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Creeping of Lévy processes through curves
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Abstract

A Lévy process is said to creep through a curve if, at its first passage time across this
curve, the process reaches it with positive probability. We first study this property
for bivariate subordinators. Given the graph {(t, f(t)) : t ≥ 0} of any continuous, non
increasing function f such that f(0) > 0, we give an expression of the probability that
a bivariate subordinator (Y,Z) issued from 0 creeps through this graph in terms of its
renewal function and the drifts of the components Y and Z. We apply this result to
the creeping probability of any real Lévy process through the graph of any continuous,
non increasing function at a time where the process also reaches its past supremum.
This probability involves the density of the renewal function of the bivariate upward
ladder process as well as its drift coefficients. We also investigate the case of Lévy
processes conditioned to stay positive creeping at their last passage time below the
graph of a function. Then we provide some examples and we give an application to the
probability of creeping through fixed levels by stable Ornstein-Uhlenbeck processes.
We also raise a couple of open questions along the text.
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1 Introduction

A real Lévy process X starting from 0 under P is said to creep through the level x > 0

if
P(Xτ+

x
= x) > 0 , (1.1)

where τ+
x = inf{t : Xt > x}. The first study of this property is due to Millar [13] who,

according to his own words, gives a ‘reasonably complete solution’ of the creeping
problem, that is conditions bearing on the characteristics of X for (1.1) to hold. It is
proved in [13] that if (1.1) holds for some x > 0, then it holds for all x > 0. We will then
simply say that X creeps upward. According to the same paper, when X has bounded
variation, it creeps upward if and only if it has positive drift. When X has unbounded
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Creeping of Lévy processes through curves

variation, it creeps upward if it has a Brownian part or if its Lévy measure π satisfies∫ 1

0
xdπ(x) <∞. It does not creep upward if it has no Brownian part and

∫ 0

−1
|x|dπ(x) <∞.

When X has no Brownian part and
∫ 1

0
xdπ(x) =

∫ 0

−1
|x|dπ(x) =∞, both possibilities can

occur and an analytic criterion in terms of the characteristic exponent of X is given.
As pointed out by Vigon [19], this criterion has the disadvantage of involving both the
characteristic exponent of X and its Lévy measure and we rarely know both at the same
time. This gap is filled in [19] where an integral test only bearing on the Lévy measure is
established for a Lévy process with unbounded variation and no Brownian part to creep
upward. Let us also mention the work of Rogers [15] who deduced some results of Millar.
It seems that it was in the latter article that the term ‘creeping’ first appeared.

According to a remark first made in [13] and then used in [19], the upward ladder
height process H of X satisfies HS+

x
= Xτ+

x
, x > 0, where S+

x = inf{t : Ht > x}, so that
creeping of general Lévy processes can in fact be reduced to that of subordinators. More
specifically, X creeps upward if and only if H creeps upward, which holds if and only
if the drift dH of H is positive according to Neveu [14] and Kesten [11]. These authors
also proved that in this case, the renewal measure of the ladder height process admits a
continuous and bounded density u(x) and that the creeping probability is then given by

P(Xτ+
x

= x) = dHu(x) . (1.2)

So the whole creeping problem for a Lévy process X boils down to giving conditions on
its characteristics for dH to be positive. Let us also mention a more recent result in this
direction by Griffin and Maller [9] who studied the law of the creeping time, that is the
law of the first passage time conditionally on the creeping event.

In the present work, we are interested in the probability for Lévy processes to creep
through the graph of continuous non increasing functions. We first consider the case of
a bivariate subordinator (Y,Z), that is a two dimensional Lévy process issued from 0,
whose both coordinates are non decreasing. Let f : (0,∞) 7→ (0,∞) be a continuous non
increasing function. Our first main result gives an expression of the probability that the
path {(Yt, Zt) : t > 0} crosses the graph {(t, f(t)) : t > 0} in a continuous way, that is

P(ZS = f(YS), u0 < YS < u1), where S = inf{t : Zt > f(Yt)},

for all 0 ≤ u0 < u1 ≤ ∞. This expression involves the drifts of Y and Z and the renewal
function of the process (Y, Z), see Theorem 2.1. In particular, for (Y,Z) to creep through
the graph of f with positive probability, it is necessary that at least one of the drifts of Y
and Z is positive. This result will then be applied in Theorem 2.5 to the probability for a
real Lévy process X to creep at its supremum through the graph of f . More formally,
define the first passage time above the curve of f by

Tf = inf{t > 0 : Xt > f(t)} .

Then we give an explicit expression of the probability P(XTf = XTf = f(Tf ), t0 <

Tf < t1), for all 0 ≤ t0 < t1 ≤ ∞, where XTf = supt≤Tf Xt. Our result shows that this
probability is composed of two terms. The first one represents the contribution of the
accumulation of jumps of the ladder height process. This shows that the function acts
as a fixed (horizontal) barrier through which the process creeps upward. Then the
second term is due to the accumulation of jumps of the ladder time process. When its
drift is positive, that is when 0 is not regular for (−∞, 0), this term represents a kind
of creeping forward, as if the function acted as a vertical barrier. Note that our result
actually provides the law of Tf conditionally on the event {XTf = XTf = f(Tf )}. Our
only assumption is that the renewal measure of the bivariate upward ladder process has
a continuous density. As proved in the present work, it is ensured whenever Xt has a
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Creeping of Lévy processes through curves

bounded density for each t > 0. The latter result can then be applied to the creeping of
the Lévy process X conditioned to stay positive. Thanks to a time reversal argument, we
obtain in Theorem 2.8 the probability for this process to creep at its last passage time
below the function f .

The problem of creeping through fixed levels by Ornstein-Uhlenbeck processes
is at the origin of our work. Indeed, the process Zt = z + Xt − γ

∫ t
0
Zsds, t ≥ 0,

γ > 0, z < 0 creeps through y ∈ (z, 0) if and only if X creeps through the adapted,
continuous decreasing functional t 7→ y − z + γ

∫ t
0
Zsds. This problem is still an open

question. However, when X is stable, it can be reduced to the creeping of X through
a deterministic function. Then we prove, as an application of our main result, that
Ornstein-Uhlenbeck processes driven by stable processes with index less than 1 always
creep through some fixed levels.

We present our main results in the next section. Theorems 2.1, 2.5 and 2.8 will
be proved in Sections 5, 6 and 7, respectively. We give some examples for which the
creeping probabilities can be computed explicitly in Section 3, and in Section 4 we
present the above-mentioned application of our results to the creeping property of stable
Ornstein-Uhlenbeck processes.

2 Main results

2.1 Creeping of bivariate subordinators through curves

A bivariate subordinator (Y,Z) is a possibly killed two dimensional Lévy process
starting from 0, whose coordinates Y and Z are non decreasing. We set Yt = Zt = ∞,
for t ∈ [ζ,∞], where ζ is the lifetime of (Y, Z). In what follows, the drift of a (univariate)
subordinator Y will be denoted by dY . Moreover, a measure on some subset of Rd is said
to be absolutely continuous if it is absolutely continuous with respect to the Lebesgue
measure on this subset.

Our first theorem concerns the creeping of a bivariate subordinator (Y,Z) through the
curve defined by the graph of a continuous, non increasing function f . More specifically,
we are interested in the probability that the path {(Yt, Zt) : t ≥ 0} crosses continuously
the graph {(u, f(u)) : u > 0} of f . This event can be written as {ZS = f(YS)}, where
S = inf{t : Zt > f(Yt)}, see Figure 1. When it holds, we will say that (Y, Z) creeps
through the graph of f .

Theorem 2.1. Let (Y,Z) be a bivariate subordinator with semigroup P(Yt ∈ dy, Zt ∈
dz) = pt(dy, dz), t > 0, y, z ∈ [0,∞), and let f : (0,∞) → (0,∞) be a continuous, non
increasing function. Set f(0) = limt→0+ f(t), f(∞) = limt→∞ f(t) and define,

S = inf{t : Zt > f(Yt)} .

1. Then almost surely, 0 < S <∞, YS− <∞ and ZS− <∞. Assume moreover that the
renewal measure v(dy, dz) :=

∫ +∞
0

pt(dy, dz) dt is absolutely continuous on (0,∞)2.
Then the process (Y,Z) can neither jump on the graph {(u, f(u)) : u > 0} nor jump
from this graph, that is

P(ZS− = f(YS−),∆(Y,Z)S 6= 0) = P(ZS = f(YS),∆(Y,Z)S 6= 0) = 0 ,

where ∆(Y, Z)S = (Y, Z)S − (Y,Z)S−.
2. Let u0, u1 be such that 0 ≤ u0 < u1 ≤ ∞. Assume that v(dy, dz) is absolutely

continuous and that its density (y, z) 7→ v(y, z) is continuous on (0,∞)2. Then the
creeping probability of (Y,Z) through the graph of f is given by,

P(ZS = f(YS), u0 < YS < u1) = dZ

∫ u1

u0

v(u, f(u)) du− dY
∫ u1

u0

v(u, f(u)) df(u) .

(2.1)
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3. Assume that the measure pt(dy, dz) is absolutely continuous on (0,∞)2 for all t > 0

and that the densities (t, y, z) 7→ pt(y, z) are continuous on (0,∞)3. Then for all
t0, t1, u0, u1 such that 0 ≤ t0 < t1 ≤ ∞ and 0 ≤ u0 < u1 ≤ ∞,

P(ZS = f(YS), u0 < YS < u1, t0 < S < t1) =

dZ

∫ u1

u0

∫ t1

t0

pt(u, f(u)) dt du− dY
∫ u1

u0

∫ t1

t0

pt(u, f(u)) dt df(u) .(2.2)

Let us note that the assumptions of Theorem 2.1 can be slightly changed by assuming
that for fixed t0 and t1 such that 0 ≤ t0 < t1 ≤ ∞, the measure

∫ t1
t0
pt(dy, dz) dt is

absolutely continuous on (0,∞)2 and has a continuous density v̄(y, z) on this set. Then
we obtain the following assertion that can, in a way, be regarded as and intermediate
result between those of parts 2. and 3. of Theorem 2.1:

2′. For all u0, u1 such that 0 ≤ u0 < u1 ≤ ∞,

P(ZS = f(YS), u0 < YS < u1, t0 < S < t1) =

dZ

∫ u1

u0

v̄(u, f(u)) du− dY
∫ u1

u0

v̄(u, f(u)) df(u) .

