this regard, but to do this a quite involved

analysis would have to be completed. Concerning elliptic cylinders, the

error due to fiber crossings should be larger for flatter fibers, indicating

that the discrepancy between theory and experiment may be dependent on the

fiber axis ratio.

The data of Bliesner for noncircular fibers are compared to the cell

model theoretical estimates in Fig. 18. As for the circular fibers, the

empirical Kozeny factors are considerably smaller than the expected values

found from Equation (190). The difference between the two seems to increase

as the fibers become flatter, which is expected on the basis of the fiber

crossing argument above. The experimental k values as a percentage of the

theoretical expectations fall approximately as follows: 58% for circular

fibers, 44% for axis ratio 0.344, and 40% for axis ratio 0.242; these values

are at 0.80 porosity.

The combined effect of the experimental mat nonuniformities and the

failure of the theory to consider fiber crossings may be sufficient to

account for the discrepancy for both circular and noncircular fibers. Al-

though an analytical estimate of the discrepancy caused by these two effects

cannot be determined, perhaps an empirical approach could be used by intro-

ducing a parameter, r, into the composite Kozeny factor equation, as follows:

The r value could provide for the above effects, but unfortunately would need

to be experimentally measured and is probably dependent on both porosity and

axis ratio.
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a porosity of 0.75, other porosities show similar results. The composite

Kozeny factor for an isotropic fiber mat is not greatly affected by the cross-

sectional axis ratio until a fairly flat fiber is used; for this porosity the

change exceeds ten percent below an axis ratio of 0.30. The experimental data

follow the same pattern; for the range covered by the tests, the fiber axis

ratio seems to have little effect on k. The behavior of k for a real mat as

the axis ratio approaches zero is not known from experimental studies, but

from the theoretical analysis the conclusion that the Kozeny factor would

begin to increase rapidly seems valid. From this discussion, the assumption

that a real mat Kozeny factor is independent of fiber cross-sectional shape,

at least for axis ratios more circular than 0.2, should introduce only slight

errors into the permeation analysis.

One pertinent factor has not yet been discussed, that is, the question

of the importance of the surface area correction for interfiber contact. Both

Bliesner and Labrecque made such a correction, but a fresh look at this question

seems in order.
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INTERFIBER CONTACT AREA

The fiber surface area excluded from the permeating fluid because of

interfiber contact has been estimated by Bliesner (8) using as a basis the

fiber network analysis of Onogi and Sasaguri (38). His result for the

specific surface corrected for this effect is as follows:

where:'. P = fiber perimeter

Af = fiber cross-sectional area

w = projected fiber width

d = effective fiber diameter
.e

Labrecque (39) criticized the Bliesner approach because the number of

interfiber contacts was assumed independent of fiber shape and because only a

fraction, F, of the fiber width was actually in contact. Developing a similar

analysis but accounting for these effects, Labrecque obtained the equation for

corrected specific surface

where t is the fiber thickness. Where Bliesner's method estimates 23% contact

area for a mat of fibers of axis ratio 0.242 and porosity 0.70, Labrecque's

approach gives 9%, which is much more realistic.

Several criticisms of the Labrecque analysis can be presented regarding

the determination of the mean contact area per crossing per fiber, A'. First,
-

the fraction of the fiber width in contact, F, should be dependent on the

stress on the mat; as the pressure increases the contact area at the crossing

should too. Second, the F factor needs to be empirically determined. Third,
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the mean contact area should be dependent on the elastic properties of the

fibers, such as Young's modulus and Poisson's ratio. All of these criticisms

are nonexistent in the analysis by Finch (47) of the contact area between

two isotropic elastic fibers, who applied the equations of Hertz (48) to

develop a theoretical relationship and verified the result experimentally

with nylon fibers. Using the Finch equation for contact area per crossing,

a mean contact area can be determined by specifying an appropriate frequency

function for the angle between the axes of the fibers in contact and inte-

grating. The mean contact area per crossing times the number of contacts

found from the Onogi and Sasaguri theory equals the surface area in contact.

In Appendix VIII, the interfiber contact area estimate for elliptic fiber

mats based on the Finch method is developed, and estimates for the fibers

used by Bliesner and Labrecque are calculated. The relationship found for

fibers of elliptic cross section with half-axes a and b is as follows:
-o -o

In this equation, S is the specific surface with no interfiber contact,
-

and H is defined by Equation (79). The Bliesner and Labrecque equations

converted to apply to fibers of elliptic cross section are, for Labrecque's

analysis

and for that of Bliesner

The three are similar in form but different in results. Defining 5 as the

fraction of surface area in contact so that



the contact area fractions for the Labrecque and Finch analyses are compared

in Table V.

TABLE

COMPARISON OF INTERFIBER

Axis Ratio

1.0

0.242

Porosity

0.90

0.60

0.40

0.90

0.70

0.60

0.50

0.40

The calculations using Labrecque's

directly from microphotographs, and are

his thesis.

CONTACT AREA ANALYSES

Contact Area, %

Finch Labrecque

1 x 10- 6 0.075

0.045 0.30

1.04 0.45

2 x 10- 6 1.77

0.040 5.3

0.53 7.0

3.93 8.8

20.3 10.6

method employed F factors determined

not the same values as reported in

The analysis based on the Finch theory seems more fundamentally sound

than does the.Labrecque analysis. The contact area estimates obtained are

negligible for the conditions used in Bliesner's permeation experiments.

Consequently the interfiber contact area correction, although valid, is in-

significant and will be neglected in comparing the cell model theoretical

Kozeny factors to the experimental data.
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VALIDITY OF CREEPING FLOW ASSUMPTION

By assuming creeping motion, the cell model analysis is valid only for

slow flow rates. But Darcy's law too is applicable only for slow superficial

velocities, so the creeping flow assumption does not seem unrealistic.

The relative contributions from viscous and inertial effects for flow

through synthetic fiber mats were considered by Ingmanson and Andrews (49).

Defining a Reynolds number as

and considering only mats of porosity below 0.80, they conclude that inertial

resistance is only 4% of the total at Re = 1, and inertial effects are just

becoming significant. At Re = 10, the inertial resistance accounted for 30%

of the overall pressure drop. For mats of wood pulp fibers, they suggest

that a maximum velocity of about 1 cm/sec is the limit for streamline flow

with negligible inertial effects.

Spilman and Goren (30) state that the creeping motion assumption is

valid near the solid cylinder if the Reynolds number is much less than 1.

They define Reynolds number as Re = 2aUp/p, where a is the fiber radius. Far

from the cylinder surface inertial effects are more dominant, but in the cell

model analysis this effect becomes significant only at very high porosities.

For elliptic cylinders, Epstein and Masliyah (40) define

in which a is the half-axis perpendicular to flow. To obtain creeping flow

results, they simply chose Re = 0.01.
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The maximum Reynolds number, as defined by Equation (199), for the

permeation experiments of abrecque with elliptic fibers was near 0.2. The

values for Bliesner's experiments should be similar. In view of the above

comments, the application of a creeping flow model to these permeation

results should be reasonable.

APPLICATION TO OTHER SYSTEMS

WOOD FIBER MATS

The results of the cell model analyses for elliptic cylinders hopefully

will engender a better understanding of flow through mats of wood pulp fibers.

