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Abstract-Low crest-factor of excitation and response signals 
is desirable in transfer function measurements, since this al- 
lows the maximization of the signal-to-noise ratios (SNR’s) for 
given allowable amplitude ranges of the signals. The paper pre- 
sents a new crest-factor minimization algorithm for periodic 
signals with prescribed power spectrum. The algorithm is based 
on approximation of the nondifferentiable Chebyshev (mini- 
max) norm by Z,,-norms with increasing values of p ,  and the 
calculations are accelerated by using FFT’s. Several signals re- 
lated by linear systems can also be compressed simultaneously. 
The resulting crest-factors are significantly better than those 
provided by earlier methods. Moreover, it is shown that the 
peak value of a signal can be further decreased by allowing 
some extra energy at additional frequencies. 

Keywords-Crest-factor, multisine, optimal excitation. 

I. INTRODUCTION 
0 experimentally determine the dynamic behavior of T a linear time-invariant system, the input and output 

signals have to be measured. Measurements always intro- 
duce some errors depending upon the measurement 
method and the instrumentation used. By averaging the 
measurements it is possible to reduce the random errors 
while the systematic errors will usually persist. The sen- 
sitivity of the measurement process to disturbing noise is 
inversely proportional to the signal-to-noise ratio (SNR) 
of the measurements [ 11.  In many problems (e.g., control 
systems, biological systems) the choice of the excitation 
is very limited. However, in an important class of prob- 
lems only the maximal values of the input and output sig- 
nals, and some internal variables are restricted (to main- 
tain the linear behavior of the device under test and/or to 
avoid overflow of the measurement equipment). This 
freedom can be used to design optimal experiments [3], 
[4], [8]-[lo], [18]-[21], [24]-[26]. In most cases the aim 
of experimental design is to increase the SNR as much as 
possible. 

The development in technology and the implementation 
of the fast Fourier transform (FFT) made it possible to 
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measure the spectrum of a signal in real-time (e.g., dy- 
namic signal analyzers) instead of having to sweep 
(slowly) over the frequency range of interest (e.g., analog 
spectrum analyzers and network analyzers). In [25] ten 
different signals are studied to analyze their suitability as 
excitation signals for FFT-based signal and network ana- 
lyzers. Their influence on the measurement time, the ac- 
curacy and the sensitivity to nonlinear distortion is ana- 
lyzed. Schoukens et al. [25] conclude that multisines are 
universal, very flexible signals, that can be used to solve 
a lot of measurement problems in a minimum of time (a 
multisine is a signal obtained by the addition of a finite 
number of harmonically related sinusoids). 

The crest-factor (CF) of a signal is defined as the ratio 
of its peak value and its root mean square (RMS) value. 
The number of averages required to measure a signal with 
a specified accuracy is proportional to the square of the 
crest-factor [25]. This demonstrates the importance of CF 
minimization in measurement problems. For instance, in 
quality control, the specifications of a lot of almost iden- 
tical devices have to be verified. In such cases, the design 
of an optimal test signal having a low CF can result in an 
important gain of time and/or in an increase of accuracy. 

The exact solution to CF minimization is still an open 
problem [3], [4], [lo], [18]-[21], [24], [26]. In [19] an 
overview of the existing analytical and numerical meth- 
ods is given for the compression of periodic signals. The 
time-frequency-domain swapping method presented in 
[ 191 is based on a generalization of the Gerchberg-Saxton 
algorithm. This algorithm allows the simultaneous 
compression of the input and output signals of single-in- 
put, single-output (SISO) systems. The extension of this 
algorithm to multi-input, multi-output (MIMO) systems 
for the simultaneous compression of the input and output 
signals is not possible in general (the input vector cannot 
always be written as a function of the output vector [lo]). 
The new algorithm presented in this paper can handle the 
general MIMO problem. Further, it gives lower CF’s and 
offers more possibilities. 

The paper is organized as follows. The new algorithm 
is explained in Section I1 and the results are compared 
with the existing methods. In Section I11 the method is 
extended to allow the simultaneous compression of the 
input and output signals of a linear time invariant device, 
and the “snow effect” is introduced (by an adequate in- 
crease of the energy content of a signal, an extra decrease 
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of the peak value can be obtained). The results are illus- 
trated by examples. In Section IV, the conclusions are 
drawn. 

