
Received June 2, 2020, accepted June 15, 2020, date of publication June 24, 2020, date of current version July 3, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3004609

cRetor: An SDN-Based Routing Scheme for Data
Centers With Regular Topologies

ZEQUN JIA 1,2, YANTAO SUN 1,2, (Member, IEEE), QIANG LIU 1,2,

SONG DAI 2, AND CHENGXIN LIU 2
1Beijing Key Laboratory of Transportation Data Analysis and Mining, Beijing Jiaotong University, Beijing 100044, China
2School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China

Corresponding author: Yantao Sun (ytsun@bjtu.edu.cn)

This work was supported by the National Natural Science Foundation of China under Grant 61572220.

ABSTRACT The blooming of cloud computing leads to the rapid expansion of data center networks (DCN).

Conventional link state routing algorithms like OSPF are widely adopted in data center networks, however,

those routing algorithms bring great control overheads and long convergence time. Recently, topology-aware

routing methods are considered to be efficient especially in data center networks with regular topologies.

Lots of topology-aware routing methods (e.g., Fat-Tree and BCube) have been proposed for specific data

center network topologies. This paper first proposes a formalizedmethod to describe regular topologies and a

regular Topology Description Language (TPDL) based on this method. TPDL is well designed to accurately

define regular network topologies in a clear way leveraging their regularities. Based on the Software-Defined

Networking (SDN) technology, this paper also proposes a novel topology-aware routing scheme: cRetor

(controller-side REgular TOpology Routing scheme). Different from other topology-aware routing methods,

cRetor is a TPDL-based general routing method, which means it is expected to work on different kinds of

regular topologies. In this scheme, TDPL files are used as a priori knowledge to build an initial topology

in the SDN controllers, which eliminates the process of topology discovery via Link Layer Discovery

Protocol (LLDP) and hence relieves the bandwidth and processing burdens on controllers. Besides, we also

apply the A-star algorithm to SDN controllers to speed up the routing selection, where TPDL’s distance

formulas act as the heuristic function. The experimental results show that cRetor outperforms LLDP-based

SDN, OSPF and DCell in routing calculation performance, convergence speed, routing overheads and fault

tolerance.

INDEX TERMS Data center networks, regular network topologies, topology description language, software-

defined networks, topology-aware routing algorithms.

I. INTRODUCTION

With the wide application of cloud computing and big data

technologies, the scale of data centers has also increased

rapidly, which leads to a higher demand for both communi-

cation and management capabilities of data center networks.

Numerous approaches have been proposed by researchers

to enhance the performance of DCNs. Among these meth-

ods, topology-aware routing methods are well-known for

their efficiency compared with conventional link state rout-

ing methods like OSPF. A topology-aware routing method

takes into account the physical layout of the network for

calculating routing paths and forwarding packets. In recent

years, topology-aware routing methods have obtained a surge

The associate editor coordinating the review of this manuscript and

approving it for publication was Guangjie Han .

of interest from researchers, and lots of related study has

been conducted, from the switch-centric approach (such

as Fat-Tree [1], HHS [2], VL2 [3], Aspen tree [4] and

S2 [5]), to the server-centric approach (like BCube [6] and

DCell [7]).

Most of these topology-aware routing schemes leverage

the regularity hidden in the physical topology structures,

that is, these topologies are usually recursively or iteratively

defined. In [1], M.Al-Fares et al. have proposed a scalable

data center network architecture and a corresponding rout-

ing technique for Fat-Tree topology. To take advantage of

the structure of the Fat-Tree topology, a specific address-

ing method and the two-level routing tables are proposed.

A clear benefit from the topology-aware methods is that they

deliver scalable traffic at much lower costs. Similarly, as a

representative of server-centric network architecture, routing

116866 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
VOLUME 8, 2020

https://orcid.org/0000-0002-7144-4448
https://orcid.org/0000-0002-8833-1618
https://orcid.org/0000-0001-5735-8642
https://orcid.org/0000-0003-4619-2362
https://orcid.org/0000-0002-4544-2473
https://orcid.org/0000-0002-6921-7369


Z. Jia et al.: cRetor: An SDN-Based Routing Scheme for Data Centers With Regular Topologies

algorithms in BCube [6] also leverage BCube’s topological

property to achieve higher performance under lower cost.

In addition to the dedicated routing algorithms proposed

along with the new network topologies, many studies on

routing algorithms for these topologies are also conducted.

For instance, as one of the four most common datacenter net-

work topologies [8], Fat-tree has attracted many researchers’

attention since [1]. SADP [9], SAOP [10], DRB [11] and

GRR&IGRR [12] are all efficient packet-based routing algo-

rithms designed for Fat-Tree. Besides, In [13], Zhao et al.

proposed a port-based source-routing addressing (PSRA)

scheme for Fat-tree topology. Based on PSRA, they designed

a simple routing algorithm, which leverages the characteris-

tics of PSRA and the regularity of Fat-tree topologies. These

routing algorithms focus on a certain network topology, try-

ing their best to fully exploit the characters of this topology

structure.

