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CREEPING FLOW THROUGH AN ANNULAR STENOSIS IN A PIPE

By

A. M. J. DAVIS

University of Alabama, Tuscaloosa, Alabama

Abstract. The creeping flow disturbance of Poiseuille flow due to a disk can be de-
termined by the use of a distribution of "ringlet" force singularities but the method
does not readily adapt to the complementary problem involving an annular constric-
tion. Here it is shown that a solvable Fredholm integral equation of the second kind
with bounded kernel can be obtained for an Abel transform of the density function.
The exponential decay associated with the biorthogonal eigenfunctions ensures that
the flow adjusts to the presence of the constriction in at most a pipe length of half
a radius on either side. Methods that depend on matching series at the plane of the
constriction appear doomed to failure. The physical quantities of interest are the
additional pressure drop and the maximum velocity. The lubricating effect of inlets
is demonstrated by extending the analysis to a periodic array of constrictions.

1. Introduction. The effect of a constriction or stenosis on axisymmetric Poiseuille
flow is of interest over a wide range of Reynolds numbers, from high speed exhaust
gases through arterial blood flow to the transport of crude oil. Likely shapes for
the stenosis are a differentiable axisymmetric surface with only one local minimum
of the pipe radius, a nonzero length of narrower concentric pipe or a thin annular
disk whose outer radius equals that of the pipe. The last two of these shapes allow
the use of cylindrical polar coordinates but are likely to yield mixed boundary value
problems. In the creeping flow approximation, the rapid exponential decay of the
pipe eigenfunctions ensures that disturbances to the flow are confined within a pipe
length of half a radius both upstream and downstream.

Though presented as a mixed boundary value problem, the solution given by Shail
and Norton [1] for the creeping flow disturbance due to a disk is equivalent to that
constructed by using "ringlet" force singularities, modified to take account of the
pipe wall [2], In [1], the authors remark that their method cannot handle the annu-
lar constriction; this is due to several integrals not having closed form evaluations.
Related difficulties arise when the "ringlet" distribution technique is applied to an
annular disk [3] and are manifested in the integral equation by the appearance in
the kernel of a term that is singular at the inner rim. After transfer to the outer
rim, this singularity is seen in Sec. 3 to be eliminated when the outer rim coincides
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with the pipe wall, as is the case for the annular stenosis. After solving the integral
equation of the second kind by means of Chebyshev approximation, the additional
pressure drop due to the constriction and the maximum flow velocity are computed
for radii ratios in the range 0.2 to 0.9. However, an accurate estimate of the regions
of separated flow, on either side of the annular constriction, is unavailable because
the series expansion is in terms of pipe eigenfunctions with exponential decay away
from instead of towards the axisymmetric corner.

The pipe eigenfunctions of the repeated Stokes operator are described in Sec. 5
but do not furnish a method of solution because the linear systems obtained are
ill-conditioned. The difficulty is due to the mixed conditions. In using the biorthog-
onality of the tangential velocity and pressure eigenfunctions, it is necessary to in-
troduce the unknown pressure jump across the constriction. The normal velocity
and vorticity are continuous in the hole, by construction, and so an equation for the
unknown function is obtained by requiring the total normal velocity at the annular
constriction to be zero. The situation is similar when the stenosis is a nonzero length
of narrower concentric pipe. In this case the biorthogonality of the normal velocity
and vorticity in the narrower pipe must also be used before obtaining the governing
equation, as above. Thus it seems imperative, as in this paper, to avoid the use of
pipe eigenfunctions in the construction of the velocity field for flows of this type.
Such a strategy was employed by Dagan, Weinbaum, and Pfeffer [4] in their infinite
series solution for the creeping flow through an orifice of finite length. Their method
appears to be amenable to adaptation for the flow through the narrower pipe steno-
sis. A related two-dimensional problem, creeping flow through a sudden contraction,
was solved with a finite-difference scheme by Vrentas and Duda [5] and with eigen-
function expansions, matched to corner solutions for greater accuracy, by Phillips
[6]. Both papers show flow patterns with separation well within the region where
the eigenfunctions are significant. Phillips arranges to separate the velocities from
the stresses in using the biorthogonality properties but does not establish the conver-
gence of his truncation process which involves several inversions of linear systems.
The third and fourth derivatives of the stream function, used in the stress matching,
have nonintegrable singularities at the reentrant corner.