11. CREST-FACTOR MINIMIZATION-THE L,-METHOD 
A .  Preliminaries 

A multisine x is a periodic signal with a band-limited 
spectrum. It can be represented by a Fourier series, i.e., 
a trigonometric sum of order K [ 131, [ 151, [23] 

N U  

U =  I 
x(t)  = a, cos ( 2 s k , t / T  + a,) (1) 

where k,  are the harmonic numbers (k ,  E N, U = 1 ,  2,  
. . .  , Nu) and 0 C k ,  < k2 C 

Reference will be made to one of the most often used 
errorcriteria, namely the I,-norm [2], [6], [13], [15], [23]. 
We begin with the following definitions. 

Definition I: The /,-norm of the function x( t )  taken 
over the interval [O, TI is denoted by Z,(x) and is defined 
as 

* kN, = K .  

1 /P 
l,(x) = [’, soT Ix(t)lP dt] , P 2 1 .  (2) 

The mean absolute value (Il-norm) and the RMS value 
(12-norm) are well known I,-norms in the engineering lit- 
erature. In addition to the l,-norms, there is one other im- 
portant and widely used norm, which is the Chebyshev 
norm (also known as the minimax norm, the uniform 
norm, or the maximum norm). 

Definition 2: The Chebyshev norm llxll , of the contin- 
uous function x ( t )  is defined as its peak value in the inter- 
val [0, TI: 

llxllm = max Ix(t)( . (3) 

The Chebyshev norm is sometimes called the I,-norm be- 
cause of its relationship to the I,-norm for very large val- 
ues of p .  

Definition 3: The crest-factor CF, of the function x(t)  
is given by 

~ E I O ,  TI 

CFx = L ( x ) / l 2 ( x ) .  (4) 
In engineering terms, I,@) is just the peak value of the 
signal x .  In Section I11 a more general definition for the 
CF will be given. 

B. Crest-Factor Minimization 
Our problem consists of minimizing the CF of a mul- 

tisine (1) with a given auto-power spectrum (i.e., the a,  
are given constants). The parameters of the problem are 
for instance the phases a,, U = 2, 3, , Nu,  with cyl 

= 0. Let us group these parameters in a vector p with 
dimension Np x 1 (N,  = Nu - 1). Notice that the 12-n0rm 
(i.e., the RMS value) of a multisine is independent of the 
phases au, and thus, the CF minimization problem re- 
duces to the minimization of the peak value of the mul- 

- 

tisine l,(x(p, t ) )  with respect to the phases in the vector 
p. From the approximation theory standpoint, we try to 
make x as close to zero as possible using the Chebyshev 
norm as the distance function (Zm(x(p, t )  - 0) is mini- 
mized [ 131, [ 151, [23]). Due to the equality constraints on 
the magnitude of the Fourier coefficients (au, U = 1 ,  2,  
. . .  , Nu, are given constants), the multisine x cannot 
vanish to zero. 

Formally, the problem can be stated as: find a real val- 
ued phase vector p, E RNP such that the peak value of the 
corresponding multisine is the smallest among all the pos- 
sible phases p E RNP 

lm(x(pm9 t)> 5 L(x(p, t ) ) ,  VP E R ~ ~ .  ( 5 )  

When the gradient exists, p, can be found as the solution 
of 

alm(x(p, t)>/ap = 0. (6) 

Formulation (6) is not suited for a straightforward cal- 
culation of pa since the Chebyshev norm is nondifferen- 
tiable. According to [2] the l,-norm can be reformulated 
as an equivalent constrained differentiable minimization 
problem. From this constrained optimization problem, one 
concludes that an optimally compressed multisine can 
reach at most N, + 1 times its peak value. However, due 
to the large number of variables, the application of this 
formulation to multisine compression is not practical [3], 
[20]. We still use in this paper another approach, which 
consists of minimizing the differentiable l,-norm, where 
the index p is taken as a sequence such as 4, 8,  16, 32, 
64 [6]. Using the Schroeder phase coding [26] as the start- 
ing value the l4-110m is minimized. The 14-solution p4 is 
used as the starting value for the next norm, and so on. 
This defines under some regularity conditions a descent 
algorithm that converges to the minimax solution p, if 
the best I,-approximations p, were found (P6lya’s algo- 
rithm [6], [23]): 

lim pp = p,. 
P+=- 

(7) 

Due to the nonlinear appearance of the phases p in the 
multisine x ,  we are faced with the problem of local min- 
ima. However, from experience, we observed that the 
method described in this paper generates better results than 
the existing CF minimization methods. 