Despite their superior performance and efficiency, all the

previously mentioned methods suffer from a serious limita-

tion. Almost all of topology-aware routing and forwarding

algorithms are designed for a specific network topology,

which causes difficulty in renovating a routing device to

support multiple existing topology-aware routing algorithms.

To the best of our knowledge, there has been little discussion

about a generic topology-aware routing scheme that can be

adopted inmultiple data center network structures. Therefore,

as mentioned in [14], there is a need to design an efficient

topology-aware routing protocol for generic DCN topologies.

However, a major problem with generic topology-aware

routing methods is they are highly dependent on the topol-

ogy structures and lack of flexibility in handling temporary

link changes and failures. Fortunately, the emergence and

development of SDN technology bring new opportunities

for enhancing manageability and flexibility in data center

networks. It separates the traditionally bundled control and

data planes, which brings centralized network control, pro-

grammability and reconfigurability in data center networks.

With the help of SDN, it becomes easier to introduce new

networking abstractions, simplify network management and

facilitate network evolution [15].

In the field of data center networking, Google employed

SDN for data transferring and syncing among data centers

at first. In [16] and [17], they introduced B4 to their data

center interconnection for traffic optimization and resource

allocation. In the global layer of B4, the traffic engineering

central server allocates bandwidth and traffic based on the pri-

orities of flows, controlling the OpenFlow switches through

the OpenFlow controller in the middle layer. With centralized

traffic engineering, B4 improved the link utilization ratio

from 30∼40% to more than 90%, significantly reducing the

cost of devices.

While inside data centers, traffic engineering and fail-

ure recovery methods also benefit from the introducing

of SDN. The global view on the SDN controller assists

in traffic optimization and failure detection, and the sep-

aration of control and data planes make fine-grained flow

FIGURE 1. The processing delay of Packet-In messages in an
OpenDaylight SDN controller.

scheduling possible. Hedera [18] performs dynamic flow

scheduling in a data center network with the SDN tech-

nique. Compared with static load-balancing methods, Hedera

delivers up to 113% better bisection bandwidth. In the same

vein, other work such as Afek and colleagues’ work [19],

DevoFlow [20], MiceTrap [21], RepFlow [22], OpenQos [23]

and DIFFERENCE [24] also tried to optimize the data center

network relying on SDN.

In addition, the SDN-based failover mechanism in data

center networks draws more researchers’ attention. For

instance, Li et al. [25] proposed a scalable failover method

using OpenFlow. In their method, only three switches’ flow

table modifications are involved to handle a single link fail-

ure. A fast failure recovery method in load-balanced SDN-

based data center networks is also suggested in [26], where an

active probemechanism is used to detect andmanage failures.

Jin et al. [27] focuses on virtualized SDN environments for

clouds, proposing FAVE, which provides seamless failover

and bandwidth-aware protection by allocating backup routes

carefully. Also, energy consumption is fundamental to cloud-

based data centers. As mentioned in [28], switches are the

most energy consumer that should be controlled. Since the

SDN technology enables the ability of allocating resource by

a need, it’s worth studying to reduce energy consumption in

DCN using SDN technology, e.g. [29], [30] and [31].

Although software-defined networking outperforms con-

ventional distributed routing algorithms in many aspects,

the deployment of SDN in large scale data center networks

is still immature. As mentioned in [25], data center networks

have a high demand for scalability. By contrast, the limitation

in the scalability of centralized control planes in SDN is

obvious. More than thousands of network devices produce

considerable pressure on OpenFlow controllers, which have

a strong probability to be the bottleneck in DCN. Besides,

themost commonmethod of topology discovery, LLDP, tends

to be extremely low-efficient in large scale topology. Accord-

ing to [32], on the widely-used SDN controller (OpenDay-

light), the packet processing delay increases with the growing

of Packet-In messages. As shown in Fig. 1, the processing

delay in OpenDaylight has exceeded 100ms when the speed

VOLUME 8, 2020 116867



Z. Jia et al.: cRetor: An SDN-Based Routing Scheme for Data Centers With Regular Topologies

TABLE 1. Comparison between cRetor and other routing schemes.

of Packet-In messages reaches 8000 packet/second. Although

it is periodic, the cost brought by this topology detection

mechanism is considerable. Furthermore, frequent topology

discovery is unnecessary in a less-changed and low-failure-

rate network like DCN. Therefore, further study on the prac-

tical deployment of SDN in data centers is required.

In view of all that has been mentioned so far, one may sup-

pose that the combination of both efficiency from topology-

aware routing methods and flexibility from SDN seems to be

a new opportunity for high efficiency, scalability and man-

ageability in data center networks. There are two common

solutions when it comes to the blend of SDN and topology-

aware routing methods: 1) the controller-side topology-

aware mode and 2) both-sides topology-aware mode. The

controller-side mode means that topology-aware methods are

only applied in the controllers while SDN switches remain

unchanged or little changed. In this mode, one benefits

from the topology-aware methods without spending much on

upgrading switches (which usually means hardware redesign

and replacement). In contrast, the both-side mode denotes

a complete reform on both controllers and switches for

extreme performance. A switch equipped with a topology-

aware processor forwards packets efficiently in a fault-free

network even without the support of controllers. Accordingly,

the topology-aware controllers only play a role when fail-

ures occur, which critically improves their scalability. In the

present study, we focus on the controller-side mode.