The proof of 2′. is quite similar to this of part 3. of Theorem 2.1, see subsections 5.3
and 5.4, so it is omitted.

0 YS Yt

Zt

ZS = f(YS)

Figure 1: A sample path of (Y, Z) creeping through the graph of f .

Let us now focus on two direct applications of Theorem 2.1. The first one gives
the probability for the Euclidian norm ‖(Y,Z)‖ =

√
Y 2 + Z2 of a bivariate subordinator

to creep through a fixed level, that is P(‖(Y,Z)Ua‖ = a), for a > 0 and Ua = inf{t :

‖(Y,Z)t‖ > a}. This is simply obtained from Theorem 2.1 by choosing f(y) =
√
a2 − y2,

so that S = Ua.

Corollary 2.2. Let (Y, Z) be a bivariate subordinator. Then with the same notation and
assumptions than in Theorem 2.1,

P(‖(Y,Z)‖Ua = a) = dZ

∫ a

0

v(u,
√
a2 − u2) du+ dY

∫ a

0

uv(u,
√
a2 − u2)√

a2 − u2
du . (2.3)

The second direct application concerns the probability for a (one dimensional) subor-
dinator to creep through the graph of a continuous non increasing function. Let X be
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a subordinator whose semigroup has continuous densities (t, x) 7→ pt(x) on (0,∞)2 and
let us apply identity (2.1) to the bivariate subordinator (Yt, Zt) = (t,Xt). The renewal
measure of (Y,Z) is then v(t, x) dt dx = pt(x) dt dx. Hence it satisfies the assumption of
part 2. of Theorem 2.1. Moreover, since Yt = t, one has YS = inf{t : Xt > f(t)}. This
leads to the following corollary.

Corollary 2.3. Assume that X is a subordinator whose semigroup P(Xt ∈ dx) is abso-
lutely continuous on (0,∞) for each t > 0, with continuous densities (t, x) 7→ pt(x) on
(0,∞)2. Set Tf = inf{t > 0 : Xt > f(t)}, where f is as in the statement of Theorem 2.1.
Then for all t0 and t1 such that 0 ≤ t0 < t1 ≤ ∞,

P(XTf = f(Tf ), t0 < Tf < t1) = dX

∫ t1

t0

pu(f(u)) du−
∫ t1

t0

pu(f(u)) df(u) . (2.4)

Let us mention that the creeping probability for subordinators with no drift has been
determined in [6] when f is differentiable. We will actually extend (2.4) to the creeping
probability of any Lévy process at its supremum in the next section.

Note that if f is decreasing, then (2.1) can also be written as

P(ZS = f(YS), u0 < YS < u1) = dY

∫ u1

u0

v(f−1(u), u) du− dZ
∫ u1

u0

v(f−1(u), u) df−1(u) ,

and this applies to (2.3) and (2.4).
The question of finding necessary and sufficient conditions for a bivariate subordi-

nator (Y,Z) to creep through a given continuous, non increasing function is still open.
In particular, nothing is known when the renewal measure v(dy, dz) is not absolutely
continuous. Looking at (2.1) in Theorem 2.1, one is tempted to think that when dY > 0

and dZ > 0, the probability P(ZS = f(YS)) is always positive and when dY = 0 and
dZ = 0, this probability is always equal to 0. Let us also mention that the absolute
continuity condition of Theorem 2.1 is discussed in Subsection 5.6.

It seems hardly possible to obtain an expression of the creeping probability when f is
a general continuous function. When f is continuous and non decreasing we can still
obtain an upper bound for the creeping probability as the following proposition shows.

Proposition 2.4. Let (Y, Z) be a bivariate subordinator which satisfies the same as-
sumptions as in part 2. of Theorem 2.1. Keep the same notation as in this theorem. Let
f : (0,∞)→ (0,∞) be a continuous non decreasing function such that limt→0+ f(t) > 0.
Set f(0) = limt→0+ f(t), f(∞) = limt→∞ f(t) and define S = inf{t : Zt > f(Yt)}.

1. Then P(S > 0) = 1 and the process (Y,Z) can neither jump on the graph {(u, f(u)) :

u > 0} nor jump from this graph, that is

P(ZS−=f(YS−),∆(Y, Z)S 6= 0, YS <∞)=P(ZS=f(YS),∆(Y,Z)S 6= 0, YS <∞)=0 .

2. Let u0, u1 be such that 0 ≤ u0 < u1 ≤ ∞. Then the creeping probability of (Y, Z)

through the graph of f is bounded from above as follows,

P(ZS = f(YS), u0 < YS < u1) ≤ dZ
∫ u1

u0

v(u, f(u)) du . (2.5)

Proposition 2.4 implies that when dZ = 0, the process (Y, Z) never creeps through
the graph of any continuous non decreasing function. This result and its consequence
in Proposition 2.7 will be useful for our application to Ornstein-Uhlenbeck processes in
Section 4.
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2.2 Creeping of real Lévy processes at their supremum

Let us now consider a non killed real Lévy process X. We will always assume in the
sequel that X0 = 0, a.s. Since our interest lies in creeping upward of X, it is natural
to assume throughout this paper that −X is not a subordinator. Moreover the case of
subordinators has already been dealt with in Corollary 2.3. Therefore in this subsection,
we will assume that |X| is not a subordinator. We write X for the supremum process,
that is,

Xt = sup
s≤t

Xs , t ≥ 0 .

Then let us first recall a few basic definitions. It is well known that the reflected process
X −X is strongly Markovian under P. Let L be the local time at 0 of X −X (a proper
definition is given in Subsection 6.1) and denote by (τ,H) the upward ladder process
of X, that is the bivariate Lévy process whose coordinates are the following (possibly
killed) subordinators:

τt = inf{s : Ls > t} and Ht = Xτt , t ≥ 0 ,

where τt = Ht = ∞, for t ≥ L∞. The process τ (resp. H) is called the upward ladder
time (resp. height) process of X. We will denote by dτ and dH their respective drift
coefficients. Let us introduce the renewal measure U on [0,∞)2 of the ladder process
(τ,H), that is,

U(dt, dh) =

∫ ∞
0

P(τu ∈ dt, Hu ∈ dh) du .

We specify that when the measure U(dt, dh) is absolutely continuous on (0,∞)2, its
density will be denoted by q∗t (h). This notation may seem unnatural but it comes from
the fact that this density corresponds to the entrance law of the reflected excursions,
see Subsection 6.1, which is thus noted in older references, see [2] and [4] for instance.

Throughout this paper, for any function f : (0,∞)→ R, we set

Tf := inf{t > 0 : Xt > f(t)} .

When a Lévy process X satisfies P(XTf = XTf = f(Tf ), t0 < Tf < t1) > 0, we will say
that X creeps at its supremum through the function f over the interval (t0, t1). Omission
of (t0, t1) will simply mean that X creeps over the whole half line (0,∞). The following
result gives an expression of the probability of this event when f is a continuous, non
increasing function.

Theorem 2.5. Let X be a real Lévy process and f : (0,∞)→ (0,∞) be a continuous, non
increasing function. Assume that the renewal measure U(dt, dx) of the ladder process
(τ,H) has a continuous density (t, x) 7→ q∗t (x) on (0,∞)2.

1. Then P(Tf > 0) = 1 and the process X can neither jump on the graph {(u, f(u)) :

u > 0} nor jump from this graph, that is

P(XTf− = f(Tf ) < XTf , Tf <∞) = P(XTf− < XTf = f(Tf ), Tf <∞) = 0 .

2. The process X creeps at its supremum through f if and only if its ladder process
(τ,H) creeps through the graph of f . Moreover, for all t0 and t1 such that 0 ≤ t0 <
t1 ≤ ∞,

P(XTf = XTf = f(Tf ), t0 < Tf < t1) = dH

∫ t1

t0

q∗u(f(u)) du− dτ
∫ t1

t0

q∗u(f(u)) df(u) .

(2.6)
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The creeping probability of part 2. of Theorem 2.5 reveals two types of creeping
at the supremum, each of which corresponds to one of the two terms involved. When
dH > 0, the process creeps upward either continuously (in absence of positive jumps)
or through an accumulation of jumps of H as in the case of a fixed barrier. In the case
where dτ > 0 (which is equivalent to the fact that 0 is not regular for (−∞, 0)), another
type of creeping occurs. Then the process creeps forward through an accumulation
of jumps of τ provided f decreases at the creeping time. Recall that the later jumps
correspond to the lengths of the excursions of X−X. This new kind of creeping happens
as if f were acting as a vertical barrier.

0 Tf

XTf = XTf = f (Tf )

Figure 2: A sample path of X creeping at its supremum through f .

We point out that the assumption of absolute continuity in part 2. of the above result
is not as strong as it may appear. Indeed, we will see in Proposition 6.1, that it is
satisfied whenever the transition semigroup of X admits densities, x 7→ pt(x), x ∈ R,
which are bounded for all t > 0, and for all c ≥ 0, the process (|Xt − ct|, t ≥ 0) is not a
subordinator. Moreover, from the same proposition, q∗t is positive on (0,∞), for all t > 0,
which ensures the positivity of the creeping probability (2.6) whenever dH > 0 or dτ > 0

and f is decreasing. On the other hand, when the assumption of Theorem 2.5 is not
satisfied, we can still expect that the process creeps at its supremum through f with
positive probability, but finding necessary and sufficient conditions for this to hold is an
open question which is closely related to the question raised by Theorem 2.1, see the
discussion after Corollary 2.3.

Recall from (3.3) in [4] that the function x 7→ u(x) =
∫∞

0
q∗t (x) dt is the potential

density of H (this is true by definition when X is a subordinator since q∗t (x) = pt(x)).
Hence by taking f ≡ x in the statement of the above theorem, as well as in Corollary 2.3,
we recover the classical creeping result for Lévy processes recalled in the introduction.