In a wood fiber mat there are many complicating effects, one of which is the

variety of cross-sectional shapes. If a mat of never-dried fibers, with axis

ratios generally more circular than 0.3, is permeated with a fluid, the re-

sults of this study indicate that the Kozeny factor for such flow is probably

affected only slightly by the noncircular cross sections. Choosing the

Davies-Ingmanson correlation, for example, which applies only to circular

fibers, as an expression for the Kozeny factor of a wood fiber mat should not

introduce a large error into the study, although this is dependent on the

type of fiber and the mat's history.

RELATED AREAS

A number of areas of investigation, such as the theory of particle

retention in fibrous filters or mats, the analysis of flocculation of fibers,

and zeta-potential studies in fiber slurries, often require a description of

flow near the surface of a fiber. The cell model studies for circular

cylinders have been applied to these areas (21,35,50,51), but not all fibers
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of interest have round cross sections. For these cases the cell model analysis

for elliptic cylinders developed herein can be used to advantage in de-

scribing the flow around fibers.

Another possible area where the elliptic cylinder cell model flow analysis

may be useful is in the flow past banks of tubes of elliptic cross section,

such as exist in some heat exchangers. The heat and mass transfer analysis

through such arrays may utilize the equations of this thesis, although normally

such flow is not occurring in the creeping motion regime.
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CONCLUSIONS

The use of the cell model approach to study parallel or perpendicular

flow past arrays of elliptic cylinders provides insight into the effect of

the cross-sectional shape of the cylinders on the drag caused by such flow.

While the drag due to flow past arrays of circular cylinders has been pre-

viously examined by means of the cell model method, the application of this

technique to creeping flow, either parallel or perpendicular to the cylinders'

central axes, past assemblages of elliptic cylinders is greatly expanded in

this work. The results for flow parallel to the cylinders indicate that the

influence of the cross-sectional shape on the drag is significant but not

large, and the effect is porosity dependent. When the flow is perpendicular

to the cylinders, two cases are considered for flow along each of the two

cross-sectional axes. The drag due to perpendicular flow along the major

cross-sectional axis is dependent to a considerable extent on the ratio of

minor to major axes, or the "flatness" of the cylinders. Perpendicular flow

along the minor axis results in drag that is more dependent on the axis ratio

than for the other perpendicular flow direction. This last flow case dis-

plays a very strong dependence on the axis ratio when the cylinder becomes

quite flat, e.g., an axis ratio of 1/3 or less.

The approximate procedure developed to solve the boundary value problems

for both parallel and perpendicular flow cases involving Poisson equations

provides a fairly easy means for obtaining an approximate solution to problems

that may otherwise be intractable or laborious.

The slow permeation of a fluid through a mat of uniform synthetic

fibers can be studied theoretically by combining the results from the

parallel and perpendicular cell model analyses of creeping flow through
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arrays in a manner dependent on the mat structure. An elliptic cylinder serves

as a useful model of a fiber of oval cross section; by changing the cross-

sectional axis ratio, fiber shapes from round to nearly flat can be closely

represented by the model. The drag on an individual cylinder can be resolved

into force components along each of the three principal axes of the cylinder.

In this manner the drag past a particular fiber within the mat can be pre-

dicted from the directional cell model analytical results. By determining

the distribution of fiber orientations within the mat, the overall mat perme-

ability can be estimated and the effect of changing fiber shape on permeability

clarified. The Kozeny factor from the Kozeny-Carman concept of fluid flow

through porous media serves as a relative indicator of the resistance to flow

through a mat with other parameters constant (porosity and specific surface).

For example, an isotropic mat of circular synthetic fibers of porosity 0.75

should theoretically have a Kozeny factor of 7.9, whereas if the fibers have

an elliptic cross section of axis ratio 1/3 the Kozeny factor changes to 8.4;

with flatter fibers the Kozeny factor increases sharply. Available experi-

mental permeability measurements with synthetic fiber mats indicate that the

actual Kozeny factors are much less than the theoretical values derived from

the cell model analysis, although their trends of variation with axis ratio

and porosity are similar.

The correction of the specific surface of synthetic fiber mats because

of interfiber contact excluding surface area from the permeating fluid appears

to be negligible if the mat porosity is greater than 0.60, although this is

dependent on fiber properties (axis ratio, Young's modulus, and Poisson's

ratio).
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When a mat of wood pulp fibers is considered, the various fiber cross-

sectional shapes should affect the mat Kozeny factor in a similar manner.

Based on the theoretical results for isotropic mats of uniform fibers, the

fiber shape does not seem to have a strong influence on the mat Kozeny

factor until the fibers are flatter than approximately a 1/3 axis ratio.

Since never-dried wood pulp fibers in lightly compressed mats are for the

most part more circular than this axis ratio, the commonly adopted assumption.

that the Kozeny factor for circular fiber mats is applicable to wood pulp

fiber mats is justifiable. In principle, the specific surface correction for

interfiber contact area is appropriate for wood fiber mats, but further

refinements in the analysis would be beneficial.
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SUGGESTIONS FOR FUTURE WORK

Regarding the application of the elliptic cell model analysis to flow

through fibrous mats, few ideas for extending the present work are obvious.

One possibility is to consider the effect that a mat containing fibers with a

distribution of axis ratios has on Kozeny factor. This could simulate a wood

fiber mat where various cross sections are present. Another possible study

would involve developing an accurate means for estimating experimentally the

interfiber contact area in a fiber mat. The assumption that the contact area

is negligible for the ranges covered by Bliesner's permeation tests could use

empirical verification. Also the extension of the cell model analysis to in-

clude the fiber crossing regions would help make the theory more appropriate

for fiber mats.

The utilization of the elliptic cell model analyses in related areas

offers much promise for future investigations. The retention of particles in

fibrous assemblages made of noncircular fibers could be studied using these

flow equations. Perhaps particle retention or aerosol filtration efficiency

can be improved by selecting fibers of appropriate cross-sectional shapes.

The analysis of zeta-potential around noncircular fibers can be performed using

the flow equations developed herein; the circular fiber model of Ciriacks (51)

could be extended to elliptic fibers in order to better model wood pulp fibers.

