|

The Institute of Paper
- Chemustry

Appleton, Wisconsin

Doctor’s Dissertation

Creeping Flow of Fluids Through Assemblages
of Elliptic Cylinders and its Application
to the Permeability of Fiber Mats

George Ronald Brown

June, 1975 IEang s




CREEPING FLOW OF FLUIDS,?HROUGH ASSEMBLAGES
OF ELLIPTIC CYLINDERS AND ITS APPLICATION
TO THE PERMEABILITY OF FIBER MATS

A thesis submitted by

George Ronald Brown
B.S. 1969, North Carolina State University

M.S. 1971, Lawrence University

in partial fulfillment of the requirements
of The Institute of Paper Chemistry
for the degree of Doctor of Philosophy
from Lawrence University,
Appleton, Wisconsin

Publication Rights Reserved by
The Institute of Paper Chemistry

June, 1975




TABLE OF CONTENTS

SUMMARY
INTRODUCTION AND HISTORICAL REVIEW
Fundamental Relationships
Darcy's Equation
Kozeny-Carman Theory
Flow Through Fiber Mats
Circular Fibers
Empirical Approaches
Theoretical Appreoaches
Ndncifcular Fibers
Empirical Approaches
Theoretical Approaches
STATEMENT OF THE PROBLEM

THEORETICAL ANALYSTS OF FLOW THROUGH ASSEMBLAGES
OF ELLIPTIC CYLINDERS

Cell Model of Flow | .
Flow Parallel to Elliptic Cylinder
Exact Solution
Approximate Solution
Determination of Kozeny Factor
Flow Perpendicular to Elliptic Cylinder
Along Minor Cross-Sectional Axis

Solution for the Stream Function

Stream Function for Stationary Cylinder

Derivation of Drag Force

Determination of Kozeny Factor

Pége

=

o o oo O W\

23
23
27

31

32
32
3
35
37
40
42
43
Kk
49
51
53




iii

Along MajJor Cross-Sectional Axis
Patterns of Flow
Results of Theoretical Analyses
DISCUSSION
Validity of Theoretical Analysis
Cell Model Approach
Approximate Solution Procedure
Comparison with Previous Analyses
Circular Cylinders
Noncircular Cylinders
Application to Fiber Mats
Structure of Fiber Mats
Kﬁzeny Factors for Fiber Mats
Composite Kozeny Factor
Special Cases
Isotropic Mats
Real Mats
Interfiber Contact Area
Validity of Creeping Flow Assumption
\ Application to Other Systems
Wood Fiber Mats
Related Areas
CONCLUSIONS
SUGGESTIONS FOR FUTURE WORK
ACKNOWLEDGMENTS
LIST OF SYMBOLS USED

LITERATURE CITED

Page
5h
55
57
63
63
63
65
67
67
67
70
70
T1
T1
Tl
Th
Th
85
87
88
88
88
90
93
el
95

102



iv

Page

APPENDIX I. CURVILINEAR REGRESSION OF LABRECQUE'S EXPERIMENTAL
KOZENY FACTORS 105

APPENDIX II. EQUATIONS OF CREEPING FLOW IN ORTHOGONAL CURVILINEAR
COORDINATES AND TRANSFORMATION RELATIONSHIPS WITH

CARTESIAN COORDINATES 107
APPENDIX ITI. ELLIPTIC CYLINDRICAL COORDINATES AND RELATED

PARAMETERS T 111
APPENDIX IV. ANALYSIS FOR PERPENDICULAR FLOW ALONG THE MAJOR

CROSS-SECTIONAL AXIS : 114
APPENDIX V. KOZENY FACTORS FROM THEORETICAL ANALYSIS 121
APPENDIX VI. COMPUTER PROGRAM FOR CALCULATION OF DIRECTIONAL

KOZENY FACTORS 124
APPENDIX VII. DERIVATION OF COMPOSITE KOZENY FACTOR 126

APPENDIX VIII. ESTIMATION OF INTERFIBER CONTACT AREA 129




SUMMARY

An analysis of the slow permeation of fluids through assemblages of elliptic
cylinders based upon a cell flow model is developed and applied to flow through"
mats of noncircular synthetic fibers. The aim of the investigation.was to
determine what_effect fiber cross-sectional shape has on the resistance to flow
through a fiber mat. An elliptic cylinder was cho;en as a fiber model because
the shape of the elliptic cross section can be varied from circular to nearly
flat with a mathematical dgscription of the contour easily specified by using

confocal elliptic coordinates.,

The cell used as a model of the porous space consists of two confocal
elliptic cylinders, the inner one representing the solid fiber and the outer
one a virtual surface within the fluid. The virtual bounda:y is positioned
such that the cell porosity equals the mat porosity. The no-slip condition is
assumed on the solid cylinder, while zero vorticity is stated as a condition on
the fluid surface in the manner of the‘analysis by Kuwabara for circular

¢cylinders.

The creeping motion equations are applied to flow through the model cell,
and solutions are determined for flow parallel to the central fiber axis, flow
perpendicular to the central axis and to the minor cross-sectional axis, and
flow perpendicular to the central axis and to the major cross—sectionél axis.
A novel approximate method for solving Poisson equation problems using a poly-
nomial form is successfully utilized and shown to be reasonably accurate.
Using the Kozeny factor from the Kozeny-Carman theory as an indicator of
relative resistance to flow through the assemblage, expressions for each flow
direction are developed as functions of porosity and cross-sectional axis
ratio. Several mat structures are considered and composite mat Kozeny factors
are estimated. These composite Kozeny factors are compared to experimental

data for noncircular fiber mats and to previous analyses.
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The principal conclusion is that the flow resistance for an isotropic mat
of fibers is not greatly affected by the fiber cross-sectional shape until a
fairly flat axis ratio is used. For example, at porosity 0.90 the Kozeny
factor for a mat of circular fibers is very close to that for fibers of axis
ratio 0.10; at porosity 0.75, going from circular fibers to an axis ratio of

0.30 causes a change of only ten percent in the mat Kozeny factor.

The contact area between fibers in a mat is considered as a means for
correcting the surface area of the porous mat for that area not paséed by the
fluid. Although valid, this correction is seen to be insignificant for the
fiber mats of interest to this work. The contact area estimate is developed
from the theory of two isotropic elastic bodies in contact and relates the

contact area to the fiber elastic properties as well as.to mat characteristics.
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INTRODUCTION AND HISTORICAL REVIEW

The flow of fluids through fiber mats is of importance in many processes,
including the filtration of air with high porosity synthetic fiber filters,
water filtration with fiber mats formed from fiber slurries, and water removal
on a paper machine forming section. The large majority of existing studies
which have explored the basic relationships guidiné such floﬁ have been
empirical or semiempirical in approach. Few analyses from a theoretical
standpoint have contributed significantly because of the extreme difficulties
in defining the structure and properfies of the porous mat of fibers. Soﬁé
analytical studies of regular ar;ays of fiberlike cylinders have been completed,
but thése are of'little practical imporﬁance to thé‘abovementioned processes
where the fiber assemblage is not well ordered. Thé effect of fiber character-
isties, such as fiber cross-sectional shape, deformability, etc., on the fléw

behavior has not been clearly determined either.

Obviously, the subject of fluid flow through fiber'mats needs considerable
attention from investigators before widely applicable, well defined relation-
ships are obtained. This thesis attempts to contribute to this area by
applying the fundemental principles éf hy@rodynamics_to a model of the porous

space in order to determine the effect of fiber shape on flow resistance.

Neither experiment nor analysis should be overlooked in studies in this
area. Both are essential for further insight into the governing relationships.
Because of the complexity of the flow in a fiber assemblage, empirical studies
often appear to provide a faster means for resolving questiéns than an analytical
approach does. But the results from such empiricism are limited to the

specific set of conditions employed in the study, while an analytical approach
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based upon valid reasoning can relate the variables of interest over a wide |
range of conditions. New theories, however, certainly need verification by

experimental measurement before confidence in them is obtained and they are

accepted as sound. The approach in this thesis is primarily theoretical, but

laboratory data are compared with the analyticél results in an effort to

demonstrate the usefulness of the theory.

FUNDAMENTAL RELATIONSHIPS

Porous media possess numerous and varied physical forms, but all are
characterized by the fact that the apparent volume of the materiél is greater
than the true solid volume because of."pores" or void spaces present within
the structure. The properties of a porous'medium are highly dependent upon
the ratio of void spaée to solid volume, as well as on the manner inlwhich fhé
void space-is distributed within the medium. In most cases the "pores"
are randomly interconnected so that fluids can permeate the structure in all

directions.

A thick mat of fibers is the porous medium of interest to this work.
The characteristics of a fiber mat depend greatly on what type of fibers are
in it and how the mat was formed. No fiber mat of practical importance has
a regular, ordered structure. As a result, it is very difficult to describe
in exact terms the porous structure of a mat, which would be desirable for

hydrodynamic analysis.

The basic principles of hydrodynamics, i.e., the differential equations
of the conservation relationships, describe the motion of fluids in any
geometric system. But mathematical solutions for only a very few flow cases

involving fairly simple geometries have been obtained. This is because more
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complicated flow problems present extreme difficulties in specifying the most
suitable coordinate system for equations and their boundary conditions, a
step necessary for rigorous solutions. For these reasons, most of the studies

to date on flow through porous media have utilized empirical or semiempirical

approaches.
DARCY'S EQUATION

'The fundamental relationship describing slow, steady-state, isothermal
flow of an incompressible fluid through a homogeneous porous medium is the

equation of Darcy (1),
U= QA=K 8p/L=-K dp/ax, (1)

where .. . superficial velocity

1
I

1©
1

= volumetric flow rate

cross-sectional area of porous medium presented to flow

[
i

= .pressure drop across the medium

s
L=
n

thickness of the medium

e
[}

Ko = proportionality factor

dp/d§_= pressure gradient
The Darcy equation simply states that the flow rate is directly proportional
to the pressure drop. It is applicable for laminar flow where inertial effects
are negligible and where the resistance tovflow, as ekpressed by l/go, is due
entirely to the viscous drag of the fluid. Also, the fluid must be nonreactive

with the porous structure.

The proportionality factor, Kb, combines the structural properties of

the porous medium and the characteristics of the permeating fluid. Thelfluid
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properties are separated from those of the medium by the commonly accepted

Scheidegger (2) relationship

K =K/, (2)

where W is the dynamic viscosity of the fluid and K is termed the permeabil- ‘
ity coefficient, which is dependent only on the porous structure and not on
the fluid properties. The dimension of K is that of length squared. The

Darcy equation becomes

U= - (K/u) dp/ax. - (3)

Darcy's law was empirically determined in 1856, but recently a theoretical

basis for it has been demonstrated. Irmay (3) showed that the equation was
valid on a macroscopic scale by obtaining a space average of the microscopic
flow obeying the creeping flow form of the Navier-Stokes equation. A theo- |
retical derivation of Darcy's law was presented by Whittaker (4), who applied

the conservation principles to the flow in an anisotropic porous medium and

derived the Darcy equation.
KOZENY-CARMAN THEORY

Since the permeability coefficient is structure dependent, efforts have
been made to relate K to the properties of the porous medium by assuming a
model of the structure. One of the more wide;y known theories of this type
is represented by the Kozeny-Carman equation (2), a semiempirical relation-
ship based upon the assumption that the medium is analogous to a system of
parallel capillary channels. The size of the channels is represented by the
hydraulic radius, m, dgfined as the ratio of cross-sectional area to wetted

perimeter. In a porous medium of porosity € (volumetric void fraction), the
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hydraulic radius is the ratio of € to the specific surface, §o (surface_area

per unit volume of the medium). The Kozeny-Carman equatiqn,is._:A
K = gmz/k = 83/(kSoz) (%)

with k referred to as the Kozeny factor. Originally k was termed the Kozeny
constant but later work has demonstrated its variability with medium proper-
ties. Carman (2) suggests that the Kozeny factor is the product of a pore
shape factor and the square of a tortuosity factor, with a;value betweep L
and 6 for most porous beds. The specific surface of the medium, §o?lis con-
verted to specific surface based on particle volume, §v Karea per unitvvolgge

of sblidﬁfraction), assuming point contact between particles, by,

s, = 8, (1), | )

Thus the permeability coefficient is
K = ¢*/[xs_*(1-€)], ' - (6)
and the Darcy equation is
U = - (dp/ax) €*/[uks (1-€)?]. - m

For porous mats with cdnstant porosity, specific surface, viscosity, and flow
rate, a higher value of the Kozeny factor means that a gréater pressure
gradient is required. Because of this, g_cah be used as a relative measure
of the resistance to flow through a porous sample and can serve as a basis for

compaering similar mats.

QOther approaches to flow through porous media exist, but the purpose

of this discussion is not to critically review the area; The monographs by
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Scheidegger (2), Davies (6), and Carman (7) cover the subject in considerably

more detail. Bliesner (8) also reviews the prior work.
FLOW THROUGH FIBER MATS

The permeation of fluids through mats of fibers is a special type of
flow through porous media. The general considerations presented above are
applicable to fibrous mats. In this section studies concerned primarily with
fiber assemblages, rather than any porous medium, will be discussed. A recent
review of fiber mat permeation is given by Han (2). The Darcy equation combined
with the Kozeny-Carmen equation, Equation (7), will be used as the basic rela-
tionship for flow through fiber mats. The primary concern will be the elucida-

tion of the Kozeny factor in terms of mat and fiber properties.
CIRCULAR FIBERS

Because of the availability of synthetic fibers of circular cross section
and because of the simpler analysis of flow past such fibers, the flow through

beds of circular fibers has received much attention.‘

Empirical Approaches

For beds of fibers used for air filters over the porosity range 0.70 to

0.994, Davies (10) demonstrated the dependence of Kozeny factor on bed porosity

and expressed his findings by the equation
K = ke (1-e) "V 2{1 + ky(1-)%], (8)
where k, and k, have values of 4.0 and 56, respectively.

Ingmanson and associates (;l) performed water permeability experiments

with mats of nylon and glass fibers of circular cross section oriented principally
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in the plane normal to flow. Their measurements yielded the values 3.5 and
57 for ki and ky, respectively. The difference between these values and those
of Davies probably results from fiber orientation effects, since Davies!

fibers are believed to have had more alignment parallel to flow.

Carroll (12) has presented a three-parameter correlation of Kozeny factor
and porosity Tor beds of cylindrical synthetic fibers which fits the data -
below a porosity of 0.80 better than does the more widely used Davies-

Ingmanson equation. The Carroll relationship is*
k = 5.0 + exp[l4(e - 0.80)]. (9)

One drawback to this equation is the failure to approach infinity as the
porosity goes to unity. Both the Davies-Ingmanson and Carroll equations are

plotted in Fig. 1.

Theoretical Approachés

The choice of a regular array of circular cylinders enables analytical
solutions to the hydrodynamic flow -equations to be obtained as one way to
study the flow past fiberlike ébjects. Emersleben (13) solved the Navier-
Stokes equation for the problem of flow parallel to a square array of infinitely
long parallel circular cylinders of equal radii. This analytical solution
yields a rigorous permeability equation based on fundamental principles which
can be compared with the Kozeny-Carman equation. Because of the mathematics
of the analysis, Emersleben's equation applies well above a porosity of 0.80,
but becomes poorer as the porosity is reduced. At a porosity of 0.90,

Emersleben obtained a Kozeny factor of 6.3, while at 0.80 his k was 3.5.

*The exponential operation is indicated by "exp": exp(x) = gﬁ.
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Davies- Ingmanson ({1)

- -==Carroll (12)
— - — Meyer (23)

O Experimental data 6f
Ingmanson, et al. (11)

I ISR U N S B
0.7 0.8 0.9 -

POROSITY

- Figure 1. Correlations of Kozeny Factors for Mats of .Circular

Synthetic Fibers
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A similar flow problem was considered by Sparrow and Loeffler (1L), with
laminar flow parallel to the cylinders arranged in square and equilateral tri-
angular arrays. The square array case is the same as that of Emersleben.  The
analytical solution by Sparrow and Loeffler was obtained using series expres-
sions, and has the advantage of being applicable at porosities below 0.80. At

E = 0.50, they found a Kozeny factor of 3.5 for the equilateral array and 2.9

for the square array.

A comparison of these two approaches for regular arrays is given by
Happel and Brenner (15), while Carman (7) discusses Emersleben's analysis in

detail.

Hasimoto (16) solved the two-dimensional problem of flow perpehdicular
to the longitudinal axes of an infinite square array of circular cylinders by
obtaining periodic fundamental solutions of the Stokes eguations of motion
with'thé éid'df Foﬁrier-series. Converting his drag force expression to

Kozenj’factof'yiélds
k = e2/{(1-)[} 1nln/1-€) - 1.3105 + (1-€) + (1-€)%/n2]}.  (10)

Values from this analysis are compared in Table II with another approach.
Results of thié method are valid only for square arrays at porosities above

0.80.

A real fiber mat is an irregular assemblage of fibers. Even with some
preferred fiber orientatién, the actual structure is too complex to be
easily deséribed mathematically. Nevertheless, analytical applications of the
basic hydrodynamic principles to irregular fiber assemblages have been com-
pleted. One method by which this is done is the cell model technique. In

this method, the fiber bed is considered to be composed of a great number of
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individual cells, each consisting of a fiber segment surrounded by a fluid
envelope bounded by a virtual fluid surface. For the analysis, an average
cell is assumed with the quantity of fluid in the cell sufficient to make
the cell porosity equal the bed porosity. Boundary conditions are specified
on the solid surface and the virtual fluid surface. The fluid boundary has
a shape similar to that of the particle in the cell, for example, a cylinder
concentric with the solid cylindrical fiber. The cell model technique has
been successfully applied to beds of spheres (17-19) as well as to assemblages

of cylinders (18,20).

Two separate but similar analyses of flow through arrays of circular
cylinders using the cell model method were published in 1959 by Kuwabara (18)
end Happel (20). The difference between the two is in the choice of boundary

conditions.