When P(XTf = f(Tf ), t0 < Tf < t1) > 0 we will say that X creeps through the
function f (over the interval (t0, t1)). Finding an expression for the probability P(XTf =

f(Tf ), t0 < Tf < t1) seems more complicated than for P(XTf = XTf = f(Tf ), t0 < Tf <

t1). Indeed, in the second case, we only need to ensure that X stays below its past
supremum before time Tf , whereas in the first case the condition is that the whole
path of X stays below the curve of f before time Tf . Therefore, the expression of this
probability must strongly depend on the behaviour of whole paths of X with respect to
the curve of f before time Tf and it seems hardly possible to perform this computation
for a general function. However the example below and Corollary 2.6 give conditions for
X to creep through a function f in some particular cases.
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Let X be the Lévy process Xt = St − at, t ≥ 0, where S is a subordinator without
drift and a > 0. Then 0 is not regular for (0,∞) and it is regular for (−∞, 0), so that
dH = dτ = 0 (see Subsection 6.1) and from Theorem 2.5, the process does not creep at
its supremum through any continuous non increasing function. However, it does creep
through the function f(t) = 1− t, since for any a < 1, the subordinator with positive drift
St + (1− a)t creeps through the level 1. This simply means that the creeping time of X
through f is a.s. not a time at which X reaches its past supremum. From this example,
we can build a more general result regarding the probability to creep through a function
(not necessarily at the supremum) of Lévy processes with bounded variation.

Corollary 2.6. Let X be a Lévy process with bounded variation and nonnegative drift.
Assume that for all c ≥ 0, the process (|Xt − ct|, t ≥ 0) is not a subordinator and that
for all t > 0, the distribution P(Xt ∈ dx) is absolutely continuous on R with a bounded
density. Let f : (0,∞)→ R be a function such that for some 0 ≤ t0 < t1 ≤ ∞ and a > 0,
f(t) + at is positive, continuous and non increasing over the interval (t0, t1). Then X

creeps through f over the interval (t0, t1), that is

P(XTf = f(Tf ), t0 < Tf < t1) > 0 .

The above corollary will be useful for our application to the creeping of Ornstein-
Uhlenbeck processes in Section 4.

From Theorem 2.5, for X to creep at its supremum through f , it is necessary that
dH > 0 or dτ > 0. In particular, if 0 is not regular for [0,∞), then dτ = dH = 0 (see
Subsection 6.1) andX never creeps at its supremum through a continuous non increasing
function. On the other hand, when X has unbounded variation, dτ = 0 and hence the
process can creep at its supremum through f only if dH > 0. We conjecture that when
X has unbounded variation and dH = 0, then X never creeps through any continuous,
non increasing function. Indeed, from the results of this section it is reasonable to think
that the only chance for a Lévy process X to creep through such a function is that either
dH > 0 or X has bounded variation.

We end this subsection with the case of a continuous non decreasing function.

Proposition 2.7. Let X be a real Lévy process and f : (0,∞)→ (0,∞) be a continuous,
non decreasing function such that limt→0+ f(t) > 0. Assume that the renewal measure
U(dt, dx) of the ladder process (τ,H) has a continuous density (t, x) 7→ q∗t (x) on (0,∞)2.

1. Then P(Tf > 0) = 1 and the process X can neither jump on the graph {(u, f(u)) :

u > 0} nor jump from this graph, that is

P(XTf− = f(Tf ) < XTf , Tf <∞) = P(XTf− < XTf = f(Tf ), Tf <∞) = 0 .

2. For all t0 and t1 such that 0 ≤ t0 < t1 ≤ ∞,

P(XTf = f(Tf ), t0 < Tf < t1) ≤ dH
∫ t1

t0

q∗u(f(u)) du .

Proposition 2.7 implies that a Lévy process such that dH = 0 never creeps through
a continuous non decreasing function. Note that since f is non decreasing, when the
process X creeps through f , it necessarily creeps at its supremum, that is {XTf =

f(Tf )} = {XTf = XTf = f(Tf )}.

2.3 Creeping of Lévy processes conditioned to stay positive

Recall that X is a non killed real Lévy process such that X0 = 0, a.s. Moreover, we
assume again that |X| is not a subordinator. The process X conditioned to stay positive
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is a Doob h-transform of the process killed at its first hitting time of the negative half-line.
Let us briefly recall the definition of this process of which one will find a more complete
description in [3]. Let us set,

τ−−x = inf{t > 0 : Xt < −x} ,

for x ≥ 0 and let h(x) =
∫∞

0
P(H∗t ∈ [0, x]) dt be the renewal function of the downward

ladder height process H∗ of X (see Subsection 6.1 for a full definition). Then the process
X conditioned to stay positive is a (possibly non conservative) strong Markov process
with state space (0,∞), which we denote by Xx,↑ when it is issued from x and whose
semigroup is given by

P(Xx,↑
t ∈ dy) =

1

h(x)
P(x+Xt ∈ dy, t < τ−−x) , x, y > 0 .

It is proved in [3] that when 0 is regular for (0,∞) and X, the process Xx,↑ converges
weakly in the Skohorod’s space, as x tends to 0 toward a non degenerate process
which will be denoted here by X↑. This process satisfies X↑0 = 0, a.s. and if moreover
lim supt→∞Xt =∞, a.s., then (Xx,↑, x > 0) is conservative and limt→∞X↑t =∞, a.s. Let
us now define the future infimum process of X↑ and its last passage time below the
graph of a function f respectively by,

X↑
t

= inf
s≥t

X↑s , t ≥ 0 and σf = sup{t : X↑t ≤ f(t)} .

Theorem 2.8. Let X be a real Lévy process such that lim supt→∞Xt = ∞, a.s. and
assume that 0 is regular for (0,∞). Assume moreover that the renewal measure U(dt, dx)

of the ladder process (τ,H) has a continuous density (t, x) 7→ q∗t (x) on (0,∞)2. Let X↑

be the process X conditioned to stay positive and let f : (0,∞)→ (0,∞) be a continuous,
non increasing function.

1. Then 0 < σf < ∞, a.s. and at time σf , the process X↑ can neither jump on the
graph {(u, f(u)) : u > 0} nor jump from this graph, that is

P(X↑σf− = f(σf ) < X↑σf ) = P(X↑σf− < X↑σf = f(σf )) = 0 .

2. For all t0 and t1 such that 0 ≤ t0 < t1 ≤ ∞,

P(X↑σf = X↑
σf

= f(σf ), t0 < σf < t1) = dH

∫ t1

t0

q∗u(f(u)) du− dτ
∫ t1

t0

q∗u(f(u)) df(u) .

It appears that the creeping probability of X↑ at its future infimum through the graph
of f has the same expression as the creeping probability of X at its past supremum
stated in Theorem 2.5. This can be explained by the following time reversal property

[(XTf −X(Tf−t)− , 0 ≤ t ≤ Tf ) |XTf = XTf ]
(d)
= [(X↑t , 0 ≤ t ≤ σf ) |X↑σf = X↑

σf
] ,

where X0− = X0 = 0. The later identity in law is itself a consequence of the proof of
Theorem 2.8, see Section 7.

3 Examples

Illustrating Theorem 2.1 with a bivariate subordinator (Y, Z) such that none of the
coordinates Y and Z is a pure drift and whose renewal density measure is explicit seems
to be quite challenging. Our only examples bear on Corollary 2.3, that is the case when
one of the subordinators is a pure drift.

EJP 28 (2023), paper 53.
Page 9/25

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP942
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Creeping of Lévy processes through curves

a) Let X be a stable subordinator with index 1/2. Then for t > 0, Xt has density

pt(x) =
t√

2πx3
e
−t2
2x 1I(0,∞)(x) .

From Corollary 2.3, the distribution of the creeping time is then

P(XTf = f(Tf ), Tf ∈ dt) = − t√
2πf(t)3

e−t
2/(2f(t)) df(t) , t > 0 .

Taking f(t) = 1/t2 gives the probability that X creeps through f over the interval (0,∞)

and the distribution of the creeping time conditionally on this event:

P(XTf = f(Tf )) =

√
2

π

∫ ∞
0

te−t
4/2 dt =

1

2

P(Tf ∈ dt |XTf = f(Tf )) = 2

√
2

π
te−t

4/2 dt , t > 0 .

Our second example illustrates Theorem 2.5.
b) Standard Brownian motion creeping at its supremum. When X is standard Brown-

ian motion, 0 is regular for both half-lines (−∞, 0) and (0,∞) and hence dτ = 0. On the
other hand, our normalisation of the local time L (see Subsection 6.1) gives dH = 1/

√
2

and for t > 0,
q∗t (x) =

x√
πt3

e−x
2/2t1I(0,∞)(x) .

From part 2. of Theorem 2.5, the distribution of the creeping time at the supremum with
respect to any continuous non increasing function f : (0,∞)→ (0,∞) is given by

P(XTf = XTf = f(Tf ), Tf ∈ dt) =
f(t)√
2πt3

e−f(t)2/2t dt , t > 0 .

For instance, the probability for the standard Brownian motion to creep at its supremum
through the function f(t) = 1/t on (0,∞) and the distribution of the creeping time Tf
conditionally on this event are respectively,

P(XTf = XTf = f(Tf )) =

∫ ∞
0

1√
2πt5

e−1/2t3 dt =
1

3

P(Tf ∈ dt |XTf = XTf = f(Tf )) =
3√

2πt5/2
e−1/2t3 dt , t > 0 .

A slight generalisation of the above computation can be obtained by considering the case
of Brownian motion with drift µ ∈ R. The expression of q∗t (x) is then x√

πt3
e−(x+µ)2/2t.

The density (t, x) 7→ q∗t (x) of the renewal measure can actually be made explicit in very
few cases and the few known expressions are too complicated to allow the calculation of
the creeping probability.

