
International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.2, March 2018

DOI: 10.5121/ijsea.2018.9202 9

CRESUS-T: A COLLABORATIVE REQUIREMENTS

ELICITATION SUPPORT TOOL

Paul Stynes
1
, Owen Conlan

2
and Declan O’Sullivan

3

1
 School of Computing, National College or Ireland, Dublin, Ireland

2,3
ADAPT centre, Trinity College Dublin, Dublin 2, Ireland

ABSTRACT

Communicating an organisation's requirements in a semantically consistent and understandable manner

and then reflecting the potential impact of those requirements on the IT infrastructure presents a major

challenge among stakeholders. Initial research findings indicate a desire among business executives for a

tool that allows them to communicate organisational changes using natural language and a model of the IT

infrastructure that supports those changes. Building on a detailed analysis and evaluation of these findings,

the innovative CRESUS-T support tool was designed and implemented. The purpose of this research was to

investigate to what extent CRESUS-T both aids communication in the development of a shared

understanding and supports collaborative requirements elicitation to bring about organisational, and

associated IT infrastructural, change. In order to determine the extent shared understanding was fostered,

the support tool was evaluated in a case study of a business process for the roll out of the IT software

image at a third level educational institution. Statistical analysis showed that the CRESUS-T support tool

fostered shared understanding in the case study, through increased communication. Shared understanding

is also manifested in the creation of two knowledge representation artefacts namely, a requirements model

and the IT infrastructure model. The CRESUS-T support tool will be useful to requirements engineers and

business analysts that have to gather requirements asynchronously.

KEYWORDS

Collaborative Requirements Elicitation, Shared Understanding, and Semantically enabled Web Services,

Ontology.

1. INTRODUCTION

The Software Requirements knowledge area is a discipline of software engineering that is

concerned with requirement elicitation, analysis, specification and validation of software

requirements [1]. As part of the Software Requirements knowledge area, today’s requirements

engineer has to decide the best strategy for identifying the software that fulfils the business needs

and aligning that software with the organisation’s IT infrastructure. The Requirements Elicitation

activity involves intense communication between stakeholders [2]. Stakeholders are anyone

interested in, or affected by the outcome of the future system. Stakeholders typically include

business executives such as sponsors of the project, IT architects that build the system, business

users that will operate the future system and requirements engineers that gather the requirements

of the future system. Requirements are defined as a condition or capability defined by stakeholder

to solve a problem or achieve an objective [3].

The stakeholders often find it difficult to articulate their requirements [4]. Poor communication

makes discovery of the requirements a challenge. The use of elicitation techniques such as

interviews, group work, prototypes, and models may provide a solution to this challenge [1, 3 , 5].

Sutcliffe [6] suggests the combination of requirement elicitation techniques such as the use of

prototype artefacts and scenarios. Another useful elicitation technique is modelling. Modelling

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.2, March 2018

10

deals with understanding an organisation through the creation of enterprise models of the IT

infrastructure.

Requirements Elicitation is characterised by frequent communication [2]. Frequent

communication depends on the richness of the communication channel such as face to face or

email. Effective communication has been difficult to achieve and is a recurring problem in the

elicitation of requirements [7, 8, 2, 9]. Coughlan and Macredie [2] present a communication

framework that promotes effective communication for an organization and its stakeholders in

attempting to integrate technology. The challenge is to create a richer channel for communication

that embeds effective communication techniques for mediating the communication of

requirements.

A PowerPoint mock-up of a scenario-based communication tool was created and an initial

evaluation was conducted with ten business executives in higher education. The purpose of the

evaluation was to examine the desire for a tool that allows business executives communicate

about organisational and IT infrastructural changes [10]. The analysed data produce results that

indicate a desire for such a tool with open comments such as “The idea seems to be very good,

especially the natural language interface, which I particularly like”, and “Good to specify

objectives through the use of goals”. Quantitative results reinforce the comments. They indicate

that the majority of this small sample group (6 executives) like the approach of specifying their

goals and rules in natural language. In addition, the majority (7 executives) liked the approach

where the system automatically identifies a business process that may solve the executive’s goal,

and applies rules to services in the process. While this was only a limited survey the results

indicate promise. The executives intuitively understood the approach being proposed. That is to

augment the requirements gathering process with semantics that drives the formulation of

organisational changes using controlled natural language. In addition, they also liked the

simulation of the IT infrastructure that supports those changes. Moreover, they strongly indicated

that they believed such an approach was desirable. Building on the evaluation, CRESUS-T was

designed and implemented as a collaborative requirements elicitation tool. The tool allows

stakeholders communicate requirements guided by an ontological domain model, then validate

the requirements, and finally create a prototype model of the IT infrastructure that supports those

requirements.

The remainder of this paper describes the related work in section 2, then an outline of research in

section 3, followed by architecture and implementation in section 4. Section 5 describes the

evaluation, followed by limitations, and future work.

2. RELATED WORK

Traditional requirements engineering tends to involve the requirements engineer meeting with the

end user to identify the requirements, write the requirement specification, and hand them to the

development team to develop the software in-house [11]. Today, the majority of software is not

developed in house but is available for purchase or free, such as customer resource management

(CRM), and open source software [11]. Today’s requirements engineer has to decide the best

strategy for identifying the software that fulfils the business needs and aligning that software with

the organisations IT Infrastructure.

Requirements elicitation is characterised by frequent communication [2]. However effective

communication has been notoriously difficult to achieve and is a recurring problem in the

elicitation of requirements [7, 8, 2, 9]. Rogers and Kincaid [12] describes communication as a

dynamic process of idea and knowledge generation, which occurs over time through interaction

with others and which leads to shared understanding and collective action. The work of Lind and

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.2, March 2018

11

Zmud [13] showed empirically that frequent communication helped create a shared understanding

between technology providers and business users regarding the importance of technology in

supporting the business activities. They also demonstrated that communication richness helped

create a shared understanding and this was determined by the type of communication channel

such as face to face, computer mediated or written documents. Johnson and Lederer [14]

extended the work of Lind and Zmud [13] to communication between the Chief Executive and

Chief Information Officers. Their work showed that frequent communication helped create a

shared understanding of the current and future role of IT in the organisation. They also reported

more frequent communication using communication channels such as face to face and email that

were perceived to be richer. Coughlan and Macredie [2] conducted an analysis of effective

communication in requirements elicitation and concluded with four recommendations for

effective communication for an organization and its stakeholders in attempting to integrate

technology namely, include business users in the design; select an adequate mix of IT architects

and business users who then interact on a collaborative basis; the incorporation of communication

activities that relate to knowledge acquisition, knowledge negotiation and user acceptance; the

use of elicitation techniques for mediating communication for the requirements of a system such

as interviews, brainstorming, prototyping and scenarios.