Other possible areas for future work can undoubtedly be identified with

effort, but probably the most promising topics would involve applying the

results of this study to related areas rather than extending the present work.
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LIST OF SYMBOLS USED

A

A
-o

A
-c

A'
-c

A*
-c

A f

A
-w

A
Ajk

A, B, C, D

B1 , B2

B ,B

C

C, D, E, F

D

DW ), D( )

E

E( ), E(y)

F

F

F

-N

F(), F(t)
(2)' -(G)

G

= cross-sectional area of porous medium presented to flow

= geometric surface area of a fiber

= contact area on a fiber

= mean contact area per crossing per fiber

= 7a b = area of contact per crossing

= fiber cross-sectional area

= wetted surface area of a fiber

= integral defined by Equation (52)

= constants in Kuwabara's solution for flow past circular cylinders

= constants defined by Equations (67) and (68)

= factors in vorticity expressions

= circumference of ellipse

= constants in Happel's solution for perpendicular flow past

circular cylinders

= quantity in parallel flow solution defined by Equation (83)

='quantities in perpendicular flow solutions defined by Equations

(269) and (129)

= Young's modulus

= quantities in perpendicular flow solutions defined by Equations

(270) and (130)

= drag force on solid cylinder

= fraction of fiber width in contact with another fiber in

Labrecque's analysis

= normal force pressing two fibers together

= drag force for perpendicular flow problems

= parallel and perpendicular (transverse) components of drag

= Green's function
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H

I

I

K

K

K
-o

L

L
-f

L
-s

L
-so

M, N

N
-c

N
-jk

P_f

P* P- ' -A' -E

Q

R

RB_

R 1 1 , R 1 2 ,

R2 1 , R2 2

-k

Re

S
-o

S
-v

S
-vo

T1, T2

= factors related to B( ) and B( )

= parameter relating circumference and axis ratio of ellipse;

defined by Equation (79)

= idemfactor

= integral in contact area analysis defined by Equation (321)

= permeability coefficient

= proportionality factor in Darcy's law

= thickness of porous bed

= fiber length

= segment length

= segment length in unloaded mat

= mat compressibility constants

= number of fiber-to-fiber contacts per fiber

= normalization factor

= fiber perimeter

= quantities in parallel flow solution [see Equations (80)-(82)1

= volumetric flow rate

= quantity in perpendicular flow solutions defined by Equation (139)

= radius of curvature

= radii of curvature of two bodies in contact

= quantity defined by Equation (55)

= Reynolds number

= specific surface = surface area per unit volume of porous medium

= specific surface = surface area per unit volume of solid fraction

= specific surface for mat with point contact between fibers

= quantities in perpendicular flow solutions defined by Equations

(141) and (275)
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T T

-(x)' -(Y)

U

v(n)

Vf

w( )

x^, xEXA' XE

a

a , b0
-o -o

al, bl

a , b
-c -c

b

S_c

Co

d
-e

dag d, n

f(-,n)

f

g(e), &(X)

-g(x)' g-()'

g(z)

h

h(c)

hl, h2, h3

i

= quantities in perpendicular flow solutions defined by Equations

(274) and (140)

= superficial velocity

= function of n

= volume of a fiber

= function of i

= factors in parallel flow velocity distributions defined by

Equations (72) and (54)

= radius of circular cylinder

= half-axes of solid elliptic cylinder's cross section

= half-axes of outer elliptic cylinder's cross section

= half-axes of ellipses describing surface of contact between two

fibers

= radius of virtual fluid surface in circular cell model

= focal length of ellipse

= consistency of a fiber mat

= consistency of fiber mat in unloaded state

= effective fiber diameter

= components of rate of deformation tensor

= function of i and n

= n/m = ratio of transcendental functions in Finch analysis

= frequency functions

= functions of n in approximate solutions for the three flow problems

= metric coefficient

= frequency function

= metric coefficients for coordinates ql, q2, q3

= (-1)
1 = imaginary factor
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A A A

i, j, k .= unit vectors in directions x, y, and z

1i, 12, 13 = unit vectors in directions qi, q2, q3

A A/\

j = integer index

k = integer index

k = Kozeny factor

kl, k2 = constants in Davies and Ingmanson empirical correlations for

..Kozeny.factor

k- Q, k(t) = Kozeny factors for parallel and perpendicular (transverse) flow

- -- past cylinder

k(x)' (y)
= Kozeny factors for directional flow past elliptic cylinders

k' = quantity in contact area analysis defined by Equation (310)

m = hydraulic radius

m, n = transcendental functions of auxiliary angle T

n = (562/i2)1/2

p = hydrodynamic pressure

~~p = reference point pressure
-o

pf =.compacting pressure on fiber mat

p = stress on solid fraction of mat

,Ap = pressure drop

q1, q2, q3 = orthogonal curvilinear coordinates

r = radial distance coordinate

r = ratio of actual to expected Kozeny factor

s = distance along a curve

s = fiber distortion factor

sl, S2, S 3 = distances along curves qi, q2, q3

t = fiber thickness
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t t
()' -(y)

u

u u

v

v

vl, v2, v3

r I v6

v,
-y

v
-nT

v
-z

w

w(C)

x, y, z

A

A

TI

0(x)' I(y)

a

o a,
C1, a2, a3

= quantities in perpendicular flow solutions defined by Equations

(266) and (125)

= velocity for flow past stationary cylinder

= i and in components of velocity u

= fluid velocity for moving cylinder problem

= mean velocity

= velocity components in directions qi, q2, q3

= components of fluid velocity for perpendicular flow past

circular cylinder

= components of fluid velocity in x, y, z directions

= components of fluid velocity for flow perpendicular to elliptic

cylinder

= projected fiber width

= weighting function

= Cartesian coordinates

= rate of deformation tensor

= quantity in perpendicular flow solutions defined by Equation (143)

= stress tensor

= functions of q in perpendicular flow solutions

= factor in perpendicular flow solutions defined by Equation (142)

= quantity defined by Equation (231)

= factors dependent on q in parallel flow approximate solution

polynomial

a2, a3,

= factors dependent on r in solution polynomial for flow perpendicular

to elliptic cylinder along minor half-axis

= b /a = axis ratio of solid ellipse
-o -o

= bi/ai = axis ratio of virtual ellipse in cell model

a4, aC5

01

vx

Y-I
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Y = k7r/(26)

yO = mat compression parameter

Y1, Y2 = quantities in perpendicular flow solution defined by Equations

(133) and (134)

'd = - Co

= fraction of fiber surface area in contact with other fibers
c

£E = porosity or void fraction

C2, 53,

= factors dependent on r in solution polynomial for flow perpendi-

n4, C5 cular to elliptic cylinder along major axis

e = angular cylindrical coordinate

6 = angle between a fiber's central axis and the normal to the

plane of the mat

K = quantity in contact area analysis defined by Equation (309)

= eigenvalue

X = quantity in perpendicular flow solutions defined by Equation (126)

X = angle between central axes of two fibers in contact

p = dynamic viscosity of fluid

V = (l-C) = solid fraction of a porous medium

v = Poisson's ratio

i ,,} = confocal elliptic coordinates

= elliptic coordinate representing solid cylinder

= elliptic coordinate representing virtual fluid boundary

p = fluid density

pf = fiber density

T = auxiliary angle

= eigenfunction

= angle between a fiber's major cross-sectional axis and plane

of mat
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= stream function for flow past moving cylinder

(1) = part of stream function that satisfies Laplace equation

9(2) = part of stream function from particular solution to Poisson

equation

~ , = stream function for flow past stationary cylinder

w = vorticity

d/dx = ordinary derivative

V/ax = partial derivative

V = nabla operator

V2 = Laplacian operator

V4 = biharmonic operator



-102-

LITERATURE CITED

1. Darcy, H. P. G. Les fontaines publiques de la ville de Dijon. Paris,

Victor Dalamont, 1856.

2. Scheidegger, A. E. The physics of flow through porous media. Rev. ed.

Toronto, University of Toronto Press, 1960.

