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ABSTRACT

Archaeal chromatin proteins share molecular and

functional similarities with both bacterial and eu-

karyotic chromatin proteins. These proteins play

an important role in functionally organizing the

genomic DNA into a compact nucleoid. Cren7 and

Sul7 are two crenarchaeal nucleoid-associated

proteins, which are structurally homologous, but

not conserved at the sequence level. Co-crystal

structures have shown that these two proteins

induce a sharp bend on binding to DNA. In this

study, we have investigated the architectural

properties of these proteins using atomic force mi-

croscopy, molecular dynamics simulations and

magnetic tweezers. We demonstrate that Cren7

and Sul7 both compact DNA molecules to a similar

extent. Using a theoretical model, we quantify the

number of individual proteins bound to the DNA as

a function of protein concentration and show that

forces up to 3.5 pN do not affect this binding.

Moreover, we investigate the flexibility of the

bending angle induced by Cren7 and Sul7 and

show that the protein–DNA complexes differ in flexi-

bility from analogous bacterial and eukaryotic

DNA-bending proteins.

INTRODUCTION

Organisms in all three domains of life need to compact
and functionally organize their genomic DNA into the
relatively small volume of a nucleus or a cell.
Architectural proteins (histones and other chromatin
proteins in eukaryotes and nucleoid-associated proteins

in bacteria and archaea) play an important role both in
compaction and functional organization of DNA, thus
affecting DNA transactions as diverse as transcription,
repair and replication (1).

In eukaryotes, DNA is wrapped around histone
octamers, forming nucleosomes. With the aid of other
chromatin proteins, fibres with nucleosomes are folded
into higher-order structures, obtaining multiple levels of
organization. Bacteria organize their genomic DNA into a
nucleoid, which is shaped by the action of small chromatin
proteins that bend or bridge the DNA [e.g. histone like
protein from E. coli strain U93 (HU), integration host
factor (IHF), factor for inversion stimulation (FIS) and
histone-like nucleoid structuring protein (H-NS)] (2,3).
Archaea, constituting the third domain of life, synthesize
numerous nucleoid-associated proteins, with molecular
and functional similarities to both bacterial and eukary-
otic chromatin proteins (4,5). The two main archaeal
phyla, Euryarchaea and Crenarchaea, express different
sets of chromatin proteins, none of which is conserved
throughout the whole archaeal domain. Euryarchaea syn-
thesize true tetrameric histone homologues, which form
nucleosomes similar to eukaryotic tetrasomes (6,7).
Crenarchaea, on the other hand, do not synthesize
histone homologues, although there are some rare excep-
tions (8). Each crenarchaeal species encodes at least two
different small chromatin proteins and several paralogues,
which may act in concert to compact the genomic DNA
and to regulate its accessibility (9).

In the crenarchaeum Sulfolobus solfataricus, four
nucleoid-associated proteins have been identified so far,
Alba, Sso10a, Cren7 and Sso7d (the Sul7 family of chro-
matin proteins). Alba forms dimers in solution (10) and
has been shown to bridge DNA at low concentrations,
providing a means of organizing and compacting DNA
(11) (Laurens et al., submitted). Sso10a homologues
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(12,13) also exist as dimers in solution and have been
shown to form protein–DNA complexes, similar in
appearance to Alba–DNA complexes (11). Otherwise,
little is known about the role of Sso10a in compacting
and organizing genomic DNA.

Cren7 and Sul7 are both small (�7 kDa) basic mono-
meric proteins, which bind to DNA with no apparent
sequence specificity. Although they share no similarities
at the amino acid level, their tertiary structures and their
biochemical properties are similar (14–20). Both proteins
are folded similarly, containing two antiparallel b-sheets.
They mainly differ in the presence of an extended loop
located in between the two b-sheets in Cren7 (19) and an
additional C-terminal a-helix in Sul7 (21). Protein–DNA
co-crystal structures showed that they bind to DNA by
intercalation of hydrophobic side chains into the minor
groove (see inset Figure 1), which results in bending of
DNA by up to 50–60� (23–27).