In the Happel analysis the cell model consisted of two concentric cylin-

ders, the inner one representing the solid surface and the outer one the virtual

fluid surface. 3Boundary conditions were specified for the solid cylinder
moving within the fluid,.with the no-slip condition identified on the solid
surface and the conditions of zero normal velocity and zero shear stress
assumed on the fluid boundary. Two flow problems were treated: flow parallel

to the cylinder and flow perpendicular to the cylinder. In the parallel case,

Happel applied the complete Navier-Stokes equation, obtaining as the differential

equation to be solved
(1/r) a(r dv/ar)/dr = (1/u) dp/dx, (11)

vhere r 1s the radius and v the velocity in the x-direction, using the

conditions
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a (solid cylinder) l

v=0 onr

N,

4 (12)
b (virtual cylinder in fluid{J.

dv/dr 0 onr

The solution for v was
v = - (1/bu)(ap/ax)[(a® - r?) + 2b% 1n(r/a)]. (13)

By integrating v over the entire annular region between the cylinders, the
flow rate Q is obtained. From the Darcy equation, the permeability coefficient

was found to be
K = [La?b? - a* - 3b* + 4p* 1n(b/a)]/(8b2). (1k4)

Applying the Kozeny-Carman theory, Equation (4), with the hydraulic radius,

m, defined as

m = (b? - a%)/(2a), : - (15)

.. \
the Kozény factor for parallel flow, E(p), was obtained, as follows:

k(p) = 2e3/{(1-e)[2 1n(1/1-€) - 3 + 4(1-€) - (1-€)?]}. (16)

Table»I_compares values for the parallel Kozeny factors from the analyses of
Happel, Sparrow and Loeffler, and Emersleben. For high porosities, the Happel
result is‘equivalent to the findings of Sparrow and Loeffler for regular
arrays, which demonstrates the success of the cell model approach in describing

parallel flow past arrays of circular cylinders.
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TABLE I

COMPARISON OF KOZENY FACTORS FOR PARALLEL FLOW PAST
REGULAR ARRAYS OF CIRCULAR CYLINDERS

Porosity
Analysis 0.90 0.80 0.50

Square array:

Emersleben . 6.3 3.5 -

Sparrow and Loeffler 7.3 5.0 2.9

Happel 7.3 5.2 3.7
Equilateral triangular array:

Sparrow and Loeffler 7.3 5.2 3.5

Happel 7.3 5.2 3.7

The analysis by Happel for the perpendicular flow case was based on the
creeping flow equations, obtained by omitting the inertia terms from the
Navier-Stokes equation. Using cylindrical coordinates and introducing the

stream function, Y, defined by

v, = (1/r) 3¢/36 and Vg = - N/ar (17)

the creeping motion equations in two dimensions reduce to the biharmonic
equation

Vi =0 (18)

with the boundary conditions as follows:

'\
V.= U cos 6
onr = a (no-slip)
ve = - U sin 6 (19)
v.=0onr=5% (zero normal velocity)
Bve/ar +f(1/r)8vr/36 - ve/r =0onr =Db (zero shear stress) ‘) .

These are stated for the cylinder moving in the fluid. A solution for this is



s,
¥ = sin 6[Ccr®/8 + Dr(ln r -~§)/2 + Er + F/r] (20)

in which the factors C, D, E, and F are determined from the boundary condi-

tions. The drag on the solid cylinder is
F=27uD (21)

and D was found to be

D = - 2U/[1n(b/a) + a*/(a" + b*) - fl. (22)
If the cylinder is stationary, the drag on a cell is related to the pressure
drop by

F/(mb2) = dp/dx. (23)

Equation (23) may be compared with the Darcy equation to determine the permea-—
bility coefficient K:

K= (b2/)[1n(b/a) - 2(b* - a*)/(b" + a*)]. (2k)
Converting to the Kozeny factor for transverse flow, g(ﬁ), with v = (l-é),
k() = 20-9)°/00- 1n v = (1v2)/(2v2)]), (25)

The effect of porosity oh E(ﬁ) and E(t) from Happel's analysis is demon-

strated in Fig. 2.

VThe analysis by Kuwabara is like that of Happel except that zero vérticity
was assumed on the virtual fluid surface inétead of %ero shear stress as a
boundary condition. Kuwabara only considered the perpendicular flow problem,
but in the parallel flow case both the zero vorticity and the zero shear stress
. conditions yield mathematically identical conditions. For perpendiculér flow,

Kuwabara's solution was
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Kuwabara
Perpendicular’

Happel
Perpendicular

— ~ Davies-ingmanson
Correlation
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Figure 2. Circular Cell Model Kozeny Factors
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¥ =(A/r +Br + Cr In r + Dr®) sin 6. (26)
The resulting Kozeny factor for the Kuwabara analysis is

k(

6) = bed3/{(1-e)[2 1n(1/1-€) - 3 + 4(1-e) - (1-€)2]}. (27)

This relationship is plotted in Fig. 2 along with the Happel results. The re-
sults are similar, but the Kuwabara equation predicts higher wvalues for the
Kozeny factor. Surprisingly, the Kuwabara transverse flow Kozeny factor is

exactly twice Happel's parallel flow Kozeny factor.

The flow patterns obtained in the Happel and Kuwabara anélyses are
similar. Streamlines (curves of constant stream function) for perpendicular
flow through the cell at a porosity of 0.75 are demonstrated.in Fig. 3. Near
the solid surface the streamlines are very close. As the outer surface is ap-

proached the two begin to differ, but not by much.

The question of which condition, zero vorticity or zero shear stress, is
more valid has not been clearly éettled. Happel and Brenner suggest that the
Happel model is more physically reasonable since the Kuwabara model cell ex-
changes energy with neighboring cells, whereas the zero shea% stress model
does not. For flow past spheres, the model of Happel agrees better with
experimental data; but for assemblages of c¢ylinders, the Kuwabare approach

fits the observed behavior better (21).

Kirsch and Fuchs (21) investigated the pressure drop in models of fibrous
- filters composed of parallel rows of circular cylinders oriented perpendicular
to the flow direction and compared the experimental data to the models of
Kuwabara and Happel. A conclusion from this study was that the Kuwabara
analysis fits the data well down to a porosity near 0.73, while the Happel

analysis underestimates the pressure drop over the porosity range considered.
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Kuwabara

Figure 3. Comparison of Streamlines for Perpendicular Flow in
Circular Cell from Analyses of Kuwabara and
Happel at Porosity 0.75
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In another study of perpendicular flow past a system of paréllel cylin-
ders, Kirsch and Fuchs (22) experimentally observed the flow patterns around
the cylinders and compéréd the'rééults to the streamlines preaicted by the
Happel énd Kuwabara aﬁalysgs. Again, the zerb‘vorticify moael agfeed with

the observations better than the zero shear stress model did.

The cell model analysés for perpendicular flow aéreg wéll with.the re-
sults obtained by Hasimoto for perpendicuiar flow through & square array‘of
circular cylinders, although the agreément worsens below a porosity of 0.80.
Table II summarizes a few Kozeny factors from these aﬁproaches. Kuwabaré's
zero vorticity model is closer to the Hasimoto values than is Happel's zero
shear stress model for porosities above 0.80, suggesting that the choice of
zero vorticity as an outer boundary condifion may be more acceptable for

arrays of circular cylinders, at least at higher porosities.

TR gt o . . TABLE iI.

KOZENY FACTORS FOR PERPENDICULAR FLOW THROUGH
ARRAYS OF CIRCULAR CYLINDERS

e Square Array , Cell Models
Porosity Hasimoto Kuwabara 'Happel
. 0.99 61.6 62,1 53.8
0.90 ' k.2 . 14,6 .. 11.0
. 0.80 9.46 .. 10.2 T.46
0.70 ‘ 6.61 - 8.80 6.19

A comparison of the curves in Fig. l.and 2 shoys that the empirical
correlations of Davies—Ingmapson and Carroll fall between the parallel and
perpendicular Kozeny_factor curves from the cell médel analyses. This ob-
servation supports the validity of the'cell concept as applied to‘fiber,mats.
Meyer (ggj suggested that the two directionai valueé be mixed by employing a

weighting function, w(e), in the following manner:




-20=
/K = w(e)/ky + (17w wle)l/ky. ' (28)

A real fiber mat has fiber segments oriented at various angles to the flow
direction. The flow velocity and draé vectors can be resolved in£§ components
both parallel and perpendicular.to the fiber segment, thefeby providing a basis
for the weighting method. Combining the directional values in this manner
yields a porosity-dependent correlation for the Kozeny factor based upon the

analytical results. The weighting factor chosen by Meyer was
w(g) = 1.6 (¢ - 0.5). (29)

The Kozeny factor curve using this approach fits the éxperimental data as
well as the Davies-Ingmanson correlation, as seen in Fig. 1.  The wéightihg
technique demonstrates that rigorous analysis of idealized cases'can be useful

and complementary to empirical observations.

In addition to the application of the cell model approach to the permea-
bility of fiber mats, it has been employed by Fuchs and Stechkina (24) as the
basis for a theory of aerosol filtration using fibrous filters and by Pich

(gg) who extended the theory to include slip flow at the fiber surface.

The cell method used by Happel and Kuwabara has attracted the attention
of investigators recently who are interested in extending the results beyond
the creeping flow region to higher Reynolds numbers. LeClair and Hamielec
(26) used the cell model concepts of Happel and Kuwabara for flow through
assemblages of circular cylinders, solving the Navier-Stokes'equation by
finite difference methods to tover the ranges of Réeynolds number from 0.1
to 500 and of porosity from 0.4 to 1.0. El-Kaissy and Homsy (27) performed
a similar analysis in extending the cell model results to intermediate

particle Reynolds numbers by a regular perturbation technique. -
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Approaches other than treating regular arrays of cylinders or looking

at the flow in a model cell have been presented by various researchers.

Iberall (28) utilized a drag theory'approach in con51der1ng the'permea-~
blllty of glass wool and s1m11ar hléhly porous medla.' The cell model method
is one form of a drag theory, but Iberall's analy51s preceded the cell
analyses By assuming the porous medium to con31st of randomly dlstrlbuted
uniform 01rcular cyllnders, Iberall proposed that the permeablllty is related
to the drag force on 1nd1v1dual elements. With the fibers orlented randomly,
the pressure drops forleach of the three orthogonal d1rectlons past an element
were merely added together to glve the orerall pressure drop. For flow |
parallel to a fiher element, the’equation for drag force'derived'by )
Emerslebennwas used. - For perpendlcular flow, Lamb's solutlon‘of Oseen's

equatlons (_2) was used. The result of Iberall for a random assemblage of

cyllnders in terms of the Kozeny factorzis

= (1/3)e*(1-€)7'(2 - 1n Re)/(4 - 1nRe) = = . (30)

N

and is appllcable:for tlow up‘to a particle Reynolds nnmber (Re) of ahont 1.0.
When Iberall studled experlmental data, he found that the above result was
valid if different constants were used. In his paper, Iberall compares the
hydraulic radius theories, such as the Kozeny—Carman‘analysis, with the drag
theories, concluding that neither is goed for the entlre porosity range of
interest. The hydraulic radius method works best at lower porosities, while
the drag theory is best at higher porosities where-interference.from other

particles is minimized.

A recent analysis by Splelman and Goren (30) applles a model dlfferent

from the cell approaches to flow through fibrous media. The technlque is the
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one proposed by Brinkman (él) originally ' for: swarms of spheres.. The model
assumes that a particle within the porous medium is subjected to a damping
force due to the effect of surrounding objects in addition to the viscous
and pressufe forces, The damping force is 1inearly'proportional to velocity
and is treated analytically by adding the Darcy term to the creeping motion
equation. The Brinkﬁan model becomes invalid at low porosities because a
simple damping term cannot then adequately account for the numefoﬁs inter-
actions among the particles. Neither does the model héld for &efy high
porosities where the behavior can be treated as flow:past isolated cylinders.

Spielman and Goren considered four orientation distributions expected in

fiber mats, as follows: all fibers in planes perpendicular to the flow but

random in those planes; all fibers parallel to flow; all fibers in planes
parallel to flow but random in those planes; and, fibers randomly oriented;

For the first,gase above, the predicted pressure drop was compared to the
estimates from the cell model analyses of Happel and Kuwabara for.perpendicﬁlar
flow, and the empirical analysis of Davies. For porosities above 0.9, the
present model predicts pressure drops below the values from both the cell
models and is close to Daviés' results. This model estimates higher resis-
tances than the Happel and Kuwabara models below porosities of 0.87 and 0.79,
respectively. The Spielman and Goren model shows a stronger depéndence on

porosity than any of the other three studies.

A different approach to flow through fibrous beds was employed by Kyan,
Wasan, and Kintner (32), who developed a pore model to account for the high
pressure drop despite high porosities. They base their model on two assump-
tions which explain the higher than expected pressure drops. First, they
propose that a portion of the void space within the medium is occupied by

stagnant fluid so that the flow occurs in only a fraction of the void volume.
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Second, they suggest that the deflection of individual fibers within the mat
as a result of the flow absorbs energy, thereby increasing the actual pressure
drop. The resulting model is complicated and involves several parameters de-

pendent on mat and fiber properties.

Another pore model was used by Clarenburg and Piekaar (33) in developing
a theory for the pressu%e drop aéross fibrous filtersf Their model is based
on geometrical considerations. An equation for the pressure drop is the
result of the analysis, but it i§ an involved function of filter, fiber; and

flow chafacteristics, and its applicability to real fiber mats is questionable.
NONCIRCULAR FIBERS

Many natural fibers and some commercially available synthetic fibers have
cross—-sectional shapes that deviate considerably from a’circular shape. Fibers
such as wood and cotton possess numerous cross-sectional shapes because of the

Jhollow center, or lumen, which can collgpse upder pressure. Since the permea-—
bility o% wood fiber mats is of importance to the paper industry, the question
of what effect fiber shape has on the flow resistance througﬁ a'fiber mat has
arisen. The application of the results of studies with circulaf fibers to the
permeationvof mafs bf ﬁoncircular fibers is of questionable value peﬁding
further analysis. Consequently, some iﬁvestigators have studied the permea-

bility of fiber mats made from noncircular fibers.

Empirical Approaches.

Several experimental'programs have been conducted in which the permea-
bility of wood fiber mats was the principal concern. For a discussion of
these, refer to the reviews by Meyer (34) and Han and coworkers (35). With

wood fibers, the permeability measurements'are complicated not only because
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of their irregular shape but alsoc because they swell in water dependent upon the
compressive stress. This makes estimates of specific volume and specific sur-

face difficult to obtain.

One study (36) of the cross-sectional shape of wet wood fibers which had
been freeze-dried so that the lumens would not collapse indicated that the
ratios of largest to smallest diameters were generally below 3.5 to 1. After

drying, the lumen collapses and the ratio can increase to near 10 to 1.

An investigation of the factors affecting air permeation of plugs of
textile fibers was reported by Lord (37). Using a number of different natural
fibers, the Kozeny factors were determined experimentally. Lord's findings
confirm the strong dependence of Kozeny factor on porosity. The possibility
of an effect of fiber cross-sectional shape on the Kozeny factor was suggested,

but no definitive conclusion was obtained.

Bliesner (§) investigated the permeability of thick mats of wood pulp
fibers. In interpreting his data, he proposed that the collapse of the
fibers under pressure partially explained his findings. Since he was using
the Kozeny-Carman analysis, he became concerned about the effect of fiber shape
on the value of the Kozeny factor, k. In an attempt to determine if k were
;ndeed changing as the fibers changed shape, Bliesner performed water permea-
bility measurements with beds of synthetic fibers of three different cross-
sectional shapes. One set of fibers was l5-denier nylon with & circular cross
section (axis ratio = ratio of minor to mejor axes of cross section = l.b).
Another set was prepared from the circular fibers by softening in a hot water
bath and then passing the monofilament strands through the steel rolls of a

rolling mill, a procedure which yielded an approximately elliptic cross section
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of axis ratio 0.34L4. The third set was lO-denier orlon with a flattened, "dog-
bone" cross section of axis ratio 0.242. From the flow rate and pressure drop
data, the permeagility coefficient, K, was computed; the experimental Kozeny
factor was then found by using the Kozeny<Carmen equation. The results, whieh
are plotted in Fig; A, indicate no obvious conclusion about the effect of fiver
shape on Kozeny_féctor. Bliesner reasoned that the flatter noncircular fibers
could overlap more easily than round ones, thereby excluding more surface ares
from the permeating-fldid as a result of interfiber contact. To account for
this, he corrected his data and.found a significant dependence on fiber shapés
as seen from the cérrected curves in Fig. L. His contact area analysis,

bésed on the fiber network model of Onogi and Saséguri (;@); produced estimates
of interfiber contact for fhe orlon fiber of axis ratio 0.242 at 0.70 porosity
of 23% of the total surface aréa.. Since Bliesner was. not primarily interested

in this question, he did not pursue the matﬁer further.

As .a result of the'findipgs of Bliesner, Labrecqué (§2) proceeded to in-
vestigate further the effec£ §f fiber shape .on mat permeability. A syhthetic
fiber manufacturer produced four experimental batches of nylon 6 monofilaments
of approximately elliptic cross sections. After drawing and cutting the fibers,
the axis ratios were 1.00, 0.379, 0.2&3, and 0.213. Labfecque encountered some
experimental problems in his early efforts to form mats at room temperature
because the fibers tended to curl and prevent good mat formation. To overcome
this problem, he resorted to a procedure in which he first dispersed the .
fibers in absolute ethanol at near -50°C, then fqrmed_the‘mat.f;om the cold,
dilute fiber slurrj. After mat formatiop, the teméerature,was increased to
about 5°C, thg ethanol was displaced with distilled water, and the apparatus

was then warmed to room temperature and the permeability measurements were begun.
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The Kozeny factors calculated from these experimental tests have been

analyzed by a curvilinear regression analysis, as summarized in Appendix I}

the regression cur&es for Labrecqueus experimental date are plotted in Fig. 5.
At a porosity below 0.70, the circular fiber values deviate significantly from
similar érevious neasurements by others, as seen by comparison with the Carfoll
correlation. The elliptic fiber data alsq‘showx a trend similar to the unex-
pected circular fiber values. Because of the lack of agreement for the round
fibers at lower porositiés, the data obtaiﬁed by Labrecqué are of questionable
validity. The corrgction for interfiber contact was also used by Labrecque,
modifying the Bliesner approach with some refinements and corrections of errors.
The area excluded from the fluid was estimated to be about 9% for the fiber of
axis ratio d.2h3 at porosity 0.70, as compared to the Bliesner estimate of 23%
under similar conditions. Labrecque also estimated the surface area available

to the fluid by a light scattering procedure.

Theoretical Approaches

Very few theoretical analyses have been reported in which noncircular
fibers were the object of consideration. The choice of an elliptic cylinder
as a model of a noncircular fiber can be treated mathematically without ex-
ces;ive difficulties, and by changing the axis ratio of the elliptic cross
section, the fiber cross-sectional shape can be varied from very nearly round

to almost flat.

Because of.the success of the cell models of Happel and Kuwabara in de-
scribing the flow through assemblages of circular cylinders, and more
practically through fiber mats, Meyer (23) began to extend the cell model
analysis to the case of elliptic cylinders. The problem of parallel flow
along the cylinder was solved by an approximate method. The perpendicular flow

problem for an elliptic cylinder cell model was also set up.
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Recently Masliyah and Epstein (LO-L2) published the results of an analysis
of perpendicular flow past arrays of elliptic cylinders based on the cell
models. They put the complete steady-state Navier-Stokes equation in a finite
difference férm and solved it using a relaxationlscheme at a few combinations
of axis ratio, porosity, and Reynolds number. ‘Results for creeping flow were
obtained by choosing g small Reynolds number. fhey covered the porosity fange
0.4 to 1.0 for axis ratios 1.0, 0.9, 0.5, and 0.2, and considered flow along
both the minor and major cross-sectional axes. As expected, the resistance
to flow along the major axis is much lower than that along the minor axis.
Results‘in terms of Kozeny factor are shown in Fig. 6. The shape of the cylin-~
der;seemévto have a significant effect on Kozeny factor. ©Some limitations of
this’an;lyéis ére that the parallel case was not.considered and that the calcu~
lation of.queny factor at a particular combination of porosity and axis ratio

requires a lengthy computer run.