The pipe eigenfunctions do, however, play a necessary role in extending the anal-
ysis to a periodic array of constrictions in order to demonstrate the lubricating ad-
vantage of inlets.

2. Basic formulation. The pressure driven flow of incompressible viscous fluid
within a circular pipe of unit radius is constricted by a symmetrically located thin
rigid annular disk of radii a and 1. Cylindrical polar coordinates (p, 8, z) are
chosen so that the cylindrical boundary is at p = 1 (-00 <z<oc, -n < 6 < n)
and the annular constriction is at z = 0 {a < p < 1 , -n < 6 < n). The total
velocity field consists of a steady parabolic Poiseuille flow with axial velocity V and
a disturbance flow v that vanishes as |z| —> oc and for which the Reynolds number
is assumed to be small enough for application of the creeping flow equations

//V2v = grad p, (2.1)
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divv = 0, (2.2)

where p is the viscosity and p the dynamic pressure associated with \. On writing
the total velocity field as

-V(l - p2)z + \{p, z),

where \ - up + wz and p and z denote unit vectors in the radial and axial direc-
tions, the total pressure field is given by

4pVz + p(p, z).

The quantities of interest here are then

AP = lim [p(p, z)-p(p, -z)] and F-io(0,0),
Z—♦ OO

which are respectively the additional pressure drop due to the constriction and the
maximum velocity in the flow which evidently occurs at the center of the constriction.
The plane of symmetry z = 0 ensures that u and w are respectively odd and
even functions of z and allows the arbitrary constant in p to be chosen so that
p(p, -z) = -p{p, z) for all z > 0. The boundary conditions on the radial and
axial velocity components are

m = 0 = w at /? = 1 (-00 < z < oo), (2.3)

w = V(l-p2) at z = 0 (a < p < 1). (2.4)

The symmetry ensures the vanishing of u and the continuity of the tangential stresses
at z = 0 and so it remains to achieve a continuous pressure field by imposing the
condition

p = 0 at z = 0 (0 < p < a). (2.5)
The velocity field can be constructed by use of an axisymmetric distribution of

point force singularities over the annular constriction. Davis [2] showed that the
application of this method to the complementary problem of a disk in Poiseuille
flow is equivalent to the analysis given by Shail and Norton [1], However, neither
calculation can be readily adapted to the annular constriction because several inte-
grals can no longer be evaluated in closed form and, as described by Davis [3], the
replacement of the disk by an annular disk adds to the kernel of the integral equation
a term which must be singular at either the inner or the outer rim. It is expected that
a singularity at p = 1 is likely to be immaterial because the density function for the
"ringlet" force singularities must surely tend to zero at the pipe wall.

The axial velocity due to the point force ftnpz at the origin is (1 - zd/dz)
2 2—1/2x (p + z ) .So the axial velocity that occurs when the same total force is applied

uniformly over the ring z — 0, p = p0 is equal to

fJ —71

x_vd\xr d<t>
dzj 2n J_n (^2 + Pq- 2pp0coscj) + z2)1/2

= (1_Z^)/ e~klzlJ0{kp)J0{kp0)dk.
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The corresponding radial velocity is, from (2.2), equal to
rocLke k^^Jl(kp)J0(kp0) dk .