The transcriptome of S. solfataricus P2 shows high
levels of transcription of both Cren7 and Sul7 (28), and,
consequently, both proteins are abundant in the cell [�1%
and up to 5% of the cellular protein for Cren7 (19) and
Sul7 (20) respectively]. Native Cren7 and Sul7 proteins are
post-translationally modified by methylation of several
lysine residues. Nevertheless, the function of methylation
remains unclear, as it does not change the binding affinity
to DNA in vitro (15,19), in contrast with the acetylation of
Alba (29).

Proteins that bend DNA by sequence non-specific
binding into the minor groove play an important role in
DNA compaction and chromatin organization through-
out all domains of life (1,30–33). In eukaryotes, high-
mobility group (HMG) proteins form moderately flexible
bends in DNA by intercalating into the minor groove (31),
enhancing the overall flexibility of the DNA, and they are
likely to play a supplementary role in chromatin organiza-
tion (30). In bacteria, DNA-bending proteins are crucial
players in chromatin organization, as bacteria lack histone
homologues.

Whether Cren7 and Sul7 function similarly to this
group of bacterial and eukaryotic DNA-bending
proteins, as suggested by the co-crystal structures, has
not yet been investigated. A functional difference
between the two proteins is expected, as they coexist in

species from the order Sulfolobales, but previously
reported biochemical assays have not yet revealed a sig-
nificant difference in protein–DNA interactions between
Cren7 and Sul7. To obtain a detailed understanding of the
architectural properties of the two proteins, we use a set of
different techniques, including atomic force microscopy
(AFM), molecular dynamics (MD) simulations and
magnetic tweezers. Our AFM studies yield insight in the
overall compaction properties of the two proteins. The
MD simulations using X-ray co-crystal structures yield
an ensemble of equilibrated ‘solution conformations’ of
the complexes. This gives information on the DNA-
bending angle induced and the rigidity of this bend.
With magnetic tweezers, we investigate the mechanical
properties of single protein–DNA complexes. Elaborate
analysis of measured force-extension curves enables us
to quantify the number of proteins bound on single
DNA molecules and to get a detailed understanding on
the force-dependency of protein binding and the flexibility
of the bending angle.

MATERIALS AND METHODS

Protein purification

Cren7
The Cren7 protein was purified from Escherichia coli
strain BL21 (DE3) containing plasmid pET30a, including
the gene encoding Cren7 (gene SSO6901) from
S. solfataricus (19). Cells were grown in LB medium up
to OD600& 0.4, and expression was induced using 0.5mM
IPTG at 37�C. Two hours after induction, cells were har-
vested by centrifugation, washed with physiological saline
[0.9% (w/v) NaCl] and resuspended in buffer A [50 mM
Tris–HCl (pH 8.0), 10mM ethylenediaminetetraacetic
acid (EDTA), 10% glycerol, 10mM b-mercaptoethanol].
Cells were lysed by sonication, and the cell lysate was
centrifuged at 37 000 r.p.m. for 30 min at 4�C. The super-
natant was applied to an SP column (GE Healthcare) and
was eluted with buffer A containing 200mM NaCl. The
eluted protein was heated at 65�C for 30 min and
centrifuged at 37 000 r.p.m. for 15min. The supernatant
was diluted to 100mM NaCl in buffer A, loaded on a
heparin column (GE Healthcare) and eluted with a
linear gradient of 0.1–1M NaCl in buffer A. The protein
was eluted at �270mM NaCl.