An analysis for perpendicular flow at small Reynolds numbers through a
regular square array ofvelliptic cylinders was'developedlby Kuwabara (E}) by
solving the two-dimensional equation of Oseen. The creeping flow values can be
approximated by choosing a small Reynolds number (e.g., 0.08). For the limiting
case of a circular cylinder, Kuwabara's resulting Kozeny factors agree fairly
well with those of Hasimoto above a porosity of near 0.93. For example, at a
porosity of 0.95, the Kozeny factors 23.6 and 21.2 were obfained, respectively,
by Kuwabara and Hasimoto,.while the values in the same order at 0.99 porosity

were 63,1 and 61.6.
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STATEMENT OF THE PROBLEM

The question of what effect the cross-sectional shape of a fiber has on
the resistance to fluid permeation through fiber mats has not jet been satis-
factorily answered, despite two experimental approaches to the problem and
one theoretical analysis as reviewed in the preceding section. The experimental
work of Bliesner (8) indicated the existence of a relationship between Kozeny
factor, a measure of relative resistance, and fiber cross-sectional shape, but
the study was limited in scope. Also, it suggested the complicating consider-
ation of correcting the surface area because of interfiber contact. Labrecque
(§2) attempted to clarify the question by further experimental.effort, but .
 encountered some difficulties which made his data questionable. The only
theoretical study, that of Epstein and Masliyah (40) concerning assemblages
of elliptic cylindérs, utilized én iﬁvolved numerical solution procedure éa
that Koéeny faétors are avéilable at.only a few elliptic axis ratios and -

porosifies. Consequently these results are not widely applicable to fiber

mats where the fibers can possess any axis ratio between 1 and 0.1.

The primary objective of this -thesis program is to clarify the effect
of fiber cross-sectiocnal shape on the permeability of fiber mats. To do this,
a cell model analysis for creeping flow through assemblages of elliptic
cylinders will be developed. This is to be similar to the cell model analyses

for circular cylinders. completed by Happel (20) and Kuwabara (18).

Upon completion of‘the cell gédei analysis, the theoretical results will
be applied to the perﬁeation of real fiber mats and compared to experimehtal
data in order to ascertain the effect of fiber'shape on Kozeny factor. The
surface area correction fﬁr interfiber contact will be reconsidered to deter—‘

mine if it is wvalid and significant.
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THEORETICAL ANALYSIS OF FLOW THROUGH
ASSEMBLAGES OF ELLIPTIC CYLINDERS

CELL MODEL OF FLOW

The steady, isothermal, creeping flow of fluids relative to assemblages
of elliptic cylinders ié analyzed by employing a cell model technique similar
to that used by both Happel (20) and Kuwabara (18) in their analyses of flow
past arrays of circular cylinders. The cell model approach considers the
cluster of cylinders to be a collection of individual cells each composed
of a solid cylinder segment surrounded by a fluid envelope. The cell which
is treated analytically is an "average" of all the individual cells within

the array of particles.

Two confocal ellipses serve as the typical cell, the inner one repre-
senting the surface of the solid cylinder segment and the outer one a virtual
fluid surface. The position of the outer, virtgal surface is such that the
ratio of fluid volume to cell volume equals the porosity of the assemblage of
cylinders. On the solid surface, the no-slip condition is assumed, while on
the virtual surface the condition of zero normal velocity and one other condi-
tion are assumed. The other condition can be that of zero vorticity, as used
by Kuwabara, or that of zero shear stress, as used by Happel. Elliptic cylin-
drical coordinates (&, n, z) are used to simplify the mathematical description
of boundaries and bhoundary conditions. A discussion of these coordinates and
their relation to Cartesian coordinates is given in Appendix III. The surfaces
of constant & are conchal ellipses, while those of constant n are confocal
hyperbolas. The cell model is illustrated in Fig. 7. The two ellipses have a
focal length of ¢. The inner ellipse, the sﬁlid cylinder, has major and minor

half-axes of ao and bo’ respectively, and is described by & = EO. The virtual
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surface has major and minor half-axes of a; and b, respectively, and £E=E&1.
The axis ratios Bo and £, are defined as the ratios of minor to major half-

axes of the solid and virtual ellipses, respectively.

Three cases of flow relative to the cell are of interest: flow parallel
to the central axis of.the cylinder; flow perpendicular to the central axis
and parallel to the minor cross—;ectional axis; and, flow perpendicular to the
central axis and parallel to the major cross-sectional axis. ZEach of these
three flow problems is considered individually in the following pages, al-

though the latter two cases are very similar in approach and solution method.

A review of the equations of state for Newtonian fluids in creeping flow
in generalized orthogonal curvilinear coordinates is presented in Appendix II.
Also listed are some transformations relating the curvilinear and Cartesian

coordinate systems.
FLOW PARALLEL TO ELLIPTIC CYLINDER

The analysis 0f steady creeping flow parallel to the central axis of the
elliptic cylinder (Erdirection) in the cell requires that only one pressure

gradient, dg/dg, and one velocity component, V.o be accounted for. The

equation of continuity, written in full in Equation (205), reduces to
El¢ vz/hz)/az = 0. (31)

The equation of motion has only one component, given by Equation (211),

which reduces for this case to
- dp/dz + quvz = 0. (32)

The Laplacian operator, Equation (207), has become
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V% = n?(0%/98% + 3%/n?) . o (33)

with the third term dropped because of the continuity equation. In a re-

arranged form, Equation (32) becomes
3%v /8E? +:3%v_/an%.=(dp/dz)(c®/u)(sinh’E + sin®n) = £(E,n). L (34)

This is the equation to Be solved to complete the analysis of flow parallél

to the elliptic cylinder in the cell, using the following boundary conditions:

v,=0 on E=E, (35)

av, /9% £1. T (36)

1
(@)

on £

The first condition is simply the no-siip requirement on the solid surface.
The second condition, on the virtual fluid surface, satisfies both Happel's
zero shear stress requirement and Kuwabara's zero vorticity condition.
Equation (34) is a Poisson equation, or an inhomoééneous Laplace equation,

and is not separable.
EXACT SOLUTION

An exact solution to the above boundary value problem using a Green's
. function method was outlined by Nelson (44). Consider the Poisson equation,

Equation (34), to be of the form

226/3E2 + %9/3n? = Ao, " (37)
where ¢ =W+ V= W(E)-V(n). (38)
The variables can be separated by substituting.for ¢, yieiding

(1/W) a2w/dg? + (1/v) a2v/dn? = A (39)
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The symmetry of flow about the cylinder requires that V(n) = v(-n) = V(m-n),

leading to the choice
V(n) = cos jn, J = even integer. (ko)

The boundary conditions, Equations (35) and (36), provide that Eﬂgo) =0
and Hf(E;) = 0, where the prime indicates differentiation with respect to £.
The function

W= sin[(kn/e)(g-ao)/d], k = odd integer, (L1)

satisfies these conditions, with

§ =& - Eo (L2)
The eigenvalues are thus
A= - (kn/28)% - 32 (43)
and the eigenfunctions are
by = (1/Ny) cos yn sinl(km/28)(E-E )], (bL)
where HQE is a normalization factor, defined as
N, = (/2)/2 (45)

except for j = O, where the factor is

Ny, = (m8)1/2, (46)

A

The Green's function, G, is

G = § E [0, (E5m) 0, (E7,n)1/A (47)

or, substituting for the eigenfunctions and eigenvalues,
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cos -Jn sin[(kﬂ/QGJ(E—EO)] cos jn' sin[(kﬂ/EG)(Ei-ioll

o=-11 (48)
Jk Njkz[(kﬂ/26)2 + 521 .
The solution, v, is
T 81 T
v (E.n) = jﬂ» Gle.niEr ) 2(E,n) a8 an'. (ko)
0 EO |
Define
Y = km/28 (50)
and substitute for G and f to obtain
v, = = (c*/u)(ap/dz) [ ] Ay cos jnlsinly(E-£)1H/(N,, *(v* + 3], (51)
ae . LJ k- S 5 : . T :
where éiE is the integral
| rem gy
A, = sin[y(E'-E )] cos gn' (sinh®&' + sin®n’) a&' an'. (52)

0

Evaluation of the integrals and rearrangement produces the following expression

for the velocity distribution:

v,(E,n) = - (c?/u)(ap/az) Xy (53)
X, = ) sin[y(E-E )] R /[y2(y? + 4)8] . . (54)
B4 o’! Tk
odd
RkA= 2 (—l)(k-l)/glsinh 2&; + Yy cosh 280 -y COSIZn. (55)

APPROXIMATE SOLUTION

An approximate solution to the boundary value problem for parallel flow

has also been completed. This solution, due to Meyer (gg), expresses the
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velocity distribution as a third degree polynomial. The approximate solution

is outlined below.

In addition to the boundary conditions as stated in Equations (35) and (36),

an exact solution would also satisfy the conditions

avz/an =0
' on & =§&, (56)
32v_/an® =0 :
Z g
producing from Equation (3k4),
3%v_/BE? = £(E_,n) on E=E. | (57)

The integration of Equation (34) over & from Eo to £, together with the second

boundary condition yields the following:

€1 €1 _
‘¥ £(g,n) 4 - j (3%v,/on*) a€ + g(,y(n) = 0, (58)
£, - £, |
vhere the function g ,(n) is

Since both Eo and £; are independent of n, Equation (58) becomes the ordinary

differential equation

a2 (51 (51
-_ .‘} Vz ag - g(z)(n) - £(g,n) a& = 0, (60)
an® JE, .)EO

which is a fourth condition in addition to those of Equations (35), (36), and

(57). The velocity, vz, is expressed as a third degree polynomial,

v, = a1(E-5)/8 + az(8-5 )?/8% + as(8E )°/8%, “(61)
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where the factors a;, 02, and a3 are functions of n determined from the above

conditions. They are found to be

a; = 6 g(z)(n) ' ' ' (62)
0z = 82 £(£ ,n)/2 | - (63)
a3 = - [8 g(z)(n) + &2 £(g,,n)1/3. (64)

The velocity distribution is thus

v, = 2(g ,m(E€,)2/2 ~ (£€)%/(36)]
+ g,y (MIE€)) - (&€ )%/(36%)]. (65)

The function g(z)(n) is unknown but can be determined by introducing Equation
(65) into Equation (60) and seeking a solution that is periodic with T because

of the symmetry in the flow model. Upon defining

1/n% = 5 §2/12 S o (66)
By = (c?/2p)(ap/az)(8%/3 + 68) - { (67)
B, = (c?/bu)(dp/dz)(sinh 2£, - sinh 2{0) (68)

o

the differential equation for g(z)(n) becomes
(1/n%) 8(,)" = 8(z) * Bicos 21 - B2 = 0, (69)

where the prime indicates differentiation wifh respect to n. The desired

particular solution is
8(,)(N) = - By + Bin?(cos 2n)/(n® + k). - (70)
The approximate solution for the velocity distribution is as follows:

v, = - (c?/u)(dp/dz) Xy S (71)
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X, = (sinb®¢ + sin®n)[- (€-£)%/2 + (£-£,)%/(36)]
+ [(g-€,) - (-€,)°/(36?)1[(sinh 261 - sinh 2€ )/ (72)
- (8% + 38)(cos 2n)/(10 8% + 6)].

DETERMINATION OF KOZENY FACTOR

The Kozeny factor, E(z)’ for parallel flow through the assemblage of
elliptic cylinders is determined from the velocity distribution by using the

following two independent equations for the flow rate, Q:

Q = vm(aiby - a b ) = (U/e)m(arby - a b ), (73)
2T &1
s L v, (&m) 350 ag an, (1)
0 2
o :

The first of these states that the flow rate equals the product of the mean
velocity, fﬁ and the cross-sectional area of flow. The second integrates the
local velocity over the ranges of & and n, using the Jacobian

5E 5 = 3n 3E| = © (sinh®g + sin®n) (75)

°

because of integration over curvilinear coordinates. By equating the two
expressions for the flow rate, an equation for the pressure drop, dp/dz, can

be obtained, which is inserted in the Kozeny-Carman equation

k = - (em?/uU) ap/dz (76)
to determine the Kozeny factor. The hydraulic radius, m, is defined as

m = ﬁ(albl - aobo)/C,‘, (77)

where C is the circumference of the solid ellipse, which is approximated by




C = n.aouH,~ . : : (78)
H~(3+108 +3 602)/[h(1 +8,)1. (79)

The flow rate in Equation (Tl4) is determined by using the velocity distribu-

‘tion, vz, and integrating, resulting in the following:

Q = - me*(dp/dz)P*/y, (80)

where P¥ is dependent on the solution used. For the exact solution, P¥ equals

= 1 oy (1) 52 4 (yr2) (1e8 20/ (18 212

odd :
+ (2l /23 Iy2 (v2+4)2],

whiley for the approximate solution, Ef‘is

P¥ = B 2[8/3 - 1/48 + (1-e)(2/D - 1/8,)/8831/[(1-8 %)% (1-€)?]
+ B (148 *)[- 6%/12 + 1/h - (1-e)(1/D - 1/8,)/881/[(1-8_*)*(1-¢)]
+ 83/(12 + 208%), (82)
where

D= (1-e)[(1 + 1/a02)1/2 - 1/a_]. (83)

Equation (231) defines a .  Using the above equations and some of the relation-

ships in Appendix IIT, the equation for the Kozeny factor becomes
- 3.3 R 2)2y2(7_c)3
k(,) = B 'e7/[PH(1-B 2)%H* (1-2)°]. (84)

The values for the Kozeny factor for parallel flow obtained in this analysis

for both solution methods will be presented in a later section.
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FLOW PERPENDICULAR TO ELLIPTIC CYLINDER

The steady creeping flow past an elliptic cylinder of a cell in an array
and perpendicular to the cylinder's central axis is treated as a two-dimen-

sional symmetric flow problem, with the velocity, EJ as follows:

v=v.i +vi. (85)

g€ nn

This flow is described by the equation of continuity, which reduces from

Equation (205) to
Vv = n*{3(v/n)/og + 3(v /m)/an] = o (86)

and by the & and n components of the equation of motion, given in full by

Equations (209) and (210). Upon introducing the stream function, y, defined by

v

E/h = 3P/dn vn/h = — JY/3E (87)

the components of the equation of motion become

3p _ 52 3y ). 82 sp\| V2h oy . 3n% 3% 3h 3% ( ;oq)
5= h;;'Z(hﬁ)J';;?(hﬁ)j]' B on "B e % agan | (00

3 _ 52 aw \, 32 [ 3p\|, ¥2n 3y  8n% 3%y . dn® 3%y
Eﬁ‘“‘h_z<hi>+‘7haa "R OB TR 4.t emoagen( (O9)
(3 on an

where the Laplacian operator is as defined in Equation (33). By cross-

[
differentiation of the two component equations, the pressure is eliminated.
The result can be expressed simply by the linear, fourth-order, biharmonic

equation

Vz(h%yzw) = 0, (90)

where V% = 32/382 + 3%/9n2. (91)
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For statement Qf the boundary conditions? the perpendiculgr flow
analysis is-aivided into two problgms, ene for flow along the minor Cross-— .
sectional axis and one along the major crgss-sectional‘axis. The solutions
for these two problems follow a method outlined by Meyer (L45), and are

considered separately.
ALONG MINOR CROSS~SECTIONAL AXIS

Aésumé the solid cylinder is movihg with veloéity U in the direction
of its minor axis (y-direction) while the surrounding fluid is atlrest.

The no-slip condition on the solid surface provides that

L]

Transforming these to elliptic cylindrical coordinates by using Equation

(216), these conditions become

'”vg = nhUc cosh g€ sin n,- ’vn = hUc sinh £ cos n on & =§

or, in terms of the stream function,

(92)

oY

1
wmy
3

oY/ an
oY/ 3¢

Uc cosh § sin n on

- Uec sinh & cos n on £ =¢. (93)

On the virtual surface, it is assumed that the normal velocity,'zg, Vanishes,

Y
"

vg = h(3y/3n) = 0 on €1

or, since h is nonzero,

£:. (9h)

Y/on = 0 on §
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The fourth boundary condition can either be the zero vorticity condition

of Kuwabara or the zero shear stress condition of Happel. Only the z-

direction component of the wvorticity, w, is nonzero; its magnitude‘is
w = - h?V3y.
If the vorticity is zero on the virtual surface, the equation

V3 = 0 on §=£&

(95)

(96)

is the fourth boundary condition. The zero shear stress condition requires

that the equation

32y/3E2 - 2(dP/d3E)sinh & cosh E/(sinﬁzi + sin®n) =0 on & =£&; (97)

be satisfied. Because of the mathematical difficulty that would be en-

countered by using the zero shear stress condition relative to the zero

vorticity condition, Equation (96) is chosen as the fourth boundary condition.

Solution for the Stream Function

The solution to this boundary value problem can be expressed as
Y= w(l) + w(Z),
where w(l) and w(z) are defined by

vzw(l) =

|
o
-

hzvzw(z) = -Ww
in which w also is a solution of the Laplace equation

Vi = 0.

(101)
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Equation (99) is solved by separation of variables yielding the solution

w(l) = Z (a,sinh j& + b,cosh j&) cos jn. (102)

o J

Because of the similarity of Equations (101) and (99), the solution for w is

seen to be

8

(A,sinh JE + B,cosh JE) cos jn "(103)

14 J

€
1
Il &~

J
The vorticity is a maximum at n = 0 and is zero at n = m/2, conditions which
are sgtisfied by the cosine function in Equation (103) when J =1, 3, 55 v
Considering the boundary cSnditions,'wﬁich do not require series expansion,
put J = 1 and omit the series notation. Using the condition of vanishing

vorticity on the imaginary surface, the vorticity equation becomes
W= B(y)(sinh £ - tanh &; cosh &) cos n, (104)

where §(y) is a parameter that cannot yet be determined. Rewriting the

boundary'conditions in terms of w(l) and w(z) produces the following:

Bw(1)/8n + aw(z)[an =.Uc cosh £ sin n on £ = Eo .’(105)
ap(1)/og + 0p(2)/88 = ~ Uc sinh £ cos n on £ = £, (106)
3\()(1)/371 = - alp(z)'/an | on &£ = €1‘ (107)
v2y(2) = o on & =E;. (108)

Assuming that

(2) =
[oy /8n]€=Eo 0 (109)
and

=0 (110)

Loy (2)/2e],,
[0}
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and putting J =1, a, = 0, and b, = - Uc in Equation (102), the conditions in

=J =J
Equations (105) and (106) are satisfied and

w(l) = - Uc cosh £ cos n (111)

is the desired particular solution. Equation (107) now becomes

[aw(z)/an] = - Uc cosh &; sin n (112)

£=&

which on integrating yields

[w(z)] = Uc cosh &, cos n, (1135

£=£,

where the integration constant is zero so that Y is zero on & = &;.