Actually both examples a) and b) are closely related to each other. Indeed, for stan-
dard Brownian motion, the ladder process (τ,H) is such that τ is a stable subordinator
with index 1/2 and H is a pure drift process, that is Ht = dH · t, t ≥ 0. So, example b) is
also a consequence of Corollary 2.3.

4 Application: creeping of α-stable Ornstein-Uhlenbeck processes

Let X be a non killed real Lévy process such that |X| is not a subordinator and X0 = 0,
a.s. The Ornstein-Uhlenbeck process starting from z ∈ R and driven by X is the unique
strong solution of the following stochastic differential equation:

Zt = z +Xt − γ
∫ t

0

Zsds , t ≥ 0 , γ > 0 . (4.1)
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It is explicitly given by Zt = e−γt(z +
∫ t

0
eγsdXs). For x ∈ R, we set T+

x = inf{t : Zt > x}
and T−x = inf{t : Zt < x} and we say that Z creeps through the state x 6= z if either
x > z and P(ZT+

x
= x, T+

x < ∞) > 0 or x < z and P(ZT−x = x, T−x < ∞) > 0. We are
interested here in the creeping property of Z, when X is a stable Lévy process with
index α ∈ (0, 1). Actually stable Lévy processes never creep across any level. Creeping
of an Ornstein-Uhlenbeck process Z driven by a stable Lévy process with index α ∈ (0, 1)

is actually due to the smoothing effect of the functional t 7→
∫ t

0
Zsds, as the proof of the

next proposition shows. Recall that when X is stable with any index α ∈ (0, 2], Z fulfils
the following representation:

(Zt, t ≥ 0)
(d)
=

(
e−γt(z +X eαγt−1

αγ

), t ≥ 0

)
, (4.2)

see for instance E 18.17, p.116 in [16]. When moreover X is symmetric and α ∈ (0, 1),
it is proved in [10] (see Proposition 12 on p.618) that Z creeps through x ∈ (z, 0) when
z < 0 and through x ∈ (0, z), when z > 0. Proposition 4.1 below provides an extension of
this result.

Proposition 4.1. Let Z be the Ornstein-Uhlenbeck process solution of (4.1) with γ > 0,
starting point z ∈ R and driven by a stable Lévy process X with index α ∈ (0, 1) such
that |X| is not a subordinator.

1. If z ∈ (−∞, 0), then Z creeps through x if and only if x ∈ (z, 0).

2. If z ∈ (0,∞), then Z creeps through x if and only if x ∈ (0, z).

3. If z = 0, then Z does not creep through any level.

Proof. From the representation (4.2), we can write by setting s = (eαγt − 1)/(αγ),

T+
x =

1

αγ
log(αγ inf{s : Xs > x(αγs+ 1)1/α − z}+ 1)

T−x =
1

αγ
log(αγ inf{s : Xs < x(αγs+ 1)1/α − z}+ 1) ,

so that Z creeps through x if and only if X creeps through f(s) = x(αγs+ 1)1/α − z.
Let z ∈ (−∞, 0) and x ∈ (z, 0). Then recall that X has bounded variation and zero drift

and that for all t > 0, P(Xt ∈ dx) is absolutely continuous on R with a bounded density,
see Theorem 53.1, p.404 in [16]. Therefore, X satisfies the conditions of Corollary 2.6.
On the other hand, note that f(0) = x − z > 0 and that f is continuous. Moreover,
f(s) + as is non increasing on (0,∞) whenever 0 < a < −xγ. Let us take such a value
a and note that there is t1 > 0 such that f(s) + as is positive on (0, t1). Then the result
follows from Corollary 2.6.

If z < 0 ≤ x, then f(0) > 0 and f is non decreasing. Since X satisfies dH = 0 (H is a
stable subordinator), the result follows from Proposition 2.7.

If x < z < 0 then f(0) < 0 and f is non increasing. The result follows again from
Proposition 2.7 by considering −X and −f .

The proof of 2. is deduced from this of 1. by considering the Ornstein-Uhlenbeck
process −Z which is solution of (4.1) with γ > 0, starting point −z ∈ R \ {0} and driven
by the stable process −X.

If z = 0 and x > 0, then f is non decreasing and the result follows again from
Proposition 2.7. For x < 0, we derive the result by considering −Z from the same
argument as above.

Looking at the previous proof and in accordance with the remarks made in Subsec-
tion 2.2, we conjecture that when α > 1, since X has unbounded variation, the process

EJP 28 (2023), paper 53.
Page 11/25

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP942
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Creeping of Lévy processes through curves

Z never creeps across any level. However, as proved in [5], points are not polar for Z
when the leading Lévy process is stable with any index α ∈ (0, 2].

Finally let us mention that dealing with the creeping through x ∈ (z, 0) of an Ornstein-
Uhlenbeck process Z starting from z < 0 and driven by any Lévy process X would
require to study the creeping property of X through the continuous non increasing
adapted functional t 7→ x− z + γ

∫ t
0
Zsds, as equation (4.1) shows. This raises the more

general question of the creeping of a Lévy process through any adapted, continuous and
non increasing functional.

5 Proof of Theorem 2.1 and Proposition 2.4

Let us note that from monotone convergence, we do not lose any generality by proving
Theorem 2.1 in the case where t0, u0 > 0 and t1, u1 <∞. Therefore in all this section, t0,
u0, t1 and u1 will be chosen so that

0 < u0 < u1 <∞ and 0 < t0 < t1 <∞ .

5.1 Proof of the first assertion in Theorem 2.1

The following lemma actually shows a much stronger result than the first assertion
of Theorem 2.1. It will also be used in further results.

Lemma 5.1. Let L be any Rd-valued Lévy process with infinite lifetime and set ∆Lt =

Lt − Lt−, t > 0. Let G : Rd → R be any Borel function such that for all x ∈ Rd,
P(G(Lt + x) = 0) = 0, for λ-a.e. t ≥ 0 (λ being the Lebesgue measure on [0,∞)). Then

P (∃ t ≥ 0, G(Lt−) = 0, ∆Lt 6= 0) = P(∃ t ≥ 0, G(Lt) = 0, ∆Lt 6= 0) = 0 . (5.1)

Proof. Recall that t 7→ ∆Lt is a Poisson point process with characteristic measure ν,
where ν is the Lévy measure of L. Then from the compensation formula for Poisson point
processes, for every ε > 0,

E

∑
t≥0

1I{G(Lt−)=0}1I{‖∆Lt‖>ε}

 = ν({x : ‖x‖ > ε})E
(∫ ∞

0

1I{G(Lt)=0} dt

)
.

But from our assumption, the last term is 0. Then the equality

P (∃ t ≥ 0, G(Lt−) = 0, ∆Lt 6= 0) = 0

in (5.1) is obtained by taking ε to 0 and using monotone convergence.
We prove the second equality through the same argument by writing

E

∑
t≥0

1I{G(Lt−+∆Lt)=0}1I{‖∆Lt‖>ε}

 =

∫ ∞
0

dtE

(∫
{‖x‖>ε}

ν(dx)1I{G(Lt−+x)=0}

)

=

∫
{‖x‖>ε}

ν(dx)

∫ ∞
0

P(G(Lt + x) = 0) dt = 0

and the conclusion follows as for the first equality.

Let us now prove the first assertion of Theorem 2.1. First of all, since f is positive
and non increasing, it is clear that 0 < S <∞, a.s., so that YS−, ZS− are well defined and
YS− <∞ and ZS− <∞, a.s. Then let us apply Lemma 5.1 to the Lévy process L = (Y, Z)

and the Borel function G(y, z) = f(y)−z under the assumption that L has infinite lifetime.
The condition: for all x = (y, z) ∈ R2, P(G(Lt + x) = 0) = P(f(Yt + y) = Zt + z) = 0, for

EJP 28 (2023), paper 53.
Page 12/25

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP942
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Creeping of Lévy processes through curves

λ-a.e. t ≥ 0 is satisfied since, by assumption, the renewal measure v(dy, dz) of (Y,Z) is
absolutely continuous. Then part 1. of Theorem 2.1 follows from Lemma 5.1 and the
equalities

P(ZS− = f(YS−),∆(Y,Z)S 6= 0) = P(∃t ≥ 0, Zt− = f(Yt−),∆(Y,Z)t 6= 0)

P(ZS = f(YS),∆(Y,Z)S 6= 0) = P(∃t ≥ 0, Zt = f(Yt),∆(Y, Z)t 6= 0) .

Now let L̃ = (Ỹ , Z̃) be a Lévy process with infinite lifetime such that L is obtained by
killing L̃ at an independent exponential time e. Denote by ζ the lifetime of L. Then,

P(ZS− = f(YS−),∆(Y, Z)S 6= 0) = P(∃t ≤ ζ, Zt− = f(Yt−),∆Lt 6= 0)

= P(∃t ≤ e, Z̃t− = f(Ỹt−),∆L̃t 6= 0)

≤ P(Z̃S− = f(ỸS−),∆(Ỹ , Z̃)S 6= 0) = 0 .

The case of P(ZS = f(YS),∆(Y, Z)S 6= 0) = 0 is handled in the same way.

5.2 Preliminary lemmas

Recall that (Y,Z) is a bivariate subordinator as defined in Subsection 2.1. Its semi-
group and its renewal measure are respectively denoted by pt(dy, dz) and v(dy, dz). In
all the remainder of this paper we set for all y, z ≥ 0,

TYy = inf{t : Yt > y} and TZz = inf{t : Zt > z} .