Sul7
A synthetic gene encoding the S. solfataricus Sul7 (Sso7d)
protein (gene SSO10610) was constructed in expression
vector pJexpress411 (supplied by DNA2.0). The DNA
sequence used is available from the authors on request.
The plasmid was transformed into E. coli strain BL21
(DE3) Rosetta cells, grown in LB medium, and expression
was induced using 0.2mM IPTG at 37�C for 3 h. After cell
lysis by sonication, the Sul7 protein was loaded onto a
heparin column (GE Healthcare) and eluted with a
linear gradient of 0–1M NaCl in buffer B [20mM
Tris–HCl (pH 7.4), 1mM dithiothreitol, 1mM EDTA].
Fractions containing the Sul7 protein were pooled,
concentrated and applied to a Superdex 200 gel filtration

Figure 1. Schematic illustrating the reduction of end-to-end distance
because of binding of a DNA-bending protein. Binding of a protein
that induces a bend of deflection angle � reduces the end-to-end
distance with �z ¼ � 1

2
� � C �ð Þ. Inset: average conformation of the

Cren7–DNA and Sul7–DNA complexes obtained from MD simula-
tions. Both proteins bend the DNA by intercalating in the minor
groove. Images are generated using visual molecular dynamics
(VMD) software (22).
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column (GE Healthcare) and were eluted by isocratic flow
with buffer B supplemented with 200mM NaCl.
Cren7 and Sul7 proteins were dialysed at 4�C against

a storage buffer [20 mM HEPES (pH 7.5), 100mM NaCl,
10% glycerol, 10mM b-mercaptoethanol], and they were
stored at �80�C until required. Protein concentrations
were determined by ultraviolet absorbance at 280nm,
using a molar extinction coefficient eCren7=8250M�1cm�1

(19) and eSul7=8300M�1cm�1 (21).

DNA constructs

AFM
pUC18 was propagated in E. coli strain XL10 and was
purified (Qiagen plasmid midi kit). Digestion with
EcoRI and XmnI resulted in a mixture of 845- and
1841-bp linear fragments.

Magnetic tweezers
pBluescript II KS+(Stratagene) was digested with SalI
and HindIII enzymes to generate a 2947-bp linear
fragment. The cohesive end at the SalI digestion site was
labelled with dUTP–digoxigenin (DIG), using the Klenow
fragment (Fermentas). Subsequently, the fragments were
purified, labelled with dUTP–biotin at the extremity,
resulting from HindIII digestion using dATP, dCTP and
dGTP and the Klenow fragment and were purified again.

MD simulations

MD simulations of 100 ns were performed in an explicit
solvent environment as previously described (34) using
initial coordinates from the co-crystal structures of
Cren7–DNA and Sul7–DNA (PDB codes 3LWH and
1BNZ, respectively), and an ideal B-DNA duplex with
identical sequence was used for the bare DNA simulation.
A detailed description can be found in the Supplementary
‘Materials and Methods’ section (see Supplementary
Data).

AFM experiments

Freshly cleaved mica was incubated with 10ml of 0.05%
(w/v) poly-L-lysine, rinsed with MilliQ water and dried
with nitrogen gas. Protein–DNA complexes were formed
by incubating 50ng of DNA with varying concentrations
of protein in 10ml buffer containing 10mM HEPES
(pH 7.5) and 100mMNaCl for 10min at room temperature
(�23�C). After incubation, this mixture was diluted 5-fold
in water and was directly deposited onto poly-L-lysine
coated mica, rinsed with MilliQ water and dried with
nitrogen gas. Images were collected on a NanoScopeIII
AFM (Digital Instruments, Santa Barbara, CA) using
tapping mode in air (micro cantilevers, Olympus
MCL-AC240TS-W2, resonance frequency 70kHz, spring
constant 2N/m) at a frequency of 2 Hz and were flattened
using Nanoscope software (Veeco Instruments).

Magnetic tweezers experiments

Magnetic tweezers experiments were performed on a
custom-built instrument described earlier (35). Images
were acquired with a CCD camera (Pulnix TM-6710CL)
at 60Hz, and real time image processing was done using

custom-developed LabView software (National
Instruments). Magnets were positioned in the optical
axis of the microscope and were controlled by a stepper
motor-based translational stage (M-126, Physik
Instrumente). Force was calibrated by measuring fluctu-
ations of a tethered DNA-bead construct and was
calculated according to the equipartition theorem (36).