The Poisson equation, Equation (100), remains to be solved subject to the
boundary conditions. Because no appropriate Green's function was found, an

‘approximate solution method is used. Rewriting Equation (100),
29(2) /382 + a2y(2) /302 = _ (w/n?) (114)

and integrating between Eo and &,, the following equation results:

3 g
(n) + & 1 p(2) ag = - 1'(w/hz) 3g. (115)

g
(y) an? j & £

(o] 0

The function g(y)(n) is defined as

= ( )
g(y)(n) = [3w27/3E], . (116)

Before Equation (115) can be solved for g(y>(n), a general form of ¢(2) must

be assumed. A polynomial in & is indicate; with the number of terms carried
dependent on the number of boundary conditions. Thus far, the available condi-
tions are Equations (113), (116), and (108). Another equation which an exact

solution satisfies is




L7~

2,(2) /nz2 2, (2) jn.2 _ 2
[a%pt®//0¢ ]E=Eo + [3%y'%7/0n ]£=go = - (w/h )€=€O. (117)

Now that four conditions are available, a fourth degree polynomial for w(z),

can be written. Equation (110) suggests the form

0020 = aa(E-€ )2 + as(E-£)° + aulE-£ )" + as(£-€)°, (118)

where the coefficients a2, 03, 04, and as are functions of n. Using the above
conditions, four equations result which are solved simultaneously to yield

the following:

az = - B(y)czcos n (sinh2£O + sin?n)(sinh £, - tanh &icosh £ )/2 (119)
03 = Uc cosh &,cos n (10/8% + 1/2)/68 - hg(y)(n)/a2 - 302/6 (120)
oy = - Uc cosh E1cos n(l + 15/8%)/6% + Yg(y)(n)/63 + 302/82 (121)
os = Uc cosh &;cos n (1/2 + 6/82)/68° - 3g(y)(n)/6“ - 0y/8° (122)

)

where § is as defined by Equation (42). Now that the expression for w(z is

complete, the integrals in Equation (115) are evaluated. The results are as

follows:

€
j; ' w(Z)dE = Uc cosh &)cos n (8/2 + §3/120) - 62g(y)(n)/10

€

0 . + 028%/60, (123)
- (w/h%) 4% = B, \c?[t, \cos n - A cos’n] (124)

3 (y) (v)

with
.t(y) = [(cosh3E, - coshago) - tanh &; (sinh’g, - sinhaﬁo)]/3

- tanh &, (sinh £, - sinh gO), (125)
A = (cosh &, ~ cosh EO) - tanh &, (sinh €, - sinh Eo)‘ (126)
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The introduction of Equations (123) and (124) into Equation (115) provides

an equation for g(y)(n), which simplifies to the following:

g(y)"(n) - 10 g(y)(n)/az = - ¢(y)(COS nl,

where

¢(y)(co§ n) = D(y)cos n - E(y)cos3n

D(y) = Ue cosh £,(5/6 + §/12) - B(y)cz[lot(y)/62'+ Go(coshZEO + 6)/12]

- 2 2
E(y) = - B(y)c (1LOX/8% + 38a0/k)

0 = (sinh Eo - tanh £,cosh Eo).
Equation (127) is solved for §(y)(”)’ yielding

- . - 3
g(y)(n) Y1 cos N - Yy, cos°’n,

where

Yi [D(y) - 662E(y)/(96? +10)162/(8% + 10),

2 2
Y2 S E(y)/(95 + 10)-

The only remaining operation necessary for the solution for the stream

(127)

(128)

(129)

(130)

(131)

(132)

(133)

(134)

function to be complete is the determination of the factor g(y)' An additional

condition for this purpose that has not yet been used is obtained from the bi-

harmonic equation, Equation (90), which is valid everywhere in the porous space

including the solid surface:
Ve(hV UJ)I = 0.
[ ( g"‘go

Expanding this yields the expression

(135)
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6oy + Q" +'ha2(sinh250 + sihzn)-z(sinhzgocoshzgo + sin?n cos?n)
--(sinh2£O + sinzn)_l[az(sinhzié + coshggo + cos?n - sin?n) : (136)

.+ 6o.3sinh £, cosh £ + 202! sin.n cos nJ = 0.

Upon substitution for aa, a3, Ou, 02', and 02", an equation results which is
integrated over n from O to 27 to eliminate the dependence on n. This
procedure yields an expression in which §(y) is the only unknown quantity.
Solvi for B

ng _(y)a

'B<y) = G(y)U/c, | ol

where ' G(‘

;)= [R/T(y)] cosh &, o . (138)

with
R = [cosh 250(5/2 - 60/8% + 900/68%)

+ sginh zgo(a - 30/8 + 600/8%)1/(82 ; 10) - (139)

Ty = O - 6°t<§>9/F53‘52 + 10)] | o
+ 30A[(Q - T/2)/8% + 12Q/(6% + 10)1/[6(98% + 10)] . Y(1k0)

Ty = A - (1/4)Q(cosh 250 + 13)/(Gé + 10)

21820/ [ (8% + 10)(965 +10)] + (9/4)(Q - 7/2)/(98% + 10) (1b1)

+
Q = (7 cosh 250 + 48 sinh 256) ' ﬁ (142)
A=< (1/8 + 9/48%)cosh hgo - (9/468)sinn ugo

+ (3/2)cosh 28 + 3/h - 9/28%. (143)
The solution for Y for perpendicular flow along the minor axis is now complete.

Stream Function for Stationary Cylinder

The preceding development for the stream function is for the case of a

ceylinder moving within the fluid along with a moving reference system. For
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consideration of the streamlines around the cylinder and for a simpler drag
force analysis, the stream function for a fixed reference system with flow
past a stationary cyiinder is desired; call this Y,. The fluid velocity now
is given by E} which is related to 2, the fluid velocity for the moving

cylinder case, by
i=v-uj. ‘ (144)

The & and n components of ﬁ_are found to be

uE vg - Uhc cosh & sin n, (1k45)

e
]

vn ~ Uhe sinh § cos n. (1k46)
The stationary cylinder stream function is defined by

u/m o= B /on, w /b= 3y, /0E, (147)

An expression for Y, is found by integrating either of these two defining

equations, substituting for Ve and'\_rn using Equation (87), with the result

Py = j(a\p/an - Uc cosh & sin n) an. (148)
But ¥ = (1) + 9(2) ana
39(1)/3n = Uc cosh £ sin n ( 149)
so that
Uy = ~§5¢(2>/3n an = (2], (150)

The stream function for flow past a stationary cylinder is thus the polynomial

w(z).
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Derivation of Drag Force

The drag force due to flow past a stationary cylinder is determined by

integrating the stress over the solid surface (15), as follows:

F = 4{ -d5 = ,( m-3, ds. (151)
Vi |

S

o

The body surface is represented by s, while E is the stress tensor defined as
L=-p1+2u, (152)

where I is the idemfactor and A is the rate of deformation tensor. The drag

force is thus
- ~ ' ~ '
‘ F=- Jﬁ pi. ds + 2 A+i_ ds. (153)
L P N
Only the z—component of Eris nonzero; this provides
F, v == [ p(i_+3) as + 2 /( (Aei,)+] ds. 154
(v) LP EJ) USNE)J (154)

The'rate of deformation tensor for an incompressible fluid is defined
as (15)

A= [(wW) + (W)*)/2, o (155)

where t signifies the transpose. For this problem, Q,is

b= Bpip age v Ld e v B 4 + 5L (156)
with | .
dgg'= h[svg/ag + avn/an + v a(l/h)/én ; Bv, a(l/h)/8£1/2, (157)
Qg = BBV /3E + dv./4n = hvp A 1/n)/3n ~ hv 3(1/n)/3E1/2. (158)
By the equation of continuity it can be shown that
d, =0 (159)

(2
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so that
A= ATEA + L~ R a .
Ly (151n lnli) £n (160)
The dot products in Equation (154) are
A.’.‘ =4 A
N,lg £n s (161)
AT )y =a, (5 -3). 2
(B+1g)+ = dg (1 +J) (162)
The dot products of unit vectors are equal to
€£°3 = h 3y/9E = hc cosh & sin n, ' (163)
En-S = h 3y/9n = hc sinh & cos n. (164)
The drag force hecomes
. em 2T
I = -~ ¢ cosh £ p sin n dn + 2uc sinh § d, cos n dn (165)
(y) 0 0 &N
since
ds = dn/h. (166)

The expression for ggn is transformed to one involving the stream

function, w(z), and is evaluated at £ = EO, the solid surface, with the result

(a, ) B(,)0(cos n)/2. (167)

a _ =
En’g=g

An expression for the pressure, p, is developed from the equation of

creeping motion, Equation (201), which leads to the equation
ap/ag = u{h? 3[v2y(2)]/an + 2n?(an/on) v2p(2)}/m. 1(168)

The Laplacian of w(z) is

v2y(2) = _ w/n? = - B(y)(cos n){(sinh £ - tanh £,cosh £)/h2. (169)
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Introducing this into ﬁhe pressure derivative yields
dp/dE = uB(y)sin n (sinh £ - tanh &§; cosh &) (170)
which, after integration, produces
P=p, *+ uB(y)sin n (cosh & - tanh &; sinh &), (171)

where 18 is a reference point pressure.

Evaluation of the integrals in Equation (165) provides the following

equation for the drag force:

F(y) = -7y B(y) c cosh go(cosh Eo’m tanh £, sinh EO)

+ 7Ty B(y) ¢ sinh Eo(sinh EO - tanh &, cosh Eo). (172)

Recalling

B(y) = G(y)U/c, (173)

§<Z) simplifieslto
(174)

Determination of Kozeny Factor

The drag force resulting from flow in the cell is related to the pressure
drop by
F/(ma by) = dp/dx, (175)

where X is the direction of motion. Stated simply, this says that the
pressure drop aéross the cell equals the drag force, the only cause of flow
resistance, divided by the cell volume., The Kozeny-Carman equation,lEquation
(76), relates the pressure drop to the Kozeny factor, k. Combining thése two

equations and solving for k gives
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k = ~ Fem?/(ma,buU). : (176)
Recall Equations (77), (78), (79), and (174), and note that

(1-€) = aobo/(albl)' (177)
The Kozeny factor is thus

= o3 2(q_
ki) =€ BOG(y)/[H (1-e)]. (178)

ALONG MAJOR CROSS-SECTIONAL AXIS

The analysis for flow parallel to the major cross-sectional axis of the
elliptic cylinder and perpendicular to the long axis is similar to the above
analysis for flow along the minor axis. Equation (90) describes this flow
situation too. The boundary conditions are fundamentally identical, although
their form is different. Again, the cylinder is assumed to be moving in a
stationary fluid, in this case in the x-direction with velocity U. The no-slip

condition on the solid surface requires that

which become, in elliptic coordinates,

vg = hUe¢ sinh § cos n, vn = ~ hUc cosh & sin n on £ = Eo.

In terms of the stream funetion,

ay/om (179)

Uc sinh & cos n on £

1
oy
[

Y/3E = Uc cosh & sin n on £ =¢E. (180)

On the imaginary surface, the conditions are zero normal velocity and zero

vorticity, as before, stated by Equations (94) and (96). The solution for
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is developed as before; the details are summarized in Appendix IV. For flow

along the major cross-sectional axis, the drag force is

Fly) = - T WU Gy tanh & (181)
and the Kozeny factor is ,
= o3 2
k(x) =g BOG(X)tanh £:/[H*(1-€)], (182)
where g(x) is defined in Equation (273).

. PATTERNS OF FLOW

The three directional analyses presented above for flow within the model
celi provide solutions to the respective boundary'value problems which de-
scribe the flow patterns around the solid cylinder. An investigation of the
resultant flow patterns is useful because it demonstrates the significance of
the boundary conditions and because it produces a means for a éubjeCtive check

on the accuracy of the solutions.

The analysis of flow parallel to the central axis of the solid elliptic
cylinder in the cell produces a distribution of veloeities in the annular
"~ region between the two cylinders. The velocity is zero at the solid surface
and maximum at the &irtual surface. Figure 8 illustrates the velocity
distributions along the x-axis (n = 0) and along the y-axis (n = m/2) for a
cylinder of Bol= 0.50 and a porosity of 0.75. The peak velocity varies as sa
function of n between the two values presented in the graph. Both the exact
and approximate solutions are plotted. Near the solid surface the two are
almost identical, with more of a difference emerging as the fluid boundary

is approached.
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For flow perpendicular to the elliptic cylinder of the cell, the
analysis does not yield velocity distributions but rather stream function
distributions. The stream function is related to thé two velocity compo-
nents as previously explained. Curves of constant stream function are
streamlines and indicate the direction of flow at a point. For a cylinder
of axis ratio 0.20 at porosity 0.75, the pattern for flow past the cylinder
along the minor axis is presented in Fig. 9, while Fig. 10 shows the
pattern for flow along the major axis. The streamlines are symmetric

with respect to both the x and y axes.

RESULTS OF THEORETICAL ANALYSES

The theoretical analyses for flow in the cell result in expressions

. for directional Kozeny factors, which vary with the porosity and with the
axis ratio of the solid cylinder's cross section. Appendix V presents
tables of these values for many axis ratios at several porosity points

over the range.of practical interest. 1In order to demonstrate the trends,
Fig. 11 for parallel flow and Fig. 12 for perpendicular flow show how the
Kozeny factor is affected by porosity and axis ratio. An axis ratio of one
for a circular cylinder cannot be handled by the analyses, so a value of

0.999 is used instead.

Figure 11 for parallel flow indicates that the porosity has a strong
influence on the Kozeny factor, while the effect of the axis ratio is only
slight. Only values from the exact solution are used in the graph and in
the Appendix. A later section compéres the results from the exact and the

approximate solutions.
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Figure 9.

Streamlines in Model Cell for Perpendicular Flow
Along Minor Cross-Sectional Axis.
Porosity = 0.75, Axis Ratio = 0.200
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Figure 10. OStreamlines in Model Cell for Perpendicﬁlar Flow
Along Major Cross-Sectional Axis.
Porosity = 0.75, Axis Ratio = 0.200
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The two cases of perpendicular flow are both included in Fig. 12. TFor
a circular cylinder, the two directional perpendicular Kozeny factors are
identical; but this is not so for elliptic cylinders where the difference
between the two increases as the cylinders become flatter. Again the

porosity has a strong impact on the Kozeny factor, but so does the axis ratio.

The computer program which generates the directional Kozeny factors is

listed in Appendix VI.
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© .DISCUSSION

The theoretical analyses of the preceding section have been developed
in order to study the flow through mats of elliptic fibers. Before real mats
of fibers are considered though, some discussion_of the validity of the

theoretical approach seems appropriate.

VAﬁIDITY OF THEORETICAL ANALYSIS

CELL MODEL APPROACH

The use of a cell containing one fiber segment and its surrounding fluid -
as a model for treating the flow through a fiber mat may seem to be of
questionable velue at first glance. Such a cell model appﬁoach could be
~easily rationalized for a regular array of cylinders where all cells within
the structure are identical. But for an irregular assemblaée like a fiber mat
where cells of various shapes and porosities could be—identiéied, the cell
model approach presumes that one typical cell can be defined that is descrip-
tive in a étatistical sense of all the cells of the assemblage. 3By aﬁalyzing
the flow'though this fypical cell, the properties of the flow through the
entire assemblage can be estiﬁated. The interaction of one cell with another
is neglected, except as aécounted for by the boundary conditions. The effect
of two cylinders in close proximity or in contact is overlooked, even though
such an arrangement would significantly affect the drag estimate. Assumptiéns
like these are valid at.high porosities, since the fibers then would generally
be far apart with few contact points. As lower porosities are reached, the
vaiidity.of applying the cell model to a fiber mat is reduced. Happel (20)

suggests for circular cylindefs that his analysis is valid ony at porosities
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above 0.50. Since fiber mats often are more than 50% porous, such a limita-

tion is not serious from a practical standpoint.

The complex structure of a fiber mat provides a good reason for employing
the cell model approach. The boundaries of a porous fiber mat cannot be
specified mathematically gnless an elaborate, involved procedure is used.
Because of this, the solution of a hydrodynamics problem for flow through a
mat would be very difficult. The use of a simple model of the porous space
helps overcome this problem and enables mathematical analysis of the flow to

be accompiished.

The application of the cell model technique to assemblages of elliptic
cylinders follows similar studies with spheres and circular cylinders. The
success of the cell model approach in these previous studies indicates that
the method can be used to obtain reasonable results. A similar analysis with

elliptic eylinders should also be expected to yield acceptable results.

The selection of the zero vorticity condition on the virtusl surface is
arbitrary. This condition was used in Kuwabara's analysis with circular
cylinders, which fits experimental observation (21) better than Happél’s
analysis with the alternate zero shear stress condition. Also, the zero
vorticity requirement leads to simpler mathematics. If the shear stress were
assumed zero on the virtual boundary, the problem would have been intractable
for elliptic cylinders; An argument for one condition or the other using a
physical basis is difficult. Happel and Brenner (lé) support Happel's choice,
reasoning that the zero vorticity éell requires energy exchanée with neighboring

cells whereas the zero shear stiress cell does not interact from an energy

standpoint with other cells.
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APPROXIMATE SOLUTION PROCEDURE

The solutions to the Poisson equations developed in the two analyses for
perpendicular flow are not exact solutions to the boundary value problems,
but rather are approximate ones designed to satisfy the boundary conditions.

The accuracy of the approximate solutions should be briefly considered.

The parallel flow problem was solved by both an exact method and an
approximate method. The velocity distributions from the two solutions are
compared in Fig. 8. Near the solid surface both are nearly identical. As
the outer, virtual surface is approached, the two diverge slightly with the
difference dependent on n. The difference between the two does not seem
large for any n. Another comparison between tﬁe two can be based on the
theoretical Kozeny factors; some values‘for the two methods are given in
Table III. The approximate values are greater than the exact ones. but the
two become_closer at lower porosities. Above 0.90 porosity, the difference
is sizeable. The éxact values agree wéll with Happel's results, verifying
the exact solution method. The elliptic axis ratio seems to have little
effe&t on the quality of the approximate solution. From these comparisons,
the approximate method sppears to be sufficiently accurate for the needs of

this study.

The approximate method for the perpendicular flow analyses is similar
in approach to the parallel flow approximate solution. For perpendicular
flow no exact solution was found, so there is no direct way of gauging the
reliabiiity of the results. But because of the similarity, the perpendicular
results should be reliable since the parallel values are. Perhaps the high
porosity values (for € >0.9) are somewhat in error, but this is not a

serious drawback. The values for all axis ratios should be equally reliable.
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TABLE III

COMPARISON OF KOZENY FACTORS FROM EXACT AND
APPROXIMATE SOLUTION METHODS FOR FLOW
PARALLEL TO ELLIPTIC CYLINDERS

- Kozeny Factor
Axis Ratio Porosity Exact Approximate Happel (BO=I7

0.999 0.95 10.79 11.79 10.75
0.90 T.34 7.79 ©T7.31
0.80 5.27 5.hY4 5.23
0.70 4. 42 4. 51 L 42
0.60 3.97 L.o1 3.96
0.50 3.68 3.70 3.67
0.500 0.95 10.76 11.71
0.80 5.41 5.57
0.60 4,10 L.1h
0.200 0.95 10.49 11.21
0.90 7.70 8.00
0.80 5.85 5.95
0.70 5.03 5.07
0.60 4,58 4.60
0.50 k.31 4.32

The streamlines obtained from the approximate perpendicular solutions
appear realistic (see Fig. 9 and 10), indicating that the solutions are sound.
For the limit of the circular cylinder, the elliptic cylinder analysis produces
streamlines that almost coincide with those from Kuwabara's analysis (at
porosity 0.75). For noncircular cylinders there is no basis for a similar
comparison, but the flow patterns for all porosity and axis ratio combina-

tions seem physically reasonable.

The berpendicular flow Kozeny factors for a nearly circular cylinder
are compared to those from the analysis of Kuwabara in Fig. 12. Since the
zero vorticity condition is used in both this analysis and Kuwabara's, the
two should give values that are the same. The actual difference is fairly

small, verifying the analysis for elliptic cylinders in the ciruclar limit.
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The small deviation could ‘be due to either the approximate nature of the

solution or to computational inaccuracies.