In this paper, we propose an SDN-based topology-aware

routing approach for large-scale data center networks: cRetor.

This scheme takes advantage of the structure character for

efficient topology discovery and path calculation in a regular

network topology. As a result, the controllers’ burden will be

significantly relieved and are able to support more switches.

The comparison among cRetor and other routing algo-

rithms are shown in Table 1. Benefiting from the distance

formula in TPDL, the path calculation performance of cRetor

is superior to traditional Dijkstra-based routing algorithms.

In addition, as a more general topology-aware routing algo-

rithm, cRetor’s performance in convergence, routing protocol

overhead, and scalability are slightly lower than dedicated

routing algorithms like Fat-Tree two level routing and BCube

source routing algorithms and DCell. However, it also has

more advantages than general routing algorithms such as

SDN and OSPF. In terms of generality, cRetor can be applied

to any regular network topology including Fat-Tree and

BCube. While in the aspect of manageability, cRetor fully

inherits the advantages of SDN technology and is fully com-

patible with the upper-layer applications of SDN. Also, cRe-

tor inherits some drawbacks of SDN, such as the relatively

higher first-packet end-to-end delay. In a nutshell, cRetor is

a tradeoff between the traditional general routing algorithm

and the dedicated topology-aware routing algorithms, which

tries to find a balance between efficiency and generality.

The main contributions of this article are as follows:

• A formal method is proposed to define and describe a

regular network topology using an undirected graph of

multi-type nodes. The concept of distance formula is

also proposed for diminishing the overhead of routing

116868 VOLUME 8, 2020



Z. Jia et al.: cRetor: An SDN-Based Routing Scheme for Data Centers With Regular Topologies

path calculation. Furthermore, a topology description

language TPDL is created for network designers to

sketch data center networks especially networks with a

regular topology.

• In cRetor, an A-star-based path calculation method is

used to speed up the routing calculation. This heuris-

tic method is adaptive to a variety of regular network

topologies, utilizing the regularities of network topolo-

gies to speed up the routing calculation.

• We introduce two components in cRetor to take the

place of the lower-efficient LLDP-based topology detec-

tion mechanism. The function of topology detection is

accomplished by TPDL, which provides the controller

with an initial topology. While the other feature of

LLDP, fault detection, is replaced by a proactive failure

reporting manner.

We implemented cRetor and evaluated it on the Mininet

simulation platform. The experimental results show that

cRetor has obvious advantages compared with the traditional

OSPF algorithm and the existing SDN routing method as

well as a DCell implementation in terms of path computation

performance, network convergence speed, routing overheads

and fault recovery capability.

The rest of this paper is structured as follows: section II

presents the formal description method and TPDL; section III

elaborates the architecture and algorithms in cRetor;

section IV focuses on the experiments and results about

cRetor compared with OSPF, Floodlight andDCell; section V

explores related work; finally, section VI concludes the paper

and mentions directions for future work.

II. DEFINITION AND DESCRIPTION OF

REGULAR TOPOLOGY

As mentioned above, a data center network topology is usu-

ally regular and can be described either recursively or iter-

atively. Or rather, the locations, addressing and connections

among nodes in data center networks have some regularities.

To make full use of them, a well-defined description method

is the first step.

In this section, a formalized description method of regu-

lar network topologies is presented. With this method, it is

more explicit to illustrate the regularities of topology in

a formalized way. Additionally, a corresponding domain-

specific language TPDL is also designed to obtain more

intuitive and parseable forms of topology description, which

builds a bridge between formalized formulas and routing

programs.

A. FORMALIZED DEFINITION OF REGULAR TOPOLOGY

As we know that a computer network is composed of network

devices (including switches, routers, servers, etc.) and links

among them. In the view of graph theory, an ordinary network

could be regarded as an undirected graph composed of nodes

and edges, which is described by

G = (V ,E) (1)

where V denotes a collection of nodes, i.e., a collection of

network devices, and E represents a collection of edges, i.e., a

collection of links among network devices.

However, further information is needed to demonstrate

the structure property of regular topologies. If the nodes are

divided into groups where nodes in the same group share sim-

ilar patterns, one will be capable of clarifying these patterns

in formal symbols. In this way, the regularities are embodied

by an undirected graph with multiple types of nodes, which

is expressed as follows:

G =
(

∪kt=1Vt ,∪
k
t=1 ∪

k
t ′=t Ett ′

)

(2)

This equation means all nodes in the network can be divided

into k different sets, and the nodes in each set are similar

in respect to their locations and/or connections. Similar to

(1), a multi-type undirected graph is also composed of a set

of nodes and a set of edges. In (2), ∪kt=1Vt represents all

nodes in the entire network, where each Vt is a collection of

nodes in the same type. For instance, in a Fat-tree network,

V1 can be defined as the core switches group, while V2 is the

aggregation switches. ∪kt=1∪
k
t ′=t Ett ′ is a set of various edges,

and each Ett ′ is a set of links between two types of nodes Vt
and Vt ′ . Since there may not be physical connection between

certain types of nodes, Ett ′ can be an empty set 8.