The bottom slide of the flow cell was pre-coated with 1%
(w/v) polystyrene in toluene. Subsequently, the flow cell
was filled with 1mg/ml anti- DIG antibodies (Roche) and
was incubated for 2 h at 4�C. Next, the flow cell was flushed
with 2% (w/v) bovine serum albumin (BSA) and 1% (v/v)
Tween-20 solution and was incubated overnight at 4�C.
The flow cell was flushed with buffer I [10 mM HEPES
(pH 7.6), 100mM KAc, 0.2% (w/v) BSA, 0.1% (v/v)
Tween-20], filled with 20ng/ml DNA (functionalized with
biotin and DIG) in buffer I and incubated for 10min. One
microlitre of streptavidin coated superparamagnetic beads
with a diameter of 1mm (DYNAL Myone) was washed
three times in 1�TE [10 mM Tris–HCl (pH 8.0), 1mM
EDTA], resuspended in 500ml buffer I, flushed into the
flow cell and incubated for 10 min. Before measurements,
the flow cell was washed thoroughly (�10 times the volume
of a flow cell) with buffer II [10 mM HEPES (pH 7.5),
0.2% (w/v) BSA, 0.1% (v/v) Tween-20] with addition of
either 25 or 100mM NaCl (with or without 10mM MgCl2
added). Cren7 and Sul7 stock solutions were diluted in
buffer II to the desired protein concentration
(40–800nM), and they were incubated for 10 min before
starting measurements. Force-extension curves of single
double-stranded DNA (dsDNA) molecules and protein–
DNA complexes were measured by increasing the force to
3.5 pN during 30 s and subsequently reducing the force to
zero in 10 s. All measurements were performed at room
temperature (�23�C).

Data analysis

Force-extension curves of single dsDNA molecules and
protein–DNA complexes were quantified using the
worm-like chain model (WLC). This model describes the
mechanical properties of DNA and is defined by its intrin-
sic properties: the persistence length LP and the contour
length L0 (37):

F zð Þ ¼
kBT

LP

� �

1

4 1� z=L0ð Þ2
�
1

4
+

z

L0

� �

ð1Þ

Here, F denotes the applied force, z the end-to-end
distance of the DNA molecule, kB the Boltzmann
constant and T the absolute temperature. The effect of
protein–DNA interactions on the DNA can be quantified
by the fitting parameters LP and L0 from F–z curves of
protein–DNA complexes.

The number of proteins that is bound to the DNA can
be directly related to the change in end-to-end distance of
the DNA molecule. Intercalation of a protein in the minor
groove of the DNA that induces a bend in the DNA
affects the end-to-end distance with a change in length
�z (Figure 1). This change in end-to-end distance is
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related to the force-dependent deflection length

� Fð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffi

kBT�LP

F

q

as follows (38,39):

�z ¼ �
1

2
� � C �ð Þ ð2Þ

where LP is the persistence length of bare DNA, and C(�)
is a geometric coefficient depending on the bending angle
�:

C �ð Þ ¼ 8 1� cos
�

4

� �h i

ð3Þ

Implementing the reduction of length �z [Equation (2)]
into the WLC [Equation (1)], and noting that
1= 4 1� z=L0ð Þ2
� �

� z=L0 � 1=4 in our force regime, leads
to a relation where the end-to-end distance z is directly
related to the average number of proteins bound NB (38):

z F,NBð Þ

L0

� 1�
1

2

� Fð Þ

LP

1+NB � C �ð Þ
LP

L0

	 


ð4Þ

This leads to an expression for the apparent persistence
length, normalized by the number of proteins bound:

L
app
P NBð Þ ¼

LP

1+NB � LP

L0
C �ð Þ

� �2
ð5Þ

The number of proteins bound along single DNA mol-
ecules can now be determined by a model describing the
mechanical response of DNA with multiple independent
bends [Equation (4)]. It should be noted that this model
only holds when the DNA is sufficiently stretched, such
that the average distance between bound proteins is larger
than the force-dependent deflection length, that is,
NB < L0

�
. In this force regime, bound proteins are distant

enough to prevent the induced bends from interacting with
each other. The aforementioned condition follows from an
exact calculation that we performed for arbitrary linker
lengths for a special case of protein arrangement (zigzag
geometry). As for shorter linker lengths, the end-to-end
distance depends on the rotational setting of adjacent
proteins, our aforementioned theory can lead to under-
or overestimation of the number of bound proteins
outside the allowed regime.