Lemma 5.2. Assume that the renewal measure v(dy, dz) is absolutely continuous on
(0,∞)2 and let us denote by v(y, z) its density, then for y, z ∈ (0,∞),

P(YTYy = y, ZTYy ∈ dz) dy = dY v(y, z) dy dz (5.2)

P(ZTZz = z, YTZz ∈ dy) dz = dZv(y, z) dy dz . (5.3)

Assume that for all t > 0, the semigroup pt(dy, dz) is absolutely continuous on (0,∞)2

and let us denote by pt(y, z) its densities, then for t, y, z ∈ (0,∞),

P(YTYy = y, ZTYy ∈ dz, T
Y
y ∈ dt) dy = dY pt(y, z) dt dy dz (5.4)

P(ZTZz = z, YTZz ∈ dy, T
Z
z ∈ dt) dz = dZpt(y, z) dt dy dz . (5.5)

Proof. Let us prove (5.2) and (5.4). Note that the time TYy satisfies dY TYy =
∫ y

0
1I{YTYs =s} ds,

for all y ≥ 0. Hence for α, β, γ > 0,∫ ∞
y=0

∫
t,z∈[0,∞)2

e−αy−βz−γtP(YTYy = y, ZTYy ∈ dz, T
Y
y ∈ dt) dy

= E

(∫ ∞
0

e
−αYTYy −βZTYy −γT

Y
y dY dT

Y
y

)
= E

(∫ ∞
0

e−αYt−βZt−γtdY dt

)
=

∫ ∞
y=0

∫
t,z∈[0,∞)2

e−αy−βz−γtdY pt(dy, dz) dt ,

which proves both identities. The proof of (5.3) and (5.5) is the same.

Let us mention that expressions similar to (5.2) and (5.3) have been obtained in
Section 4 of [9], see Theorem 4.2 therein. We also use the latter theorem for the proof of
the next Lemma.
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Lemma 5.3. Assume that the renewal measure v(dy, dz) is absolutely continuous on
(0,∞)2 and that its density (y, z) 7→ v(y, z) is locally bounded. Then there are functions
ε1 and ε2 satisfying ε1(h), ε2(h) → 0, as h → 0 and such that for all h ∈ (0, u1 − u0) and
u ∈ [u0, u1 − h],

P(YTYu+h− ∈ (u, u+ h), ZTYu+h− ∈ (f(u+ h), f(u))) ≤ hε1(h) ,

P(ZTZ
f(u)
− ∈ (f(u+ h), f(u)), YTZ

f(u)
− ∈ (u, u+ h)) ≤ hε2(h) .

Proof. Let us denote by πY and πZ the Lévy measures of Y and Z and set π̄Y (y) =

πY (y,∞) and π̄Z(z) = π(z,∞). Recall that ζ is the lifetime of (Y,Z) and let us denote by
q ∈ [0,∞) its rate. Applying Theorem 4.2 in [9] we obtain,

P(YTYu+h− ∈ (u, u+ h), ZTYu+h− ∈ (f(u+ h), f(u)), TYu+h < ζ) (5.6)

=

∫ f(u)

z=f(u+h)

∫ u+h

y=u

v(y, z)π̄Y (y) dydz ≤ π̄Y (u0)Ch sup
u∈[u0,u1−h]

(f(u)− f(u+ h)) ,

where C is a bound for v on [u0, u1] × [f(u1), f(u0)] (recall that u0 > 0). On the other
hand,

P(YTYu+h− ∈ (u, u+ h), ZTYu+h− ∈ (f(u+ h), f(u)), TYu+h = ζ)

≤ P(Yζ− ∈ (u, u+ h), Zζ− ∈ (f(u+ h), f(u)))

= q

∫ f(u)

z=f(u+h)

∫ u+h

y=u

v(y, z) dydz ≤ qCh sup
u∈[u0,u1−h]

(f(u)− f(u+ h)) . (5.7)

Then the first inequality of the statement follows from (5.6), (5.7) and the uniform
continuity of f on [u0, u1].

Similarly, we have from Theorem 4.2 in [9],

P(ZTZ
f(u)
− ∈ (f(u+ h), f(u)), YTZ

f(u)
− ∈ (u, u+ h), TZf(u) < ζ)

=

∫ f(u)

z=f(u+h)

∫ u+h

y=u

v(y, z)π̄Z(z) dydz ≤ π̄Z(f(u1))Ch sup
u∈[u0,u1−h]

(f(u)− f(u+ h)) ,

and the same conclusion follows from the same argument.

5.3 Proof of the lower bound in identities (2.1) and (2.2)

Let us first prove the lower bound in equation (2.2), that is the inequality,

P(ZS = f(YS), u0 < YS < u1, t0 < S < t1)

> dZ

∫ u1

u0

∫ t1

t0

pt(u, f(u)) dt du− dY
∫ u1

u0

∫ t1

t0

pt(u, f(u)) dt df(u) . (5.8)

We define the sequence (σn)n≥1 of subdivisions of [u0, u1],

σn =

{
unk = u0 +

k

n
(u1 − u0), 0 6 k 6 n

}
, n ≥ 1 , (5.9)

and we set, for all n ≥ 1, Bn =

n−1⋃
k=0

B
(1)
n,k ∪B

(2)
n,k, where

B
(1)
n,k =

{
ZTZ

f(un
k
)

= f(unk ), unk 6 YTZ
f(un

k
)
< unk+1, t0 < TZf(unk ) < t1

}
(5.10)

B
(2)
n,k =

{
YTY

un
k+1

= unk+1, f(unk+1) 6 ZTY
un
k+1

< f(unk ), t0 < TYunk+1
< t1

}
. (5.11)
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Then let us check that

lim sup
n

Bn ⊂ {ZS = f(YS), u0 ≤ YS ≤ u1, t0 ≤ S ≤ t1} , almost surely . (5.12)

Let us first note that

ω ∈ B(1)
n,k ⇒ ‖(YTZf(un

k
)
, ZTZ

f(un
k
)
)− (unk , f(unk ))‖ ≤ unk+1 − unk =

u1 − u0

n
and

ω ∈ B(2)
n,k ⇒ ‖(YTYun

k+1

, ZTY
un
k+1

)− (unk+1, f(unk+1))‖ ≤ f(unk )− f(unk+1) ≤ ε(n) ,

where in the last inequality, the mapping n 7→ ε(n) does not depend on k and satisfies
limn→∞ ε(n) = 0. This follows from the uniform continuity of f on [u0, u1]. Therefore if
ω ∈ lim supnBn, then there is a subsequence uinjn(ω) := un of (unk )n≥1, 0≤k≤n which con-
verges to u ∈ [u0, u1] and such that (YTZ

f(un)
, ZTZ

f(un)
) converges to (u, f(u)) or (YTYun , ZT

Y
un

)

converges to (u, f(u)). Assume for instance that (YTZ
f(un)

, ZTZ
f(un)

) converges to (u, f(u)).

Since Y and Z are non decreasing, this means that TZf(un) tends to some value S such
that (YS−, ZS−) = (u, f(u)). Moreover t0 ≤ S ≤ t1 and u0 ≤ YS− ≤ u1. In particular,
ZS− = f(YS−), so that S = inf{t : Zt ≥ f(Yt)}, since Y and Z are non decreasing. If
(YTYun , ZTYun ) converges to (u, f(u)), then the same argument leads to the same conclusion.
Then (5.12) follows from part 1. of Theorem 2.1.

Now, let us prove that

lim
n→+∞

P(Bn) = dZ

∫ u1

u0

∫ t1

t0

pt(u, f(u)) dt du− dY
∫ u1

u0

∫ t1

t0

pt(u, f(u)) dt df(u) . (5.13)

We first notice that, for all n ∈ N and all integer 0 6 k 6 n−1, B(1)
n,k ∩B

(2)
n,k = ∅. Moreover,

σn being a subdivision of [u0, u1], for all integers n ≥ 2, k′, k′′ such that k′ 6= k′′ and

0 6 k′, k′′ 6 n− 1, (B
(1)
n,k′ ∪B

(2)
n,k′)∩ (B

(1)
n,k′′ ∪B

(2)
n,k′′) = ∅. On the other hand, from (5.4) and

(5.5) in Lemma 5.2, we obtain

P
(
B

(1)
n,k

)
= dZ

∫ unk+1

unk

∫ t1

t0

pt(u, f(unk )) dt du and

P
(
B

(2)
n,k

)
= dY

∫ f(unk )

f(unk+1)

∫ t1

t0

pt(u
n
k+1, s) dt ds ,

so that

P(Bn) =

n−1∑
k=0

[
P
(
B

(1)
n,k

)
+ P

(
B

(2)
n,k

)]
= dZ

n−1∑
k=0

∫ unk+1

unk

∫ t1

t0

pt(u, f(unk )) dt du+ dY

n−1∑
k=0

∫ f(unk )

f(unk+1)

∫ t1

t0

pt(u
n
k+1, s) dt ds .

Recall that 0 < t0 < t1 < ∞ and 0 < u0 < u1 < ∞ and assume first that f(u1) < f(u0),
in particular 0 < f(u1) < f(u0) < ∞. Then we derive from the continuity of (t, y, z) 7→
pt(y, z) on [t0, t1] × [u0, u1] × [f(u1), f(u0)] that the mapping (y, z) 7→

∫ t1
t0
pt(y, z) dt is

uniformly continuous on [u0, u1] × [f(u1), f(u0)]. Set v̄(y, z) :=
∫ t1
t0
pt(y, z) dt. We derive

from the uniform continuity of (y, z) 7→ v̄(y, z) on [u0, u1]× [f(u1), f(u0)] and this of the
mapping u 7→ f(u) on [u0, u1] that there are functions α(n), β(n) → 0, as n → ∞, such
that for all 0 ≤ k ≤ n − 1, |v̄(u, f(unk )) − v̄(unk , f(unk ))| ≤ α(n), for all u ∈ [unk , u

n
k+1] and

|v̄(unk+1, s)− v̄(unk+1, f(unk+1))| ≤ β(n), for all s ∈ [f(unk+1), f(unk )]. These arguments and
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the Riemann-Stieltjes integrability of the function u 7→ v̄(u, f(u)) with respect to the
measures du and df(u) imply that

lim
n→∞

n−1∑
k=0

∫ unk+1

unk

v̄(u, f(unk )) du = lim
n→∞

n−1∑
k=0

v̄(unk , f(unk ))(unk+1 − unk ) =

∫ u1

u0

v̄(u, f(u)) du ,

and that

lim
n→∞

n−1∑
k=0

∫ f(unk )

f(unk+1)

v̄(unk+1, s) ds = lim
n→∞

n−1∑
k=0

v̄(unk+1, f(unk+1))(f(unk )− f(unk+1))

= −
∫ u1

u0

v̄(u, f(u)) df(u) , (5.14)

which proves (5.13) in this case. If f(u0) = f(u1) := w, then the result follows from the
same arguments. We only need to replace the mapping (y, z) 7→

∫ t1
t0
pt(y, z) dt by the

mapping y 7→
∫ t1
t0
pt(y, w) dt and the function u 7→ v̄(u, f(u)) by the function u 7→ v̄(u,w).