When solutions of the creeping flow equations (2.1) and (2.2) are added to these
velocities and conditions (2.3) applied, it may be shown that the velocity field

U(p, z : p0)p + W{p, z : p0)i

due to a "ringlet" force singularity of strength 8npz placed at z = 0, p = p0 inside
a rigid cylinder of unit radius is given by

W(p,z;p0)= e~klzlJ0{kp)J0(kp0)dk

2 K-- I -t-^{P^)Iq{P^) cosAz dX
n Jo 1o

2 r e

n Jo

'o

/>oW) ~ iW)
1o

pIx(pK)-J-I0(pX)h
cos/Iz dX

A - hh
(2.6)

U(p, z-, p0) = zlj ke klz]Jl(kp)J0{kp0)dk

2 r°° K
■— / -^■XI[{pX)IQ(p0X) cosXz dX
n J o 'n

pI2{pX)-'-±Iy{pX)
L(

h
h

sin Xz dX

A - v2

+-
T Jo *0

2 poo r /
~ ~ / PoW) ~ 7L/o(/?o'i)

71 Jo L 7o
where the modified Bessel functions are evaluated, both here and below, at X unless
otherwise stated. The property W{ \, z : pQ) = 0 is easily evident from (2.6) and
similarly U( \, z : p0) may be reduced to the integral of an exact derivative, i.e.,

= 0.£/(l,z :,„) = § /o(/?°A) sinAz
'o J o

Thus a solution for v that satisfies (2.1), (2.2), (2.3), and (2.5) may be written in
the form

v= V f [U{p, z\ p0)p + W{p, z\p0)z]y(p0)dp0 (2.7)
J a

with the density function y(pQ) to be determined by condition (2.4) which yields

I
yo

W{p, 0; p0)y(p0)dp0 = 1 - p2 {a < p < 1). (2.8)

3. The governing integral equation. In the consideration of various disk problems,
Davis [2] found that equations of type (2.8) could be more amenable to the appli-
cation of suitable Abel type operators than to solution as successive Abel integral
equations. Thus, after defining

d_ r< p^kpUp i 
d,J, (y-,v2 a-,2)"2 1
d_ r' p2J,jkp)dp I 
dij, (p2-,1)"* (i-,2)"2 1 ' ''
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where
• i l - r2 x 1/2

M{k, t) = JQ{k) + k j 1-2—-pj Jl(kp)dp,

• l 2 \ V2
1 - t \ w ,, , , dM

(3.2)
N(k ,t) = Ji{k)-k I (——-) pJ0(kp) dp = -

the application of the operator

./, \p2-t2J dk

d fl pdp
TtJ, (P2-t2)1'2

to the integral equation (2.8) yields, with the kernel given by setting z = 0 in (2.6),
»1 ( rOO

t

(1 -t2)l,2Ja Uo
2 r°° K

M(k, t)J0(p0k) dk - - -^-I0(p0X)M(a, t) dX
n Jo 2o

2 r°° r i
--/ ViW-rW)71 Jo l 'o

i 1 N(iX, t) — t)
-* A

dX
A - v2.

><7{p0)dp0 = 2t{l~t2)l/2 (a<t< 1). (3.3)

The reason for choosing the limits (t, 1) in (3.1) becomes apparent after defining
ru y{p0)dP0

H(u) — [
J a ("2-^)1/2'

i.e.,
. . 2 d f° H(u)u ,

y{P^-7tdpJa {p2_u2y,2du> (3-4)
with limits chosen to avoid singularities at the rim p = a in the subsequent integral
equation. An integration by parts then shows that

[ J0(Pok)y(Po)dPo = \ [ M(k> u\,H<yU\Uin du>
J a 71 J a (1 — M )

where M is given by (3.2), and hence substitution in (3.3) yields

t f' f 2 f°° 4 r°° K
 rjn i / M{k, t)M{k, u)dk T/ -^-M{iX, u)M(iX, t)dX
(I - t ) 1 Ja i71 Jo 7t" Jo A)

a r
7t2Jo

i 1 N(iX, u) - j-M(iX, u)
*o

i lN(iX, t) - j-M(iX, t)
'o

dX
A - hh.

x—H{u)u ^ -2t{\- ?2)'/2 (a < t < 1). (3.5)
(l-w2)1/2 ~ ~



512 A. M. J. DAVIS

Thus, in transforming from (2.8) to (3.5), one Fredholm integral equation of the
first kind with symmetric kernel has been replaced by another. However, the key
to further progress is to now obtain an equation of the second kind, a task readily
achieved for the disk problems where M is a cosine function. Next it will be shown
that the first integral in the kernel of (3.5) has a value that includes a multiple of
d(u - t).