RESULTS AND DISCUSSION

To investigate the architectural properties of Cren7 and
Sul7, we used a combination of different single-molecule
techniques. We used AFM to visualize individual protein–
DNA complexes, MD simulations to evaluate the bending
angle of the protein–DNA complexes in solution and
magnetic tweezers experiments to quantify the physical
properties of single protein–DNA complexes and their
force dependency.

Effect of Cren7 and Sul7 on the conformation of
single DNA molecules

To investigate the effect of Cren7 and Sul7 on the con-
formation of single DNA molecules, we visualized

protein–DNA complexes using AFM. As can be seen in
Figure 2, addition of either Cren7 or Sul7 results in DNA
conformations that are more compact than bare DNA
molecules. An increasing amount of protein results in a
higher degree of compaction. It is likely that the observed
compaction is caused by bends induced by the proteins.
However, the small size of the proteins (�7 kDa) limits the
unambiguous identification and quantitative analysis of
individual proteins on the DNA. To gain more insights
into the structure and dynamics of the bends induced by
the two proteins, we carried out MD simulations of
protein–DNA complexes in solution.

Bending angle determination by MD simulations

The co-crystal structures of Cren7–DNA and Sul7–DNA
complexes showed that both proteins induce a bending in
the DNA of �50–60�. However, a complex in a crystal is
fixed in a single conformation and may reflect a rare con-
formation favoured by crystal packing. To evaluate
whether the bending angles observed in the co-crystal struc-
tures reflect the average conformation in solution, we per-
formed MD simulations in solution using the co-crystal
structures as initial coordinates. The MD simulations
yielded stable structures except for a small deviation in
the Sul7–DNA complex at the end of the simulation run
because of rigid body motions of the C-terminal region
(see Supplementary Figure S1 for the root mean square
deviations). The overall flexibility of the DNA in all three
systems examined using root mean square fluctuations was
found to be similar. Additionally, the extent of DNA
bending was investigated by calculating the roll angle
(40). Figure 3 shows the probability distributions of the
roll angles during the simulation. Fitting the distributions
to a Gaussian, we find that both protein–DNA complexes
exhibit similar bending angles of aCren7=47.5±5.6�

and aSul7=45.3±6.7�, which slightly deviate from the
bending angle found in the co-crystal structures. It is
important to note that the width of the roll angle distribu-
tions (which reflects the flexibility of the complex) of both
protein–DNA complexes is small and comparable with the
width of the roll angle distribution of bare DNA
(abareDNA=7.3±5.7�).

Figure 2. AFM images of bare DNA, Cren7–DNA complexes and Sul7–
DNA complexes. The protein–DNA complexes are more compact than
the bare DNA molecules. Increasing the protein concentration results in
more DNA compaction. The DNA is an equimolar mixture of both
1841- and 845-bp linear fragments. Images are 500� 500nm in size.
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Quantification of DNA compaction by Cren7 and Sul7

To quantify the molecular mechanisms underlying the
observed DNA compaction, we carried out single-
molecule micromanipulation experiments. In these experi-
ments, we measured the force-extension relation of single
dsDNA molecules over a range of concentrations for both
Cren7 and Sul7 (0, 40, 80, 200, 400 and 800 nM) (Figure
4A and B). In both cases, the addition of protein results in
a reduction of z (compaction), which decreases progres-
sively on raising the protein concentration. No significant
difference is observed between Cren7 and Sul7 as they
compact the DNA to a similar extent, which confirms
the compaction observed in our AFM studies. The reduc-
tion of the end-to-end distance (z) saturates at a protein
concentration of �400 nM (Figure 4C and D). At the
highest concentration (800 nM), the end-to-end distance
increases slightly, which could point to interactions
between adjacent proteins, causing a mild extension of
the compacted DNA molecules. However, incubation
with higher protein concentrations (up to 1600 nM) did
not induce a further increase in end-to-end distance
(‘data not shown’).
To quantify the effects of the protein on the mechanical