The method used tq construct the approximate solutions can be of
potential v&lue in many areas wherever - a similar boundary value problem

is encountered and no exact solution can be found for it.
COMPARISON WITH PREVIOUS ANALYSES

Circular Cylinders

The theoretical analyses for flow through assemblaées of ellippic
cylinders ggnnot accommodaté cylinders of circular cross sectién kso =1)
because a division'by zéro would be invo;ved. But a very neérly circular
cylinder can be considered, such as one with an axis ratio of 0.999. The
comparisoﬁs between the results of the elliptic cylinder analysis for the
nearly circular case and fhe results of the circular cell model analysis
of Kuwabara are discussed above for both parallel and perpendicular flow;
the conclusion is that the method of this thesis yields reliable values
for the Kozeny factor for circular cylinders. Since the Kuwabara approach
is compared with other investigations in a previous section, there is no

need to repeat such a comparison for the results from the elliptic analysis

with nearly circular cylinders.

Noncircular Cylinders

An analysis similar to the one developed here has been reported re-
cently by Masliyah and Epstein (40,41), who applied the cell model technique
to clusters of elliptic cylinders by solving numerically the Navier-Stokes
equation., Creeping flow estimates wefe obtained by assuming a small Reynolds

number (0.01). Both the zero vorticity outer boundary condition and the zero
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shear stress one were considered, but only the former is of interest presently.
Only a few combinations of axis ratio and porosity were used in the calcula-
tions. In Fig. 13, some of the Kozeny factors from their analysis are compared
with the results from the analysis developed above. The two analyses differ a
good bit but give similar trends relative to the effect of axis ratio and
porosity. Like results from the two analyses are not necessarily expected be-
cause of the fundamentally different approach and sélution techniques. The
analysis of this thesis is based on the creeping flow equation, whereas
Masliyah's work only approximates this case. Also, the mathematical solution
of this thesis approximates the exact solution by a power series type of
approach, while Masliyah used a finite difference expression and solved it
using a relaxation procedure. The difference between the two sets of wvalues
may be attributed to inertial forces, which are ignored in the creeping floﬁ

analysis.

The results of the analyses for perpendicular flow past clusters of
elliptic cylinders can be compared to the values from the study by Kuwabara
(43) for flow through a regular square array of elliptic cylinders. The
square array analysis is valid only at high porosities; as the cylinders be-
come flatter, the porosity below which the approach is invalid moves closer
to 1.0. For flow parasllel to the ﬁinor cross-sectional axis, Table IV
compares the elliptic cell model Kozeny factors to Kozeny factors for the
square array and to Kuwabara's circulér cell model values. For circular
cylinders, the circular cell results are somewhat lower probably because of
the approximate solution, which becomes less accurate as the porosity ap-
proaches 1.0; this effect was noticed in the similar parallel flow approximate
solution. For elliptic cylinders the two approaches give similar trends, and

at high porosities the values do not differ greatly.
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Figure 13. Comparison of Two Zero Vorticity Cell Model Analyses
for Perpendicular Flow Along Minor Cross-Sectional Axis
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TABLE IV

COMPARISON OF KOZENY FACTORS FROM CELL MODEL ANALYSIS AND
REGULAR ARRAY ANALYSIS FOR ELLIPTIC CYLINDERS

. Kuwabara
Axis Kuwabara Elliptic Circular
Ratio Porosity Square Array Cell Model Cell Model
1.00 0.997 154.9 125.2 153.1
0.99 63.1 54,1 62.1
0.98 39.6 34.8 38.4
0.97 30.9 27.3 29.k4
0.96 26.2 23.1 24.6
0.95 23.6 20.h4 21.5
0.50 0.997 162.6 134.3
0.99 69.5 58.1
0.98 45.9 37.4
0.97 37.8 29.4
0.96 33.6 25.0
0.95 31.8 22.1
0.10 0.997 138.1 128.2
0.99 80.7 49.8
0.98 98.3 31.8
0.97 566.6 25.8

APPLICATION TO FIBER MATS

The application of the theoretical analyses for directional Kozeny
factors to the permeation of a fluid through a mat of uniform synthetic fibers
is of primary interest. The structure of the mat influences the relative

contribution of the directional Kozeny factors, and must be considered before

applying the cell model analyses to flow through a fiber mat.
STRUCTURE OF FIBER MATS

The orientation of fibers within a mat depends upon how the mat was
originally formed as well as the compressive history of the mat. Formation
by slow filtration from a dilute fiber suspension produces a mat with the

central axes of most fibers lying generally in the plane of the mat; with
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elliptic fibers the greater cross-sectional axis is preferentially aligned
parallel to the mat plane. This orientation results because thé fibers
before‘deposition on the mat become oriented in the fluid so that the dfag
is maximized. 'Fibrous mats of practical importance do not usually ' have as
ordered a structure as just déscribed, but tend more toward a random
structure. The compression of a mat of fibers can alter the original

structure; Elias (L6) discusses the causes of this.

Theaérientation of an elliptic fiber within a mat is discussed in
Appendix VII. Two angles are defined as follows: O is the angle between
the fiber's central axis and the norma; to the plane of the mat; ¢ is the
angle of rotation gbout the fiber's central axis between the major cross-
sectional axis and the plane of the mat, increasing in cqunterclockwise

direction. (See Fig. 20 and 22.)
KOZENY FACTORS FOR FIBER MATS

Composite Kozeny Factor

The Kozeny fattor of a fiber mat should be a combination of the three
directional Kozeny factors previously determined, with the relative contri-
bution'of each dependent on the fiber orientation within the mat. In
Appendix VII a composite Kozeny factor for a fiber mat is derived, with the

result as follows:

k =.[k(x)Sin2¢ + k(y)cos2¢]sin?9 + k(z)cosze. (183)

Special Cases

"~ Several special cases of fiber orientation within the mat are of interest.
Using the above equation for a composite Kozeny factor, the resistance to flow

through an oriented mat can be predicted for these cases.




—T2-

Case I: All fiber central axes parallel to flow; 6 = 0. The
Kozeny factor is simply k(z). This case is not of practical importance

for fiber mats but may be for some flow process.

Case II: All fiber central axes perpendicular to flow; 6 = m/2.
This case is occasionally of practical interest. Fibrous filters are often
prepared so that as many fibers as possible lie in the plane of the filter

(see Case IV). Three possibilities are considered, as follows:

A: Major cross-sectional axis parallel to flow; ¢ 0, k = E(x)'

B: Minor cross-sectional axis parallel to flow; ¢ = m/2, k = k(x).

C: Cross-sectional axes at angle to flow; k = k(x)sin2¢ + k(x)cosz¢.

Cagse III: Distribution of orientations. In a real fiber mat there is
no regular, ordered structure; instead the fibers assume various orientations.
By identifying the orientation distribution, the composite Kozeny factor can

be determined in the following manner:

/2
k = Jfo [k(t)sinze + k(z)cosze] g(6) a8, . (18k4)

where k(t)’ the transverse flow Kozeny factor, is found in a similar way:

m/2
k(t) = JFO [k(x)sin2¢ + k(y)cosz¢] h(d) do. (185)

The distribution of fiber orientations is expressed by means of the frequency

functions g(0) and h(¢), vhich must satisfy the normalization criterion:

m/2
f g(6) ae = 1, (186)
0

T/2 .
J h($) da¢
0

(187)

]
]
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One particular distribution, that for an isotropic mat, is of interest.
The choice of 5(6) = sin 6 provides such a mat in which the probability of a
fiber end falling at any point on a sphere around the fiber center is con-

stant (35). Two possible choices for h(¢) are as follows:

A, By choosing gﬂ¢) = 2/m, -all values of ¢ are equally probable. This
choice produces an isotropic mat in which there is no preferred cross-

sectional arrangement. The composite Kozeny factor for this mat is
ko= (1 kv +k, y+k . o 188)
(1/3)1 (x) (y) (z)] : (188)
Some Kozeny factors for isotropic mats are presented below.

B. The selection h(¢) = cos ¢ describes a mat in which the probability
is greatest that the fiber is oriented with its major cross-sectional axis

normal to flow. The composite k for this case is
ko= (2/3) TQ/3)k )+ (2/3)k ]+ (1/3)ky. 7 (189)

Césé IV:'.A mat fprmed slowly from a dilute fiber suspension, as dis-
cussed above, hés thg fibers generally in the mat plane. For such a mat,
averaée.eland o} va;ues can be chosen to use in Equation (183) for the composite
Kozeny }agtOQ, siﬁce the exaét fiber orientation distribution is not known.
The choices 6 = 75°>and ¢ = 20° seem reasonable. The 6 estimate follows from

Elias' experimental data for fibers of a length/diameter ratio of near 100.

Using these values, the k value becomes

k = 0.067 k(z) + 0.109 k(x) + 0.824 k(y). (190)
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Isotropic Mats

Case III-A above discusses the Kozeny factor for an isotropic mat where
all fiber orientations are equally likely to occur. Equation (188) has been
used to calculate k values for such mats; these Kozeny factors are plotted
in Fig. 14 and 15. The effect of porosity at a few axis ratios is seen in
Fig. 14, while the effect of axis ratio at several porosities is seen in
Fig. 15. The fibers of the mat can be flattened a fair amount, dependent
on the porosity, before the fiber cross-sectional shape begins to signifi-
cantly affect the Kozeny factor. At higher porosities more flattening is
permissible before the effect becomes large. For example, at a porosity of
0.90, a mat of fibers of axis ratio 0.10 has a Kozeny factor only slightly
different from that for a mat of circular fibers. At 0.75 porosity, the
fibers can be flattened to near 0.30 axis ratio before a ten percent change

in k occurs.

Lord (37) experimentally determined the Kozeny factors for air permeation
through a carefully randomized mat in which an effort was made to uniformly
distribute the fibers. This mat should closely approximate the isotropic
case. The data for silk fibers of nearly circular cross section are seen in
Fig. 16 compared to the theoretical results for an isotfopic mat of circular
fibers. The experimental and theoretical curves are similar, but the former
is lower, indicating that there is actually less resistance to flow than the
cell model theory predicts. Reasons for this are discussed in the following

section.

Real Mats
The slowly formed fiber mat covered by Case IV above is of interest be-

cause it approximates the mats formed by Bliesner in his permeation experiments
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with noncircular fibers, as well as the mats used for the Davies-Ingmanson and
Carroll correlations for circular fibers. Because of this, the Kozeny factors
computed from Equation (190) are expected to be generally valid for these mats.
To test this assumption, the data of Bliesner and the expected k values are
compared below. Bliesner's data appear to be sound, at least for circular
fibers in the porosity range covered, since his circular fiber mat k's are
close to the empirical correlations. Accepting the noncircular data because
the circular data appéar good may be questionable, although no reason for
rejecting the noncircular k's is apparent. The measured Kozeny factors Of,
Bliesner should not necessarily be viewed as the true values because of the
limited scope of the experimental program and because of the potential for

errors inherent in the experimental procedure.

First consider flow through mats of circular fibers., Figure 17 presents
Bliesner's experimental data, the isotropic and oriented k curves based on
mat structure, and the two empirical correlations. As with the Lord data,
the expected mat Kozeny factors determined from the cell model theory using
Equation (190) are greater than the experimental values, although the trend
with porosity is the same. While this comparison is disappointing, two
reasons may account for the discrepancy, one an experimental problem and one

a deficiency in the theory.

Experimentally, a uniform mat cannot be obtained; instead, any real mat
contains local regions of resistance lower than the rest of the mat and
porosity above the mat average because of pinholes, fiber curling, uneven
deposition of fibers, edge effects, etc. These nonuniformities exist to some
extent in any real mat regardless of the effort to eliminate the problems.

Since the fluid follows the path of least action, the disturbed areas have sa
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stronger influence on flow properties than their volume fraction might indicate.
A meaningful estimate of the error introduced by mat nonuniformity is very
difficult to obtain because of imprecise means of gauging the local porosity.
However, the effect of the nonuniformities should be to lower the observed
experimental Kozeny factors, thereby explaining partially the discrepancy

between theory and experiment.

The second reason for the difference between the expected Kozeny factors

and the experimental data concerns the cell model approach where flow past a
fiber segment is studied. Areas of fiber contacts are not considered, al-
though two fibers crossing or in close proximity to each other cause less drag
than if the two segments were apart. The sum of the drag on two isolated
cylinders resulting from perpendicular flow past the cylinders is more than
the drag due to flow past two cylinders situated near each other with their
cross-sectional centers forming a line parallel to the flow direction. Happel
and Brenner (15) discuss such interference effects between particles, summa-
rizing the influence on cylinders as follows:

"Thus with two cylinders of equal radii with one

behind the other, the front cylinder experiences

a greater drag than the rear cylinder. ... The

drag acting on each of the two cylinders is less

than when they are present alone."
Since the drag on two fibers in contact is less than that if the fibers were
apart, the overall pressure drop for flow through the mat is below that
predicted by the cell model analysis. In other words, the theory is over-
estimating the pressure drop because the effect of fiber contacts is ignored.
This translates into a Kozeny factor that is greater than the true value for

the mat considered. The magnitude of this effect cannot be easily estimated.

Perhaps the application of the cell technique to the fiber crossing regions
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would supply information in this regard, but to do this a quite involved
analysis would have to be completed. Concerning elliptic cylinders, the
error due to fiber crossings should be larger for flatter fibers, indicating
that the discrepancy between theory and experiment may be dependent on the

fiber axis ratio.

The data of Bliesner for noncircular fibers are compared to the cell
model theoretical estimates in Fig. 18. As for the circular fibers, the
empirical Kozeny factors are considerably smaller than the expectea values
found from Equation (190). The difference between the two seems to increase
as the fibers become flatter, which is expected on the basis of the fiber
crossing argument above. .The experimental k values as a percentage of the
theoretical expectations fall approximately as follows: 58% for circular
fibers, 44% for axis ratio 0.34L4, and 40% for axis ratio 0.242; these values

are at 0.80 porosity.

The qombined effect of the experimental mat nonuniformities and the
failure of the theory to consider fiber crossings may be sufficient to
account for the discrepancy for both circular and noncircular fibers. Al-
though an analytical estimate of the discrepancy caused by these two effects
cannot be determined, perhaps an empirical approach could be used by intro-

ducing a parameter, r, into the composite Kozeny factor equation, as follows:
k =r [k, \sin® + k, \cos?] sin?6 + k, ,cos?8. 191
% ) ()08 (2) (191)

The r value could provide for the above effects, but unfortunately would need
to be experimentally measured and is probably dependent on both porosity and

axis ratio.
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Although not expected because of fiber orientation effects, the iso-
tropic Kozeny factor relationship is & better indicator of real mat behavior
than is the expected k value based on mat structure. Fibers of axis ratios
1.00, 0.34k4, and 0.242 produce experimental data at 0.80 porosify which are

66, 61, and 60%, respectively, of the isotropic k values.

Another way to look at the data is given by Fig. 19. Here the effect
of axis ratio on KozZeny factor is more obvious. While this graph represents
a porosity of 0.75, bther porosities show similar results. The composite
Kozeny factor for an isotropic fiber mat is not great%y affected by the cross-~
sectional axis ratio until a fairly flat fiber is used; for this porosity the
change exceeds ten percent below an axis ratio of 0.30. The experimental data
follow the same pattern; for the range covered by the tests, the fiber axis
ratio seems to have little-effect on k. The behavior of k for a real mat as
the axis ratio approacHés zero is not known from experimental studies, but
from the theoretical analysis the conclusion that the Kozeny factor would
begin to increase rapidly seems valid. From this discussion, the assumption
that a real mat Kozeny factor is independent of fiber cross-sectional shape,
at least for axis ratios more circular than 0.2, should introduce only slight

errors into the permeation analysis.

One pertinent factor has not yet been discussed, that is, the question
of the importance of the surface area correction for interfiber contact. Both
Bliesner and Labrecque made such a correction, but a fresh look at this question

seems in order.
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INTERFIBER CONTACT AREA

The fiber surface area excluded from the permeating fluid because of
interfiber contact has been estimated by Bliesner (8) using as a basis the
fiber network analysis of Onogi and Sasaguri (38). His result for the

specific surface corrected for this effect is as follows:

.' s, = Pp/A, - h(l-e)wz/(ﬂzdeAf), S (192)

where’ -

I g
it

fiber perimeter

f
Af = fiber cross-sectional area
w = projected fiber width
de = effective fiber diameter

Labrecque (39) criticized the Bliesner approach because the number of
interfiber contacts was assumed independent of fiber shape and because only a
fractiqn, F; of the fiber width was actually in contact. Developing a similar
analysis but accounting forsfhese effects, Labrecque obtained the equation for

corrected specific surface
- 212 2
Svl—'Pf/Af - 2(1-g)twF /(nAf ), (193)

where t is the fiber thickness. Where Bliesner's method estimates 23% contact
area for a mat of fibers of axis ratio 0.242 and porosity 0.70, Labrecque's

approach gives 9%, which is much more realistic.

Several criticisms of the Labrecque analysis can be presented regarding
the determination of the meén contact area per crossiﬁg per fiber, Aé. First,
the fraction of the fiber width in contact, F, should be dependent on the

stress on the mat; as the pressure increases the contact drea at the crossing

should too. Second, the E_factor needs to be empirically determined. Third,
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the mean contact area should be dependent on the elastic properties of the
fibers, such as Young's modulus and Poisson's ratio. All of these criticisms
are nonexistent in the analysis by Finch (L47) of the contact area between
two isotropic elastic fibers, who applied the equations of Hertz (u48) fo
develop a theoretical relationship and verified the result experiﬁentally
with nylon fibers. Using the Finch equation for contact area per crossing,
a mean contact area can be determined by specifying an appropriate frequency
function for the angle between the axes of the fibers in contact and inte-
grating. The mean contact area per érossing times the number of contacts
found from the Onogi and Sasaguri theory equals the surface area in contact.
In Appendix VIII, the interfiber contact area estimate for elliptic fiber
mats based on the Finch method is developed, and estimates for the fibers
used by Bliesner and Labrecque are calculated. The relationship found for

fibers of elliptic cross section with half-axes &, and Po is as follows:
= _ 1o b2
8, Svo[l 84 (1-€)/(m"a _“H)]. (194)

In this equation, §vo is the specific surface with no interfiber contact,
and H is defined by Equation (79). The Bliesner and Labrecque equations
converted to apply to fibers of elliptic cross section are, for Labrecque's

analysis

S =8

v = S, - 16(1-€)F2/(mH)] (195)

and for that of Bliesner

w0
1§

Y Svo[l - 8(1—€)a0/(ﬂ3Hbo)]. (196)

The three are similar in form but different in results. Defining Gc as the

fraction of surface area in contact so that
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S_=-s8_(1- ac) ©(197) -

v Vo

the contact area fractions for the Labrecque and Finch analyses are compared

in Table V.

TABLE V

COMPARISON OF INTERFIBER CONTACT AREA ANALYSES

Contact Area, %

Axis Ratio Porosity Finch Labrecque
1.0 0.90 1x10°° 0.075
0.60 0.0k45 0.30
0.40 1.04 0..45
0.242 0.90 2 x 1078 1.77
' 0.70 0.040 5.3
0.60 0.53 7.0
0.50 3.93 8.8
0.40 20.3 10.6

The calculations using Labrecque's method employed F factors determined
/directly from microphotographs, and are not the same values as reported in

his thesis.