3. Irmay, S., Trans. Am. Geophys. Union 39(4):702(1958).

4. Whittaker, S., Chem. Eng. Sci. 21(3):291-300(1966).

5. Carman, P. C., Trans. Inst. Chem. Engrs. (London) 15:150-66(1937).

6. Davies, C. N. Air filtration. New York, Academic Press, 1973.

7. Carman, P. C. Flow of gases through porous media. New York, Academic

Press, 1956.

8. Bliesner, W. C. A study of the porous structure of fibrous sheets using

permeability techniques. Doctor's Dissertation. Appleton, Wisconsin,

The Institute of Paper Chemistry, 1963.

9. Han, S. T., Pulp Paper Mag. Can. 70(9):T134-46(1969).

10. Davies, C. N., Proc. Inst. Mech. Engrs. (London) B1:185(1952).

11. Ingmanson, W. L., Andrews, B. D., and Johnson, R. C., Tappi 42(10):840-9

(1959).

12. Carroll, C. W. Unpublished work. Appleton, Wisconsin, The Institute

of Paper Chemistry, 1965.

13. Emersleben, 0., Phys. Z. 26:601(1925).

14. Sparrow,. E. M., and Loeffler, A. L., Jr., A.I.Ch.E. Journal5(3):325-30

(1959).

15. Happel, J., and Brenner, H. Low Reynolds number hydrodynamics. New

York, Prentice-Hall, Inc., 1965.

16. Hasimoto, H., J. Fluid Mech. 5:317-28(1959).

17. Happel, J., A.I.Ch.E. Journal 4(2).197-201(1958).

18. Kuwabara, S., J. Phys. Soc. Japan 14(4):527-32(1959).

19. Marmur, A., and Rubin, E., Ind. Eng. Chem. Fundam. 11(4):49.7-502(1972).

20. Happel, J., A.I.Ch.E. Journal 5(2):174-7(1959).



-103-

21. Kirsch, A. A., and Fuchs, N. A., Ann. Occup. Hyg. 10:23-30(1967).

22. Kirsch, A. A., and Fuchs, N. A., J. Phys. Soc. Japan 22(5):1251-5(1967).

23. Meyer, H. Unpublished work. Appleton, Wisconsin. The Institute of

Paper Chemistry, 1969.

24. Fuchs, N. A., and Stechkina, I. B., Dokl. Akad. Nauk SSSR 147:1144-6(1962).

25. Pich, J., Ann. Occup. Hyg. 9:23-7(1966).

26. LeClair, B. P., and Hamielec, A. E., Ind. Eng. Chem. Fundam. 9(4)-608-13

(1970).

27. El-Kaissy, M. M., and Homsy, G. M., Ind. Eng. Chem. Fundam. 12(1):82-90

(1973).

28. Iberall, A. S., J. Res. Natl. Bur. Stds. 45:398-406(1950).

29. Lamb, H. Hydrodynamics. 6th ed. London, Cambridge University Press,

1932.

30. Spielman, L., and Goren, S. L., Environ. Sci. Tech. 2(4):279-87(1968).

31. Brinkman, H. C., Appl. Sci. Res. A1:27(1947).

32. Kyan, C. P., Wasan, D. T., and Kintner, R. C., Ind. Eng. Chem. Fundam.

9(4):596-603(1970).

33. Clarenburg, L. A., and Piekaar, H. W., Chem. Eng. Sci. 23(7):765-71(1968).

34. Meyer, H., Tappi 54(9):1426-50(1971).

35. The Institute of Paper Chemistry. The status of the sheet-forming

process: a critical review. Appleton, Wisconsin, 1965.

36. Farrar, N. 0. Unpublished work. Appleton, Wisconsin. The Institute of

Paper Chemistry, 1964.

37. Lord, E., J. Text. Inst. 46:T191-213(1955).

38. Onogi, S., and Sasaguri, K., Tappi 4 4 (12)'874-80(1961).

39.. Labrecque, R. P. An investigation of the effects of fiber cross-

sectional shape on the resistance to the flow of fluids through fiber mats.

Doctor's Dissertation. Appleton, Wisconsin. The Institute of Paper

Chemistry, 1967.

40. Epstein, N., and Masliyah, J. H., Chem. Eng. J. 3(2)i169-75(1972).

41. Masliyah, J. H. Symmetric flow past orthotropic bodies: single and

clusters. Doctor's Dissertation. Vancouver, B.C., University of

British Columbia, 1970.



42. Masliyah, J. H., and Epstein, N., Ind. Eng. Chem. Fundam. 10(2):293-9

(1972).

43. Kuwabara, S., J. Phys. Soc. Japan 14(4):522-7(1959).

44. Nelson, R. W. Personal communcation, 1973.

45. Meyer, H. Personal communcation, 1973.

46. Elias, T. C. An investigation of the compression response of ideal

unbonded fibrous structures by direct observation. Doctor's Dissertation.

Appleton,. Wisconsin. The Institute of Paper Chemistry, 1965.

47. Finch, R. B., Textile Res. J. 21(6):383-92(1951).

48. Hertz, H. R. "On the contact of rigid elastic solids and on hardness."

Miscellaneous papers. p. 163-83. London, Macmillan Co., 1896.

49. Ingmanson, W. L., and Andrews, B. D., Tappi 46(3):150-5(1963).

50. Dyer, D. A. Doctoral thesis in progress. Appleton, Wisconsin. The

Institute of Paper Chemistry, 1974.

51. Ciriacks, J. A. An investigation of the streaming current method for

determining the zeta potential of fibers. Doctor's Dissertation.

Appleton, Wisconsin. The Institute of Paper Chemistry, 1967.

52. Bird, R. B., Stewart, W. E., and Lightfoot, E. N. Transport phenomena.

New York, John Wiley and Sons, Inc., 1960.

53. Wilder, H. D. The compression creep properties of wet pulp mats.

Doctor's Dissertation. Appleton, Wisconsin. The Institute of Paper

Chemistry, 1959.



-105-

APPENDIX I

CURVILINEAR REGRESSION OF LABRECQUE'S

EXPERIMENTAL KOZENY FACTORS

The pressure drop and flow rate data obtained by Labrecque (39) in his

permeation experiments through mats of synthetic nylon fibers of several

cross sections were converted into Kozeny factors. For these calculations,

the values for fiber density, specific surface, and cross-sectional area

were corrected for swelling in water, determined by Labrecque to be a 4.3%

diameter increase. Table VI lists the swollen values used to compute the

Kozeny factors.