Consider the triple integral equations

fJo

fJo
A(k)J0(kp)dk = f(p) (a < p < 1), (3.6)

kA(k)J0(kp) dk = 0 (0 <p<a, p> 1). (3.7)

With M(k, t) defined by (3.1), Eq. (3.6) shows that

(1_'2). 12 I M(k,t)A(k)dk = £-tJi -JM^dp (a < t < 1). (3.8)
But, on writing

fJo
kA(k)J0(kp)dk = X(p) (a < p < 1),

(3.7) completes a Hankel transform which, on inversion, gives

A(k)= f X(p)J0(kp)pdp. (3.9)
J a

Then substitution in (3.6) and a standard calculation described by Sneddon [7] yields
the Abel integral equation

fl S(t)dt 2 f°° dt fl X(u)u
Jp{t2-PY2~ 1 (t2~p2)l/2Ja (t2-U2)1'2

whose solution yields the integral equation

du

S(t) dt J,
d [l pf{p)dp

(p2-t2)1'2

4 t [{ f°° (v2 - \)dv uS(u) , , ,,
 5- TTn /  ? 7 7 -TTndu {a < t < I)

71 (1 — t) J a JI (v — t )(v — U ) (1 — ll)(■V2 - t2)(v2 - u2) (1 - u2)"2

for the function S(t) defined for a < t < 1 by

,, {' X{u)u , v. . 2 d f S{t)t ,
S(t)=  j rry dU , I.e., X(p) =  -T- — TTndt.

J a (t — u) npdp]a (^p — t )

But substitution for X in (3.9) yields

A{k)=1n[M{k-U)TrBWd"'

(3.10)
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and then comparison of (3.8) and (3.10) shows that

2 f°° (1 - t2)l/2( 1 - u2)
- M(k, t)M(k, u)dk = ———*LLs(t - u)
71 J$ tU

+ ^K*(t,u) {0<t,u<l), (3.11)
n

where

K {t, u) = J (■v2 - 1) dv
1 (v2 - t2){v2 - u2)

2 2r - tr
1 — u , ( 1 -f- u \ 1 — t . / 1 tIn ——   In (0 < t ± u < 1),

K*(u, u) = —j - ,
2u2 2w VI -u

It may be shown directly that

2u V 1 — u J It \ 1 - t,

(0 < u < 1). (3.12)w2+1lnfi±il]_l

r°° 1
/ M(k, t)JJk)dk = —K (t, 1) (0 < r < 1), (3.13)

Jo 71
i.e., (3.11) is valid if either t = 1 or u = 1 .

The substitution of (3.11) into (3.5) now yields the integral equation

"(') + flX«> u)HWn Udlm = - ;2)'/2 («<'<!)>
n (1 — t ) ' Ja (1 — u ) '

(3.14)
where

rOC IS

Jf(t, u) = K*(t, u) - / t)M(iX, u)dk
Jo 'o

Jo

0
dli xN(ik,t)--±M(ik,t) i 1 N(ik, u) - ^-M(ik, u) A - Wi

(3.15)
K* gives the kernel appropriate to the annular disk in infinite fluid; the additional
terms, due to the pipe wall, are such as to ensure, as expected, bounded behavior as
t —► 1 . This is because, by successive use of (3.2), (3.1), and (3.13),

roo

JT[t, 1) = K'(t, 1) - / K0M{ik,t)dk
Jo
77■ r°°

= JJk)M(k,t)dk = 0
2 Jo

and moreover 5?(t,u) = 0[{ 1 - w)ln(l - w)] as u —► 1 with t ^ 1 . Hence the
symmetric kernel in (3.14) is such that

 \ u) -»0 as either t or u —► 1
(1 -?2)1/2 (1 — u)
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and so H(t) —► 0 as t —> 1 . Thus the integral equation (3.14) has a bounded kernel
for the range of interest a < t < 1 .