Successfully understanding an organisation's requirements in such a manner that their impact on

the IT infrastructure can be analysed and discussed, presents a major challenge [13-15] between

the business executive, IT architect and other stakeholders. The most significant problem arises in

communicating the requirements desired in a semantically consistent and understandable manner

and then reflecting the potential impact of those requirements on the IT infrastructure. According

to Van Lamsweerde [16], the goal of domain understanding is to understand the problem, and the

application domain of the problem. The IEEE Computer Society [1] indicates that the

requirements engineer needs to acquire and structure available knowledge about the application

domain of the problem. Recording this application domain knowledge makes communication

easier and future understanding more reliable [11]. The degree and manner of specifying

application domain knowledge varies and is dependent on the formality used. Glossaries and data

dictionaries are informal and reside at one end of the spectrum. Moving to the other end are

formal knowledge representations such as ontologies. Ontology is understood as a way of

structuring and specifying the meaning of knowledge in an application domain of the problem

[17] in [18]. The IEEE Computer Society [1] indicates that it is good practice to follow an

ontological approach.

Gruber [19] defines an ontology “as an explicit specification of a conceptualisation”. In the

context of artificial intelligence, an ontology is referred to as an engineering artefact that is based

on the vocabulary consisting of terms and relationships of an application domain in addition to

the rules for combining the terms and relationships between the terms[20, 21]. The motivation for

using ontology is that it allows stakeholders and other systems have a shared understanding of the

structure of information [19, 22]. In addition, they are machine-interpretable and are amenable to

semantic analysis.

Some of the early work on ontologies in requirements engineering centred around knowledge

representation languages [23, 24, 25, 26, 27]. The emergent research area of the semantic web has

facilitated a renewed interest in the adoption of ontologies for requirements engineering. The

semantic web builds structure and meaning to data that is web accessible [28]. Semantic Web

technologies such as XML [29], RDF [30] and OWL [31] enable stakeholders to create

requirements on the Web, build vocabularies, and write rules for handling the requirements. XML

adds arbitrary structure to the stakeholder’s documents but does not describe what they mean.

Meaning is expressed by RDF, using sets of triples, where each triple is like the subject, verb and

object of an elementary sentence. The benefit of ontologies for requirements engineering, is the

ability to explicitly model domain knowledge in a machine interpretable way. Ontologies provide

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.2, March 2018

12

reduced ambiguity, increased meaning, formality and support for automated reasoning. This

allows for requirements traceability, consistency checking, in addition to automatically generating

the software specifications [32].

Castañeda, Ballejos, Caliusco, & Galli [18] comprehensively reviewed and presented the use of

ontologies in requirements engineering. One such formalised knowledge representation approach

involves the use of ontologies to represent application domain knowledge [33, 34, 35]. Guarino

[35] distinguished between ontology-aware and ontology-driven systems [36]. An ontology-

aware system knows of the existence of an ontology and can query the ontology. In an ontology-

driven system, the ontology is placed as a component within the system. The reason for using an

ontology-driven system is that it enables communication through messages that contain

expressions formulated from the ontology. Guarino [35] refers to this as ontology-driven

communication. The advantage of this approach is that machines can automatically reason over

and understand the communication. The ontology can impact the components of a system such as

the application program, user interface and database. In addition, Guarino [35] first describes the

use of the ontology to develop the static part of the program in the form of type or class

declarations and procedures. The advantage of this approach is that it ensures that domain

knowledge is represented in the application program. Abbott’s [37] technique for developing

software programs from informal English descriptions to derive data types from common nouns,

objects from proper nouns and operators (functions, procedures) from verbs, provides insight in

how to generate software programmes from informal but precise English. Abbott’s technique

demonstrates that in a highly automated process, a formal knowledge representation model which

is complete and precise is amenable to automatic generation of the software programmes [38].

Booch extended Abbott’s technique to object oriented development [39]. Secondly, in the context

of the user interface components, Guarino describes an ontology as the embodiment of semantic

information on the constraints imposed on the classes and relationships from the application

domain. Using the ontology for the user interface allows for semantic checking of any violations

on those constraints. Thirdly, Guarino [35] discusses using ontologies for databases where

ontologies that integrate lexical resources like WordNet may support the analysis of natural

language requirements. Such ontologies can be mapped to schemas for different types of

databases [40] in [35].

The difficulty in understanding knowledge-based techniques is a well-known issue with

ontologies. This is only made worse in requirements engineering since requirements are aimed at

a range of stakeholders with different backgrounds and knowledge [32]. Natural language is one

of the best mediums for communicating and understanding requirements. This allows

stakeholders and especially business executives who may be unfamiliar with modelling notations

to still understand and validate requirements. However, natural language is ambiguous and can be

easily misinterpreted [41]. If the language is controlled, that is, the system prompts the user on the

construction of the sentences, then the language becomes machine readable. By incorporating

semantics, then other systems will have the same meaning for the sentences that are created. A

controlled natural language (CNL) is a precisely defined subset of full English that can be used

for communicating the organisation’s needs in such a way that it can be automatically reasoned

over by machines and thus removes the ambiguity issues of natural language. Of all the controlled

natural languages, ACE appears to have been the most studied and provides the most support.

ACE is a knowledge representation language used in applications that include ontology authoring

[42] and ontology verbalization [43]. A predictive editor [44] guides stakeholders, word-by-word

in the construction of a sentence that complies with ACE. The sentence can be converted to an

ontological format using the ACE Parsing Engine (APE) [45]. APE ensures that the sentence is

ACE compliant and then converts the natural language sentence into an OWL representation. The

approach described with ACE embedded in an ontology driven system shows the potential for a

natural language interface to utilize semantic inference to communicate the stakeholder’s

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.2, March 2018

13

requirements in an understandable manner. In order to reflect the potential impact of those

requirements on the IT infrastructure it is necessary to look at non-functional requirements.

Ameller, Ayala, Cabot, & Franch [46] in a survey of software architects found that a prototype

was useful for eliciting non-functional requirements. They observed that the software architects

were the main source of non-functional requirements. It is recognised that non-functional

requirements guide the shape of the IT Infrastructure [47, 48]. Nuseibeh and Easterbrook [4]

outline a roadmap in which there is a need for better understanding of the impact of software

architectural choices on the prioritisation and evolution of requirements. While work in software

architectures has concentrated on how to express software architectures and reason about their

behavioural properties, there is still an open question about how to analyse what impact a

particular architecture choice has on the ability to satisfy current and future requirements. The

architectural choices may be guided by reference architectures. Reference architectures represent

models of domain specific software structures [38]. They provide a template solution for

architecture of a particular domain. The influences from the analysis of non-functional

requirements indicate a need to include reference architecture as the basis of the prototype to

facilitate the elicitation of non-functional requirements and represent a model of the IT

infrastructure.