The analysis based on the Finch theory seems more fundamentally sound
than does the. Labrecque analysis. The contact area estimates obtained are
negligible for .the conditions used in Bliesner's permeation experiments.
Consequently the interfiber contact area correction, although valid, is in-
significant and will be neglected in comparing the cell model theoretical

Kozeny factors to the experimental data.
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VALIDITY OF CREEPING FLOW ASSUMPTION

By assuming creeping motion, the cell model analysis is valid only for
slow flow rates. But Darcy's law too is applicable only for slow superficial

velocities, so the creeping flow assumption does not seem unrealistic.

The relative contributions from viscous and inertial effects for flow
through synthetic fiber mats wereconsidered by Ingmanson and Andrews (Eg).

Defining a Reynolds number as
Re = pU/[us (1-€)] (198)

and considering only mats of porosity below 0.80, they conclude that inertial
resistance is only 4% of the total at Re = 1, and inertial effects are just
becoming significant. At Re = 10, the inertial resistance accounted for 30%
of the overall pressure drop. For mats of wood pulp fibers, they suggest
that a maximum velocity of about 1 cm/sec is the limit for streamline flow

with negligible inertial effects.

Spielman and Goren (39) state that the creeping motion assumption is.‘
valid near the solid cylinder if the Reynolds number is much less than 1.
They define Reynolds number as Bg = 2§gp/u, where g is the fiber radius. Far
from the cylinder surface inertial effects are more dominant, but in the cell

model analysis this effect becomes significant only at very high porosities.
For elliptic cylinders, Epstein and Masliyah (40) define
Re = 2a Up/u (199)

in which ao is the half-axis perpendicular to flow. To obtain creeping flow

results, they simply chose Re = 0.01.
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The maximum Reynolds number, as defined by Equation (199), for the
permeation experiments of ‘Labrecque with elliptic fibers was near 0.2. The
values for Bliesner's experiments should be similar. In view of the above
comments, the application of a creeping flow model to these pgrmeation.

results should be reasonable.

"APPLICATION TO OTHER SYSTEMS

WOOD FIBER MATS

The results of the cell model analyses for elliptic cylinders hopefully
will engender a better understanding of flow through mats of wood pulp fibers.
In a wood fiber mat there are many complicating effects, one of which is the
variety of cross-sectional shapes. If a mat of never-dried fibers, with axis
ratios generally more circular than 0.3, is permeated with a fluid, the re-
sults of this study indicate that the Kozeny factor for such flow is probably
affected only slightly by the noncircular cross sections. Choosing the
Davies-Ingmanson correlation, for ekXample, which applies only to circular
fibers, as an expression for the Kozeny factor of a wood fiber mat should not
introduce a large error into the study, although this is dependent én the

type of fiber and the mat's history.
RELATED AREAS

A number of areas of investigation, such as the theory of particle
retention in fibrous filters or mats, the analysis of flocculation of fibers,
and zeta-potential studies in fiber slurries, often require a description of
flow near the surface of a fiber. The cell model studies for circular

cylinders have been applied to these areas (g;,35,§9,§;), but not all fibers
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of interest have round cross sections. For these cases the cell model analysis

for elliptic cylinders developed herein can be used to advantage in de-

scribing the flow around fibers.

Another possible area where the elliptic cylinder cell model flow analysis -
may be useful is in the flow past banks of tubes of elliptic cross section,

such as exist in some heat exchangers. The heat and mass transfer analysis

through such arrays may utilize the equations of this thesis, although normally

such flow is not occurring in the creeping motion regime.
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. CONCLUSIONS

The'nse of the cell model approach-to study pérallel or perpendiculer
flow peetyenrays of elliptic cylinders provides insiéht into the effect of
the crose—eectional shape of the cylinders on the drag caused by such flow.
While the drég due to flow past arrays of circular cylinders has been pre—'
viously.examined by means of the cell model method, the application of this
technique to creeping flow, either parallel or perpendicular to the cylinders'
central axes, past assemblages of elliptic cylinders is greatly expanded in '
this work. Thearesults for flow parallel to the cylinders indicafe that the
influence of tne'cross—sectional shape on the drag is significant Bﬁt not
large, and the effect is por051ty dependent. When the flow is perpendicular
to the\cylinders, two cases are considered for flow along each of the two
cross;seciional axes. The drag due to perpendicular flow along the major
croes-eectional}axis is dependent to a considerable extent on the'fatio'of
minor.to nejor‘enes, or the "flatness" of the cylinders. Pernendicular flow
along the minof ;nis results in drag that is more dependent on the axis ratio
than for the other perpendicular flow direction. This last flow case dis-

plays a very strong dependence on the axis ‘ratio when the cylinder becomes

quite flat, e.g., an axis ratio of 1/3 or less.

The approximate procedure developed to solve the boundary value problems
for both parallel and perpendicular flow cases involving Poisson equations
provides a'fairly easy means for obtaining an approximate solution to problems

that may othenwise be.intractable or laborious.

The slow permeation of a fluid through a mat of uniform synthetic
fibers can be studied theoretically by combining the results from the

parallel and perpendicular cell model analyses of creeping flow through
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arrays in a manner dependent on the mat structure. An elliptic cylinder serves
as a useful model of a fiber of oval cross section; by changing the cross-
sectional axis ratio, fiber shapes from round to nearly flat can be closely
represented by the model. The drag on an individual cylinder can be resolved
into force components along each of the three principal axes of the cylinder.
In this manner the drag past a particular fiber within the mat can be pre-
dicted from the directional cell model analytical results. By determining

the distribution of fiber orientations within the mat, the overall mat perme-
ability can be estimated and the effect of changing fiber shape on permeability
_clarified. The Kozeny factor from the Kozeny-Carman concept of fluid flow
through porous media serves as a relative indicator of the resistance to flow
through a mat with other parameters constant (porosity and specific surface).
For example, an isotropic mat of circular synthetic fibers of porosity 0.75
should theoretically have a Kozeny factor of 7.9, whereas if the fibers have
an elliptic cross section of axis ratio 1/3 the Kozeny factor changes to 8.4
with flatter fibers the Kozeny factor increases sharply. Available experi-
mental permeability measurements with synthetic fiber mats indicate that the
actual Kozeny factors are much less than the theoretical values derived from
the cell model analysis, although their trends of variation with axis ratio

and porosity are similar.

The correction of the specific surface of synthetic fiber mats because
of interfiber contact excluding surface area from the permeating fluid.appears
to be negligible if the mat porosity is greater than 0.60, although this is
dependent on fiber properties (axis ratio, Young's modulus, and Poisson's

ratio).
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When a mat of wood pulp fibers is considered, the various fiber cross-
sectional shapes should affect the mat Kozeny factor in a similar manner.
Based on the theoretical results for isotropic mats of uniform fibers, the.
fiber shape does not seem to have a strong influence on the mat Kozeny
factor until the fibers are flatter than approximately a 1/3 axis ratio.
Since never-dried wood pulp_fibers in lightly compressed mats are fqr the
most part more circﬁlay than this axis ratio, the commonly aaopted assumption. .
that the Kozeny factor for circular'fiber mats is applicablgzto wood_pulp
fiber mats is justifiable._,lp prinqiple} the specific surface correction for
interfiber contact area is appropriateufo; wood fiber mats, but further

refinements in the analysis would be beneficial.

Yo v
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SUGGESTIONS FOR FUTURE WORK

Regarding the application of the elliptic cell model analysis to flow
through fibrous mats, few ideas for extending the present work are obvious.
One possibility is to consider the effect that a mat containing fibers with a
distribution of axis ratios has on Kozeny factor. This could simulate a wood
fiber mat where various cross sections are present. Another possible study
would involve developing an accurate means for estimating experimentally the
interfiber contact area in a fiber mat. The assumption that the contact area
is negiigible for the ranges covered by Bliesner's permeation tests could use
empirical verification. Also the extension of the cell model analysis to in-
clude the fiber crossing regions would help make the theory more appropriaté
for fiber mats.

J
The utilization of the elliptic cell model analyses in related areas

offers much promise for future investigations. The retention of particles in
fibrous assemblages made of noncircular fibers could be studied using these
flow equations. Perhaps particle retention or aerosol filtration efficiency
can be improved by sel;cting fibers of appropriate cross-sectional shapes.

The analysis of zeta-potential around noncircular fibers can be performed using
the flow equations developed herein; the circular fiber model of Ciriacks (51)

could be extended to elliptic fibers in order to better model wood pulp fibers.

Other possible areas for future work can undoubtedly be identified with
effort, but probably the most promising topics would involve applying the

results of this study to related areas rather than extending the present work.
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LIST OF SYMBOLS USED

cross—sectional area of porous medium presented to flow
geometric surface area of a fiber

contact area on a fiber

mean contact area per crossing per fiber

ﬂacbc = area of contact per crossing

fiber cross~sectional area

wetted surface area of a fiber

= integral defined by Equation (52)

constants in Kuwabara's solution for flow past circular cylinders

constants defined by Equations (67) and (68)

= factors in vorticity expressions

circumference of ellipse

constants in Happel's solution for perpendicular flow past
circular cylinders

quantity in parallel flow solution defined by Equation (83)

quantities in perpendicular flow solutions defined by Equations
(269) and (129)

Young's modulus

quantities in perpendicular flow solutions defined by Equations
(270) and (130) :

drag force on solid cylinder

fréction of fiber width in contact with another fiber in
Labrecque's analysis

normal force pressing two fibers together
drag force for perpendicular flow problems
parallel and perpendicular (transverse) components of drag

Green's function
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factors related to B and B
-(x) =(y)

parameter relating circumference and axis ratio of ellipse;
defined by Equation (79)

idemfactor

integral in contact area analysis defined by Equation (321)
permeability coefficient

probortionality factor in Darcy's law

thickness of porous bed

fiber length

segment length

segment length in unloaded mat

mat compressibility constants

number of fiber-to-fiber contacts per fiber

normalization factor

fiber perimeter

quantities in parallel flow solution [see Equations.(BO)—(SQj]
volumetrie flow rate

quantity in perpendicular flow solutions defined by Equation (139)

radius of curvature

radii of curvature of two bodies in contact

quantity defined by Equation (55)
Reynolds number

specific surface = surface area per unit volume of porous medium

specific surface = surface area per unit volume of solid fraction

specific surface for mat with point contact between fibers

quantities in perpendicular flow solutions defined by Equations
(141) ana (275)
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quantities in perpendicular flow solutions defined by Equations

(274) and

(1k%0)

superficial velocity

function of n

volume of

a fiber

function of §

factors in parallel flow velocity distributions defined by

Equations
radius of
half-axes
half-axes

half-axes
fibers

radius of

(72) and (54)

circular cylinder

of solid elliptic cylinder's cross section
of outer elliptic cylinder's cross section

of ellipses describing surface of contact between two

virtual fluid surface in circular cell model

focal length of ellipse

consistency of a fiber mat

consistency of fiber mat in unloaded state

effective

fiber diameter

components of rate of deformation tensor

function of é and n

n/m =

ratio of transcendental functions in Finch analysis

frequency functions

functions

of n in approximate solutions for the three flow problems

metric coefficient

frequency

function

metric coefficients for coordinates qi1, 92, Q3

(_1)1/2 -

imaginary factor
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unit vectors in directions x, y, and z
unit vectors in directions q1, 92, 93
unit vectors iﬁ £ and n.directions
integer index

integer index

Kozeny factor

= constants in Davies and Ingmanson empirical correlations for
.Kozeny. factor

Kozeny factors for parallel and perpendicular (transverse) flow
past cylinder :

Kozeny factors for directional flow past elliptic cylinders

quantity in contact area analysis defined by Equatibn (310)
hydraulic radius

transcendental functions of auxiliary angle T

7 (562/12)_1/2

hydrodynamic pressure

reference point pressure

. compacting pressure on fiber mat

stress on solid fraction of mat

pressure drop

= orthogonal curvilinear coordinates

radial distance coordinate

ratio of actual to expected Kozeny factor
distance along a curve

fiber distortion factor

distances along curves 1, 92, 43

fiber thickness




S iy
2

S B

v

¥

=

= =

Gy, G2, O3

G2, O3,

Oy, Os

B1

-99-

quantities in perpendicular flow solutions defined by Equations
(266) and (125)

velocity for flow past stationary cylinder

£ and in.components of velocity ﬁ

fluid velocity for moving cylinder problem

mean velocity

velocity components in directions Q1, 925 43

components of fluid velocity for perpendicular flow past
circular cylinder

components of fluid velocity in x, y, 2z directions

components of fluid velocity for flow perpendicular to elliptic
cylinder

projected fiber width

weighting function

Cartesian coordinates

rate of deformation tensor

quantity in perpendicular flow solutions defined by Equation (143)
stress tensor

functions of n in perpendicular flow solutions

factor in perpendicular flow solutions defined by Equation (1L2)

‘quantity defined by Equation (231)

factors dependent on n in parallel flow approximate solution
polynomial

factors dependent on N in solution polynomial for flow perpendicular
to elliptic cylinder along minor half-axis

b /a

AN axis ratio of solid ellipse

b1/a1. axis ratio of virtual ellipse in cell model
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km/(as)
mat compression parameter

quantities in perpendicular flow solution defined by Equations
(133) and (134)

&1 - &, |

fraction of fiber surface area in contact with other fibers
porosity or void fraction

factors dependent on n in solution polynomial for flow perpendi-
cular to elliptic cylinder along major axis

angular cylindrical coordinate

angle between a fiber's central axis and the normal to the
plane of the mat

quantity in contact area analysis defined by Equation (309)
eigenvalue

quantity in perpendicular flow solutiong defined by Equation (126)
angle between central axes of two fibers in contact

dynamic viscosity of fluid

(1-€) = solid fraction of a porous medium

Poigson's ratio

confocal elliptic coordinates

elliptic coordinate representing solid cylinder

elliptic coordinate representing virtual fluid boundary
fluid density

fiber density

(sinh Eo - tanh &;cosh EO)

auxiliary angle

eigenfunction

angle between a fiber's major cross-sectional axis and plane
of mat
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stream function for flow past moving cylinder

= part of stream function that satisfies Laplace equation

part of stream function from particular solution to Poisson
equation

stream function for flow past stationary cylinder
vorticity

ordinary derivative

partial derivative

nabla operator

Laplacian operator

biharmonic operator
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APPENDIX I

CURVILINEAR REGRESSION OF LABRECQUE'S
EXPERIMENTAL KOZENY FACTORS

The pressure drop and flow rate data obtained by Labrecque (§_) in his
permeation experiments through mats of synthetic nylon fibers of several
cross sections were converted into Kozeny factors. For these calculations,
the values for fiber density, specific surface, and cross-sectional ares
were corrected for swelling in water, determined by Labrecque to be a L4.3%

diameter increase. Table VI lists the swollen values used to compute the

Kozeny factors.

TABLE VI

PROPERTIES OF LABRECQUE'S NYLON FIBERS

Swollen Specific Swollen Cross-

Swollen Density, Surface, Sectional Area,
Axis Ratio g/cm? em™! um?
1.00 1.103 1684 . L4871
0.379 1.095 194k 480
0.243 1.1k2 2085 S4Y
0.213 1.090 2259 537

A curvilinear regression analysis was performed using the calculated
Kozeny factors. Table VII presents the best-fit regression curves for this

data. Other information relevant to the regression is given in Table VIII.
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TABLE VII

REGRESSION CURVES OF LABRECQUE'S EXPERIMENTAL
KOZENY FACTORS

Axis
Ratio
1.00 k =
0.379 k=
0.243 k=
0.213 k=
Axis Ratio
1.00
0.379
- 0.243
0.213
Note: R =

3.
2.

2.

3.

7T +
hT5 +
603 +

567 +

Regression Equation

14.524(e-0.70)
11.03k4(e-0.60)
11.001(e-0.60)

9.165(e-0.60)

- 2.717(e~0.70)?2
+ 2.981(e~0.60)%

+ 5.356(e~0.60)2

3.983(e~0.60)2

TABLE VIII

REGRESSION ANALYSIS INFORMATION

Porosity Range

0.498-0.847
0.344-0.800
0.364-0.809
0.274-0.781

R’ SSW
0.92 L.87
0.90 5.28
0.92 k.Th

0.88 12.10

82.248(g-0.70)3
43.517(e~-0.60)3
21.715(e-0.60)3

6.07h(e-0.60)3

63.65
51.53
56.38

99.17

regression coefficient; SSW = sum of squares within
regression; T§§ = total sum of squares.
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APPENDIX II

EQUATIONS OF CREEPING FLOW IN ORTHOGONAL CURVILINEAR COORDINATES
AND TRANSFORMATION RELATIONSHIPS WITH CARTESIAN COORDINATES
The steady creeping flow of an incompressible Newtonian fluid is de-

seribed (52) by the equation of continuity

Vev = 0 (200)

and the equation of motion

uv2y - vp = 0. (201)

The creeping motion equation results from the steady-state Navier-Stokes
equation by assuming that the inertial forces are negligible relative to the

viscous forces, which is true for very slow flow. The velocity vector is
> A A A
LV = 11Vy] * 1avy + 13V3 (202)

N
which has components V1, V2, and v3 in the direction of the unit vectors ia,

ig, and i§ along the coordinate axes q;, 2, and qs.

Happel and Brenner (15) in the appendix to their book describe in detail
the usage of orthogonal curvilinear coordinate systems and the vector algebra
associated with such systems. The following discussion presents some of the

relationships pertinent to the analyses of this thesis.

The curvilinear coordinates are independent functions of position such
that q1 = qi1(x,y,2), g2 = gg(gjg,g), and g3 = q3(x.y,z). The use of curvi-
linear coordinates requires the introduction of metric coefficients h;, hy,

and hs, defined as follows:

s (203)

hy = |da,/ds,], h, = |dqa/dsa|, .hs = |dqs/ds;
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where s, is the distance along the coordinate curve qk. In an orthogonal

-k

system in which x, Yy, and z are known explicitly in terms of d1, 92, and g3,
ie., x= Efql,qz,g3), etc., the metric coefficients are readily deférmined

from the equation
1/n* = (ax/8q )% + (3y/3q,)? + (32/3q,)%, k=1,2,3.  (20k)

R . , :
Expressing the divergence of v in curvilinear coordinates, the equation of

continuity becomes

( /V“‘)_
v = hihzhs 9q1 <%2hi> 092 h3h1 3Q3\F1h2 oo (205)

The gradient of a scalar, p, is

Vp = €1h1(3P/3Q1) + E2h2(3p/3C12) + Esha(ap/BQ3)- (206)

The Laplace operator for a scalar function is

/iy - hy /h3 | '
, 3 a\ N 3\, 8/ 3
= . 0
V" = hihahs BQ1(E?h3 0q1) 3Q2\?ah1 9q2 BQ3\?1h2 3qi/ (201)
/ /.

~

-
The Laplacian of a vector function, v, is

V2$ = ;1 V2V1 - (Vl/h1)V2h1

Q

(Vl/hl)hlaq ~—(V Q1) + (Vz/hz)h13 =—(V2q2) + (Vs/ha)hrggy(vzéa)'

(208)
3h1 8h1 3 8h1 a ‘
- 2m? LTy Sq ——(v1/h1) - 2hy? a0z da; (Vz/hz) - 2hj? 55;-5ET(V3/h3)
Bhl2 3 3h22 3 L 8h32 3
+ Sy 55?(V1/h1) + h ErT 55;(V2/h2) + h ErY 5a;(va/h3)
+ . . N

A ~
continuing in this manner for the components in the direction of i, and ij.