TABLE VI

PROPERTIES OF LABRECQUE'S NYLON FIBERS

Swollen Specific Swollen Cross-

Swollen Density, Surface, Sectional Area,

Axis Ratio g/cm 3 cm- 1
Im

2

1.00 1.103 1684 487

0.379 1.095 1944 480

0.243 1.142 2085 544

0.213 1.090 2259 537

A curvilinear regression analysis was performed using the calculated

Kozeny factors. Table VII presents the best-fit regression curves for this

data. Other information relevant to the regression is given in Table VIII.
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TABLE VII

REGRESSION CURVES OF LABRECQUE'S EXPERIMENTAL

KOZENY FACTORS

Regression Equation

k = 3.777 + 14.52 4 (E-0.70) - 2.717(E-0.70) 2 - 82.248(E-0.70)3

k = 2.475 + 11.034 (E-0.60) + 2.981(e-0.60)2 - 43.517(E-0.60)3

k = 2.603 + 11.o001(-0.60) + 5.356(E-0.60) 2 - 21.715(e-0.60)3

k = 3.567 + 9.165(E-0.60) - 3.983(c-0.60) 2 - 6.074(c-0.60)3

TABLE VIII

REGRESSION ANALYSIS INFORMATION

Axis Ratio Porosity Range R2 SSW

1.00 0.498-0.847 0.92 4.87

0.379 0.344-0.800 0.90 5.28

0.243 0.364-0.809 0.92 4.74

0.213 0.274-0.781 0.88 12.10

Note: R = regression coefficient; SSW = sum of

regression; TSS = total sum of squares.

TSS

63.65

51.53

56.38

99.17

squares within

Axis

Ratio

1.00

0.379

0.243

0.213
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APPENDIX II

EQUATIONS OF CREEPING FLOW IN ORTHOGONAL CURVILINEAR COORDINATES

AND TRANSFORMATION RELATIONSHIPS WITH CARTESIAN COORDINATES

The steady creeping flow of an incompressible Newtonian fluid is de-

scribed (52) by the equation of continuity

and the equation of motion

The creeping motion equation results from the steady-state Navier-Stokes

equation by assuming that the inertial forces are negligible relative to the

viscous forces, which is true for very slow flow. The velocity vector is

which has components vl, v2, and v3 in the direction of the unit vectors i1,

j2, and _3 along the coordinate axes ql, q2, and q3.

Happel and Brenner (15) in the appendix to their book describe in detail

the usage of orthogonal curvilinear coordinate systems and the vector algebra

associated with such systems. The following discussion presents some of the

relationships pertinent to the analyses of this thesis.

The curvilinear coordinates are independent functions of position such

that qi = ql(x,y,z), q2 = q2(x,y,z_), and q3 = q3(x,y,z). The use of curvi-

linear coordinates requires the introduction of metric coefficients hi, h2,

and h3 , defined as follows:



where sk is the distance along the coordinate curve k. In an orthogonal

system in which x, y, and z are known explicitly in terms of ql, q2, and q3,

i.e., x = x(q1,q2,q3), etc., the metric coefficients are readily determined

from the equation

Expressing the divergence of v in curvilinear coordinates, the equation of

continuity becomes

The gradient of a scalar, p, is

The Laplace operator for a scalar function is

The Laplacian of a vector function, v, is

continuing in this manner for the components in the direction of i2 and 13.

The equation of motion has three components, as follows:

-108-
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In il direction:

In i3 direction:

+

(210)

(211)

(209)
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The need frequently arises to transform expressions from a curvilinear

system to a Cartesian system, or vice versa. For this reason, some trans-

formation relations are presented below. The partial differential operator

a/ax equals the following:'

The operators '/ay and a/3z are similar. This expression operating on k

yields

The partial differential operators a/aqk are obtained by applying the chain

rule for partial differentiation,

The conversion of the components of a vector, v,

from one system to another is performed with the aid of the following re-

lationships:

k = 1,2,3 (216)

(likewise for v and v ) .
y
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APPENDIX III

ELLIPTIC CYLINDRICAL COORDINATES AND RELATED PARAMETERS

The elliptic cylindrical coordinate system ( z, n, z) is an orthogonal

curvilinear system related to the Cartesian coordinates by the transformation

with c, the focal length, greater than zero. The relationships

are obtained by expanding the right side of Equation (218) and equating the

real and imaginary parts. The ranges for E and r are 0 i < c and 0 < nr < 2r.

The metric coefficients hl, h2, and h3 for this coordinate system, determined

according to Equation (204), are as follows:

h 3 = 1. (221)

which describes a family of ellipses of E = constant. The major and minor

half-axes of an ellipse E = EG are

where a > b . Combining these produces the relationship
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which demonstrates that all the ellipses i = constant are confocal, with foci

at x = ± c, y = 0. Likewise the equation

describes a family of confocal hyperbolas, rj = constant, which have the same.

foci as the ellipses and are normal to them. Define B = b /a , and eliminate

c from Equations (223) and (224) to obtain the relationship between G and

the half-axes

-Turning now to the unit cell model of porous space, the two ellipses of

the model defined by i = G0 and i = G1 have half-axes a , bo, and al, bl,

respectively. The cell is related to the porosity of the assemblage of

cylinders by observing that the ratio of the area of the inner ellipse to the

area of the outer ellipse equals the solid fraction, (l-E). Thus,

The relationship between porosity and the axis ratios 0 and @1, by using

Equations (225) and (228), is found to be

Solving for 61,

where

(231)
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Expressions for sinh Eo and cosh Eo are obtained from Equations (223), (224),

and (225), resulting in the following:

From these,

Other relationships which are sometimes needed are as follows:

The derivations of the above are fairly straightforward.



APPENDIX IV

ANALYSIS FOR PERPENDICULAR FLOW ALONG

THE MAJOR CROSS-SECTIONAL AXIS

The boundary value problem describing flow perpendicular to an elliptic

cylinder along the major cross-sectional axis is stated in Equations (90),

(94), (96), (179), and (180). The solution is developed in a manner similar

to that presented in the text for flow along the minor cross-sectional axis.

The solution for p is stated as before:

A general solution to Equation (240) is

while a general solution for w is

jl

zero at 5 ='0. Using the zero vorticity condition on i = £1, the expression

becomes

The factor B(x) will be determined later. Equation (239) calls for restating

the boundary conditions:

-114-
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(246)

(247)

(248)

(249)

Assume that

In Equation (243), the selection of j = 1, a. = Uc, and b = 0 satis

Equations (246) and (247), yielding

as the desired solution for (1). Equation (248) gives

which, on integrating, becomes

where an integration constant of zero is chosen.

An approximate solution will be found for the Poisson equation,

Integrating between i and 1l, the result is

(250)

(251)

fies

(252)

(253)

(254)

(255)
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where

A polynomial form for V(2) is assumed, as follows:

The T. factors are functions of n. An additional condition is

The conditions in Equations (249), (254), (257), and (259) are used to solve

for the !i factors, with the following results:

Yet to be determined is gx)(n). The two integrals in Equation (256) are

evaluated as follows:
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where

and X is as defined in Equation (126). Introducing these into Equation (256)

produces the differential equation

where

The solution is

The parameter B( ) is determined as before from the biharmonic equation
T\- (x)

evaluated at G = G0 . After integration over n and solution for B(), the

result is

(273)



with R, n, and A as previously defined.