C. The L,-Error Criterion 

crete error criterion 
In numerical work it is convenient to use a simpler dis- 

N - l  

with x ,  = x(tn) .  We note here that the points t ,  need not 
be equally spaced. However, choosing tn = n T / N  has 
some definite advantages. In Appendix A it is proven that 
L,(x,) = [l,(x)lP for even values of p and f, = n T / N  if N 
> p K  + 1 .  Hence, if the conditions of Appendix A are 



fulfilled, the discrete ,!,,-norm and the continuous $-norm 
are equivalent. If these conditions are not satisfied, the 
discrete norm is only an approximation of the continuous 
one. In Appendix B a lower and upper bound have been 
derived for the Chebyshev norm of a sampled trigono- 
metric polynomial. 

D. The Gauss-Newton Algorithm 
As we have seen above, our task reduces to the min- 

imization of the multivariate nonlinear function L,(x,,). A 
lot of methods exist to tackle this problem [7], [12], [16]. 
We will use the Gauss-Newton algorithm in combination 
with Levenberg-Marquardt. Equation (8) then has to be 
rewritten as 

(9) 

where e is a column vector with N entries e,, = x: ,  n = 
0, 1, * * . , N - 1, and q = p / 2  withp even. Only first- 
order derivatives are required, which in our case are read- 
ily obtained. The Jacobian matrix J,  which is defined as 

becomes 

J,,, = -qx:- l  a, sin (2?rk,t,,/T + a,). (11) 
Using e and J as defined above, the Gauss-Newton it- 

erative algorithm can be formulated as 

with A(j-1)  a positive-definite Levenberg-Marquardt ma- 
trix [12], [16]. The upper indexes between parentheses 
stand for the iteration number. In Appendix C, a time- 
efficient algorithm, based on the FFT, is given to compute 
J ( ' - - l ) T  J ( ' - I )  and j ( i -  I ) T e ( i -  1 ) .  

E. Results 
Example I :  Take a multisine consisting of 31 compo- 

nents with equal magnitudes (a, = 1; k,  = 1, 2, - - - , 
3 1). The Schroeder solution [26] gives a CF (4) of 1.782, 
the time-frequency-domain swapping algorithm gives a 
crest-factor of 1.405 [19] and the ,!,,-method's CF is 
1.393 (Fig. 1). In Fig. 2, the computation times needed 
for the swapping algorithm (2048-point FFT) and the 
L,-algorithm are compared. Both methods were imple- 
mented in MatLab on a Macintosh I1 (MC68020, 68881 
floating-point coprocessor, 16-MHz clock). Fig. 3 shows 
the evolution of the CF and the corresponding computa- 
tion time as a function of the maximal number of time 
samples N used in the L,-error criterion. Notice that N = 
32 K is already large enough to obtain a good compres- 
sion. 

Example 2: Consider a multisine with 100 components 
(a, = 1; k, = 1, 2, . - , 100). In Fig. 4 the computation 
times needed for the swapping algorithm (4096-point 
FFT) and the L,-algorithm are compared. 
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Fig. 1 .  Compressed multisine with 31 harmonics. 
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Fig. 2. Evolution of the crest-factor versus the time for the swapping al- 
gorithm (-) and the L,-algorithm ( 0 ) .  
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Fig. 3 .  Evolution of the crest-factor (0) and the computation time (.) 
versus the number of time samples N. 
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Fig. 4. Evolution of the crest-factor versus the time for the swapping al- 
gorithm (-) and the L,-algorithm ( 0 ) .  

Example 3: Consider a logtone multisine with 13 
equal-magnitude components (a ,  = 1; k, = 10, 12, 15, 
18, 22, 27, 33, 40, 48, 58, 70, 84, 100). The Schroeder 
solution gives a CF of 3.19, the swapping algorithm crest- 
factor is 2.32 (4096-point FFT, 50 min.) and that of the 
L,-method is 1.96 (N = 4096, 50 min.). 

Example 4: Consider a multisine with 16 components 
(a,  = sin) 7r(2kU - 1)/32); k, = 1, 2, - , 16). For this 
problem, Van den Bos finds a CF of 1.51 [3]. With the 
L,-method, one obtains 1.42 (N = 2048) as the CF. 