Taking the typical 4-pods Fat-tree network topology in

Fig. 2 for an example, the nodes in the topology can be

divided into four groups: 1) core switches, 2) aggregation

switches, 3) edge switches and 4) servers. Therefore, the k

in (2) is set to 4.

According to the structure of Fat-tree topologies, every

core switch connects to all pods. Moreover, all core switches

are divided into
pod
2

groups and the core switches in the

same group connect to the same switch in every pod. In this

case, each core switch is encoded by V1(x, y) : x is the

group identification and y is the index in its group. Similarly,

aggregation switches are also presented by V2(m, n), where

m is the pod number this switch belongs to and n is the index

in this pod. Now that V1 and V2 is defined, one can give the

definition of E12:

E12 = {< V1(x, y),V2(m, n) > |x = n}

It means E12 is a link set connecting V1 and V2 nodes only

when the x attribute of V1 node equals to the n attribute

of V2 node, i.e., the core switches in the group x connect

all the aggregation switches whose indexes in their pod are

equal to x.

As for edge switches, they are very similar to aggregation

switches, and are defined as V3(p, q) (p for pod and q for

index). The links between aggregation switches and edge

switches are even simpler: they connect to each other inside

a pod. So the following equation indicates the links between

edge switches and aggregation switches:

E23 = {< V2(m, n),V3(p, q) > |m = p}

At last, the servers in this topology are connected

to edge switches, and each switches has
pod
2

servers

VOLUME 8, 2020 116869



Z. Jia et al.: cRetor: An SDN-Based Routing Scheme for Data Centers With Regular Topologies

FIGURE 2. A 4-pods Fat-tree topology where nodes can be divided into four categories: 1) core switches, 2) aggregation switches, 3) edge
switches and 4) servers.

attached.Therefore, V4(r, u,w) is used to indicate servers,

where r is pod, u is the corresponding edge switch’s index

and w is the index in this subnet. Consequently, E34 will be

{< V3(p, q),V4(r, u,w) > |p = r, q = u}.

In this topology, there is no respective internal connection

in each node groups, so E11, E22, E33 and E44 are set to Φ.

In the same manner, E13, E14, E24, are also Φ.

In summary, the formalized description of a 4-pods Fat-tree

topology is given below:

G =
(

∪kt=1Vt ,∪
k
t=1 ∪

k
t ′=t Ett ′

)

, k = 4, pod = 4

V1 = {V (x, y)|1 ≤ x ≤
pod

2
, 1 ≤ y ≤

pod

2
}

V2 = {V (m, n)|1 ≤ m ≤ pod, 1 ≤ n ≤
pod

2
}

V3 = {V (p, q)|1 ≤ p ≤ pod, 1 ≤ q ≤
pod

2
}

V4 = {V (r, u,w)|1 ≤ r ≤ pod, 1 ≤ u ≤
pod

2
,

1 ≤ w ≤
pod

2
}

E12 = {< V1(x, y),V2(m, n) > |x = n}

E23 = {< V2(m, n),V3(p, q) > |m = p}

E34 = {< V3(p, q),V4(r, u,w) > |p = r, q = u}

E11 = Φ,E22 = Φ,E33 = Φ,E44 = Φ,

E13 = Φ,E14 = Φ,E24 = Φ (3)

where V1 is the core switches set, V2 is the aggregation

switches set, V3 is the edge switches set and V4 represents

the set of servers.

B. DISTANCE FORMULAS

A distance formula refers to an inductive form of distance

(usually hops) between any two devices in the entire topology.

Similar to the connections and locations, the distances in

regular topologies also follow the same pattern. It will be

beneficial for designing and implementing more efficient

routing methods if we can describe the regularities explicitly.

Distance formulas and nodes connections are actually

equivalent, but distance formulas aremore intuitive to express

the regularities and easier to be leveraged by routing algo-

rithms. More specifically, the distance formulas can be

thought of as a set of rules, each of which defines the distance

of any two types of nodes in the topology under certain

conditions. A distance formula can be expressed using the

following quadruples:

< typesrc, typedst , condition, distance > (4)

It means that when the source node and destination node

respectively belong to typesrc and typedst , we will check

whether the attributes of them satisfy the condition. If yes,

the distance between the source node and the destination node

is supposed to be distance.

For example, for the distance between servers located in

different Fat-Tree network pods, one could use the following

distance formula:

< s1 ∈ server, s2 ∈ server, s1.pod ! = s2.pod, 6 > (5)

It demonstrates that if the source and destination nodes are

both server and their attributes r are not the same, the distance

between them is 6 (hops).