Modelling approaches such as enterprise modelling are used as drivers to prompt further

requirements elicitation [4]. Enterprise modelling is often used to capture the purpose of a system,

by describing the behaviour of the organisation through the business processes and services that it

provides [49]. Chandrasekaran, Silver, Miller, Cardoso, & Sheth, [50] recognised that there are

synergies between models and web services. One of the approaches that Chandrasekaran, Silver,

Miller, Cardoso, & Sheth [50] propose is the creation of models from web services in order to

provide a high fidelity between the model and the IT infrastructure that comprises of the web

services. This approach provides an ability to plug real web services into models, thus creating an

alignment between the model and the IT infrastructure that utilises as much realistic data as

possible.

In summary, the requirements that emerge from the state of the art are as follows :- to structure

and represent application domain knowledge and model knowledge through the use of formal

knowledge representation techniques to create an ontology driven system that supports ontology-

driven communication; to guide the stakeholders through controlled natural language in the

creation of formal knowledge representation artefacts such as the requirements model and IT

infrastructure model; to create a rich channel of communication that embeds techniques for

requirements elicitation such as prototyping and modelling; to generate a prototype of the IT

infrastructure from the vocabulary of the ontology through developing the static part of the

program in the form of type or class declarations and procedures; to use a prototype that allows

the analysis of an architectural choice to identify non-functional requirements; to incorporate

Coughlan and Macredie's [2] four recommendations for effective communication in the

CRESUS-T support tool.; and to create enterprise models from web services that form the basis

of alignment between the business needs and IT infrastructure. Influences from the literature are

used in the architectural design of the Collaborative Requirements Elicitation support tool, named

CRESUS-T in section 4.

3. OUTLINE OF RESEARCH

3.1. RESEARCH BACKGROUND

This research explores to what extent CRESUS-T both aids communication in the development of

a shared understanding and supports collaborative requirements elicitation to bring about

organisational, and associated IT infrastructural, change. In addition, the experiment controls for

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.2, March 2018

14

title, role, level of service, and academic qualifications of employees at the National College of

Ireland.

The experiment employed a pre-test-post-test control group design with matching participants in

the experimental and control groups to evaluate the frequency of communication, participant

perceptions of attaining a shared understanding of the IT infrastructure supporting organisational

change, and, control variables that relate to title, role, level of service and academic

qualifications.

In this context CRESUS-T is generally defined as a collaborative communication tool that allows

stakeholders to communicate requirements from an ontological domain model, validate the

requirements, and create a model of the IT infrastructure that supports those requirements.

Communication will encompass one dimensions namely, frequency of communication. Shared

understanding is generally defined as the stakeholders’ perception that the requirements represent

the organisational and associated IT infrastructural change.

Organisational and associated IT infrastructural change will be generally defined as a series of IT

systems denoted by web services that are semantically enabled and may access ontological data

that represents the organisational changes as denoted by the stakeholders’ requirements.

3.2. METHOD

The following steps were carried out in developing CRESUS-T namely a literature review,

evaluation of a scenario-based communication tool, implementation of CRESUS-T and

evaluation of CRESUS-T. The literature review focused on requirements elicitation,

communicating requirements using a controlled natural language interface, shared understanding

of organisational and associated IT infrastructural changes, and prototype models that comprises

of semantically enabled web services representing the evolution of the organisational IT

Infrastructure.

4. ARCHITECTURE AND IMPLEMENTATION

CRESUS-T was designed around a communication mechanism and a machine translation

component that translates the vocabulary of the application domain and reference architecture

into the IT infrastructure Model as described in Figure 1.

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.2, March 2018

15

Figure.1 CRESUS-T Architecture

The Communication Mechanism consists of a controlled natural language interface that facilitates

ontology-driven natural language communication between the Business Executive, IT Architect

and Business Users (see message 1) in Figure 1. The stakeholders can collaboratively

communicate and validate requirements that are stored in the Requirements Model (see message

2). The Prototype of IT Infrastructure Transformation component automatically generates a

prototype of the IT infrastructure (see message 5) based on the vocabulary of the application

domain (see message 3) and a reference architecture (see message 4).

The communication mechanism is responsible for handling the communication between the

stakeholders and the underlying formal knowledge representation of the application domain.

Using ontology-driven communication, the stakeholders are prompted in the construction of the

requirements. The vocabulary for constructing the requirements is taken from the content words

of the formal knowledge representation of the underlying application domain. The approach to

verbalise the formal knowledge representation into natural language is shown in Table 1[43].

Table 1 Verbalising the Formal Knowledge Representation in Natural Language

Corresponding verb

and noun phrases

Knowledge

Representation of the

Application Domain Example

Common noun Named Class Lecturer

Proper noun Named Object JohnSmith

Transitive verb Named Property Teaches

The formal knowledge representation concepts of Object, Class and Property are mapped to

nouns and verbs. The grammar of the language defines and constrains the form and meaning of

the sentences.

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.2, March 2018

16

 The sentences have the following structure: -

Subject + verb + complement [51]

Where subject and complement are represented by nouns. In a course registration system in a

third level educational institution for example, this would be similar to John Smith teaches

Software Development with the semantic meaning of Lecturer teaches Module. The resultant

requirements are validated and form part of the requirements model.

The rich channel of communication integrates Coughlan & Macredie [2] techniques for mediating

the communication of requirements as follows: -

 A web based tool that allows the stakeholders to collaborate asynchronously.

 The incorporation of communication activities that centre around the creation of artefacts

such as the requirements model, and IT infrastructure model that facilitate knowledge

acquisition, knowledge negotiation and user acceptance.

 The use of elicitation techniques for mediating communication for the requirements of a

system such as prototyping.

Machine translation automatically generates the IT infrastructure model based on the nouns and

verbs identified from the concepts and actions of the underlying formal knowledge representation

of the application domain. The resultant nouns and verbs are applied to a choice of reference

architectures to create a prototype consisting of architectural components such as software

programs and associated data models. Deployment of the architectural components results in the

creation of the prototype platform that represents the evolution of the IT Infrastructure model.

Stakeholders can retrieve, create, delete and modify data through the software program interfaces.

Reference architectures represent models of application domain software structures [38]. They

provide a template solution for the IT infrastructure. The code generation process is described in

Figure 2.