The numerical solution of (3.14) has been achieved by using El-Gendi's method [8]
based on the Clenshaw-Curtis quadrature scheme to express the integral of a typical
smooth function g(u), defined in (0, 1) in terms of the set {g.; j = 0, 1, ... , 2N}

■ i I t'tt n uni Thof approximate values of g(u) at u = A[1 - cos(jn/2N)]. Thus

fJo

1 N

g(u)du ~ £ bj(gj + g1N_j),
j=o

where

1 Jv' 1
^'=/vE —-^T2r[Cos(j7t/2N)] {0 < j < N),

N^o 1-4''2

Tm denotes the wth Chebyshev polynomial, and the attachment of double primes
to a summation symbol indicates that the first and last terms are to be halved. In this
way (3.14) is converted, since H(\) — 0, to a set of 2N simultaneous equations for
which an IMSL routine is available. N = 3 was found to be sufficient throughout
but accuracy with the A-integrals was more difficult to achieve.

4. The pressure drop and maximum velocity. From (2.1) and (2.6), the pressure
field P(p, z : p0) due to the "ringlet" singularity is given by

f,i lP(p, z : pQ)

= -2 AJ/V^ 2 r°° K
P)J$(kPq) dk - - 72/0(^0A)/0(/>A)cosAzrfA

n Jo 7o

o

In particular, by Dirichlet's lemma,

0 H Jo J0

T , ,, sinAz^A
7o(/?A) ri _ r i

1l 0 2

r°° r /
/ ~ ~j'Io^Po^>Jo . o

P(p, ±00 ; P0) = =F 2// lim
K,

V W) + -—7in 1

= ± 8//(l - Pq).

PMJ) tJo^Po^
2 r r

0 - '0'2
A/n(/?A)

Consequently the additional pressure drop AP due to the constriction is given, from
(2.7), by

■ 1
A P = \6pV [ {I-p20)y(p0)dp0 = / Hmi-t2)[,2dt (4.1)

J a 71 J a

after substitution of (3.4).
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The maximum velocity can be similarly shown, after substitution of (2.6) and use
of (3.2), to be given by

vmax = V-vJ W(0,0-Po)y(Po)dPo

= v +

2 /•=
* JO

i 1 N(iA, t) - t)
■"o

/, dk
hA-hh jdt

(4.2)

in which the expression in curly brackets has the factor (1 — t ). Table 1 displays, for
various a , values of the dimensionless pressure drop and maximum velocity, given
by (4.1) and (4.2) respectively after solving the integral equation (3.14) for H{t).

Table 1.
Values of the dimensionless pressure drop and maximum velocity,

computed from the numerical solution of the governing integral equation.

a A/732//F vmJV

0.9 0.0185 1.067
0.8 0.0777 1.251
0.7 0.198 1.568
0.6 0.427 2.079
0.5 0.884 2.921
0.45 1.279 3.546
0.4 1.876 4.381
0.35 2.806 5.508
0.3 4.303 7.031
0.25 6.75 9.022
0.2 10.69 11.31

5. Pipe eigenfunctions and separation. An alternative form for the disturbance
velocity v given by (2.7) is

v= Fcurl|/7"1e^c^;V^1)(/?)e_/l"|z|| , (5.1)
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where the pipe eigenfunctions are defined by

n.l.d n\
(5.2)Vn]iP)=K p2J2^nP) PJ1 ̂ nP)

w w
2and vanish with their first derivatives at p — 1 because = J0J1 determines

the complex eigenvalues {kn, = ln; n > 1} in the first and fourth quadrants,
arranged in order of ascending real part. Thus A, = 4.463 + 1.468/, X2 = 7.693 +
1.727/, etc. (Dorrepaal et al. [9]). The no-slip conditions at the pipe wall are satisfied
by (5.1) and the complex conjugate coefficients {cn, c_n = cn ; n > 1} are determined
by the flow requirements at z = 0, namely, the radial velocity is everywhere zero,
the pressure is continuous in the hole p < a, and the total normal velocity must
vanish at the constriction a < p < 1 . Thus