(The term (5.14) is then clearly equal to 0.) Finally, recall that lim sup
n−→∞

Bn ⊂ {ZS =

f(YS), u0 ≤ YS ≤ u1, t0 ≤ S ≤ t1}, a.s. Then by Fatou’s lemma,

P(ZS = f(YS), u0 ≤ YS ≤ u1, t0 ≤ S ≤ t1) > P(lim sup
n−→∞

Bn) > lim
n−→∞

P(Bn) ,

and (5.13) implies that

P(ZS = f(YS), u0 ≤ YS ≤ u1, t0 ≤ S ≤ t1)

> dZ

∫ u1

u0

∫ t1

t0

pt(u, f(u)) dt du− dY
∫ u1

u0

∫ t1

t0

pt(u, f(u)) dt df(u) .

Since the latter inequality is valid for all u0, u1, t0 and t1, large inequalities in the left
member can be replaced by strict inequalities, so that (5.8) holds.

The proof of the corresponding inequality in (2.1) uses (5.2) and (5.3) instead of (5.4)

and (5.5) in the above arguments. It is actually simpler so it is omitted.

5.4 Proof of the upper bound in identities (2.1) and (2.2)

Let us first prove the upper bound in equation (2.2), that is the inequality

P(ZS = f(YS), u0 < YS < u1, t0 < S < t1)

6 dZ

∫ u1

u0

∫ t1

t0

pt(u, f(u)) dt du− dY
∫ u1

u0

∫ t1

t0

pt(u, f(u)) dt df(u) . (5.15)

Recall the definition (5.9) of the sequence (σn)n≥1 of subdivisions of [u0, u1]. We define
the two following sequences of events which are slightly different from those introduced
in (5.10) and (5.11),

B
(1)

n,k =

{
ZTZ

f(un
k
)

= f(unk ), unk 6 YTZ
f(un

k
)
6 unk+1, t0 6 TZf(unk ) 6 t1 + o1(n)

}
B

(2)

n,k =

{
YTY

un
k+1

= unk+1, f(unk+1) 6 ZTY
un
k+1

6 f(unk ), t0 6 TYunk+1
6 t1 + o2(n)

}
,

where o1(n) = d−1
Z max0≤k≤n−1(f(unk )−f(unk+1)), if dZ > 0 and o2(n) = (ndY )−1, if dY > 0.

If dY = 0 (resp. dZ = 0), we set o2(n) = ∞ (resp. o1(n) = ∞), for all n ≥ 1. Note that
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from uniform continuity of f on [u0, u1], if dZ > 0, then o1(n) → 0, as n → ∞ (which is
also clearly verified for o2, when dY > 0). Then let us also define the sequences,

B
(3)
n,k =

{
f(unk+1) 6 ZTZ

f(un
k
)
− 6 f(unk ), unk 6 YTZ

f(un
k
)
− 6 unk+1

}
B

(4)
n,k =

{
unk 6 YTY

un
k+1
− 6 unk+1, f(unk+1) 6 ZTY

un
k+1
− 6 f(unk )

}
,

for n ≥ 1 and k = 0, . . . , n− 1 and let us check the inclusion,

A := {ZS = f(YS), unk 6 YS < unk+1, t0 < S < t1} ⊂ B
(1)

n,k ∪B
(2)

n,k ∪B
(3)
n,k ∪B

(4)
n,k . (5.16)

Assume that A holds and note that TZf(unk ) ≥ S and TYunk+1
≥ S. Then, only the two events

described below in (a) and (b) can occur:

(a) In the first case, either Z creeps through the level f(unk ) before time TYunk+1
or Y

creeps through the level unk+1 before time TZf(unk ).

Let us consider the subcase where Z creeps through the level f(unk ) before time
TYunk+1

. Then we have ZTZ
f(un

k
)

= f(unk ) and since unk 6 YS < unk+1 and S ≤ TZf(unk ) ≤ TYunk+1
,

we also have unk 6 YTZ
f(un

k
)
6 unk+1. Moreover, recall that S ≥ t0, therefore TZf(unk ) ≥ t0.

On the other hand since ZS = f(YS), then from time S, the process Z will reach the
level f(unk ) in a time which is at most equal to d−1

Z (f(unk ) − f(YS)). Hence TZf(unk ) ≤

S + d−1
Z (f(unk )− f(YS)) ≤ t1 + o1(n). We conclude that B

(1)

n,k holds in this subcase.

In the subcase where Y creeps through the level unk+1 before time TZf(unk ), we prove

in the same way that B
(2)

n,k holds.

(b) In the second case, either Z jumps through the level f(unk ) and the event B(3)
n,k

holds or Y jumps through the level unk+1 and the event B(4)
n,k holds. Note the both events

can occur at the same time.

Then the inclusion (5.16) is proved.

unk unk+1

f
(
unk+1

)

f (unk )

YTZ
f(unk)

−

ZTZ
f(un

k
)
−

unk unk+1

f
(
unk+1

)

f (unk )

YTY
un
k+1
−

ZTY
un
k+1
−

Figure 3: An occurrence of the event B(3)
n,k on the left and B(4)

n,k on the right.

Let us set v(n)
1 (y, z) :=

∫ t1+o1(n)

t0
pt(y, z) dt and v

(n)
2 (y, z) :=

∫ t1+o2(n)

t0
pt(y, z) dt. Then
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the inclusion (5.16) implies that

P(ZS = f(YS), u0 < YS < u1, t0 < S < t1)

6
n−1∑
k=0

P(ZS = f(YS), unk ≤ YS ≤ unk+1, t0 < S < t1)

6
n−1∑
k=0

P(B
(1)

n,k) +

n−1∑
k=0

P(B
(2)

n,k) +

n−1∑
k=0

P(B
(3)
n,k) +

n−1∑
k=0

P(B
(4)
n,k) ,

and Lemmas 5.2 and 5.3 imply that

n−1∑
k=0

P(B
(1)

n,k) +

n−1∑
k=0

P(B
(2)

n,k) +

n−1∑
k=0

P(B
(3)
n,k) +

n−1∑
k=0

P(B
(4)
n,k)

6
n−1∑
k=0

dZ

∫ unk+1

unk

v
(n)
1 (u, f(unk )) du+

n−1∑
k=0

dY

∫ f(unk )

f(unk+1)

v
(n)
2 (unk+1, s) ds

+

n−1∑
k=0

1

n
(ε1(n) + ε2(n)) .

We prove in a similar way as in the previous subsection that the sum of the two first
sums in the last expression tends to dZ

∫ u1

u0
v(u, f(u)) du− dY

∫ u1

u0
v(u, f(u)) df(u), when n

tend to∞. The third sum tends clearly to 0, as n tends to∞, so that inequality (5.15) is
proved.

The upper bound in equality (2.1) is proved in the same way. This achieves the proof
of Theorem 2.1.

5.5 Proof of Proposition 2.4

Part 1. is proved as part 1. of Theorem 2.1, see Subsection 5.1. (Note that P(S >

0) = 1 since limt→0+ f(t) > 0. In particular, YS− and ZS− are well defined.)
The proof of part 2. follows very similar arguments as those used for the proof of

the upper bound in identities (2.1) and (2.2) which is given in Subsection 5.4. We only
describe it here in broad outline. Recall the sequence (σn)n≥1 of subdivisions of [u0, u1]

defined in (5.9). Then define the two following sequences of events

C
(1)
n,k =

{
ZTZ

f(un
k+1

)
= f(unk+1), unk 6 YTZ

f(un
k+1

)
6 unk+1

}
C

(2)
n,k =

{
f(unk ) 6 ZTZ

f(un
k+1

)
− < f(unk+1), unk 6 YTZ

f(un
k+1

)
− < unk+1

}
.

Since f is non decreasing, the inclusion,

C := {ZS = f(YS), unk 6 YS < unk+1} ⊂ C
(1)
n,k ∪ C

(2)
n,k (5.17)

holds for all n sufficiently large and k = 0, . . . , n− 1. Indeed, by definition of S, there is
ε > 0 such that the path of (Y, Z) stays above the graph of f on the interval [S, S + ε].
This implies that for all n sufficiently large, if t ≥ 0 is such that YS+t ∈ [unk , u

n
k+1] for some

k = 0, 1, . . . , n − 1, then ZS+t ≥ f(S + t) so that either the process Z creeps above the

level f(unk+1), that is C(1)
n,k holds, or Z jumps above this level, that is C(2)

n,k holds. There is
no other possibility.

The remainder of the proof is then very similar to the arguments of the end of
Subsections 5.1 and 5.4, the main difference being that the term due to the creeping of
Y is now absent.
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5.6 On assumptions of Theorem 2.1

The aim of this subsection is to show that Theorem 2.1 holds whenever the transition
semigroup of (Y,Z) is absolutely continuous with bounded densities. Proposition 5.4 will
also be used for the proof of Proposition 6.1. Let d ≥ 1 and let L be any possibly killed
Rd-valued Lévy process.

Proposition 5.4. Let Ψ be the characteristic exponent of L, that is E(ei〈ξ,L1〉, 1 < ζ) =

e−Ψ(ξ), ξ ∈ Rd, where ζ is the lifetime of L. Then the following assertions are equivalent:

(i) The transition semigroup of L is absolutely continuous and there is a version of its
densities, denoted by x 7−→ lt(x), x ∈ Rd, which are bounded for all t > 0.

(ii) For all t > 0,
e−tΨ(ξ) ∈ L1(Rd) .

If these conditions are satisfied, then the function (t, x) 7→ lt(x) is continuous on (0,∞)×
Rd. In particular, if all coordinates of L are subordinators, then lt(0) = 0, for all t > 0.