The equation of motion has three components, as follows:
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In iJ direction:

- hy(9p/3q;) + U[%fvl - (v1/n1)V?h,

Vi ] 2 V2 3 __3_ ] 2
+ ET-hI EET(V a1) + Ty h, EET( 2q90) + Iy h, EEI(V as)
(209)
2 ohy 9 (v2 2 dh; 9 V3 ’
- o1 9 (Y2} _» o
2 h dq2 9q3 hz) hs 9q3 3ql<h3

dn? 3 (v, 9hs® 3 [va)| =
RTIET 9q2 hz) MRS T dq3\h3 0.
/

A
In i, direction:

- h2(9p/3q2) + ulyzvz - (v2/h2)V?n,

Vi ] ) 2 v
f Iy 2 n V2q,) + L2
hl 2 aq ( QI) 2 aq ( q2) (210)
2 ahz 3 V1)
2m Pq1 3Q2\P1
hi® 9 (vy 0
2 B2 aQI<h1) '
In i; direction:
- h3(dp/9q3) + ulV?vs - (v3/h3)V?h,
V1 ? LYz B ggzoy . Y
h_ 3 —q—-(V a1) Ty h3 T“(V Q) + N hy =— (V*q3)
(211)
z_jg_ 2 dhs
-2l 9q he 942 3Qa hz

_i. 3h2
* s as \\ hs 3a; Q2\ ;ﬂ
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The need frequently arises to transform expressions from a curvilinear
system to a Cartesian system, or vice versa. For this reason, some trans-
formation relatdions are presented below. The partial differential operator

3/9x equals the following:’
39/3x = h;*(8x/3q1) 3/9q; + hy2(9x/3q2) 9/9q2 + h3?(3x/3qs) 5/3QQ- (212)

The operators 9/3y and 9/9z are similar. This expression operating on Gy

yields

aqk/ax = hkz(Sx/aqk), k =1,2,3. (213)

Thé:partial differential operators 3/9q, are obtained by applying the chain
“k

rule for partial differentiation,

B/qu

k

(9x/3q, ) 3/9x + (9y/dq,) 9/0y + (3z/3q, ) 3/3z,

1,2,3. . (21%)
The conversion of the components of a vector, ip

-~ ‘A ~
vo=iv o+ jvy * kv, = i,vy + i,vy + igvs ‘ (215)

from one system to another is performed with the aid of the following re-

lationships:

b vx(BX/qu) + Vy(Sy/qu) + VZ(GZ/aq%ﬂ ,

v, =
k =1,2,3 (216)
v, = vih1(9x/9q1) + v2ha(9x/9q2) + vih3(9x/3q3), (217)

(likewise for vy and vz). s
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APPENDIX III
ELLIPTIC CYLINDRICAL COORDINATES AND RELATED PARAMETERS

The elliptic cylindrical coordinate system (£, n, z) is an orthogonal

curvilinear system related to the Cartesian coordinates by the transformation
x + iy = ¢ cosh(g§ + in), =z =2 (218)
with ¢, the focal length, greater than zero. The relationships

c cosh £ cos n, (219)

~
1]

¢ sinh £ sin n (220)

«
I

are obtained by expanding the right side of Equation (218) and equating the
real and imaginary parts. The ranges for £ and n are 0< § < @ and 0 < n < 2w,
The metric coefficients hi, ho, and hi for this coordinate system, determined

according to Equation (204), are as follows:

-1
hy = h = [E(sinhzg + sinzn)laﬁ

hy = 1. (221)

h,

Equations (219) and (220), upon elimination of n, yield
x%/(c2cosh?E) + y%/(e?sinh?E) = 1 (222)

which describes a family of ellipses of £ = constant. The major and minor

half-axes of an ellipse § = Eo are

o
]

c cosh £, (223)

o
n

¢ sinh go, (22k)

where &, > b . Combining these produces the relationship




a?-b?=c? (225)

which demonstrates that all the ellipses £ = constant are confocal, with foci

at x =+ ¢, y = 0. Likewise the equation

xz/(czcoszn) - y2/(c?sin®n) = 1 (226)

describes a family of confocal hyperbolas, n = constant, which have the same
foci as the ellipses and are normal to them. Define 80 = bo/ao, and eliminate
¢ from Equations (223) and (224) to obtain the relationship between EO and

the half-axes

CAL
"o
N[

1n[(1+8,)/(1-8_)1. (227)

ﬁTurning now to the unit cell model of porous space, the two ellipses of
thg mg@el defined by & = Eo and § = &; have half-axes a,s Eo’ and a1, bi,
respe§£ively.. The cell is related to the porosity of the assemblage of
cylinders by observing that the ratio of the area of the inner ellipse to the

area of the outer ellipse equals the solid fraction, (1-e). Thus,
(a_b_)/(a1by) = (1-€). (228)

The relationship between porosity and the axis ratios BO and B1, by using

Equations (225) and (228), is found to be

(1-812)/B; = (1—8)(1—802)/80. (229)
Solving for 81,
By = (}i + a02 -1)/ag, (230)

where

1/a

(1-e)(1-B_*)/(28 ). (231)
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Expressions for sinh EO and cosh Eo are obtained from Equations (223), (22k),

and (225), resulting in the following:

cosh EO = ao/c = 1//1—802,
sinh Eo = bo/c = Bo//i-Boz.

From these,

tanh 50 = sinh £O/cosh Eo = BO.

Other relationships which are sometimes needed are as follows:

L 1By 1.8\
E1-€_ = = lnjz—pea |
o 2 \3—81 l+30/

1+ B 2)/(1-87%)

cosh 250 o

sinh 2§ = 28 /(1 - 302) = o (1-¢)
sinh 2&; = @o.

The derivations of the above are fairly straightforward.

(232)

(233)

(234)

(235)

(236)

(237)

(238)
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APPENDIX IV

-ANALYSIS FOR PERPENDICULAR FLOW ALONG
THE MAJOR CROSS-SECTIONAL AXIS

The boundary value problem describing flow perpendicular to an elliptic
cylinder along the major cross-sectional axis is stated in Equations (90),
(9k), (96), (179), and (180). The solution is developed in & manner similar

to that presented in the text for flow along the minor cross-sectional axis.

The solution for Y is stated as before:

ECTIIES (239
vep(1) = g - o (2k0)
v2y(2) = & y/n? )
- VZw = 0. (2k2)

w(l) = ) (ajsinh JE + bjcosh J€) sin jn | (243)

w = (A
Ly

sinh j& + Bjcosh j&) sin jn. (24h)
The sine function is chosen because the vorticity is maximum at n = m/2 and
zero at m = 0. Usihg'thé zero vorticity condition on £ = £;, the expression

becomes

w = B(x)(sinh £ - tanh &; cosh &) sin n. (245)

The factor B(x) will be determined later. Equation (239) calls for restating

the boundary conditions:
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ap()/an + 99(2)/an = Uc sinh £ cos n  on E = £, (2L6)
ow(1)/8g + ap(2)/3¢ = Uc cosh £ sinn  on & = € (247)
ap(3)/an + ap(2)/an = 0 on £ = £ (248)

v2y(2) = o on § = £ (249)

Assume that

(250)

1}
o
<

Lap(*)/0E]

0

(251)

"
(]

Loy /an],

0]

In Equation (243), the selection of j =1, a, = Uc, and b, = O satisfies

Equations (246) and (247), yielding ) - .
p{1) = ye sinh £ sin n (252)
as the desired solution for w(l). Equation (248) gives
[aw(z)/an]€=gl = - Uc sinh &; cos n (253)
which, on integrating, becomes
[W(Z)JE=£1 = - Uc sinh &; sin n (254)

where an integration constant of zero is chosen.
An approximate solution will be found for the Poisson equation,
32p(2)/3g2 + 92y(2)/3n2% = - w/n?. (255)

Integrating between EO and £,, the result is




a2 gl (2) €1
g(x)(n) t— Y ag = - (w/n?) 4, (256)
dn Eo EO
where
g = twleel oo (esm)

A polynomial form for w(z) is assumed, as follows:
V(2) = 1a(-E )% + Ta(E-€)7 + TulE-E )" + Cs(E-£ )5, (258)

The Ci factors are functions of n. An additional condition is

2,(2 2 2,(2) 2 = _ 2
[a2y(2)/5¢ ]5=Eo + [a2p(2)/0n ]€=€O (w/h )£=£o (259)

- The conditions in Equations (2L49), (254), (257), and (259) are used to solve

for the Ci factors, with the following results:

L2 = - B(x)czsin n (sinh®¢_ + sin®n) o/2 (260)
L3 = - Uc sinh &1sin n (1/2 + 10/682)/8 - hg(x)(n)/d2 - 3C2/8 (261)
Ly = Uc sinh &;sin n (1 + 15/82)/82 + 7g(x)(n)/63 + 37,/8%2 (262)
és = - Ue sinh &;sin n (1/2 + 6/82)/8% - 3g(x)(n)/6“ - r2/85. (263)

Yet to be determined is g(x)(n). The two integrals in Equation (256) are

evaluated as follows:

€1
J{ w(2) dg = - Uc sinh £;sin n (6/2 + §%/120)

&€
° - 6%g(,y(n)/10 + 8%¢, /60, (264)
&1

Jf (w/h%) A = B(x)cz[t(x)sin n + X sin’nl, (265)
€
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where

t(x) = [cosh’f; - cosh3£o - tanh &, (sinh’f, - sinhago)]/3

- (cosh &, - cosh Eo) (266)

and A is as defined in Equation (126). Introducing these into Equation (256)

produces the differential equation

g(x)"(n) - 10 g(x)(n)/G2 = ¢(x)(sin n, (267)
where
Q(X)(sin n) = D()sinn + E(x)sin3n (268)
D(y) = Ue sinh &1 (5/8 + 8/12) + 1OB(X)c2t(x)/62
+ GB(x)czc(sinhzio—6)/l2 . (269)
By = 10 B(X)czx/a2 +386 B(x)czo/h. | (270)
The solution is
g(y)(n) = - 62[%(x) + 662E(x)/(962+lO£J(sin n)/(82+10)

- GZE(X)(sin3n)/(962+lO). (271)

The parameter B(x) is determined as before from the biharmonic equation

evaluated ab & = Eo' After integration over n and solution for B(x)’ the

result is

Blg) = - G(X)U/c (272)

X)) =" [R/T(x)] sinh & (213)
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T(y) = T2 - 60t(x)9/[63(62 +10)]
+ 30 A[(Q + 7/2)/8% + 120/(8% + 10)1/[8(96% + 10)]
To = = A + 2cosh 28 - 3/h + (1/4)@(cosh 26 - 13)/(6% + 10)
+ 278%0/[(62 + 10)(982 + 10)] + (9/4)(Q + 7/2)/(962 +-10)

with R, @2, and A as previously defined.

(274)

(275)

The stream function, Yy, for the fluid moving past an immobile cylinder

with a fixed reference system is determined in the following manner.

is described by

2 o
=v - Ul

f=4 4

where the components are

U, =V Uhe sinh cos
£ £ & n,

un = vn + Uhec cosh § sin n.
Define Y, in terms of EE and up:
ug/h = 9y, /om, un/h = - 9, /9¢.

Solving for Y, yields

Vs =j31b(2)/3n an = y(2) -

The drag force due to flow past the stationary cylinder is given by

The flow

(276)

(217)

(278)

(279)

]

(280)

Equation (151). Using Equation (152) for the stress tensor, II, and seeking

only the x-component because it alone is nonzero, the drag force becomes

Fly) = -~§; p(f 1) as + 2u vf (Ari )ed ds.

]

(281)
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As in the case of flow along the minor axis:

A, =a, § . 282
g T Gentn (282)
The unit vector dot products are
Eg-f = he sinh £ cos n, (283)
fn'g = - hc cosh & sin n. (284)
The drag force now is
an 21
F = - ¢ sinh § p cos n dn - 2uc cosh § d,_sin n dn. (285)
(x) 0 o &n

The pressure expression for this problem is developed from Equation (168) as

before, but now the Laplacian of w(z) is
v2y(2) = _ B(4)Sin N (sinh & - tanh £; cosh £)/n?. (286)
The pressure derivative is
op/oE = - uB(X)cos n (sinh E‘— tanh &) cosh &) (287)
which is integrated to give
P =D, - uB(x)cos n (cosh § - tanh &) sinh £). (288)
Evaluation of ggn at § = £o prodyces

(dEH)E=EO = - B(x)o(sin n)/2. (289)

Performing the integration in Equation (285) and simplifying provides the drag

force expression
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F(x) =-7mTupUu G(x) tanh &;. (290)

Using the same method as before, the Kozeny factor for this flow problem is

K(yx) = sasoG(x)tanh £1/[H%(1-g)]. - (291)
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APPENDIX V

KOZENY FACTORS FROM THEORETICAL ANALYSES

TABLE IX

THEORETICAL KOZENY FACTORS FOR PARALLEL FLOW (EXACT SOLUTION)

Axis Ratio

Porosity 0.999 0.900 0.800 0.700 0.600
0.99 31.056 31.039 30.981 30.863 30.654
0.95 10.760 . 10.761 10.761 10.763 10.763
0.90 7.313 T.316 T.326 T.347 7.381
0.85 5.97h 5.978 5.992 6.019 6.065
0.80 5.23% ) 5.239 5.254 5.284 5.33h4
0.75 L.756 L.761 L.776 L .806 4,856
0.70 4.418 4. he2 L. 437 L. 466 L.513
0.65 4,164 L.168 4,181 4,208 L.251
0.60 3.96L 3.968 3.980 4. ook L.ok3
0.55 3.803 3.806 3.817 3.837 3.971
0.50 3.670 3.673 3.681 3.697 3.726
. Axis Ratio

Porosity 0.500 0.400 0.300 0.200 0.100
0.99 30.300 29.697 28.625 26.573 22.08k
0.95 10.757 10.737 10.67k 10.490 9.886
0.90 T.433 7.507 T.605 T.700 T.579
0.85 6.136 6.240 6.382 6.543 6.562
0.80 5.411 5.523 5.675. 5.851 5.994
0.75 4.933 5.043 5.192 5.377 5.651
0.70 L4.586 4.690 4.833 5.032 5.433
0.65 4.318 4.415 L.553 Lol 5.288
0.60 4,102 k.,192 4.329 4.578 5.188
0.55 3.92k 4.007 L. 1k7 4 426 5.117
0.50 3.772 3.851 3.998 L.307 5.064
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TABLE X

THEORETICAL KOZENY FACTORS FOR PERPENDICULAR FLOW
ALONG MINOR AXIS

Axis Ratio
Porosity 0.999 0.900 0.800 0.700 0.800
0.99 Sh.,1h1 54.830 55.569 56.361 57.215
0.95 20.377 20.717 21.073 21,437 21.801
0.90 1k.202 14,500 14.813 15.138 15.473
0.85 11.731 12.025 12.34%0 12.675 13.038
.0.80 10.342 10.6kkL 10.97k 11.336 11,7&7
0.75 9.43k 9.749 10.101 10.497 10.967
0.70 8.785 9.117 9.49l 9.931 10.469
0.65 8.29k 8.645 9.051 9.533 10.147
0.60 7.907 8.279 8.716 ' 9.2L8 9.9uL
0.55 7.593 7.987 8.458 9.043 9.828
10,50 7.332 7.749 8.256 8.897 9.778
Axis Ratio
Porosity -  0.500 0.500 0.300 0.200 0.100
0.99 - 58.12h 59.01k 59.556 58.392 49.760
0.95 22,14k 22,417 22,502 22.171 21.708
0.90 15.816 16.173 116.601 17.462 22,2k
0.85 13.4k9 13.969 1k4.809 16.885 27.620
0.80 12.250 12.967 14,271 17.706 35.876
0.75 11.580 12.520 14,343 119.335 46.65T
0.70 11.206 12.395 1k, 796 21.568 59.861
0.65 11.020 12.483 15.526 2k.320 75.453
0.60 10.966 12.728 16.479 27.548 '93.417
0.55 11.011 13.097 17.626  31.232  113.746
0.50 11.13k 13.571 18.947 35.357  136.435
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TABLE XTI

THEORETICAL KOZENY FACTORS FOR PERPENDICULAR FLOW
ALONG MAJOR AXIS

. Axis Ratio
Porosity 0.999 0.900 0.800 0.700 0.600
0.99 54.130 53.699 53.133 52,384 51.371
0.95 20.371 20.088 19.732 19.285 18.715
0.90 1k.197 13.92k4 13.592 13.188 12,694
. 0.85 11.725 11.k445 11.113 10.718 10.2k49
0.80 10.336 10.045 9.705 9.310 8.853
0.75 9.428 9.122 8.772 8.373 7.922
0.70 8.779 8.458 8.096 T.691 T.243
0.65 8.287 7.950 7.576 7.165 6.719
0.60 7.900 7.546 7.159 6.742 6.297
0.55 T.586 7.215 6.815 6.390 5.948
0.50 T.32h 6.936 6.522 6.092 5.652
Axis Ratio
Porosity 0.500 © 0.k400 0.300 0.200 0.100
0.99 L9 .95k 47.889 Lk . 696 39.359 29.367
0.95 17.976 16.991 15.635 13.678 10.656
0.90 12.083 11.322 10.361 9.133 7.585
0.85 9.692 9.031 8.255 T.371 6.505
0.80 8.326 T.730 T.076 6.416 5.976
0.75 RN 6.870 6.308 5.816 5.672
0.70 6.756 6.249 5.765 © 5.ko7 5.480
0.65 6.248 5.777 5.359 5.111 5.350
0.60 5.841 5.403 5.043 L.888 5.258
0.55 5.505 5.098 L.791 L.716 5.189
0.50 5.223 4,84y 4.585 4,580 5.136
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APPENDIX VI

COMPUTER PROGRAM FOR CALCULATION OF DIRECTIONAL KOZENY FACTORS

KOZENY FACTOR CALCULATION -- ZERO VORTICITY MQDEL
COMPOSITE KOZENY .FACTORS--ELLIPTIC CYLINDERS

DOUBLE PRECISION POR,BO,ALPHA,B1,DX,X,H,FK,P(501), SIGMA AL,PIKSQ,
1 COSHX1,COSHXO,SINHX1,SINHXO,SH2X0,CH2X0,X0,X1,TANHX1 ,DX1,DX9,
2 SIG,ZLAM,TL,R,TlA,TlB,TlC,TlD,Tl,T2,T3,T, FAC1,FAC2,BRK,BR,

3 1TM,TA,TB,TC,TD,Gl,G2,FK1,FK2,FKPAR,FKISO,FKCOS ,FKEXP ,FKAVG

WRITE(6 101)
FORMAT('OCOMPOSITE KOZENY FACTORS FOR CREEPING FLOW THROUGH
WRITE(6,102)

FORMAT(' ', 9X,'ASSEMBLAGES OF ELLIPTIC CYLINDERS')
READ(5,105)B0,POR1 ,NPORDL . .
FORMAT(2F10 0,I3)

NPORDL = 1 FOR 0.001,10 FOR 0.01, 50 FOR 0.05, ETC.