The stream function, 9, for the fluid moving past an immobile cylinder

with a fixed reference system is determined in the following manner. The flow

is described by

where the components are

Define A, in terms of u and u :

Solving for ,* yields

The drag force due to flow past the stationary cylinder is given by

Equation (151). Using Equation (152) for the stress tensor, A, and seeking

only the x-component because it alone is nonzero, the drag force becomes
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As in the case of flow along the minor axis:

A

The unit vector dot products are

The drag force now is

The pressure expression for this problem is developed from Equation (168) as

before, but now the Laplacian of p(2) is

The pressure derivative is

which is integrated to give

Evaluation of dn at 5 = 0 produces

Performing the integration in Equation (285) and simplifying provides the drag

force expression
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Using the same method as before, the Kozeny factor for this flow problem is
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APPENDIX V

KOZENY FACTORS FROM THEORETICAL ANALYSES

TABLE IX

THEORETICAL KOZENY FACTORS FOR PARALLEL FLOW (EXACT SOLUTION)

0.900

31.039

10.761

7.316

5.978

5.239

4.761

4.422

4.168

3.968

3.806

3.673

29.697

10.737

7.507

6.240

5.523

5.043

4.690

4.415

4.192

4.007

Axis Ratio

0.800

30.981

10.761

7.326

5.992

5.254

4.776

4.437

4.181

3.980

3.817

3.681

Axis Ratio

0.300

28.625

10.674

7.605

6.382

5.675.

5.192

4.833

4.553

4.329

4.147

0.700

30.863

10.763

7.347

6.019

5.284

4.806

4.466

4.208

4.004

3.837

3.697

0.200

26.573

10.490

7.700

6.543

5.851

5.377

5.032

4.774

4.578

4.426

0.600

30.654

10.763

7.381

6.065

5.334

4.856

4.513

4.251

4.043

3.971

3.726

0.100

22.084

9.886

7.579

6.562

5.994

5.651

5.433

5.288

5.188

5.117

0.50 3.772

0.999

31.056

10.760 ·

7.313

5.974

5.234

4.756

4.418

4.164

3.964

3.803

3.670

Porosity

0.99

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

Porosity

0.99

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.500

30.300

10.757

7.433

6.136

5.411

4.933

4.586

4.318

4:.102

3.924

3.851 3.998 4.307 5. 64
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TABLE X

THEORETICAL KOZENY FACTORS FOR PERPENDICULAR FLOW

ALONG MINOR AXIS

0.900

54.830

20.717

14.500

12.025

10.644

9.749

9.117

8.645

8.279

7.987

7.749

0.400

59.014

22.417

16.173

13.969

12.967

12.520

12.395

12.483

12.728

13.097

13.571

Axis Ratio

0.800

55.569

21.073

14.813

12.340

10.974

10.101

9.494

9.051

8.716

8.458

8.256

Axis Ratio

0.300

59.556

22.502

16.601

14.809

14.271

14.343

14.796

15.526

16.479

17.626

18.947

o.700

56.361

21.437

15.138

12.675

11.336

10.497

9.931

9.533

9.248

9.043

8.897

0.200

58.392

22.171

17.462

16.885

17.706

19.335

21.568

24.320

27.548

31.232

35.357

0.600

57.215

21.801

15.473

13.038

11.747

10.967

10.469

10.147

9.944

9.828

9.778

0.100

49.760

21.708

22.241

27.620

35.876

46.657

59.. 861

75.453

93.417

113.746

136.435

Porosity

0.99

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

Porosity

0.99

0.95

0.90

0.85

0.80

0.75

0.70

0.65

.60

0.55

0.50

0.999

54.141

20.377

14.202

11.731

10.342

9.434

8.785

8.294

7.907

7.593

7.332

0.500

58.124

22.144

15.816

13.449

12.250

11.580

11.206

11.020

10.966

11.011

11.134
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TABLE XI

THEORETICAL KOZENY FACTORS FOR PERPENDICULAR FLOW

ALONG MAJOR AXIS

Axis Ratio

0.800

53.133

19.732

13.592

11.113

9.705

8.772

8.096

7.576

7.159

6.815

6.522

Axis Ratio

0.300

44.696

15.635

10.361

8.255

7.076

6.308

5.765

5.359

5.043

4.791

4.585

0.700

52.384

19.285

13.188

10.718

9.310

8.373

7.691

7.165

6.742

6.390

6.092

0.200

39.359

13.678

9.133

7.371

6.416

5.816

5.407

5.111

4.888

4.716

4.580

0.600

51.371

18.715

12.694

10.249

8.853

7.922

7.243

6.719

6.297

5.948

5.652

0.100

29.367

10.656

7.585

6.505

5.976

5.672

5.480

5.350

5.258

5.189

5.136

Porosity

0.99

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

Porosity

0.99

0.95

0.90

0.85

0.80

0.75

0.70

0.65

.60

0.55

0.50

0.999

54.130

20.371

14.197

11.725

10.336

9.428

8.779

8.287

7.900

7.586

7.324

0.500

49.954

17.976

12.083

9.692

8.326

7.417

6.756

6.248

5.841

5.505

5.223

0.900

53.699

20.088

13.924

11.445

10.045

9.122

8.458

7.950

7.546

7.215

6.936

0.400

47.889

16.991

11.322

9.031

7.730

6.870

6.249

5.777

5.403

5.098

4.844
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APPENDIX VI

COMPUTER PROGRAM FOR CALCULATION OF DIRECTIONAL KOZENY FACTORS

C KOZENY FACTOR CALCULATION -- ZERO VORTICITY MODEL

C COMPOSITE KOZENY.FACTORS--ELLIPTIC CYLINDERS

DOUBLE PRECISION POR,BO,ALPHA,B1,DX,X,H,FK,P(501),SIGMA,AL,PIKSQ,

1 COSHX1,COSHXO,SINHX1,SINHXO,SH2XO,CH2XO,XO,X1,TANHX1,DX1,DX9,

2 SIG,ZLAM,TL,R,T1A,T1B,TlC,T1D,T1,T2,T3,T, FAC1,FAC2,BRK,BR,

3 TM,TA,TB,TC,TD,G1,G2,FK1,FK2,FKPAR,FKISO,FKCOS,FKEXP,FKAVG

WRITE(6,101)

101 FORMAT('OCOMPOSITE KOZENY FACTORS FOR CREEPING FLOW THROUGH ')

WRITE(6,102)

102 FORMAT(' ', 9X,'ASSEMBLAGES OF ELLIPTIC CYLINDERS')

5 READ(5,105)BO,POR1,NPORDL

105 FORMAT(2F10.0,I3)

C NPORDL = 1 FOR 0.0:01,10 FOR 0.01, 50 FOR 0.05, ETC.

IF( BO )15,15,25

25 WRITE(6,115)BO

115 FORMAT('OB0 = ',F6.3)

WRITE(6,117)

117 FORMAT('0O POR K-PARL K-PER1 K-PER2 K-ISO K

1-COS K-EXP K-AVG')

NOPOR = (1 - POR1)*1000

DO 10 L=1,NOPOR,NPORDL

POR= POR1 + (L-1)*0.001

ALPHA=2.0*BO/((1.-BO**2)*(1i.-POR))

B= (DSQRT(1. +ALPHA**2 )-1)/ALPHA

DX=DLOG((l.+Bl)*(1.-BO)/((1.-Bl)*(l.+BO)))/2.0

COSHX1=1/DSQRT(1.-Bl**2)

COSHXO=1/DSQRT(1.-BO**2)

SINHXO=BO/DSQRT(1.-B0**2)

SINHX1=B1/DSQRT(1.-Bl**2)

XO=0.5*DLOG((l+BO)/(1-BO))

Xl=0.5*DLOG((l+B1)/(1-Bl))

SH2XO= 2.*SINHXO*COSHXO

CH2XO= 2.*SINHXO**2 + 1.