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.2, March 2018

17

Figure.2 Code Generation Process

The code generation process uses the reference architecture and sets of rules for tailoring the

prototype of the IT infrastructure Model based on extending Abbots [37] and Booch’s [39] textual

analysis technique to the vocabulary from the formal knowledge representation of the application

domain [38]. Table 2 describes how to derive classes (or web services) from common nouns,

objects (or web parameters) from proper nouns and operations (or web methods) from verbs

arising out of the vocabulary from the formal knowledge representation.

Table 2 Identifying Candidate Software Programmes

Vocabulary

Booch (1986)

Object Orientation

Service Oriented

Architecture

Common noun Class Web Service

Proper noun Object Web Parameter

Transitive verb Operation Web Method

A template engine combines the application domain ontology with a reference architecture in

order to automatically generate the source code of the prototype as described in Figure. This

prototype represents the IT infrastructure model and when deployed represents a mechanism for

the stakeholders to analyse the architectural choice. The stakeholders can test the architectural

components, provide information through the interfaces, and view the databases directly.

The knowledge representation artefacts that are created from the CRESUS-T support tool are the

Requirements Model and IT Infrastructure Model. The formal knowledge representation artefacts

represent a manifestation of the stakeholders shared understanding.

CRESUS-T is a web based application that is implemented in Java using the echo web framework

[52]. The web based application was hosted on the Amazon Web Service at

http://54.238.49.81:8081. Using ontology-driven communication, the stakeholders communicate

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.2, March 2018

18

through the ACE editor [44]. Attempto Controlled English Parsing Engine (APE) [53]ensures that

the grammar for the requirements is based on a subset of natural language, namely Attempto

Controlled English [51]. In addition, the parsing engine converts the sentences created in ACE

editor into RDF triples. The APE is deployed on port 8000. The ACE Editor and APE are 3rd

party products in the CRESUS-T architecture. The ACE editor is a predictive authoring tool that

guides the stakeholders during the construction of the requirements. The ACE editor source code

is part of ACEWiki [44]. The application domain ontology is initially created using an external

editor, protégé [54]. The ontology is imported into the server side implementation of CRESUS-T

and stored as a Jena ontological model [55]. Jena is an open source semantic web framework for

building Java applications. Jena provides support to create and read RDF and OWL. The Jena

framework uses the Pellet reasoner [56] to reason over the OWL application domain ontology.

The reference architecture is a set of template instructions for transforming XML into Java source

code. The reference architecture is based on an XSLT stylesheet. XSL Transformations (XSLT)

provides the ability to transform an XML document into other formats such as Java source code

representing a prototype of the IT Infrastructure. The reference architecture provides the

instructions that form the input to the transformation API for XML in order to generate the Java

source code. Initially a lexical analysis is performed on each RDF statement in the application

domain ontology. Lexemes are created from the semantic meaning of the subject, predicate and

object of each RDF statement. A Lexeme is a sequence of characters in the source program that

represent an instance of a token [57]. The semantic meaning of the subject and object is derived

from the class of the RDF individual of that subject and object. The resultant lexemes represent

the Web Service, Web Method and Web Parameter tokens. A token is a key word that the

Prototype of the IT Infrastructure Transformation Component processes. The lexemes are

represented in the Prototype Data Structure XML document. The Prototype Data Structure XML

document is created using JDOM [58]. JDOM provides a Java-based solution for accessing,

manipulating, and outputting XML data. The Prototype Data Structure XML document is stored

in the eXist database [59] located on port 8680. The lexemes that represent the tokens in the XML

document are plugged into template code from the reference architecture in order to generate

source code that can be compiled and executed using the transformation process. The Web

Services from the prototype of the IT infrastructure can access their instance data from XML

documents in the Component Repository stored in the eXist database on port 8680. The XSLT

processor in TrAX transforms the prototype Data Structure XML document and XSLT

instructions into Java source code. The Java source code is stored in a skeleton NetBeans project

[60]. Apache ANT [61] is used to compile, build and deploy the NetBeans project to a glassfish

server on port 8081. The deployment of the Java source code in conjunction with the component

repository represents the prototype of the IT infrastructure.

5. EVALUATION

5.1. BACKGROUND

The School of Computing at NCI had created a conversion programme in response to

Government tenders to provide courses that would up-skill the workforce. The conversion

programme required desktop computers with specialised software to run the practical laboratory

sessions. The IT Department are responsible for the business process that involves creating the IT

software image and rolling it out to the desktop computers. The IT software image contains the

specialised software required by the conversion programme. The business process had issues

around collaboration and communication resulting in delays with completing the process. The IT

Department wanted to develop the IT infrastructure that would automate the business process and

engage in a requirement gathering exercise. This environment provided an opportunity to evaluate

the CRESUS-T support tool for eliciting requirements of the future system that would align to the

business process.

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.2, March 2018

19

All employees from the School of Computing and the IT Department in NCI were contacted to

identify if they would participate in the study. Thirteen employees that consisted of eight

employees from the School of Computing and five from the IT department agreed to take part in

the study. One employee that participated was the business process owner and only took part in

the interview. The remaining twelve employees participated in the experimental study. The

academics consisted of four course directors (lecturer grade II), one lecturer grade I, one fulltime

lecturer grade II from the school of business, one postdoctoral research fellow and one support

tutor. All academics lectured in the school of computing. The IT personnel consisted of one

senior IT administrator, one IT support specialist and two IT support personnel.

The senior IT administrator was interviewed in NCI to determine the problem domain description

for the roll out of the IT software image. The interview was conducted in a natural work

environment in NCI for 30 minutes. The interview comprised of nine questions that assessed the

operation of the business process. The problem domain description artefact that represented the

business process for the roll out of the IT software image was created from an understanding

arising out of the interview. The problem domain description was validated with the senior IT

administrator. The results of the interview formed the basis of the scenario that was given to the

control and experimental groups.

5.2. OPERATIONALISATION OF VARIABLES

In this context, communication is operationalised by the frequency of communication. Frequency

of communication indicates the degree to which messages and responses take place between the

business executive, IT architect, and staff.

Shared understanding indicates the degree to which the business executive, staff and IT architect

perceive that the IT infrastructure supports the organisational change faithfully.

5.3. METHODOLOGY

Data was captured through online questionnaires, a workshop, logs, observations and a debriefing

session. The experimental design for this study used a randomised matched pairs design. A

matched pairs design is a special case of a block design. As part of the matched pairs design,

twelve of the employees were exposed to the level of service and qualifications questionnaire pre-

test.