F. Discussion 
The idea of using standard optimization techniques 

based on a cost function approach to design low-CF sig- 
nals is not new [4], [ 141, [20]. None of the previous trials, 
however, has resulted in a usable method. This is mainly 
due to the very complicated phase dependency of the CF, 
resulting in a cost function with many local minima. In 
[4], it was observed that a descent routine, started from 
Newman's phases, converged to a local minimum, yield- 
ing a minimal decrease in the CF. Global optimization 
routines can be used to avoid the local minima. However, 
these algorithms are in general very time-consuming [7]. 
Therefore, alternative methods were developed which cir- 
cumvent the cost function optimization problem (e.g., [3] 
and [19]). Regardless of the above remarks, the method 
presented is again based on a cost function approach. 
Seemingly, by using Pblya's algorithm to approximate the 
best Chebyshev solution, one avoids many of the local 
minima. In all the tests we made, we were able to find 
lower CF's than the existing methods, although there is 
no guarantee that the algorithm converges to a global min- 
imum. 

111. GENERALIZATIONS OF THE ,!,,-METHOD 
A .  Input-Output Crest-Factor Optimization 

To compress the input and output signals of a linear 
time-invariant device simultaneously, a new cost function 

has to be constructed in such a way that the Chebyshev 
norms of the input and output signals are minimized at the 
same time. Consider the following definitions. 

Dejinitions 4: The common LP-norm of the functions 
x( t )  and y ( t )  taken over the interval [0, TI is denoted by 
lp(x,  y )  and is defined as 

p 1 1. 

Dejinition 5: The common Chebyshev norm IIx, yll ,  of 
the continuous functions x(t)  and y ( t )  is a scalar defined 
as the largest peak value of x(t)  and y ( t )  over the interval 
[O, TI 

IIx, yllOD = max max (Ix(t)l, I y ( l t 0 .  (14) 
te[O, TI 

The algorithm described in the previous section can 
easily be modified to minimize the Chebyshev norm (14) 
of the input and output signals. Notice that the output sig- 
nal of a linear time-invariant dynamic system is given by 

y(t)  = c a,G, cos (2nk,t/T + CY, + 4,) (15) 

with G, and +,, respectively, the apriori known gain and 
phase shift introduced by the transfer function of the sys- 
tem at spectral line k,. The parameters of the problem are 
still the phases CY,. Define two vectors e, and ey as e,, = 
x4 and eyn = y : ,  respectively, (q = p / 2  with p even). 
Replace e( =e,) in (9) by e = [el ,  According to [ 113, 
the algorithm converges to a solution which minimizes 
(14). Usually, equal extreme peak values of the input and 
output signals are obtained. Other solutions are possible 
by the introduction of weighting factors, i.e., by minim- 
ization of Ilx/w,, y /wyl lOD.  When the weighting factors w, 
and wy are proportional to the RMS values, signals with 
equal CF's are obtained. One can notice, for instance, 
that when the peak ratio r = w v / w x  is chosen too large 
(e.g., when r > y W C / x R M S  with ywc = E, la,G,I the 
worst case peak value) the problem reduces to the min- 
imization of IIxII,. 

Example 5: Given a linear system with transfer func- 
tion 

Nu 

u = l  

H(s) = 
S 

s3 + 2s2 + 2s + 1 '  

Take as the excitation the same multisine as in Example 
1 (a, = 1; s, = O.0625jkU; k,  = 1, 2, * e ,  31). The 
weighting factors are chosen proportional to the RMS val- 
ues (the peak ratio r equals 0.5). The results are shown 
in Fig. 5 .  The CF's of the input and output signals are 
both 1.59, while the amplitude range of the output signal 
is 0.5 times the amplitude range of the input signal. 

Example 6: When equal weighting factors are used in 
Example 5 ( r  = l ) ,  the CF of the input signal becomes 
1.393, while the CF of the output signal equals 2.197. 
Notice in Fig. 6 that the output signal does not reach the 
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Fig. 5. Compressed input (-) and output (- ) multisines with 
r = 0.5 (equal crest-factors). 
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Fig. 6.  Compressed input (-) and output (- ) multisines with 

r = 1 .  

peak value, i.e., IIx, yllm = llxlloD (the peak ratio r is too 
large). Compare with Fig. 1 and notice that both input 
signals are identical. 