properties of DNA, the WLC model [Equation (1)] was
fitted to the force-extension curves. Although the contour
length stays constant (L0=1.0±0.05mm), the apparent

persistence length (38,39) decreases drastically
(Figure 5A). At high concentrations, the apparent persist-
ence length reaches a minimum of LP=8.8±1.3 nm for
Cren7 and LP=9.0±1.6 nm for Sul7, which is more than
four times smaller than the measured persistence length of
bare DNA, LP=40.5±11.2 nm. Thus, binding of these
proteins results in compaction of DNA by reducing the
apparent persistence length.

It is interesting to note that higher protein concentra-
tions do not result in stiffening of the DNA. Previous
studies of similar DNA-bending proteins (e.g. the bacter-
ial proteins HU and IHF and eukaryotic HMG proteins)
have shown that these proteins compact DNA by forming
bends at low protein concentrations (41–44). However,
HU and HMG proteins enter a second binding regime
at high concentrations, forming stiff filaments because of
close adjacent binding. It has been suggested that IHF
behaves similarly (2) when binding non-specifically along
DNA (44,45), but this has not yet been experimentally
confirmed. The bimodal binding of HU, causing a transi-
tion from a softening to a stiffening mode, has been shown
to be salt dependent and was only observed at NaCl con-
centrations <150mM (46). As such salt-dependent effects
might exist also for Cren7 and Sul7, we measured
force-extension curves under different ionic conditions.
Previous studies have already shown that the binding
affinity of Sul7 decreases with increasing ionic strength
(47). Measurements in a buffer containing a lower salt
concentration (25mM NaCl) showed that the decrease
in apparent persistence length occurs at much lower
protein concentration (Figure 5B), which suggests an
increased binding affinity, because of enhanced electro-
static protein–DNA interactions at low ionic strength, as
expected. Again at the highest protein concentration, the
persistence length did not increase, and a stiffening mode
was not observed. These findings suggest that Cren7 and
Sul7 do not stiffen DNA in a second binding mode, even
at protein concentrations where high DNA coverage is
expected. It has been shown for bacterial H-NS-like
proteins that these proteins exhibit two binding modes
(48–50), which can be switched by the addition of
MgCl2 (51,52). To test whether divalent ions have an
effect on the mode of binding of Cren7 and Sul7, we per-
formed measurements in the presence of MgCl2.
These experiments did not reveal an effect on the
binding behaviour of Cren7 and Sul7, other than a
decrease in binding affinity (see Supplementary Figure
S2). This reinforces that the binding is dominated by elec-
trostatic interactions, which are reduced by increasing the
ionic strength.

Quantification of the number of proteins bound

The number of proteins bound to the DNA within the
range of measured force and protein concentrations is
determined by applying Equation (4) to the measured
force-extension curves (Figure 4A and B) using the
bending angle � determined from the MD simulations
(�Cren7=47.5� and �Sul7=45.3, see Figure 3). As
expected, the number of proteins bound on the DNA
(NB) increases with increasing protein concentration

Figure 3. Probability distribution of the roll angle of the kinked base
pair step in the bare DNA (‘blue’), the DNA in the Cren7–DNA
complex (‘green’) and the DNA in the Sul7–DNA complex (‘red’).
Distributions are obtained from the final 90 ns of the MD simulations
and are fitted to a Gaussian (�bareDNA=7.3±5.7�, �Cren7=
47.5±5.6� and �Sul7=45.3±6.7�). Insets: the average conformations
of the bare DNA, the Cren7–DNA complexes and Sul7–DNA
complexes are shown and aligned with two extreme conformations to
illustrate the flexibility of the complexes. Images are generated using
VMD software (22).
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(see Figure 6). Considering the condition for which our
model is valid, NB < L0