The aim of the level of service and qualifications questionnaire was to evaluate the blocking

factors based on factual information such as the employee’s role in NCI, level of service with

NCI and academic qualifications based on the National Framework of Qualifications (NFQ) of

Ireland [62]. The role allowed the creation of homogenous blocks that determined if the

employees were course directors, IT administrators or lecturers. The level of service allowed the

creation of homogenous blocks that determined the employees’ years of service within NCI

ranging from 1-2 years, 3-4 years, 5-6 years, 7-8 years, 9-10 years and greater than 10 years. The

academic qualifications allowed the creation of homogenous blocks that determined the

employees NFQ level at level 8 (Honours Degree), level 9 (Master’s Degree) and level 10 (PhD

Degree). The control information that related to employee’s role, level of service, and academic

qualifications were used in the analysis for matching employees was derived from the pre-test

questionnaire’s data.

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.2, March 2018

20

Eight employees from the School of Computing and four employees from the IT Department

were assigned to the matched pairs on the basis of their scores in the pre-test questionnaire. The

employees were randomly assigned based on one subject of each pair to the experimental group A

and C, and the other subject to the control group B and D.

The next step involved defining the ontological domain model in a workshop that involved a

brainstorming session with each group where they created a conceptual model of the application

domain. The conceptual model was converted into an ontological domain model. The ontological

domain model was used to constrain the words in the controlled natural language interface and

the naming conventions for the automatically generated web services. The employees were

invited to take part in a workshop. The workshop was conducted in a natural work environment in

NCI over a 30-minute period. As the ontology for each group is similar, only an analysis of the

outcome from group A’s workshop is described in section 5.

The next step was to gather the requirements and generate and test a prototype of the IT

Infrastructure. The subjects were invited to attend the experiment in the ICELT research

laboratory. However due to a logistical reason the participants completed the experimental study

in a natural work environment in their own offices at NCI. The experiment took place over a one-

hour period. The experimental groups A and C were administered the treatment of the CRESUS-

T support tool and email. The control groups B and D used email only. A log of all

communication between the subjects was stored in a communal email for each group. In addition,

CRESUS-T logged all communication messages. The information that related to the

communication feature used in the analysis was derived from the communal emails and

CRESUS-T’s logged data. CRESUS-T logs and email responses between employees were

evaluated to identify the frequency of communication. The goal of capturing this information was

to determine if the CRESUS-T support tool leads to increased communication. This metric was

important as frequent communication helps create a shared understanding between stakeholders

regarding the importance of technology in supporting the business needs.

The experimental groups A and C were then administered the simulation based communication

tool post-test questionnaire. The questionnaire evaluated if the prototype supports organisational

change faithfully. The goal for capturing this information was to determine if the automatic

generation of a prototype that represents the IT infrastructure represents a realistic solution. This

metric was important as it demonstrates an ability to plug real IT systems such as web services

into the prototype which can lead to richer requirements and is the basis for aligning the IT

infrastructure with the business process.

The performance of the experimental and control groups was compared in the post-test(s) using

tests of statistical significance in terms of frequency of communication, and if the prototype

supports organisational change. IBM’s SPSS tool [63] was used to manage quantitative and

qualitative data. An analysis of the results of CRESUS-T logs, email and the post-test are

described in section 5.

6. RESULTS AND DATA ANALYSIS

Ошибка! Источник ссылки не найден. describes the employee’s role, title, number of years

of service with the National College of Ireland and their level of educational qualification attained

based on the National Qualification Framework. Academic’s 2, 3, 5 and 8 with a title of lecturer

grade II and where their role indicated that they are programme directors were assigned to the

business executive role. The academics 7, 11, 10 and 12 whose titles were lecturer grade I,

lecturer grade II, postdoctoral research fellow and support tutor, and where their role indicates

that they lecture in the School of Computing were assigned to the business user role. The IT

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.2, March 2018

21

personnel 1, 4, 6 and 9 with the titles senior IT administrator, IT support specialist and IT support

personnel were assigned to the IT architect role. The employees were pair-matched based on their

number of years of service with NCI and their level of educational qualification attained based on

the national qualification framework. The matched employees were 2 and 3; 7 and 11; 4 and 6; 5

and 8; 10 and 12; and, 1 and 9. Employees were randomly allocated to the experimental and

control groups as follows: Employees 2, 7 and 1 to experimental group A; Employees 3, 11 and 9

to control group B; Employees 8, 10 and 4 to experimental group C; and Employees 5, 12 and 6

to control group D.

Table 3 Matching participants based on level of service and academic qualification

Role Name Title

 1-2 years 3-4 years 5-6 years 7-8 years 9-10 years >10 years
Honours

Degree
Masters PhD

2 Lecturer II X X

3 Lecturer II X X

5 Lecturer II X X

8 Lecturer II X X

7 Lecturer I X X

10

Computing

Support

Tutor

X X

11

Post-

Doctoral

Research

Fellow

X X

12 Lecturer II X X

IT personnel 1
Senior IT

Administrator
X X

 4 IT support X X

 6 IT support X X

 9
IT Support

Specialist
X X

Number of years of service with NCI

The level of education attained

based on the National

Qualification Framework

Programme

Director

Lecture in

School of

Computing

Legend

Experimental group 1

Control group 2

Experimental group 3

Control group 4

The match between experimental group A and control group B is excellent with one difference in

educational qualifications of the employees in the role of the IT architect. The match between

experimental group C and control group D indicates that the cumulative experience gained in

work benefits the control group D, whereas the cumulative experience in educational levels

benefit the experimental group C. On balance years of experience may make up the difference

with the educational level.

The results from the brainstorming session define the application domain model and the approval

process for any requirements that will be identified. The application domain model is converted

into an ontology domain model which is used to constrain the grammar in the controlled natural

language interface and the naming conventions in the automatically generated web services. A

sample of the conceptual model and approval process that one of the group’s identified, related to

the concepts of Module and Software. An example of a requirement was “Module requires

Software” with instance data that represents an organisational change such as

“SoftwareDevelopment requires Netbeans”. In one group the approval process was for the

business executive to approve any requirements that the business user identifies. If approval is

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.2, March 2018

22

granted, then the rule goes to the IT architect for further approval before becoming part of the

ontological domain model.

An analysis of the results in

Figure 1 for frequency of communication indicates that the mean frequency of communication is

statistically significantly (p<= 0.05) higher for the experimental group when CRESUS-T and

email were used (µ=25, = 10.218, N=6) compared to the case in the control group when only

email is used (µ=20.83, =9.042, N=6), paired t (5) = 2.792, p=0.038. The effect size was large

(= 0.829). This result demonstrates that CRESUS-T support tool increases communication

among employees. This is because the design of the CRESUS-T support tool ensures that

employees focus the communication on identifying requirements from the application domain and

are supported by automatic machine translation in the generation of the IT infrastructure.