= °» 0 </><!, (5.3)
rift 0

= 1 - P2' a<p< 1, (5.4)
0

= 0 <p<a, (5.5)
n^O ^

where

(i) -l di//{]]^\p) = (pK)
rfV1

p dp

pJMnP) J0 (KP)
L W W

i u/(') _ UKp)" " w

(5.6)

and, as in (4.1), AP is the additional pressure drop due to the constriction. The
biorthogonality property

• lIJo
which can be readily established from the differential equations (see, for example,
Yoo and Joseph [10]), can now be used by considering the /^-derivative of (5.3) and
an extended form of (5.5). Thus, from

<o < P s i),
nji 0

Vc,l - AP { ° (0<P<a),
n " " 2PV I 2r(p)/p (P>a),

it follows that

-2k c =*Lm m 2pV f^(p)pdp-2 fl^\p)y(p)dp.
JO J a
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Here the first integral vanishes by virtue of (5.6) and the function y{p) has been
chosen to have the same meaning as in Sec. 2, namely, the density of ringlet sin-
gularities on the axisymmetric constriction. Substitution for {cn} in the remaining
velocity condition (5.4) then yields

^T^l^\p)^](p0)y(p0)dp0 = 1 - P2 (a<p< 1). (5.7)
n/0

Thus the kernel W(p, 0 : pQ) in (2.8) has symmetric expansion

W(p, 0 : p0) = Y.C^n^n^Po) (5-8)
n^O

in terms of nonorthogonal functions given by (5.6). Attempts to solve a truncated
version of (5.7) for the coefficients {cn} have been thwarted by ill-conditioned equa-
tions. An integral equation similar to (5.7) was established by Ross [11] for both the
annular stenosis and the corresponding constriction in parallel plate flow.

Separation of the flow at the cylinder wall p — 1 will occur wherever there is a
change of sign of the tangential stress associated with the total flow v - V( 1 - p )z.
From (2.7) the equation for separation is therefore

/•1 dW2 + J , z\ p0)y(p0)dp0 = o. (5.9)

Now, by use of the identity

[ e~klz]J0(kp)J0(kp0)dk = l [ KQ{pk)IQ{pQX) cosAz dk {p > p{)),
Jo 71 Jo

the /^-derivative at p = 1 of the expression in curly brackets in (2.6) is equal to

W)2 r
n Jo 'o

cos Xz dk.

Also, an integration by parts shows that
d

'' dz
d rvM C0SkzdAriM

Jo /0

= ~ f (/o(fQ/l) + ^hiPo*-) ~ ^Yl0(p0k)\ coskzdk
JO { l0 0 /0 J

and hence the /^-derivative of (2.6) at p = 1 may be written

~(l ,z:p0) = ~- r ~ hWh cos kzdk.
P 71 Jo /, - IQI2

Substitution into (5.9) then yields

- / / [p0W)Il-W)I2]7(p0)dp0-p^-dX=\,"■ Jo J a 11 — IqIj
(5.10)

which, by contour integration, can be written

2 Re
oo

£v~"jz| /
«=1 Ja

PoWn) _ Wn)
W UK) y(P0)dp0=l. (5.11)
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This is identical to the separation condition
Ei -A„|z|
n? 0

which may be derived directly from (5.1).
Evidently the theory of Moffatt vortices implies that the flow pattern must have

a nested sequence of toroidal vortices in the cylindrical corner p — 1 , z = 0.
However, the structure of v in (5.1) shows that the disturbance of the Poiseuille flow
due to the constriction is essentially confined to |z| < i . Hence the outer vortex
on either side of the constriction extends less than a half radius along the pipe, as
in the computed streamlines displayed by Vrentas and Duda [5] and Phillips [6] for
two-dimensional flow through a contraction. So (5.11) does not furnish an efficient
means for determining the position of even the largest vortex because the terms have
rapid exponential decay away from instead of towards the corner. Further, because
the velocities are exponentially small in the vortices, there is insufficient accuracy
available to solve the separation condition in the form

_i [°° C
7V Jo J a

H (0 ^ r ' — ̂ AT 1 * \ T A 41 ' 1 *\ T si * COS Xz—[z N(d, t)Ix-M{ik, t)I2]dt
(it) JqJ2

obtained from (5.10) by use of (3.2) and (3.4) as in (4.2).