IF( BO )15,15,25

WRITE(6, 115)Bo

FORMAT(’OBO = ',F6.3)

WRITE(6,117) '

FORMAT( 'O . POR K-PARL K~PER1 K-PER2 K-ISO
1-COS  K-EXP K-AVG') :

NOPOR = (1 - POR1)¥1000
DO 10 L=1,NOPOR,NPORDL
POR= POR1 + (L-1)%*0.001
ALPHA=2,0%BO/((1.-BO*#*2)%(1.-POR))
Bl=(DSQRT(1.+ALPHA¥*%2)-1)/ALPHA
DX=DLOG((1.+B1)*(1.-B0)/((1.-B1)¥(1.+B0)))/2.0
COSHX1=1/DSQRT(1.-BlL¥¥2) ‘
COSHX0=1/DSQRT(1.-BO*¥2)
SINHXO=BO/DSQRT(1.-B0*¥2)
SINHX1=B1l/DSQRT (1.-B1¥*2)
X0=0.5%DLOG( (1+B0)/(1-B0))
X1=0.5%DLOG( (1+B1)/(1-B1))
SH2X0= 2.*SINHXO*COSHXO
CH2X0= 2.*SINHXO*¥*2 + 1.
TANHXl Bl

= 3.1415926536
PARALLEL FLOW--ELLIPTIC CYLINDERS-~EXACT SOLUTION
SIGMA=0.0
AL= 2.%DX
KSIGN=1
H=(3.+10.%B0O+3.%¥B0**2) /(L4 . *(1+B0))
DO 50 K=1,501,2
PIKSQ=(PI¥K)*#*2
BRK= KSIGN*ALPHA+(K* PI /(2.%AL))*((1+BO¥%¥2)/(1-B0o*¥2))
BR=0.500+(L.*AL*¥*2/ (PIKSQ+k , ¥AL¥¥2 ) ) ¥XBRK**2
P(K)=2.,*AL*#3%BR/ (PIKSQ* (PIKSQ+k4, ¥AL¥%¥2) )
SIGMA=P (K )+SIGMA
KSIGN=-1
IF(P(K)-.000001)55,55,50
MAXK=K
GO TO 60

)




50
60

C

10
500

15
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CONTINUE
FKPAR= (BO*POR /(1-POR ) )¥%*3/(H¥*¥2¥SIGMA*(1-BO¥¥2)*%2)
PERPENDICULAR FLOW ALONG MAJOR AXIS OF ELLIPTIC CYLINDER
DX1=DX¥*2+10.0

DX9=9.0%DX*¥2+10.0

SIG=SINHXO-TANHX1*COSHXO

ZLAM= COSHX1-COSHXO-TANHX1* (SINHX1-SINHXO)

TL= (COSHX1¥*3-COSHXO*¥*3-TANHX1¥ (SINHX1¥**3-SINHX0**3))/3.

1 -~ (COSHX1-COSHXO)

R= CH2X0*(2.5%DX**L_60.%¥DX¥*¥2+4900. )/ (DX**L4*DX1)

1  + SH2XO*(DX*¥L-30,*DX*¥2+600. )/ (DX**3%DX1)

FAC1= 7.*CH2X0/DX + L.*SH2XO

FAC2= 10.¥ZLAM + 0.75%*SIG¥DX**¥3

T1l= FACL¥*(10.*TL+DX*¥3*SIG¥* (SINHXO¥*¥2-6.)/12,+6 ., ¥DX*¥*2*FAC2/DX9)
T2= (FACl/2. + 1.75/DX)¥*FAC2

T3= —(1.+18./DX*#2)*SINHXO**L - 18.*SINHXO¥**3*¥COSHXO/DX + 0.875

1 - (2.+18./DX¥¥2)*SINHXO*¥2 — 9.*¥SINHXO*COSHXO/DX ~ 6.75/DX**2

T= 6.%T1/(DX*¥*2%DX1) +6.%T2/(DX*¥2%¥DX9) - SIG*T3

G1=SINHX1*R/T

FK1 = -B1*POR¥**3*BO*G1l/(H*¥2*(1.-POR))

PERPENDICULAR FLOW ALONG MINOR AXIS OF ELLIPTIC CYLINDER

TM= (COSHX1¥**3-COSHXO**3-TANHX1*(SINHX1**3-SINHX0**3))/3.
1  ~TANHX1*(SINHX1-SINHXO)

T1A= (3.-18./DX*¥2)*SINHXC**4 -~ 18,*SINHXO¥**3*¥COSHXO/DX -SH2X0¥#*2
1 + (6.-18./DX*%2)*SINHXO**2 — L 5%SH2XO/DX - 6.75/DX¥*%¥2 + 3,125
T1B= -1,75%SH2X0%*%¥2 - L5,5%SINHXO¥*2 - 24,5
1 - L4, *DX*COSHXO¥*#*3*SINHXO - 12.*DX*SH2XO

T1C= 189.*DX*¥2%CH2X0O + 108.¥DX¥*¥3%SH2XO0

T1D= 31.5%COSHXO¥¥2 - 23.625 + 9,*DX*SH2X0

TA= T1A + T1B/DX1 + T1C/(DX1¥DX9) + T1D/DX9

TB= -(2L0.*DX*¥SH2X0 +420.*CH2X0)/ (DX*#*3%*DX1)

TC= (210.%CH2X0 + 120.¥*DX¥SH2XO - 105.)/(DX**3*¥DX9)
1 + (2520.%CH2X0 + 14L0.*DX*SH2X0)/(DX*¥DX1¥DX9)

TD=SIG*TA + TM*TB + ZLAM*TC

G2=COSHX1*R/TD

FK2 = POR¥*3%BO*G2/(H**2¥(1.-POR))

COMPOSITE KOZENY FACTORS

FKISO = 0.50%FKPAR + 0.25%(FK1 + FK2)

FKCOS = FKPAR/3. + (FK1 + 2.%FK2)%*2./9.
FKEXP = 0.06T¥FKPAR + 0.109*¥FK1l + 0.82L¥FK2
FKAVG = (FKPAR + FK1 + FK2)/3.

WRITE(6,500)POR,FKPAR,FK1 ,FK2,FKISO ,FKCOS ,FKEXP ,FKAVG
FORMAT(' ',F6.3,7F11.3) '
GO TO 5

STOP

END
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APPENDIX VII
DERIVATION OF COMPOSITE KOZENY FACTOR

Consider the flow past a fiber whose central axis makes an angle 6 ﬁith
the flow direction or the normal to the mat plane. (see Fig. 20). The drag
— LN
force, F, is in the direction of -U. The magnitude F is seen from Fig. 21 to

be related to the components parallel to and perpendicular to the fiber's

central axis, E(z) and E(t)’ respectively, by
F(z) =TF cos 6, (292)

F sin 6. (293)

Fle)

Also, F is the sum of two parts, as follows:

F = Fysin o + F(,)c08 6. (294)

t
The drag force is proportional to the pressure drop, which in turn by the

Kozeny-Carman equation at constant W, €, and m is proportional to k+U. The

drag force becomes
F « kU = k(t)U(t)Sln 6 + k(Z)U(Z)COS 0. (295)

The velocity components are

Urgy = U sin 6, | (296)
Uiy = U cos 8. (297)
The composite Kozeny factor is
= . 2 2
k k(t)51n 8 + k(z)cos 8. (298)
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fiber

7 plane of mat

Figure 20. TFlow Past a Fiber Within Mat

Figure 21. Resolution of Drag Force Into Parallel and
Perpendicular Components

‘v
fiber

cross section ' %

Figure 22, Perpendicular Flow Past a Fiber of Elliptic Cross Section
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For a fiber of elliptic cross section, the perpendicular flow component
depends on the orientafion of the cross section relative to the flow direction.
Define ¢ as the angle between the major cross-sectional axis of the cylinder
and the plane of the mat, as shown in Fig. 22. The perpendicular drag compo-

nent, as seen in Fig. 23, is equal to

F,,\=F, \sin ¢ + F (2
(6) = F(x)®in & * Fryyeos ¢ (299)
which as before yields the combined Kozeny factor expression

k(g = k(ysin 26 + k(y)cosz(p (300)

The composite Kozeny factor for an elliptic cylindrical fiber mat is

k‘= [k(x)sin2¢ + k(y)cosz¢]sin26 +‘k(z)cosze. (301).
F
Fiy)
F(x)sin b= F i) ¢

Figure 23. Resolution of Perpendicular Drag Force into
Components Along Cross-Sectional Axes
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APPENDIX VIII
ESTIMATION OF INTERFIBER CONTACT AREA

Consider a mat of solid fibers of elliptic cross section. An estimate
is desired of the fraction of the total fiber surface area in contact with
other fibers and, therefore, excluded from being passed by a permeating

fluid. The fibers have a cross-sectional area, éf’

A,=Ta b, (302)

where ao and bO are the major and minor semiaxes, respectively, of the

elliptic cross section. Assume that A_ and the fiber density, pf, are in-

dependent of stress on the fiber. The fiber perimeter is ﬂgog, where H is

defined by Equation (79). The geometric surface area for a fiber, éo’ is

Aj=ma HL, (303)

in which Lf is the fiber length. The fiber specific surface, §v’ as used in

the Kozeny-Carman equation is the ratio of wetted surface area, éw’ to

fiber volume, Vf:

sv = AW/Vf. (30kL)

For a rigid fiber with true point contact with other fibers, the wetted area
and the geometric area are equal. But this is not so for a deformable fiber
since the fiber crossing points exclude some surface area from the fluid.

The wetted area is simply the geometric area minus the contact area, éc:

A=A -A. (305)
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If the mat is under zero stress, there will be no deformation at the contaets, -

and Ac = 03 but this is not the practical case. The contact area for a fiber

is

A =A'N (306)

in whiéh.Aé is the mean contact area per contact per fiber and NC is the

number of fiber-fiber contacts per fiber.

The mean contact area, éé, can be predicted by means of an analysis by
Finch (47). For the case of two curved isotropic elastic solids in contact,
Finch derived expressions for the pressure distribution and the shape of the
contact interface using as a theoretical . basis thelwork of ﬁertz (48). Thé '

surface of pressure between the two solids is bounded by an ellipse of semiaxes

a and b (a_ > b ) defined by
-C -C -C —E.

a, = mK (307)
bc = nK | (308)
K = [(3/2)nFN<kI + k3)/(1/Ry1 + 1/Ryz + 1/Ry + 1/322)]1/3. (309)

In this expression F_ is the normal force pressing the two bodies together;

E; and ké for each of the two solids are defined by
k' = (1 - v?)/(2E), (310)

where Vv = Poisson's ratio and E = Young's modulus; R;; and R;, are the radii
of curvature of one solid and 321 and Bzz are for the other. The concern here
is with two identical fibers in contact, for which Ri1 = Rgo; = R and Ri2 =

Rz2 = ©, The expression for Kk reduces to

K = (3ﬂFNRk'/2)1/3. (311)
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The factors m and n are transcendental functions of an auxiliary angle, T,

and are defined by

md = 2/[7 sin?(t/2)] g [(1 + £222)3(1 + zz)]‘l/2 dz (312)
0

=]
1

2/[m cos?(t/2)] ~g“ [(1 + 22/£2)3(1 + zz)]_l/2 dz (313)
0 :

The parameter f is such that

f="1/a, =na/m . (31h)

and 1s determined implicitly as a function of T from

(o

(s £222)3 (1 + 22)]17Y2 g
£3 2 2 = tan®(t/2). (315)
J{ [(1 + 22/£2)3(1 + Zz)]~1/z iz
0
The area of contact, éi, is
- - 2
A: =T a, bc =Twmn K*. (316)

The mean contact area, éé, for two fibers crossing at an angle A between their

central axes is determined from the equation

m/2
AC' = f Ag g(A) da. (317)
0

é: of course is a function of A. The frequency function g(A) must be

specified before Aé can be calculated, and must satisfy

n/2 '
J g(A) ax = 1. (318)
0
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At X = 0 the analysis breaks down, so the chcsenlg(k) must exclude A = 0.

as a possible crossing angle. The form

g()) = ¢, sindA (319)
can be ﬁsed, yielding for éé,
A' =c, Tk?1I,, 32(
c J J . : ( Q)
m/2 .
I, = J, mn sin9A dA. (321)
J 0

The integral Ij must be evaluated numerically. The frequency function

g(A) = sin A (322)
seems like a reasonable:choéice. On calculation of the integral, the mean con—'
tact. area becomes

Al = 1.159 m k. (323)
The number of contacts per fiber is

N, = Lf/LS, (324)

where LS is the segment length, or mean distance between contacts. The assump;

tion that Ls is much less than Ef is made so that the fiber ends are neglected.

The wetted surface area is

A =4A - Ac = ﬂaoHLf[l - Aé/(ﬂaoHLs)]. (325)

Wilder (2;) has correlated segment length and consistency, ¢, by assuming the

relationship

YO
L/Ly, = (co/c) . (326)
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where LSo and co represent values for the unloaded mat. The theoretical

analysis of Onogi and Sasaguri (38) provides the equation

- 2
c, =M AL pf/(h Lo t), (327)

where 1 is the fiber thickness. ©Since here the concern is with elliptic

fibers assumed to be in contact with their major axes in the plane of the mat,

s en

t =2b . This last equation is rewritten to give

L, = w3 a, pp/(8 co). (328)

Using this and the Wilder equation,

— 3 Y08
L, =7 a_ 0, (co/c) /( co). (329)

Inserting this into the equation for AW yields

Y
= _ O 2. 4
A =ma HL[1 - c (c/c ) Al/(Ha 1p )], (330)
Convert to specific surface by dividing by Yf = ﬂEoEoEf:
Y0 2.4
- - ]
s, =8,[1 - (c/e ) ® Al (8¢ )/(a m'Hp,)], (331)

where Svo is the specific surface for zero contacts,

S, = H/bo. (332)

Introduce the porosity, €,

(1-g) (333)

c=pf

and assume that Yo = 1. The specific surface becomes

sv'= s, [1 - 84A! (1-e)/(n* a2 ). (334)
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Define 60 as the fraction of Svo lost due to interfiber contact:

s, =8, (1-6), (335)

v Vo

s, =8 (1.159) «? (1-g)/ (w3 ao2 H). (336)

In Equation (311), expressions for F. and R are needed. R is the radius

of curvature at the point of contact, which for an ellipse is
.. 2 :
R=a /v . (337)

Real fibers do not have truly elliptic cross sections but oval ones instead
whose R at the contact point is greater than that defined by Equation (33]).

Therefore, a distortion factor, s, is introduced:
= 2
R=s a, /bo. (338)

The values for s for the fibers of Bliesner and Labrecque were estimated from.
the microphotographs of the fiber cross sections. Bliesner's fibers of axis

ratios 1.00, 0.34L, and 0.242 have s values of 1.0, 1.7, and 1.5, respectively;
and s value of 1.0 was found for Labrecque's circular fibers and 1.2 for his

neoncircular fibers.

The normal force on a contact point, E , divided by the mean contact

area equals the stress on the solid fraction of the mat, 128

p, = Fy/Al. (339)

S

The compacting pressure on the mat, Peo is related to p_ by

p, = pp/(1-€). (3k0)
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To eliminate Pes introduce the Campbell equation for mat compressibility

(35),

c = pf(l—e) =M pr (3h41)

in which M and N are constants dependent on the mat. Thus,

= A1 =1 1/N
Fy = AL (1-e)7" [p(1-e)/M]™ 7 (342)
For the choice g(A) = sin A, Al =1.159 T k2, and
Fy = 1.159 m k2 (1-e)7? [pf(l—a)/M]l/N. (343)

Inserting these relationships for F_ and R into the k equation, and then

using it in the expression for Gc produces. the following:

5 =88.0 %2 s’ [pf(l-e)/M]g/N/[BOZH(l-e)]. (34h)

Replacing k' with Equaetion (310) yields

2/N

§, = 22.0 (1 - v2)? sz[pf(l—a)/M] /[BozEZH(l-e)]. (345)

This estimates the fraction of surface area excluded from the fluid due %o
interfiber contact, using as parameters the fiber properties (v, E, Pps S Bo)

as well as mat properties (e, M, N).

The properties for Bliesner's experiments are summarized in Table XII.
The calculated estimates of percentage contact area in Bliesner's mats are
given in Table XIII. All properties except E and v were determined from
experimental data. The values of E were obtained from data for similar fibers

(35), and the v value was a guess. A
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TABLE XII
PROPERTIES OF BLIESNER'S FIBER MATS
Pes E, .
Fiber B s  g/cm® M N dynes/cm®" v
Nylen 1.00 1.0 1.112 0.0103 0.229 3 x 14’  0.35
Nylon 0.344 1.7 1.108 0.01k0 0.247 3 x10°  0.35

Orlon 0.2k2 1.5 1.158 0.0130 0.200 3 x 10'° 0.35

TABLE XITII

ESTIMATES OF PERCENTAGE CONTACT AREA IN BLIESNER'S FIBER MATS

Axis Ratio )
Porosity 1.00 0.344 0.2k2
0.90 1.0 x 10°°® 6.8 x 1077 2.0 x 1076
0.70 - 4.9 x 1073 1.7 x 1078 ©0.0L0
0.60 0.05 1.3 x 1073 0.53-
0.50 0.25 | 0.06 3.93
0.40 1.0k 0.23 20.3

For the nylon fibers used by Labrecque,-BB, pf, and E were found from
experimental data., The value of v was assumed to be 0.35. The compressibility

constant M for the circular fiber was estimated from the relationship (35)
Mo E 0024 (346)

which yields for two fibers

My = My (Ep/E)% "2%, (347)

Past work for a fiber with E = 3 X ld"g-'.dynes/cm2 has found that M = 0.010k4;

_Since Labrecque's fibers have E = 2.7 X 108 dynes/cmz, M is calculated to be
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0.0185. But this is not valid for noncircular fibers. Assume M is inversely

related to.Bé by
Ma/My = (B, /B5,)Y. (318)

From Bliesner's data, Y is approximately 0.287 and the oval fiber M values
can be estimated. N is assumed independent of the axis ratio. Table XIV
presents the values for the properties of Labrecque's fiber mats. Contact

ares estimates are given in Table XV.

TABLE XIV

PROPERTIES OF LABRECQUE'S FIBER MATS

Axis Pe> E, .
Ratio s g/cm® M N dynes/cm? \Y
1.00 1.0 1.103 0.0185 0.225 2.7 x 10° 0.35

0.379 1.2 1.095 0.024k 0.225 2.7 x 108 0.35
0.243 1.2 1.1k2 0.0278 0.225 2.7 x 108 0.35

0.213 1.2 1.091 0.0288 0.225 2.7 % 10°® 0.35

TABLE XV

ESTIMATES OF PERCENTAGE CONTACT AREA IN LABRECQUE'S FIBER MATS

Axis Ratio
Porosity 1.00 0.379 . 0.2h3 0.213
0.90 9.1 x 1077 1,1 x10°% 1.k x107% 9.4 x 1077
0.70 5.3 x 107 6.4 x 107 8.3 x10"%® 5.5 x 10°°
0.60 " 0.051 0.062 0.081 0.053
0.50 0.30 0.36 0.47 0.31

0.0 1.26 1.53 1.98 1.29