TANHX1=B1

PI = 3.1415926536

C PARALLEL FLOW--ELLIPTIC CYLINDERS--EXACT SOLUTION

AL= 2.*DX

KSIGN=1

H=(3.+10.*BO+3.*BO**2)/(4.*(1+BO))

DO 50 K=1,501,2

PIKSQ=(PI*K)**2

BRK= KSIGN*ALPHA+(K* PI /(2.*AL))*((l+BO**2)/(1-BO**2))

BR=0.500+(4.*AL**2/(PIKSQ+4.*AL**2))*BRK**2

P(K)=2.*AL**3*BR/(PIKSQ*(PIKSQ+4.*AL**2))

SIGMA=P(K)+SIGMA

KSIGN=-1

IF(P(K)-.000001)55,55,50

55 MAXK=K

GO TO 60
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50 CONTINUE

60 FKPAR= (BO*POR /(1-POR ))**3/(H**2*SIGMA*(l-BO**2)**2)

C PERPENDICULAR FLOW ALONG MAJOR AXIS OF ELLIPTIC CYLINDER

DX1=DX**2+10.0

DX9=9.0*DX**2+10.0

SIG=SINHXO-TANHX1*COSHXO

ZLAM= COSHX1-COSHXO-TANHX1*(SINHX1-SINHXO)

TL= (COSHX1**3-COSHXO**3-TANHX1*(SINHX1**3-SINHXO**3))/3.

1 - (COSHX1-COSHXO)

R= CH2XO*(2.5*DX**4-60.*DX**2+900.)/(DX**4*DX1)

1 + SH2XO*(DX**4-30.*DX**2+600.)/(DX**3*DX1)

FAC1= 7.*CH2XO/DX + 4.*SH2XO

FAC2= 10.*ZLAM + 0.75*SIG*DX**3

T1= FAC1*(10.*TL+DX**3*SIG*(SINHXO**2-6.)/12.+6.*DX**2*FAC2/DX9)

T2= (FAC1/2. + 1.75/DX)*FAC2

T3= -(1.+18./DX**2)*SINHXO**4 - 18.*SINHXO**3*COSHXO/DX + 0.875

1 - (2.+18./DX**2)*SINHXO**2 - 9.*SINHXO*COSHXO/DX - 6.75/DX**2

T= 6.*T1/(DX**2*DX1) +6.*T2/(DX**2*DX9) - SIG*T3

FK1 = -B1*POR**3*BO*G1/(H**2*(1.-POR))

C PERPENDICULAR FLOW ALONG MINOR AXIS OF ELLIPTIC CYLINDER

TM= (COSHX1**3-COSHXO**3-TANHX1*(SINHX1**3-SINHXO**3))/3.

1 -TANHX1*(SINHX1-SINHXO)

T1A= (3.-18./DX**2)*SINHXC**4 - 18.*SINHXO**3*COSHXO/DX -SH2XO**2

1 + (6.-18./DX**2)*SINHXO**2 - 4.5*SH2XO/DX - 6.75/DX**2 + 3.125

T1B= -1.75*SH2XO**2 - 45.5*SINHXO**2 - 24.5

1 - 4.*DX*COSHXO**3*SINHXO - 12.*DX*SH2XO

T1C= 189.*DX**2*CH2XO + 108.*DX**3*SH2XO

T1D= 31.5*COSHXO**2 - 23.625 + 9.*DX*SH2XO

TA= T1A + T1B/DX1 + T1C/(DX1*DX9) + T1D/DX9

TB= -(240.*DX*SH2XO +420.*CH2XO)/(DX**3*DX1)

TC= (210.*CH2XO + 120.*DX*SH2XO - 105.)/(DX**3*DX9)

1 + (2520.*CH2XO + 1440.*DX*SH2XO)/(DX*DXl*DX9)

TD=SIG*TA + TM*TB + ZLAM*TC

G2=COSHX1*R/TD

FK2 = POR**3*BO*G2/(H**2*(1.-POR))

C COMPOSITE KOZENY FACTORS

FKISO = 0.50*FKPAR + 0.25*(FK1 + FK2)

FKCOS = FKPAR/3. + (FK1 + 2.*FK2)*2./9.

FKEXP = O.067*FKPAR + 0.109*FK1 + 0.824*FK2

FKAVG = (FKPAR + FK1 + FK2)/3.

10 WRITE(6,500)POR,FKPAR,FK1,FK2,FKISO,FKCOS,FKEXP,FKAVG

500 FORMAT(' ',F6.3,7F11.3)

GO TO 5

15 STOP

END
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APPENDIX VII

DERIVATION OF COMPOSITE KOZENY FACTOR

Consider the flow past a fiber whose central axis makes an angle e with

the flow direction or the normal to the mat plane (see Fig. 20). The drag

force, F, is in the direction of -U. The magnitude F is seen from Fig. 21 to

be related to the components parallel to and perpendicular to the fiber's

central axis, F( ) and F(t), respectively, by

Also, F is the sum of two parts, as follows:

The drag force is proportional to the pressure drop, which in turn by the

Kozeny-Carman equation at constant p, s, and m is proportional to kU. The

drag force becomes

The velocity components are

The composite Kozeny factor is
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plane of mat

Figure 20. Flow Past a Fiber Within Mat

F

F(z)cos .

Figure 21.

fiber
cross section

Resolution of Drag Force Into Parallel and

Perpendicular Components

,~U

Figure 22. Perpendicular Flow Past a Fiber of Elliptic Cross Section

F(t)

V



-128-

For a fiber of elliptic cross section, the perpendicular flow component

depends on the orientation of the cross section relative to the flow direction.

Define $ as the angle between the major cross-sectional axis of the cylinder

and the plane of the mat, as shown in Fig. 22. The perpendicular drag compo-

nent, as seen in Fig. 23, is equal to

(299)

which as before yields the combined Kozeny factor expression

(300)

The composite Kozeny factor for an elliptic cylindrical fiber mat is

F

(301)

Figure 23. Resolution of Perpendicular Drag Force into

Components Along Cross-Sectional Axes
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APPENDIX VIII

ESTIMATION OF INTERFIBER CONTACT AREA

Consider a mat of solid fibers of elliptic cross section. An estimate

is desired of the fraction of the total fiber surface area in contact with

other fibers and, therefore, excluded from being passed by a permeating

fluid. The fibers have a cross-sectional area, Af,

where a and b are the major and minor semiaxes, respectively, of the
-o -o

elliptic cross section. Assume that Af and the fiber density, pf, are in-

dependent of stress on the fiber. The fiber perimeter is ira H, where H is

defined by Equation (79). The geometric surface area for a fiber, A , is

in which Lf is the fiber length. The fiber specific surface, Sv, as used in

the Kozeny-Carman equation is the ratio of wetted surface area, A , to

fiber volume, Vf:

For a rigid fiber with true point contact with other fibers, the wetted area

and the geometric area are equal. But this is not so for a deformable fiber

since the fiber crossing points exclude some surface area from the fluid.