�
(see ‘Materials and Methods’

section), we note that this condition holds for the 40 and
80 nM measurements, where proteins are still bound
distant enough from each other. For the lowest concen-
trations, the number of bound proteins is found to be
constant throughout the measured force range (Figure
6), from which we conclude that forces up to 3.5 pN do
not affect the number of proteins on the DNA. At higher
protein concentrations, the high occupancy may introduce
a systematic error in the calculated NB, but as in the case
of lower concentrations, we still find a force independent
value for NB. This is a surprising observation, as one
would expect a significant decrease in binding affinity
with applied force. The energy it costs to form a bend is
force-dependent, and for the highest force (3.5 pN), this
would be Ekink=�kBT (see Supplementary Data). As the

dissociation constant Kd is related to Ekink, and the binding
free energy DG0 as follows:

Kd Fð Þ � exp
�G0+Ekink Fð Þ

kBT

� �

ð6Þ

One would expect the dissociation constant to increase
with a factor 2.7 for both Cren7 and Sul7 when the force
is increased from 0 to 3.5 pN, resulting in a lower protein
occupancy at higher forces. Apparently, these proteins
bind stably enough to withstand such forces on
our experimental timescale (�30 s). Note that measure-
ments were reversible for all measured protein concentra-
tions, which could be explained by off-rates much larger
than the experimental timeframe (see Supplementary
Figure S3). Even holding the protein–DNA complexes
at 3.5 pN for 10 min did not result in an increase in
z or a different retraction curve, showing that the

Figure 4. Force-extension curves of protein–DNA complexes. Each data point represent the average of a number of DNA molecules measured in
buffer containing 100mM NaCl (n=26 for bare DNA molecules and n=6–14 for DNA–protein complexes). Data are fitted with the WLC model
[Equation (1)]. Error bars represent the standard deviation. (A and B) Averaged force-extension curves of DNA at different protein concentrations of
Cren7 and Sul7. (C and D) End-to-end distance as a function of bulk protein concentration represented at constant forces. Progressive addition of
protein results in a decrease of the end-to-end distance z, and thus compaction of DNA molecules.

Nucleic Acids Research, 2013, Vol. 41, No. 1 201

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/n
a
r/a

rtic
le

/4
1
/1

/1
9
6
/1

1
5
5
3
8
4
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



proteins stay stably bound even on longer timescales
(see Supplementary Figure S4). Unexpectedly, low off-
rates of proteins bound to DNA have also been observed
in previous studies on HU and HMG protein–DNA
complexes in protein-free solution (46,53). Apparently,
there is a large energy barrier for the proteins to dissociate,
which is not reached by applying a force of 3.5 pN. Such
strong binding could be crucial for maintaining the integ-
rity of the DNA in extreme environmental conditions of
the organism’s natural habitat. Cellular processes that
apply local tension on the DNA, such as transcription,
replication and repair, act on timescales that are much
shorter compared with our experimental timescale. This
suggests that these proteins are relatively stably bound
to the DNA in vivo. However, cellular machineries
involved in replication and transcription, such as helicases
and polymerases, may directly drive the proteins to dissoci-
ate (54), allowing access to the DNA track.
Determining the number of proteins bound to DNA

and how this is affected by force on the DNA has been

a topic of interest in various recent studies (55–58). It is
important in the light of understanding the contribution
of the individual bound proteins to overall genome organ-
ization and how forces induced by cellular processes affect
this. Theoretical models have described the number of
proteins bound to single DNA molecules in relation to
applied force. These models showed that the force
response of the bound proteins is highly dependent on
the flexibility of the protein–DNA complex if the
binding is relatively strong (55). With the use of thermo-
dynamic Maxwell relations (57), the change in the number
of bound proteins can be determined, given the condition
that the protein–DNA interactions are in thermodynamic
equilibrium. Analysis with the thermodynamic Maxwell
relations of single-DNA force-extension data with
DNA-bending proteins from E. coli, HU and FIS,
suggested that these proteins are driven off the DNA by
an applied force, even at relatively small forces <1 pN
(56). It should be noted, however, that this approach
does not take into account that the degree of protein

Figure 5. Apparent persistence length (Lp) decreases as a function of protein concentration. The persistence length is determined by fitting individual
force-extension curves to the WLC model [Equation (1)] and is averaged for each concentration point. Error bars represent the standard deviation.
(A) Average apparent persistence length from F–z curves measured in buffer containing 100mM NaCl. (B) Average apparent persistence length from
F–z curves measured in buffer containing 25mM NaCl.