The employees were asked for their opinion on communication. Qualitative feedback from

employees that used the support tool, CRESUS-T was useful for communicating especially

around the IT infrastructure. Samples of comments provided include: -

 “Provided a new means for communication around IT infrastructure”.

 “A simple communication protocol for organisational change”.

Matched pair names

Participants
4 and 6

Participants
10 and 12

Participants
8 and 5

Participants
1 and 9

Participants
7 and 11

Participants
2 and 3

N
u

m
b

e
r

o
f

m
e

s
s
a

g
e

s
 s

e
n

t

40

30

20

10

0

27
28

31

9

13

17

37

26

36

13

15

22

Frequency of communication

Using email only

Using RESUS and email

Figure 1 Frequency of communication

Prototype Supports Organisation Change indicates the degree to which employees that use

CRESUS-T perceive that the prototype of the IT infrastructure comprising of web services

supports the organisational change faithfully from strongly agree to strongly disagree based on

simulation based communication tool online questionnaire. 66% of the experimental groups A

and C that used CRESUS-T indicated that the prototype of the IT infrastructure comprising of

web services supports the organisational change faithfully and 44% were neutral. This result is as

expected because the CRESUS-T support tool incorporates a reference architecture that is

embedded in the terms from the application domain, and deploys real web services and database

on a glassfish server thus simulating an authentic representation of the IT infrastructure. This

result was reinforced by comments from the employees such as: -

 “Simulation of the IT infrastructure was realistic and would support the organisational

changes”.

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.2, March 2018

23

 “Good for modelling real world scenarios which illustrates to the other users

(departments) a more complete workflow”

These comments are in contrast to comments from the control group. Based on observations of

control group B and validated by the group, they spent a substantial amount of work in defining

the IT infrastructure but very little time on the requirements of the business. They had two

suggested solutions around different databases, but had not made a decision on which solution to

go with. One of the employees of control group B made the following comment “Maybe the

contributed [employees] should be told not to focus on specific technologies too much”. The

comment highlights an advantage of using CRESUS-T in that it allows the employees to focus on

communication around the business and not on defining the IT infrastructure. One of the

objectives of the experimental study was to generate the IT infrastructure. One could argue that

this is unrealistic and not fair considering that CRESUS-T automatically generates the IT

Infrastructure as part of the prototype. Further studies require employee’s usage of the

asynchronous support tools over a longer period of time such as one week. This would give a

more realistic time for the control group to come up with a proper IT Infrastructure.

An observation of control group D and validated by the group was that they identified the

software requirements list that was used in one part of the business process for the roll out of the

IT software image. This list was used in a previous year. This also included the IT system that the

data was stored in namely, Microsoft Excel. With regard to the observations of control group D,

they did have a simple IT system however they did have an employee that worked on the business

process for the roll out of the IT software image, in his role with the IT department. This presents

a challenge with research of this nature that involves a realistic case study. Having an employee

from the IT department in each group was an attempt to counter balance this situation. Overall,

the results indicate that the CRESUS-T support tool helps create a realistic IT infrastructure that

supports organisational change.

6. LIMITATIONS

This was the first experiment with the CRESUS-T support tool and so it was important to get

early feedback and direction on further development and experimentation. As such the

experiment took place at the National College of Ireland. One of the goals of the experiment was

to demonstrate that the architecture has the possibility to scale up to the full expressivity of the

controlled natural language and so for this experiment sentences were constrained to simple

“noun verb noun”.

Maturation was seen as a threat to the matched participants’ research design used in this

experiment. Maturation is where participants mature or change during the experiment. The

experimenter attempted to select participants that would mature at the same rate. In group one and

group two, participant 2 and participant 3 are both studying for a PhD. During the experiment,

participant 2 completed the viva. Also in group one and group two, participant 7 and participant

11 both currently have an honours degree and are both completing a PhD. During the course of

the experiment, participant 11 completed a viva. Survey items that capture potential maturation

should be incorporated into a pre-test.

Metrics used for the participants’ perception of attaining a shared representation of the IT systems

that supports the organisational change were not suitable for a matching participant’s research

design. As each group is communicating collaboratively to make decisions about organisational

changes and creating the IT system that supports those changes. Thus it stands to reason that there

will be no significant differences in perception. Objective metrics instead of participants’

perceptions should be used in further experimentation.

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.2, March 2018

24

In group four, participant 6 is involved with the roll out of the IT environment and this extra

knowledge would have biased the results in particular when identifying an IT system and

identifying organisational change solutions, issues and constraints. Survey items that capture the

participants’ role in relation to the scenario should be incorporated into a pre-test and controlled

for in future experiments.

A weakness in the experimental design was that the controlled experiment was conducted in a one

hour setting which would not be representative of actual communication behaviours among the

employees. Further experimentation should be conducted over a longer period of time and

incorporated into their actual job so that it is representative of their actual communication

patterns. The limitations will be addressed in further experimentation.

7. CONCLUSION

The goal of requirements elicitation is to reach a shared understanding between all parties

involved in the communication process which often involves an increased amount of

communication effort to overcome the gap in communicating the requirements desired in a

semantically consistent and understandable manner and then reflecting the potential impact of

those requirements on the IT infrastructure.

An initial study conducted among ten business executives in higher education indicates a desire

by the majority of this small group for a tool that allows them to communicate organisational

changes using natural language where these changes are automatically translated into the IT

infrastructure that supports a business process.

Building on this research, CRESUS-T was implemented as a collaborative requirements

elicitation support tool that allows stakeholders to communicate requirements from an ontological

domain model, validate the requirements, and create a model of the IT infrastructure that supports

those requirements. The tool was evaluated at the National College of Ireland.

Results provide confidence that the tool significantly increases the frequency of communication

which is a predictor of reaching a shared understanding between all stakeholders during

requirements elicitation. Qualitative feedback from participants that use CRESUS-T indicates that

the tool facilitates collaboration and communication around the IT Infrastructure with comments

such as “good for storing knowledge and facilitating collaboration” and “Provided a new means

for communication around the IT Infrastructure”.

8. FUTURE WORK

Web services can be orchestrated into an executable business process using the business process

execution language. As such future work will involve investigating CRESUS-T’s role in

collaborative requirements elicitation for the creation of the IT infrastructure that supports a

business process.

ACKNOWLEDGEMENTS

The research was partially supported by the SFI ADAPT Research Centre (Grant 13/RC/2106).