6. Periodic array of annular constrictions. Suppose that, in addition to the annular
constriction already considered, there are similar stenoses at z = ±2mL (m > 1),
a < p < 1. Then the flow is periodic, period 2L, and symmetric about planes
z = kL for all integers k . By introducing additional "ringlet" force singularities of
strength %npz at z = ±2mL (m > 1), p = p0, the appropriate modification of
the integral equation (2.8) is found to be

r 1 00 r\

/ W{p, 0; p0)y{p0) dp0 + / [w(P,2mL\p0) + lV(p,-2mL;pQ)]y(pQ)dpQ
Ja m=l

= 1 - p2 (a < p < 1). (6.1)

But the eigenfunction expansion (5.8) implies that

W(P, Z; pQ) = (6-2)

and hence the additional kernel in (6.1) has the expansion

2mL,pa) + W(p, -2mL-.p,)] = £ c ^
m=1 0 n n

in terms of nonorthogonal functions given by (5.6). Now (3.1) shows that

d_ /' p^\p) di Kt
dtj, (p2-t2y2 p (i ~tW/2

N(kn , t) M{Xn , t)
w w
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and then substitution of (3.4) yields

ja vll\p0)y(Po)dPo = fa
N(Xn, u) M{Xn, u)
w w H{U)U du.

(1 —u2W/2

Thus the modified form of the integral equation (3.14) for H(t) is

"«> + A—WV «Wu)-udu 2.1/22t(\ - t )' (a<t< 1),
(1 -ty/ZJa  (1 -U1)1'1 ~ ~

(6.3)
where

JT{t, u)=3T(t, u)~ ^
-i.L

2 sinhA Lo »

N{kn , Q A/(Aa , Q iV(An,M) M(Xn,u)
W W

and is defined by (3.15). Similarly, the additional contribution to the maximum
velocity vmax, given by (4.2), can be shown to be

71
. r H{t)t ^
Ja (1 -t2Y'2h

lv[x_mt_ v- Ke~KL 1
(1_,2)1/2^sinh^L /0(AJ

A^(A„ , 0 M(A„, 0
W W dt.

njiO

Since the pressure drop along a pipe length 2L (one period) due to a periodic
array of ringlets is equal to the pressure drop over the whole pipe due to a sin-
gle ringlet, it follows that the mean total pressure gradient in the periodic flow is
4/uV + AP/2L, where AP is given by (4.1). Hence the pressure gradient to flux ratio
is (8/i + AP/LV)/n , which may be compared with the corresponding ratio S/u/na4
for Poiseuille flow in a pipe of radius a . The fluid in the "inlets" between the con-
strictions therefore achieves a lubricating advantage over the uniform pipe whenever
a flux gain occurs for given pressure gradient, i.e.,

'+(£v)-L<a"- <6'4>

On noting that the lowest eigenvalue A, has real part 4.463, it is seen that the kernel
JT in (6.3) differs from the kernel S? in (3.14) by terms that decay rapidly with
L, in accordance with the earlier comment that the disturbance of the Poiseuille
flow due to a constriction is essentially confined within half the pipe radius on either
side. Thus, for L>\ , the computed values of AP/32/j.V, displayed in Table 1,
provide good estimates for insertion in the inequality (6.4), as then the flow through
each stenosis is essentially unaffected by the presence of the other constrictions. It is
found that (6.4) is easily satisfied, showing that a lubricating advantage always exists
for L >h . It may be anticipated that parity is monotonically achieved as L —♦ 0.
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