Figure 6. Number of bound proteins (NB) on a single DNA molecule (2947 bp) as a function of force, calculated from the force-extension curves
according to Equation (4). The number of proteins increases with increasing protein concentration, but is unaffected by forces up to 3.5 pN. Lines
represent NB calculated from the apparent persistence length. Dotted line represents the condition NB ¼ L0

�
.
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induced DNA bending could be altered by DNA tension.
Applying force to the protein–DNA complexes could
reduce the degree of bending, which would result in a
net mechanical response, similar to that of protein unbind-
ing (41). Thus, the proposed unbinding of proteins in
those studies might actually be (in part) caused by a
decrease of bending angle rather than protein unbinding.

Do Cren7 and Sul7 induce flexible or static bends?

Previous studies of bacterial chromatin protein HU have
shown that bends of HU–DNA complexes are highly
flexible (59) [varying from 0 to 180� (41)]. Although a
similar flexible hinge model was initially proposed for eu-
karyotic HMG domains (42), further experiments showed
a more narrow angle distribution of high mobility group B
(HMGB) protein-DNA complexes (31). Non-specific
binding of IHF may induce flexible bends analogous to
HU, whereas the site-specific binding of IHF is stabilized
by interaction between the DNA flanking the kink sites
and the body of the protein, making this bend static (32).
Based on the analogy of Cren7 and Sul7 with those
non-specific DNA-bending proteins, one would anticipate
that these proteins induce bends with a certain degree of
flexibility. Applying a force on such flexible bends would
decrease the bending angle. Equation (4) yields an increase
of the extension of the DNA for both a reduction in the
bending angle and a reduction of NB, which are indistin-
guishable from each other. Surprisingly, the number of
bound proteins NB is unaffected by the applied force,
which implies that the bending angles are independent of
forces 	3.5 pN. The MD simulations of the protein–DNA
complexes in solution at zero force show that the distri-
butions of roll angles are narrow (Figure 3)
(�Cren7=47.5±5.6� and �Sul7=45.3±6.7�) and com-
parable in width with the roll angle distribution of bare
DNA (�bareDNA=7.3±5.7�). Both observations show
that Cren7 and Sul7 bind with a rigid bend, in contrast
with flexible hinges induced by analogous DNA-bending
proteins. If a flexible angle is essential in permitting tight
packing of proteins, this could explain the absence of a
second-binding mode in which the DNA is stiffened.

CONCLUSIONS

The protein–DNA interactions of Cren7 and Sul7 are
similar. Like in previous biochemical assays, we found
that they bind with comparable affinity. Here, we have
demonstrated that they induce a similar degree of com-
paction of DNA, bind independent of forces up to 3.5 pN
and bend DNA with a non-flexible bend. Whether the
bending and binding of Cren7 and Sul7 also resists
higher forces remains to be seen and could be assessed
with other single-molecule techniques that permit
DNA-stretching at higher forces. Visualization of fluores-
cent proteins in combination with such techniques (60)
could confirm our findings in the low force regime.
Although no difference has yet been observed, given the
fact that Cren7 and Sul7 coexist in the same organisms,
one would still expect them to have a functional difference
in vivo. As mentioned earlier, Cren7 and Sul7 can both be

methylated at several lysine residues. Such post-
translational modifications of nucleoid-associated
proteins can play an important role in regulation of inter-
actions between individual proteins on the DNA, as well
as the interaction with other proteins, such as transcrip-
tion factors or other chromatin proteins. How this affects
the role of Cren7 and Sul7 in chromatin organization, and
possibly gene regulation, remains to be investigated.
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