The wetted area is simply the geometric area minus the contact area, A :
-
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If the mat is under zero stress, there will be no deformation at the contacts,

and A =0; but this is not the practical case. The contact area for a fiber
-c

is

A = A N (306)

in which.A' is the mean contact area per contact per fiber and N is the
-c -

number of fiber-fiber contacts per fiber.

The mean contact area, A', can be predicted by means of an analysis by

Finch (47). For the case of two curved isotropic elastic solids in contact,

Finch derived expressions for the pressure distribution and the shape of the

contact interface using as a theoretical: basis the work of Hertz (48). The

surface of pressure between the two solids is bounded by an ellipse of semiaxes

In this expression FN is the normal force pressing the two bodies together;

kl and k2 for each of the two solids are defined by

where V ='Poisson's ratio and E = Young's modulus; R 11 and R12 are the radii

of curvature of one solid and R 2 1 and R22 are for the other. The concern here

is with two identical fibers in contact, for which R = R2 1 = R and R12 =

R22 = a. The expression for K reduces to
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The factors m and n are transcendental functions of an auxiliary angle, T,

and are defined by

The parameter f is such that

and is determined implicitly as a function of T from

The area of contact, A*, is

The mean contact area, A , for two fibers crossing at an angle X between their
-c

central axes is determined from the equation

A* of course is a function of X. The frequency function g(X) must be
-

specified before A' can be calculated, and must satisfy



-132-

At X = 0 the analysis breaks down, so the chosen g(X) must exclude A = 0.

as a possible crossing angle. The form

can be used, yielding for A'

The integral I must be evaluated numerically. The frequency function

seems like a reasonable choice. On calculation of the integral, the mean con-

tact area becomes

The number of contacts per fiber is

where L is the segment length, or mean distance between contacts. The assump-
-s

tion that L is much less than L is made so that the fiber ends are neglected.

The wetted surface area is

Wilder (53) has correlated segment length and consistency, c, by assuming the

relationship
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where L and c represent values for the unloaded mat. The theoretical

analysis of Onogi and Sasaguri (38) provides the equation

where t is the fiber thickness. Since here the concern is with elliptic

fibers assumed to be in contact with their major axes in the plane of the mat,

t = 2b . This last equation is rewritten to give

Using this and the Wilder equation,

Inserting this into the equation for A yields

where S is the specific surface for zero contacts,

Introduce the porosity, ,

and assume that yo = 1. The specific surface becomes

(334)
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Define 6 as the fraction of S lost due to interfiber contact:
c -vo

In Equation (311), expressions for F and R are needed. R is the radius

of curvature at the point of contact, which for an ellipse is

R = a 2 /b . (337)

Real fibers do not have truly elliptic cross sections but oval ones instead

whose R at the contact point is greater than that defined by Equation (337).

Therefore, a distortion factor, s, is introduced:

R = s a 2 /b. (338)

The values for s for the fibers of Bliesner and Labrecque were estimated from

the microphotographs of the fiber cross sections. Bliesner's fibers of axis

ratios 1.00, 0.344, and 0.242 have s values of 1.0, 1.7, and 1.5, respectively;

and s value of 1.0 was found for Labrecque's circular fibers and 1.2 for his

noncircular fibers.

The normal force on a contact point, F., divided by the mean contact

area equals the stress on the solid fraction of the mat, p :

The compacting pressure on the mat, pf, is related to p by
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To eliminate pf, introduce the Campbell equation for mat compressibility

(35),

in which M and N are constants dependent on the mat. Thus,

For the choice g(X) = sin X, A' = 1.159 K2 , and

Inserting these relationships for FN and R into the K equation, and then

using it in the expression for 6 produces the following:

Replacing k' with Equation (310) yields

This estimates the fraction of surface area excluded from the fluid due to

interfiber contact, using as parameters the fiber properties (v, E, pfl s, , )

as well as mat properties (e, M, N).

The properties for Bliesner's experiments are summarized in Table XII.

The calculated estimates of percentage contact area in Bliesner's mats are

given in Table XIII. All properties except E and v were determined from

experimental data. The values of E were obtained from data for similar fibers

(35), and the V value was a guess.
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TABLE XII

PROPERTIES OF BLIESNER'S

Pf,

s g/cm3 M

1.0 1.112 0.0103

1.7 1.108 0.0140

1.5 1.158 0.0130

TABLE

OF PERCENTAGE CONTACT

FIBER MATS

N

0.229

0.247

0.200

E,

dynes/cm2 :'.

3 x ld?

3 x 109

3 x 1010

V

0.35

0.35

0.35

XIII

AREA IN BLIESNER'S FIBER MATS

1.00

1.0 x 10- 6

4.9 x 1o-3

0.05

0.25

1.04

Axis Ratio

0.344

6.8 x 10- 7

1.7 x 10
- 3

1.3 x 10- 3

0.06

0.23

0.242

2.0 x 10- 6

o. 40

0.53 '

3.93 ...

20.3

For the nylon

experimental data.

constant M for the

fibers used by Labrecque, So, pf, and E were found from

The value of v was assumed to be 0.35. The compressibility

circular fiber was estimated from the relationship (35)

M - E- 0' 2 4
(346)

which yields for two fibers

M2 = M1 (El/E 2 ) 0
24 (347)

Past work for a fiber with E = 3 x ld9-.dynes/cm2 has found that M = 0.0104;

since Labrecque's fibers have E = 2.7 x 108 dynes/cm 2, M is calculated to be

Fiber

Nylon

Nylon

Orlon

'0-

1.00

0.344

0.242

ESTIMATES

Porosity

0.90

0.70

0.60

0.50

0.40
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0.0185. But this is not valid for noncircular fibers. Assume M is inversely

related to,Bo by
0

M2/M = (Bo/O 2) . (348)

From Bliesner's data, y is approximately 0.287 and the oval fiber M values

can be estimated. N is assumed independent of the axis ratio. Table XIV

presents the values for the properties of Labrecque's fiber mats. Contact

area estimates are given in Table XV.

PROPERTIES

s

1.0

1.2

1.2

1.2

Pf'

g/cm3

1.103

1.095

1.142

1.091

ESTIMATES OF PERCENTAGE

TABLE XIV

OF LABRECQUE'S FIBER MATS

M

0.0185

0.0244

0.0278

0.0288

N

0.225

0.225

0.225

0.225

E,

dynes/cm2

2.7 x 108

2.7 x 108

2.7 x 108

2.7 x 108

v

0.35

0.35

0.35

0.35

TABLE XV

CONTACT AREA IN LABRECQUE'S FIBER MATS

:1.00

9.1 x 10
- 7

5.3 x 10
- 3

0.051

0.30

1.26

Axis

0.379

1.1 x 10 - 6

6.4 x 10- 3

0.062

0.36

1.53

Ratio__

.0.243

1.4 x 10- 6

8.3 x 10- 3

0.081

0.47

1.98

0.213

9.4 x 10-7

5.5 x 10-3

0.053

0.31

1.29

Axis

Ratio

1.00

0.379

0.243

0.213

Porosity

0.90

0.70

0.60

0.50

0;.40