Given any two nodes, the distance between them can

be immediately obtained from distance formulas. Moreover,

since the topologies are regular, it is ensured that a well-

defined set of distance formulas won’t increase rapidly as the

network scale expands.

C. TOPOLOGY DESCRIPTION LANGUAGE TPDL

The formalized method of describing regular topologies has

been introduced, but it’s not sufficient in practical appli-

cations. On the one hand, the formalized description lacks

some significant information for routing like IP addresses.

116870 VOLUME 8, 2020



Z. Jia et al.: cRetor: An SDN-Based Routing Scheme for Data Centers With Regular Topologies

On the other hand, it is very difficult for computer programs to

analyze the formalized description. Therefore, we proposed

TPDL, a declarative domain-specific language.

TPDL involves not only all the components of formalized

description method(like nodes, connections and distance for-

mulas), but also addressing pattern and other information.

Similar to the formalized description method, TPDL mainly

consists of three parts: 1) network devices definitions, 2) links

definitions and 3) distance formulas definitions.

1) DEVICES DEFINITIONS

Network devices such as switches and servers are the main

components of a data center network. In the TPDL, the net-

work devices are defined in groups by device blocks. Each

device block is used to define a set of devices in the same

type.

device AggSwitch {

num: 8

port: 4

address: 0xC0000000

attrs: {

pod = [1..4], 0x00FF0000

index = [1..2], 0x000000FF

}

}

This is a device block for aggregate switches in a Fat-tree

topology. The device keyword indicates that the block is a

device block, where a group of devices named AggSwitch is

defined. The address keyword part is the base IP address of

these nodes. The attrs keyword defines the custom device

attributes pod and index of the device group. The last two

hexadecimal digits are the mask of this attribute relative to

the IP address. A mask is defined to indicate the mapping

between the devices’ attributes and IP addresses. For exam-

ple, the attribute index indicates that if a device belongs to

AggSwitch group, the value of attribute index will be the last

eight bits of its IP address. In reverse, (6) is able to calculate

the IP address of a device with k custom device attributes,

where tzn is a function for counting the number of trailing

zeros of the mask.

Addr = address+6
k
i=1[attri.value≪ tzn(attri.mask)] (6)

2) CONNECTIONS DEFINITIONS

A link block is the minimum unit of links definition, and each

link block contains a simple connection or a loop link defini-

tion. Different from the complicated connections in general

networks, the connections in regular network topologies can

be defined iteratively. Loop definition is supported by TPDL

to define network connections to reduce the complexity of

links definitions. Connections in a Fat-tree topology can be

expressed by only 3 link blocks in TPDL. We use the <- ->

symbol to define the connection between devices.

link {

server[4] <--> server[7]

}

The link block above shows one of the simplest connection

definitions. The server is a previously defined device type,

and the values in brackets are the values of the custom device

attributes. If there are multiple attributes, they should be list

in the defined order. This link block connects two nodes in

the server device group with custom device attribute values

of 4 and 7.

link: {

for i = 1..2,j = 1..4,z = 2..3 {

EdgeSwitch[${j}][${i}] <-->

server[${j}][${i}][${z}]

}

}

This is a link definition with a loop and variables. Variables

in TPDL are identified with ${var_name}, where var_name

is the name of the variable. There are two types of vari-

ables currently supported in TPDL: (1) device variable

${device_id.attr_name} such as number of devices, number

of device ports, etc.; (2) loop variables, which is defined in

the loop statement.
Loop statements are mainly composed of loop variable

definition statements and link statements. The loop variable
is defined like this:

var_name = start..end[step]

Where start and end represent the start and end values of

the loop variable. Step indicates the step size, which can be

omitted when its value is 1. Loop variables can be defined

one or more, and loop variables are separated by a comma.

In TDL, multiple loop variables in a loop mean nested loops.

3) DISTANCE FORMULAS DEFINITIONS

In distance formulas blocks, devices’ custom attributes are

supported in the condition so that the distance formulas can

express complex conditions.

distance server:s1, server:s2 {

// s1 and s2 are in the same edge switch

condition: s1.pod == s2.pod &&

s1.edge == s2.edge => value: 2;

// s1 and s2 are in the same pod but

// different edge switches

condition: s1.pod == s2.pod &&

s1.edge != s2.edge => value: 4

// s1 and s2 are in different pod

condition: s1.pod != s2.pod => value: 6;

}

To define the distance formulas in TPDL, we first specify

the node type of source node and destination node. In the

example above, s1 and s2 are identifiers referring to devices

of type server. The condition keyword defines a boolean

expression that is expected to be True. Therefore, the first

entry in the distance formula above means: when s1 and s2

are in the same pod and the same side, the distance will be 2.

When the distance between any two nodes is required,

we just look up in the distance formula rules for a matched

rule. In a regular network topology, the distance formula

VOLUME 8, 2020 116871



Z. Jia et al.: cRetor: An SDN-Based Routing Scheme for Data Centers With Regular Topologies

rules are usually not particularly large. For example, only

21 rules are needed to cover all cases for describing a standard

Fat-Tree network.