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.2, March 2018

25

REFERENCES

[1] Bourque, P. & Fairley, R. E. eds. (2014). Guide to the Software Engineering Body of Knowledge,

Version 3.0. IEEE Computer Society, 2014. September 11, 2014.

[2] Coughlan, J., & Macredie, R. D. (2002). Effective communication in requirements elicitation: A

comparison of methodologies. Requirements Engineering, 7(2), 47–60.

[3] International Institute of Business Analysis. (2009). A guide to the business analysis body of

knowledge (Babok Guide) Version 2.0. International Institute of Business Analysis.

[4] Nuseibeh, B. & Easterbrook, S. (2000). Requirements engineering: a roadmap. In Proceedings of the

Conference on the Future of Software Engineering (pp. 35–46).

[5] O’Loughlin, E. (2010). An Introduction to Business Systems Analysis: Problem Solving Techniques

and Strategies. Dublin, Ireland: The Liffey Press.

[6] Sutcliffe, A., (1997). A technique combination approach to requirements engineering. In Proceedings

of the Third IEEE International Symposium on Requirements Engineering, (pp. 65–74).

[7] Saiedian H, Dale R. Requirements engineering: making the connection between the software

developer and the customer. Inform Software Tech 2000; 42 (6): 419-428.

[8] Damian, D. E. & Zowghi, D. (2002). The impact of stakeholders’ geographical distribution on

managing requirements in a multi-site organization. In IEEE Joint International Conference on

Requirements Engineering, 2002. Proceedings (pp. 319–328). doi:10.1109/ICRE.2002.1048545.

[9] Walia, G. S. & Carver, J. C. (2009). A systematic literature review to identify and classify software

requirement errors. Information and Software Technology, 51(7), 1087–1109.

doi:10.1016/j.infsof.2009.01.004.

[10] Stynes, P., Conlan, O., O’Sullivan, D., (2008). Towards a Simulation-based Communication Tool to

Support Semantic Business Process Management. IN: Proceedings of the Fourth International

Workshop on Semantic Business Process Management in Proceedings of Workshops held at the Fifth

European Semantic Web Conference, (ESWC08), 2nd June, Tenerife, Canary Islands, Spain.

[11] Robertson, S. & Robertson, J. (2012). Mastering the Requirements Process: Getting Requirements

Right (3 editions.). Upper Saddle River, NJ: Addison-Wesley Professional.

[12] Rogers, E.M., and Kincaid, D.L. Communication Networks. New York: Free Press, 1981.

[13] Lind, M. R., & Zmud, R. W. (1991). The Influence of a Convergence in Understanding between

Technology Providers and Users on Information Technology Innovativeness. Organization Science,

2(2), pp. 195-217.

[14] Johnson, A.M., & Lederer, A.L., (2005). The effect of communication frequency and channel richness

on the convergence between chief executive and chief information officers. Journal of Management

Information Systems / Fall 2005, Vol. 22, No. 2, pp. 227-252.

[15] Preston, D. S., Karahanna, E., & Rowe, F., (2006). Development of shared understanding between the

chief information officer and top management team in U.S. and French Organizations: A cross-

cultural comparison. IEEE Transactions on Engineering Management, 53(2), 191-206. doi:

10.1109/TEM.2006.872244.

[16] Van Lamsweerde, A., (2009). Requirements engineering: from system goals to UML models to

software specifications (1st edition). Chichester, West Sussex, John Wiley & Sons.

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.2, March 2018

26

[17] Allemang, D. (2008). Semantic Web for the Working Ontologist: Effective Modeling in RDFS and

OWL (1 edition). Amsterdam ; Boston: Morgan Kaufmann.

[18] Castañeda, V. Ballejos, L. Caliusco, M. L. & Galli, M. R. (2010). The use of ontologies in

requirements engineering. Global Journal of Researches in Engineering, 10(6).

[19] Gruber, T. R. (1993). A translation approach to portable ontology specifications. Knowledge

Acquisition, 5(2), 199–220.

[20] Guarino, N. (1998). Formal Ontology and Information Systems (pp. 3–15). Presented at the

Proceedings of FOIS’98, Trento, Italy: Amsterdam, IOS Press.

[21] Neches, R. Fikes, R. E. Finin, T. Gruber, T. Patil, R. Senator, T. & Swartout, W. R. (1991). Enabling

technology for knowledge sharing. AI Magazine, 12(3), 36.

[22] Musen, M. A. (1992). Dimensions of knowledge sharing and reuse. Computers and Biomedical

Research, 25(5), 435–467.

[23] Greenspan, S., (1984). Requirements modelling: a knowledge representation approach to software

requirements definition. Technical Report No. CSRG-155. University of Toronto, Toronto, Canada.

[24] Greenspan, S. Mylopoulos, J. & Borgida, A. (1994). On formal requirements modeling languages:

RML revisited. In Proceedings of the 16th international conference on Software engineering (pp.

135–147). IEEE Computer Society Press.

[25] Mylopoulos, J. Borgida, A. Jarke, M. & Koubarakis, M. (1990). Telos: Representing Knowledge

About Information Systems. ACM Trans. Inf. Syst. 8(4), 325–362. doi:10.1145/102675.102676.

[26] Dardenne, A. van Lamsweerde, A. & Fickas, S. (1993). Goal-directed requirements acquisition.

Science of Computer Programming, 20(1-2), 3–50.

[27] Yu, E., Mylopoulos, J., (1994). Understanding" why" in software process modelling, analysis, and

design. In Proceedings of the 16th International Conference on Software Engineering (ICSE-16). (pp

159-168).

[28] Berners-Lee, T. Hendler, J. & Lassila, O. (2001). The Semantic Web. Scientific American, 284, 34–

43. doi:10.1038/scientific American 0501-34.

[29] Bray, T. Paoli, J. Sperberg-McQueen, C. M. Maler, E. & Yergeau, F. (2008). Extensible Markup

Language (XML) 1.0 (Fifth Edition).

[30] RDF - Semantic Web Standards. (2014). Available online at http://www.w3.org/RDF/.

[31] OWL 2 Web Ontology Language Document Overview (Second Edition). (2012). Available online at

http://www.w3.org/TR/owl2-overview/.

[32] Dobson, G. & Sawyer, P. (2006). Revisiting ontology-based requirements engineering in the age of

the semantic web. In Proceedings of the International Seminar on Dependable Requirements

Engineering of Computerised Systems at NPPs.

[33] Li, G. Jin, Z. Xu, Y. & Lu, Y. (2011). An Engineerable Ontology Based Approach for Requirements

Elicitation in Process Centered Problem Domain. In H. Xiong & W. B. Lee (Eds.), Knowledge

Science, Engineering and Management (pp. 208–220). Springer Berlin Heidelberg.