B. Multi-Input, Multi-Output Crest-Factor Optimization 
The output signals of a linear MIMO system are given 

by 
Nt N u  

y f  (‘) = aJUG,JU ‘Os ( 2 T k U t / T  + aJU + 4 l J U )  (17) 
JLI U = l  

with i = 1 ,  2 ,  * , N o .  N ,  is the number of inputs and 
No the number of outputs. GfJ, represents the gain and 41J, 
the phase shift introduced by the transfer function be- 
tween output i and input j of the MIMO system at spectral 
line k,, k, = 1, 2 ,  . e * , N u .  The parameters of the prob- 
lem are the phases a,,. Following the same reasoning as 
in Section III.A, the Chebyshev norm \ l x , /wx , ,  * - , 

Example 7: Consider a linear time-invariant dynamic 
x~,/Wx,y, Y I / W ~ ~ ,  * * 7 yN,,/w\N,IIm is minimized. 

MIMO system with transfer function matrix 

Input signals with the same specifications as the multisine 
in Example 5 are used. When choosing the RMS values 
as weighing factors, the algorithm produces multisines 
with CF’s equal to 1.61. 

C.  The “Snow Effect” 
We will demonstrate that an adequate increase of the 

energy content of a signal can result in an extra decrease 
of its peak value [ l o ] .  Consider 

NU 

x(t) = U =  I a, cos (2nk , t /T  + a,) 
N f  

+ s =  c I b, cos ( 2 n i s t / T  + &) (19) 

with E ,  # k, Vs, U. The parameters of the optimization 
problem are now a,,, b,, and 0,. The results of Appendix 
C can easily be extended for the new parameters. 

The term useful spectral lines (k,,; U = 1 ,  2, * - , Nu) 
is used here to denote the spectral lines the experimenter 
selected to excite the device under test. The values of the 
coefficients a,  are specified by the experimenter (e.g., an 
optimal amplitude spectrum [8]-[lo], [20 ] ,  [24]). The 
terms additional spectral lines and snow lines (E,; s = 1, 
2, * . , N,;  z, # k,) denote the spectral lines which were 
added to the original design to obtain a better CF. The 
spectrum of the additional lines is determined completely 
by the CF optimization algorithm. 

Notice that the previous definition of the CF (4) has to 
be modified. To obtain an honest comparison criterion, 
only the RMS value of the useful spectral lines (ku; U = 
1 , 2 ,  * . *  , Nu) should be taken into account. 

Definition 6: The crest-factor CF, of a trigonometric 
polynomial x(t)  with useful harmonics k,; U = 1 ,  2,  

. , Nu,  is given by 

CF,  = lm(X)/XRMSu (20) 

with x R M S ,  = the RMS value of only the use- 
ful harmonics. 

Example 8: Consider again the multisine of Exaeple 
1 (a, = 1;  k, = 1 ,  2 ,  - . , 31) with 31 snow lines (k, = 
32,  33 ,  

Example 9: Consider the logtone of Example 3 .  By 
adding snow lines between the useful lines, a significant 
decrease of the amplitude range is observed (Fig. 8). The 
CF (20)  equals 1.54. 

Example 10: The results of the input-output compres- 
sion problem given in Example 5 can also be ameliorated 
by the addition of snow lines (k, = 32,  33 ,  - - , 124). 
The results are summarized in Fig. 9. The CF (20)  equals 
1.44. 

IV. CONCLUSIONS 
The new method proposed in this paper minimizes the 

CF of multisines with an arbitrary user-defined auto-power 

, 62) .  The CF (20)  becomes 1.25 (Fig. 7). 
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Fig. 7. Compressed multisine with snow lines: (a) time-domain, (b) fre- 
quency-domain. 
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Fig. 8. Compressed logtone with snow lines between the useful lines. (a) 
time-domain. (b) frequency-domain. 
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Fig. 9. Compressed input and output multisines with snow lines. (a) time- 
domain (-: input signal; -' . output signal). (b) frequency- 
domain ( X  input spectrum; Y: output spectrum; H :  transfer function). 
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spectrum. It also allows the simultaneous compression of 
multisines related by linear time-invariant dynamic MIMO 
systems. Notice that an a priori knowledge of the dynam- 
ics of the linear device under test is necessary to simul- 
taneously optimize the input and output signals. Minor 
inaccuracies in this knowledge do not have important con- 
sequences. In all cases investigated, the new method was 
able to produce multisines with lower CF’s than those of 
the conventional methods. 