In summary, TPDL brings together node definitions, con-

nection definitions, and distance formulas in the data center

network to provide a global view of the entire network topol-

ogy for the control plane. In our current work, the TPDL

is generated manually by network designers on the basis of

analyzing the regularity of network topologies. But thanks to

the regularity of data center networks, the size of the TPDL

file is fairly controllable even in a large-scale data center

network. In our experiments, we are able to describe a Fat-

Tree network topology only by a 140-line TPDL file. More

importantly, when a 16-server topology is extending to the

scale of 1024 servers, there is only some modifications of

parameters, but no new line is added. Therefore, we believe

that TPDL is a simple but efficient way to describe regular

network topology. In addition, we are also looking for a more

convenient way to automatically generate distance formulas

using techniques such as machine learning.

III. DESIGN AND ALGORITHMS

In this chapter, we elaborate on the architecture of the

TPDL-based routing scheme cRetor, as well as the path cal-

culation algorithm and failover mechanism in cRetor. At first,

the basic framework is introduced, followed by the architec-

ture of controllers and switches in cRetor. Besides, we present

the path calculation algorithm based on A-star and TPDL’s

distance formula. Finally, the fault handling mechanism in

cRetor is shown, including the detection and response to link

failures.

A. FRAMEWORK OF cRetor

CRetor is a TPDL-based SDN routing framework for data

center networks. It focuses on reducing the overheads of

topology discovery and providing a more efficient route

selection scheme to replace the traditional shortest path first

(Dijkstra’s) algorithm.

One of the key ideas in cRetor is to use TPDL as prior

knowledge. By leveraging the information in TPDL, a cRetor

controller can build a basic environment for ensuring that

the whole network works. Other components are attached

to enable cRetor to handle topology changes and failures.

It is by nature that data center networks are more reliable

and less changeable. Considering these features, in cRetor,

most of the static and less changeable topology information

is provided before system running and a small amount of vari-

able information like link failures is obtained during runtime.

Compared to the common LLDP topology detection mecha-

nism in SDN, the overall system overheads are significantly

reduced.

Fig. 3 shows the architecture of a controller in cRetor.

The TPDL parser is responsible for parsing the input TPDL

file and sending the parsed result to the Topology Manager.

The Topology Manager will build a topology in memory

according to the TPDL data and update it while the controller

FIGURE 3. The architecture of cRetor controllers.

is running to keep it consistent with the real state of the net-

works. A distance-formula-based A-star algorithm is imple-

mented in the Routing Calculator, where paths are selected

as its name indicated. When a Packet-In message is received

from the OpenFlow Module, the Routing Calculator finds

an optimal path for this flow. The Fault Processor then noti-

fies the Topology Manager of topology changes immediately

when it gets changes from the OpenFlow Module.

FIGURE 4. cRetor Switch Architecture.

The architecture of a cRetor switch is shown in Fig. 4.

A Fault Detector (FD) module is added to the general Open-

Flow switches, which will find the failures between the

switches and their neighbors with the help of the Hello Mes-

sage Processor (HMP). The HMP broadcasts Hello message

to all connected ports periodically, where its own identifier is

involved. Also, all received Hello packets will be forwarded

to HMP to keep a record of the neighbors’ information. The

FD tracks the Hello messages from its neighbors to deter-

mine wether a fault occurs between the neighbor node and

itself. When it doesn’t receive a Hello message after a preset

interval, it will send a fault report message to the controller

via the OpenFlow Module. The complete mechanism of fault

detection is discussed in subsection III-C.

In our implementation, we modified the standard Open

vSwitch switches [33] into cRetor switches according to the

proposed architecture. The controllers and switches in cRetor

is compatible with conventional SDN implementaions, which

means cRetor is able to inherit all the existing algorithms and

infrastructures of SDN. For example, the traffic engineering

methods mentioned in [34] or QoS Algorithms mentioned

in [35] are still able to work on cRetor with minor modifi-

cations and they are supposed to benefit from the topology

knowledge in cRetor.

116872 VOLUME 8, 2020



Z. Jia et al.: cRetor: An SDN-Based Routing Scheme for Data Centers With Regular Topologies

B. PATH CALCULATION ALGORITHM

In most traditional SDN controllers, the routing selection

relies on the SPF or CSPF algorithms. A controller obtains

current network topology through the LLDP-based topol-

ogy detection mechanism. Each time the network topology

changes, the controller recalculates one or more shortest

path(s) between nodes. Yen’s k-shortest algorithm is adopted

by most SDN controllers such as Floodlight, where Dijkstra’s

algorithm acts as the shortest path algorithm.

In our system, the controller does not need to perform

topology discovery, because it knows the whole network

topology from TPDL file. An initial network topology can

be built from a TPDL file at startup on the controller, which

is called Basic Topology. On the basis of Basic Topology,

the controller maintains a latest topology, which is updated

in real time according to the fault information reported by the

switches.