[34] Fonseca, F., (2007). The double role of ontologies in information science research. Journal of the

Association for Information Science and Technology. Wiley Online Library.

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.2, March 2018

27

[35] Guarino, N. (1998). Formal Ontology and Information Systems (pp. 3–15). Presented at the

Proceedings of FOIS’98, Trento, Italy: Amsterdam, IOS Press.

[36] Yildiz, B. & Miksch, S. (2007). Ontology-driven information systems: Challenges and requirements.

In International Conference on Semantic Web and Digital Libraries. Indian Statistical Institute

Platinum Jubilee Conference Series (2007) 35–44.

[37] Abbott, R. J. (1983). Program Design by Informal English Descriptions. Commun. ACM, 26(11),

882–894. https://doi.org/10.1145/182.358441.

[38] Berzins, V. Martell, C. Luqi, & Adams, P. (2008). Innovations in Natural Language Document

Processing for Requirements Engineering. In B. Paech & C. Martell (Eds.), Innovations for

Requirement Analysis. From Stakeholders’ Needs to Formal Designs (pp. 125–146). Springer Berlin

Heidelberg.

[39] Booch, G. (1986). Object-oriented development. Software Engineering, IEEE Transactions on, (2),

211–221.

[40] Ceri, S., Fraternali, P. (1997). Designing database applications with objects and rules: the IDEA

Methodology. Addison-Wesley.

[41] Church, K., & Patil, R. (1982). Coping with Syntactic Ambiguity or How to Put the Block in the Box

on the Table. Comput. Linguist., 8(3–4), 139–149.

[42] Fuchs, N. E., Kaljurand, K., & Schneider, G. (2006). Attempto Controlled English Meets the

Challenges of Knowledge Representation, Reasoning, Interoperability and User Interfaces. In

FLAIRS Conference (Vol. 12, pp. 664–669).

[43] Kaljurand, K. & Fuchs, N. E. (2007). Verbalizing OWL in Attempto Controlled English. In OWLED

(Vol. 258).

[44] Kuhn, T. (2008). Acewiki: A natural and expressive semantic wiki. Semantic Web User Interaction at

CHI 2008: Exploring HCI Challenges, CEUR Workshop Proceedings.

[45] Fuchs, N. E. Höfler, S. Kaljurand, K. Rinaldi, F. & Schneider, G. (2005). Attempto controlled

english: A knowledge representation language readable by humans and machines. In Reasoning Web

(pp. 213–250). Springer.

[46] Ameller, D. Ayala, C. Cabot, J. & Franch, X. (2013). Non-functional Requirements in Architectural

Decision Making. IEEE Software, 30(2), 61–67.

[47] Kruchten, P. Capilla, R. & Duñeas, J. C. (2009). The Decision View’s Role in Software Architecture

Practice. IEEE Software, 26(2), 36–42.

[48] Kazman, R. & Bass, L. (1994). Toward deriving software architectures from quality attributes. DTIC

Document.

[49] Greenspan, S., & Feblowitz, M. (1993). Requirements engineering using the SOS paradigm. In ,

Proceedings of IEEE International Symposium on Requirements Engineering, 1993 (pp. 260–263)

.

[50] Chandrasekaran, S. Silver, G. Miller, J. Cardoso, J. & Sheth, A. (2002). Web service technologies and

their synergy with simulation. IN: Proceedings of the 34th Winter Simulation Conference: exploring

new frontiers (WSC 2002), 8-11, December, San Diego, California, USA. (pp. 606-615).

[51] Fuchs, N. E. Kaljurand, K. and Kuhn, T. (2008). Attempto Controlled English for Knowledge

Representation. In Cristina Baroglio, Piero A. Bonatti, Jan Maluszynski, Massimo Marchiori, Axel

Polleres, and Sebastian Schaffert, editors, Reasoning Web, Fourth International Summer School 2008,

number 5224 in Lecture Notes in Computer Science, pages 104–124. Springer, 2008.

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.2, March 2018

28

[52] Echo2 Web Framework Available from http://echo.nextapp.com/site/ [last accessed on 11th February,

2010.

[53] Kaljurand, K. (2013). APE (ACE Parser) v6.0. February 26, 2015.

[54] Protégé. Available from http://protege.stanford.edu/ [last accessed on 11th February, 2010].

[55] Jena – A semantic web framework for Java. Available from http://jena.sourceforge.net/ [last accessed

on 11th February, 2010].

[56] Pellet: OWL 2 Reasoner for Java. Available from http://clarkparsia.com/pellet [last accessed on 11th

February, 2010].

[57] Aho, A. Lam, M. Sethi, R. & Ullman, J. (2006). Compilers: Principles, Techniques, and Tools, 2/E.

Prentice Hall.

[58] JDOM v1.1. (2007). Available online at http://www.jdom.org/dist/binary/archive/.

[59] XML Database, eXist. Available from http://exist.sourceforge.net/ [last accessed on 11th February,

2010].

[60] NetBeans IDE v6.8. (n.d.). February 26, 2015, Available online at

https://netbeans.org/downloads/6.8/.

[61] Apache Ant v1.8.2. (2010). Available online at http://ant.apache.org/.

[62] Quality and Qualifications Ireland. (2012). National Framework of Qualifications (NFQ). March 9,

2015, Available online at http://www.qqi.ie/Pages/National-Framework-of-Qualifications-

(NFQ).aspx.

[63] IBM - SPSS software - Ireland. (2015). Available online at http://www-

01.ibm.com/software/ie/analytics/spss/.

AUTHORS

Dr Paul Stynes is Vice Dean of Academic Programmes and Research at the National

College of Ireland. He completed a PhD in 2015 at Trinity College Dublin. His research

interestsare in the area of Collaborative requirements elicitation and Intelligent Systems

specifically semantic web, and ontologies.

Prof. Conlan is an internationally recognised research leader in User Modelling,

Adaptation, Personalisation and Visualisation research with over 160 publications in

those fields. Owen is a Fellow of Trinity College Dublin and leads the Personalisation

research in the ADAPT Centre (www. adaptcentre.ie).

Prof. Declan O'Sullivan is Director of Research and Head of Discipline for Intelligent

Systems at Trinity College Dublin. Declan was awarded a B.A. (Mod) in Computer

Science from TCD in 1985, an M.Sc. in Computer Science from TCD in 1988, and a

Ph.D. in Computer Science from TCD in 2006. Declan has substantial research

experience in academia and industry, having worked for IONA Technologies and

Broadcom Eireann Research.