The algorithm can efficiently be implemented by means 
of the fast Fourier transform. By the addition of snow lines 
an extra decrease of the peak value can be obtained. An 
important advantage of the method with respect to those 
described in the literature is its ability to design excitation 
signals adapted to the limited measurement ranges of the 
data acquisition channels used. This requirement is nec- 
essary to allow an optimal use of the measurement ranges, 
resulting in maximal SNR’s. 

APPENDIX A 
Lemma 1 :  The discrete L,-norm of the sampled trigo- 

nometric polynomial x, = x(r,) and the continuous $,-norm 
of the trigonometric polynomial x(r) are equivalent for 
even values of p and r, = n T / N  (i.e., L,(x,) = [/,(x)]~) 
if N > p K  + 1 with K the order of the trigonometric 
polynomial. 

Proof: Consider 
NU 

x ( t )  = C a, cos (27rk,t/T + a,). (21) 
U =  1 

The square of x equals 

Nu N u  

x2(t> = C C a,a,,C,C,, 
u = l  u = l  

N,, Nu 

U =  I / ‘ = I  
= C C u,at , (C,+t ,  + c,-,J/~ (22) 

with C, = cos (27rk,r/T + a,) and C , + , ,  = cos (2n(k, 
f k , . ) r /T  + CY, f U / , ) .  

In general, taking the p th power of a trigonometric sig- 
nal x of order K will generate a trigonometric signal of 
order p K :  

P K  PK 

xP(r) = c Ak cos (27rkrlT) + c Bk sin (27rktlT).  
k = O  A =  I 

dition is not satisfied, aliasing occurs. The DC-component 
. N - 1  

will not be altered if N > p K  + 1. 

even values of p .  
From (24)  and (25)  one proves that Lp(xn) = [lP(x)Ip for 

APPENDIX B 
From Appendix A, it follows that the exact computa- 

tion of the Chebyshev norm of a trigonometric polyno- 
mial x, and thus, the CF, requires an infinite amount of 
samples x,. When a finite number of samples is used, 
lower and upper bounds of the Chebyshev norm can be 
specified. The lower bound is given by 

Proofi I(x(IL = max, \x,( I max, Ix( t ) (  = ((XI(,. 
The upper bound can be obtained by the inequality of 

Bernstein [ 131. 
Theorem I :  If a trigonometric polynomial TK(@ of pe- 

riod 27r and order K satisfies the inequality I TK(0)(  I M ,  
then 

laTK(e)/ae( I KM, Ve. (27) 

Using Theorem 1, we prove that 

is an upper bound of the Chebyshev norm with N the num- 
ber of equidistant samples in a period T.  

Proufi The proof is based on the fact that llxlloD is 
smaller than (IxIIL plus the largest derivative of x times the 
interval between the samples divided by 2 .  

llxllco < M = llxllL + MK X a / N .  (29) 

With M = Ilxllu, (28)  is proven. 

APPENDIX C 
The normal equations can efficiently be constructed by 

means of the FFT-algorithm. With the notations of Ap- 
pendix A 

(23)  C, = cos (27rk,n/N + a,) (30) 

Integration over one period causes all time dependent S, = sin (27rk,n/N + a,). (3 1) 

l T  
A. = j xp(r) dt. 

N -  I 

= p 2  C x ~ - 2 a , a , ( C , + u  - C , - , ) / 8  (33) 
n = O  

It is well known that when the Nyquist condition is ful- 
filled the exact Fourier coefficients can be obtained from 
a finite set of data points [22 ] ,  [27 ] .  If the Nyquist con- = p 2  Re ( $ , - u , p - 2  - $ u + u , p - 2 ) / 8  (34) 
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with 

and 

Notice that xk,p - = E rZd x: - 2  e -J21rknlN is the discrete 
Fourier transform (DFT) of the sequence x { - ~ ,  n = 0, 1, 

* , N - 1. In a similar way, the vector JTe can be 
rewritten as 

N-  I N” 

n = O  v =  1 
[JTe], = -q c x:“-’ c a,a,S,C, (35) 

= P Im ( L u , p - 2  + 1c/u+.,p-2)/4. (36) 
NU 

v =  1 
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