Besides, as distance formulas are included in TPDL,

we can get the distance between any two nodes in the network

at low cost, which greatly improves the efficiency of the

path calculating algorithm. Therefore instead of the Dijkstra’s

algorithm, a distance-formula-based A-star algorithm, where

distance formulas act as a heuristic function of the A-star

algorithm, is adopted in our scheme as the shortest path

calculation algorithms. The A-star algorithm introduces a

guess function, which provides a guess for the cost of the

shortest path from current node to the destination node. The

guess values are required to be lower than or equal to the real

coast value to ensure that the algorithm will find the optimal

path. The A-star algorithm with an exact guess function will

directly traverse the shortest path to the destination. While an

A-star algorithm with a guess function of zero corresponds to

the original Dijkstra algorithm [35].

The key of the A-star algorithm is the order of traverse,

which is guided and determined by a cost function f (n). The

evaluation function is as follows:

f (n) = g(n)+ h(n) (7)

where g(n) is the actual cost (i.e., the distance) from the

source node to current node n. The heuristic function h(n) is

the TPDL distance function (as shown in Algorithm 1), which

indicates the cost from node n to destination node. Therefore

f (n) gives an estimated cost from the source node to the

destination node via the intermediate node n. The traverse

will proceed in the direction of the minimum f (n). In other

words, the more accurate the h(n) is, the faster we will find

the shortest path.

The combination of the A-star algorithm and distance for-

mulas is supposed to work efficiently in both failure-free and

partially failed network topologies. We use d(n) to indicate

the actual distance from node n to the destination node, and

the details are as follows.

1) FAILURE-FREE NETWORK TOPOLOGIES

In a failure-free network, the distance formulas are functions

that reflect the actual distance, which means that it is the

Algorithm 1 TPDL Distance Algorithm

Input: ns: source node; nd : destination node; list: list of

distance formulas in a TPDL file

Output: distance between node ns and nd
1: for each rule ∈ list do

2: if types of ns and nd match rule’s requirement then

3: value ← compute rule’s condition expression

with ns and nd
4: if value = true then

5: distance← rule.distance

6: return distance

7: end if

8: end if

9: end for

10: distance←∞

11: return distance

real cost function, i.e., h(n) = d(n). As a result, it is the

most efficient heuristic function that will guide the A-star

algorithm to find the shortest path in optimal time.

2) NETWORK TOPOLOGIES WITH FAILURESP

In a partially failed network, the actual distance between

source and destination might be larger than shortest distance,

i.e., h(n) <= d(n). In this case, the A-star algorithm works

more time but is able to find shortest path eventually. The

failed devices in a data center network usually account for

only a small fraction of all network components. Hence it

is most likely that there are only one or two link failures on

the original shortest path. With the guidance of the distance

formulas, the A-star algorithms will reach the failure node

along the optimal path. And then it backtraces to bypass cer-

tain failures. Finally it continues to search for the destination

node in the fastest way after bypassing.

C. FAILOVER MECHANISM

In data center networks, the requirements for network avail-

ability and reliability are often higher than those of general

networks. Therefore, fault detection and recovery in data

center networks are alwaysmore significant. In the SDN tech-

nology, the LLDP enables the functions of both 1) topology

discovery and 2) fault detection. However, as the TPDL has

been in charge of the topology discovery efficiently in cRetor,

a lightweight fault detection mechanism is expected.

Instead of using LLDP,we adopt themechanism of periodi-

cally sending Hello packets to detect faults. Each switch node

periodically broadcasts Hello messages to all of its ports.

When a switch receives a Hello message from its neighbor,

it is ensured that the link to the neighbor node works well.

By default, we use 3 times the broadcast interval as the fault

timeout period. That is, if a switch does not receive a message

from a neighboring node for 3 consecutive intervals, it will

mark the corresponding link as failed. Then the switch will

VOLUME 8, 2020 116873



Z. Jia et al.: cRetor: An SDN-Based Routing Scheme for Data Centers With Regular Topologies

FIGURE 5. A 4-pod Fat-Tree topology (only two pods are shown). The
original path from Src to Dst is (Src, S1, S2, S3, S4, S5, Dst). After the
link failure between S4 and S5 occurring, the detour path for packets on
the way turns into (S4, S6, S7, S5). New path from Src to Dst becomes
(Src, S1, S8, S9, S7, S5, Dst).

reports the fault information to the controller through the

secure channel.

A combination of proactive and reactive failover mecha-

nism is designed for cRetor. When a failure occurs, the cor-

responding switch will report it to the controller by the

Port-Status message. The controller will not only update its

Current Topology but also proactively delete flow entries

whose output port connects to the failed link from the cor-

responding switch. In this way, when a new packet arrives at

this switch, a Packet-In message will be triggered because

of the table-miss. After receiving the Packet-In message,

the controller will run the A-star algorithm on the updated

Current Topology to find a new path to avoid failures, and

distribute flow entries to all the switches in the path. Every

time the controller runs the A-star algorithms, it finds a path

from the source node to the destination node of the packet

instead of from the current switch to the destination node,

so that the detoured paths can be avoided. The example given

below reflects this mechanism.