Proof. The proof follows similar arguments as those used in the beginning of Section 2
in [4]. Boundness of lt implies that lt ∈ L2(Rd) and consequently e−tΨ(ξ) ∈ L2(Rd), for all
t > 0, which implies that e−tΨ(ξ) ∈ L1(Rd), for all t > 0. Conversely, if e−tΨ(ξ) ∈ L1(Rd),
for all t > 0, then Fourier inversion theorem implies (i). Indeed, by the Riemann-
Lebesgue lemma, lt ∈ C0(Rd). Furthermore, from Fourier inversion theorem we have,
for all (t, x) ∈ (0,∞)×Rd,

lt(x) =
1

2π

∫
Rd
e−i〈x,ξ〉e−tΨ(ξ)dξ . (5.18)

Let (t0, x0) ∈ (0,∞) × Rd and K be a compact neighborhood of (t0, x0) such that K ⊂
(0,∞)×Rd. Then, there exists t1 > 0 such that for all (t, x, ξ) ∈ K×Rd, |e−i〈x,ξ〉e−tΨ(ξ)| =
e−tRe(Ψ(ξ)) 6 |e−t1Ψ(ξ)| = e−t1Re(Ψ(ξ)), (recall that Re(Ψ(ξ)) ≥ 0). Since e−t1Ψ(ξ) ∈ L1(Rd),
we obtain from (5.18) and Lebesgue’s dominated convergence theorem, that (t, x) 7→ lt(x)

is continuous in (t0, x0) and finally on (0,∞)×Rd.

Recall (from Subsection 5.1) that the absolute continuity of v(dy, dz) is enough for
part 1. of Theorem 2.1 to hold. Therefore, condition (i) (or (ii)) of Proposition 5.4
implies part 1. of Theorem 2.1. Moreover, condition (i) (or (ii)) of Proposition 5.4 applied
to the bivariate subordinator (Y, Z) immediately implies the assumption of part 3. of
Theorem 2.1. The mapping (t, y, z) 7→ pt(y, z) is then locally bounded on (0,∞)3. Hence
the assumption of assertion 2’. (stated after Theorem 2.1) is satisfied for all t0, t1 such
that 0 < t0 < t1 <∞ and this implies part 2. of Theorem 2.1 by monotone convergence.

Let us finally notice that assumptions of Theorem 2.1 could be weakened. Indeed, it
appears from the limits in (5.14) that the continuity assumption of v could be replaced by
an assumption close to the Riemann integrability of this function. (Recall that continuity
of v is not required in lemmas 5.3 and 5.2.)

6 Proof of Theorem 2.5, Corollary 2.6 and Proposition 2.7

Recall that X is a real non killed Lévy process and that we have assumed that |X| is
not a subordinator.

6.1 Some reminders in fluctuation theory

We refer to Chap. IV of [1], Chap. 6 of [12] and [7] for more details on the results of
this subsection. Recall that Xt = sup{Xs : 0 ≤ s ≤ t} and let Xt = inf{Xs : 0 ≤ s ≤ t}.
It is well known that both processes X − X and X − X are strongly Markovian. The
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state 0 is regular for itself, for the process X −X (resp. X −X) if and only if 0 is regular
for [0,∞) (resp. (−∞, 0]) for the process X. When it is the case, we will simply write
that [0,∞) (resp. (−∞, 0]) is regular. Similarly, we will write that (0,∞) (resp. (−∞, 0))
is regular when 0 is regular for (0,∞) (resp. (−∞, 0)) for the process X. Recall also
that when X is not a compound Poisson process, at least one of the half lines (−∞, 0) or
(0,∞) is regular. Moreover compound Poisson processes are the only Lévy processes for
which [0,∞) and (−∞, 0] are regular but not (0,∞) and (−∞, 0).

Let us briefly recall the definition of the local time at 0 of the process X−X which we
denote by L. If [0,∞) is regular, L is a continuous, increasing, additive functional such

that L0 = 0, a.s., and the support of the measure dLt is the set {t : Xt = Xt}. Moreover
L is the unique process, up to a multiplicative constant, satisfying these properties. We
can normalize it for instance in the following way,

E

(∫ ∞
0

e−t dLt

)
= 1 .

When [0,∞) is not regular, the set {t : (X −X)t = 0} is discrete and the local time at 0
of the process X −X is defined as follows

Lt =

Rt∑
k=0

e(k) ,

where R0 = 0, for t > 0, Rt = Card{s ∈ (0, t] : Xs = Xs} and e(k), k = 0, 1, . . . is a
sequence of independent and exponentially distributed random variables with parameter

γ =
(

1− E(e−τ
+
0 )
)−1

,

and τ+
0 = inf{t > 0 : Xt > 0}. The choice of the parameter γ is consistent with the

normalisation E
(∫∞

0
e−t dLt

)
= 1 of the regular case. The process L is called the local

time at the supremum of X. The local time at the infimum is defined in the same way
with respect to the process X −X and is denoted by L∗. It corresponds to the local time
at the supremum of the dual process X∗ := −X.

Let us now recall the definition of the ladder processes. The ladder time processes
τ and τ∗, and the ladder height processes H and H∗ are the following (possibly killed)
subordinators:

τt = inf{s : Ls > t} , τ∗t = inf{s : L∗s > t} , Ht = Xτt , H∗t = −Xτ∗t
, t ≥ 0 ,

where τt = Ht = +∞, for t ≥ L∞ and τ∗t = H∗t = +∞, for t ≥ L∗∞. Recall that the
processes (τ,H) and (τ∗, H∗) are bivariate subordinators. The renewal measures of the
ladder processes (τ,H) and (τ∗, H∗) are the measures on [0,∞)2 defined by,

U(dt, dh) =

∫ ∞
0

P(τu ∈ dt, Hu ∈ dh) du and U∗(dt, dh) =

∫ ∞
0

P(τ∗u ∈ dt, H∗u ∈ dh) du .

The drifts dτ and dτ∗ of the subordinators τ and τ∗ satisfy∫ t

0

1I{Xs=Xs} ds = dτLt ,

∫ t

0

1I{Xs=Xs} ds = dτ∗L
∗
t . (6.1)

Recall that dτ > 0 if and only if (−∞, 0) is not regular. Similarly, dτ∗ > 0 if and only if 0
is not regular for (0,∞). Hence if X is not a compound Poisson process, then dτdτ∗ = 0

holds since 0 is necessarily regular for at least one of the half lines. If X is a compound
Poisson process, then dτ > 0 and dτ∗ > 0.

EJP 28 (2023), paper 53.
Page 20/25

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP942
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Creeping of Lévy processes through curves

Given our normalisation of the local time L, the drifts dH and dH∗ of H and H∗

satisfy 2dHdH∗ = σ2, where σ represents the Brownian part of X in its Lévy-Khintchine
decomposition (this follows from the Wiener-Hopf factorisation of the characteristic
exponent of X, see p.166 in [1]). When X has bounded variation, we define its drift as
the almost sure limit d := limt→0Xt/t. It was proved in Section 2. of [13] that in this
case, d > 0 if and only if dH > 0. Note that if moreover dτ > 0, then dH = ddτ , since
limt→0

Ht
t = dH = limt→0

Xτt
τt

τt
t = ddτ , a.s. When X has unbounded variation and no

Brownian part, Theorem Kaa of [19] asserts that dH > 0 if and only if∫ 1

0

x∫ 0

−x
¯̄π1(u)du

π̂(x) dx <∞ ,

where π is the Lévy measure of X, for x ∈ R, π̂(x) =
∫
R

(
1I{0<x≤u} + 1I{u≤x<0}

)
dπ(u) and

for x ∈ [−1, 0), ¯̄π1(x) =
∫ x
−1
π̂(u)du.

The Itô measure n∗ of the excursions away from 0 of the process X − X is the
characteristic measure of the (possibly stopped) Poisson point process

t 7→
{
{(X −X)τ∗t−+s, 0 ≤ s < τ∗t − τ∗t−} if τ∗t− < τ∗t
δ if τ∗t− = τ∗t ,

where δ is some isolated point added to the space of excursions. We refer to [1], Chap. IV,
[12], Chap. 6 and [7] for a more detailed definition of n∗. The measure n∗ is a Markovian
measure whose semigroup is that of the killed Lévy process when it enters the negative
half line. More specifically, for x > 0, let us denote by Q∗x the law of the process
(Xt1I{t<τ−0 }

+∞ · 1I{t≥τ−0 }, t ≥ 0) under Px, where τ−0 = inf{t > 0 : Xt < 0}. That is for
Λ ∈ Ft,

Q∗x(Λ, t < ζ) = Px(Λ, t < τ−0 ) . (6.2)

Then for all Borel positive functions f and g and for all s, t > 0,

n∗(f(Xt)g(Xs+t), s+ t < ζ) = n∗(f(Xt)E
Q∗

Xt
(g(Xs)), s < ζ) , (6.3)

where EQ
∗

x means the expectation under Q∗x and ζ is the lifetime of the excursions.
Moreover, we define the entrance law (q∗t (dx), t > 0) of the excursion measure n∗ as

n∗(f(Xt), t < ζ) =

∫ ∞
0

f(x)q∗t (dx) . (6.4)

The Itô measure of the excursions away from 0 of the reflected process at its supremum
X −X = X∗ −X∗ is defined in the same way as for X −X. It will be denoted by n and
its entrance law by qt(dx). We define the probability measures Qx in the same way as in
(6.2) with respect to the dual process X∗ = −X. Let us finally recall that the entrance
laws qt(dh) and q∗t (dh) are related to the renewal measures U(dt, dh) and U∗(dt, dh) of
(τ,H) and (τ∗, H∗) as follows,

dτ∗δ{(0,0)}(dt, dh) + q∗t (dh) dt = U(dt, dh) (6.5)

dτδ{(0,0)}(dt, dh) + qt(dh) dt = U∗(dt, dh). (6.6)

These identities between measures on [0,∞)2 are valid (at least) when X is not a
compound Poisson process and can be found in Lemma 1 of [2]. In particular, under the
additional assumption of Theorem 2.5, that is when U(dt, dh) has a density on (0,∞)2,
this density is the same as this of q∗t (dh) dt, which explains the notation q∗t (h), t, h ∈ (0,∞)

in the latter theorem.
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6.2 Proof of Theorem 2.5

Part 1. of Theorem 2.5 is a direct application of Lemma 5.1. It suffices to consider
Lt = (Xt, t) and G(u, v) = u− f(v) in this lemma. (Note that P(Tf > 0) = 1 follows from
the fact that f is positive. In particular, XTf− is well defined on {Tf <∞}.)

Then part 2. is a consequence of Lemma 5.1 and Theorem 2.1. Recall first from
Subsection 6.1 that (τ,H) is a bivariate subordinator. If the time Tf = inf{t : Xt > f(t)}
satisfies XTf = XTf = f(Tf ), then it is a zero of X − X and hence there is S′ such
that Tf = τS′ or Tf = τS′−. Therefore HS′ = f(τS′) or XτS′− = XτS′− = f(τS′−) but we
know, applying again Lemma 5.1 to the function G as above, that in the latter case, X is
necessarily a.s. continuous at time τS′−. In particular, HS′− = XτS′−− = f(τS′−). On the
other hand, applying again Lemma 5.1, it follows that if HS′− = f(τS′−), then (τ,H) is
necessarily a.s. continuous at time S′, so that τS′ = τS′−. This proves that HS′ = f(τS′),
a.s. Moreover, since the subordinator H is not lattice, the time S′ is necessarily unique,
so that S′ = S = inf{t ≥ 0 : Ht > f(τt)}. This proves in particular that τS = Tf .

Conversely assume that S = inf{t ≥ 0 : Ht > f(τt)} satisfies HS = XτS = XτS = f(τS).
Since X is not lattice and f is non increasing, the time τS is necessarily unique and
satisfies τS = inf{t : Xt > f(t)} = Tf . Hence XTf = XTf = f(Tf ) and we have proved
the identity

{HS = f(τS), u0 < τS < u1} = {XTf = XTf = f(Tf ), u0 < Tf < u1}

which allows us to conclude thanks to part 2. of Theorem 2.1.

6.3 On assumptions of Theorem 2.5

It is assumed in theorems 2.5 and 2.8 that the renewal measure of the ladder process
(τ,H) has continuous densities (t, x) 7→ q∗t (x) on (0,∞)2. The next proposition provides
conditions for this to hold. Moreover, when the later are satisfied, q∗t is positive on (0,∞),
for all t > 0. This ensures the positivity of the creeping probability (2.6) whenever dH > 0

or dτ > 0 and f(t1) < f(t0).

Proposition 6.1. Assume that X is a non killed real Lévy process which satisfies the
equivalent conditions (i) and (ii) of Proposition 5.4, then

1. the semigroup q∗t (x, dy) of the killed process (X,Q∗x) defined in (6.2) is absolutely
continuous and its densities (t, x, y) 7→ q∗t (x, y) are continuous in (0,∞)2 × [0,∞).

2. Assume moreover that for all c ≥ 0, the process (|Xt − ct|, t ≥ 0) is not a subor-
dinator. Then the entrance law, q∗t (dx) is absolutely continuous on [0,∞) for all
t > 0 and there is a version q∗t (x), x ≥ 0, t > 0 of its densities such that the function
(t, x) 7→ q∗t (x) is continuous on (0,∞)× [0,∞). Moreover, for all t > 0, q∗t is positive
on (0,∞).

Denote by h the renewal function of H, that is h(x) =
∫∞

0
P(Ht ≤ x) dt, then

limy→0+ q
∗
t (x, y) = h(0)qt(x). Moreover for all t > 0, limx→0+ q

∗
t (x) = h(0)pt(0)/t.

We then set q∗t (x, 0) = h(0)qt(x) and q∗t (0) = h(0)pt(0)/t, for all t, x > 0.

Proof. The first assertion is a slight reinforcement of Lemma 2 in [18] and our proof
follows the same arguments. Recall first the definition (6.2) of the killed process (X,Q∗x)

and let us denote by q∗t (x, dy) its semigroup. Then from Lemma 2 in [18], under our
assumption and thanks to Proposition 5.4, this semigroup admits densities q∗t (x, y) which
satisfy for all t > 0, x > 0, y ≥ 0,

q∗t (x, y) = Ptx,y(Λt)pt(y − x) ,

where Ptx,y is the law of the bridge of (X,P) starting from x and ending in y at time t and
Λt = {Xt > 0} ∪ {Xs > 0, 0 ≤ s < t, Xt = 0}. Here, in order to define q∗t (x, 0) for all t > 0
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and x > 0, we have included y = 0 since the right member is then well defined. From
Corollary 1 of [5], the measures Ptx,y are weakly continuous in (t, x, y) ∈ (0,∞)×R2. Then
from the same arguments as in Lemma 2 of [18], these measures satisfy Ptx,y(∂Λt) = 0

for all t, x > 0 and y ≥ 0. Hence from portemanteau theorem and Proposition 5.4, the
mapping (t, x, y) 7→ Ptx,y(Λt)pt(y − x) is continuous in (0,∞)2 × [0,∞).

In order to prove 2., recall from part 3. of Lemma 1 in [2] that q∗t (dx) is absolutely
continuous under our assumptions. Let us denote by q∗t (x) the corresponding densities
and recall the Chapman-Kolmogorov equation,

q∗t+s(y) =

∫ ∞
0

q∗s (x)q∗t (x, y) dx , s, t, y > 0 , (6.7)

which can be derived for instance from (6.3). From Proposition 1 in [4], for all x > 0

and t > 0, limy→0+ q
∗
t (x, y) = h(0)qt(x). Let us set q∗t (x, 0) = h(0)qt(x). Let Ψ be

the characteristic exponent of X, that is E(eiξX1) = e−Ψ(ξ). From Lemma 2 in [18],
q∗t (x, y) ≤ pt(y − x), for all t > 0 and x, y ∈ (0,∞)2, so that,

q∗t (x, y) ≤ pt(y − x) =
1

2π

∫
R

e−i(y−x)ξe−tΨ(ξ)dξ ≤ 1

2π

∫
R

|e−tΨ(ξ)|dξ , (6.8)

and this bound can be extended to y = 0. From the same arguments as in the proof of
Proposition 5.4, the mapping t 7→

∫
R
|e−tΨ(ξ)|dξ is continuous on (0,∞). Let (t0, y0) ∈

(0,∞)× [0,∞), then from (6.8) and the continuity of t 7→
∫
R
|e−tΨ(ξ)|dξ, there is ε > 0 and

Cε > 0 such that q∗t (x, y) ≤ Cε, for all x > 0, y ≥ 0 and t ∈ (t0 − ε, t0 + ε). Moreover, from
(6.3),

∫∞
0
q∗s (x) dx = n∗(s < ζ) < ∞, hence, (6.7) can be extended to y = 0 and we can

set q∗t (0) = limy→0+ q
∗
t (y), t > 0. Moreover, continuity of (t, y) 7→ q∗t (y) at (t0, y0) follows

from (6.7), continuity of (t, x, y) 7→ q∗t (x, y) in (0,∞)2 × [0,∞) proved in assertion 1. and
Lebesgue theorem of dominated convergence.

The positivity of q∗t for all t > 0 follows from Lemma 2 in [4] and the two last assertions
in 2. follow from Proposition 1 in [4].

Note that the last two assertions of part 2. of Proposition 6.1 are of no use in the
paper. However, these supplements have arisen naturally over the proof and we thought
it is worth mentioning them for completeness.

6.4 Proof of Corollary 2.6

As recalled in Subsection 6.1, since the process Yt := Xt+at, t ≥ 0 has bounded varia-
tion and positive drift, its upward ladder height process also has positive drift. Moreover,
by assumption, for all t > 0 the distribution P(Xt ∈ dx) is absolutely continuous with a
bounded density, and for all c ≥ 0, the process (|Xt − ct|, t ≥ 0) is not a subordinator.
Then these conditions are clearly also satisfied by the process Y . Let us denote by q∗,at (x)

the density of the renewal measure of the ladder process associated to Y . Then from
part 2. of Proposition 6.1, (t, x) 7→ q∗,at (x) is continuous on (0,∞)2. Moreover, q∗,at is
positive on (0,∞) for all t > 0. These properties imply, from part 2. of Theorem 2.5, that
the process Y creeps at its supremum through the function f(t) + at over the interval
(t0, t1), so that X creeps through the function f(t) over the interval (t0, t1).

6.5 Proof of Proposition 2.7

Proposition 2.7 is a consequence of Proposition 2.4 and its proof follows the same
arguments as those used for the proof of Theorem 2.5 in Subsection 6.2. The details are
omitted.
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7 Proof of Theorem 2.8

The proof is a direct application of the extension of Tanaka’s construction of random
walks conditioned to stay positive obtained in [8]. Let us first state this transformation.
Recall that Xt = sups≤tXs and let us set for t > 0,

gt = sup{s < t : Xs = Xs} and dt = inf{s > t : Xs = Xs} .

Then the process defined by

W0 = 0

Wt = Xdt + 1I{dt>gt}(X −X)(dt+gt−t)− , t > 0 ,

has the law of X conditioned to stay positive, X↑. According to this construction, the
process W is obtained by time reversing of each excursion of the reflected process X−X
and then by gluing them back together.

The assertion 0 < σf < ∞, a.s. is straightforward since limt→0+ f(t) > 0 and
limt→∞X↑t =∞, almost surely. Then we derive from the above construction that almost
surely,

Xt = W
t
, for all t ≥ 0.

Moreover, the sets {t ≥ 0 : Xt = Xt} and {t ≥ 0 : Wt = W
t
} are identical. It follows that

XTf = W
Tf

, almost surely and that XTf = XTf if and only if WTf = W
Tf

. Then it remains

to observe that on the set {XTf = XTf } = {WTf = W
Tf
}, Tf = sup{t : Wt ≤ f(t)} = σf

and this proves parts 1. and 2. of Theorem 2.8.
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