In Fig. 5, a 4-pod Fat-Tree topology is given (only two pods

are shown).Without failure, the original path of the flow from

Src to Dst is (Src, S1, S2, S3, S4, S5,Dst). When the link

failure between S4 and S5 occurs, the cRetor SDN controller

processes the failure as follows:

① The link failure is detected by S4 and S5 via Hello

messages. S4 and S5 will report this failure to the con-

troller by Port-Status messages.

② The controller receives the failure information from

S4 and S5 and updates its current topology. Then the

controller distributes Flow-Mod messages to S4 and S5

to delete all flow entries whose outport is the failed port.

③ The packets from Src to Dst reach S4. Since the

corresponding flow entry has been deleted, S4 sends a

Packet-In message to the controller.

④ The controller calculates the shortest path from S4 to

Dst , i.e. (S4, S6, S7, S5), and tell S4 to forward packets

to S6.

⑤ The controller also calculates the shortest path from

Src to Dst , and distributes flow entry to related switch

S1, that the packets to Dst are supposed to be forwarded

to S8 instead of S2 any more.

In this way, the new path from Src to Dst is modified

to (Src, S1, S8, S9, S7, S5,Dst). The packets which have

been forwarded to S2 in S1 will arrive at S4 following

the original path, and then be redirected to detour path

(S4, S6, S7, S5,Dst). After all packets in S2, S3 and S4

being processed, the data flow completely switches to the new

shortest path.

IV. EXPERIMENTS AND EVALUATIONS

We compare cRetor with different kinds of routing schemes to

demonstrate how cRetor performs. Firstly, OSPF is chosen as

it’s one of the most typical link-state routing algorithms and

is broadly adopted in data center networks [36]. In addition,

Floodlight is involved as the representative of conventional

SDN, because cRetor is based on SDN and SDN is introduced

to data center networks gradually. What’s more, we adopt

DCell topology and its routing algorithm since DCell is a typ-

ical topology-aware topology just like Fat-tree and BCube.

We implemented the TPDL parser using ANTLR [37] and

integrated it into our cRetor controller, which is on the basis of

open-source controller Ryu [38]. The cRetor controller and a

modified Open vSwitch switch are used with our experiments

to verify the feasibility and performance of cRetor. Several

virtual Fat-Tree networks are built with different sizes using

Mininet [39]. We also built standard SDN networks based on

Floodlight and Open vSwitch by Mininet as well as OSPF

networks using the Quagga [40] routing suite. In OSPF net-

works, we run multiple Quagga OSPF processes in different

Linux network namespaces, which is also implemented by

Mininet and very similar to the cRetor and SDN mode.

In addition, an SDN-based DCell implementation is

adopted for comparison. As shown in [41], this implemen-

tation shares very similar results with the original experiment

in DCell [7] in terms of fault tolerance and network capacity.

DCell uses a different topology from Fat-tree in the aspects of

topology structure and nodes number. However, DCell, as a

very typical topology-aware routing algorithm, is also well-

known like Fat-Tree and BCube.

116874 VOLUME 8, 2020



Z. Jia et al.: cRetor: An SDN-Based Routing Scheme for Data Centers With Regular Topologies

The performance of cRetor is evaluated in the following

aspects: 1) path calculation performance, 2) network con-

vergence time, 3) control message overheads and 4) failure

recovery time.

A. PATH CALCULATION PERFORMANCE

We first evaluate the performance of the controller’s core

path computation algorithm, using the A-star algorithm with

distance formulas to compare with the commonly used

Dijkstra’s algorithm.

Different scale Fat-Tree network topologies are adopted for

path computation performance testing, with scales of k = 4,

k = 8, k = 12, and k = 16. The Dijkstra’s algorithm

and the A-star algorithm implementation in NetworkX [42]

are adopted. In cRetor, a distance computation function is

provided for the A-star algorithm in NetworkX as its heuristic

function. The evaluation program runs on an Intel Core i7

3.41 GHz PC with Python 3.7 runtime environment.

FIGURE 6. Comparison of routing calculation time of the Dijkstra’s
algorithm and cRetor’s A-star algorithm in different network scales.

1000 pairs of source and destination nodes are chosen

randomly as input parameters of the Dijkstra’s and A-star

algorithms. It is shown in Fig. 6 that when the network size is

small, the calculation time of the two algorithms is very close,

and the Dijkstra’s algorithm even costs less time than A-star

algorithm. With the increase of the Fat-Tree network sizes,

it can be clearly seen that the time cost of the A-star algo-

rithm with distance formulas is much less than the Dijkstra’s

algorithm. Furthermore, it is also illustrated in the figure that

with the expansion of the network scale, the calculation time

of Dijkstra’s algorithm grows faster than that of the A-star

algorithm. For a large-scale data center network, this near-

linear growth rate is preferred.

The path calculation time in the Fat-Tree network (k = 12

and k = 16) with failures is also evaluated. As shown in

Fig. 7, with the increase of link failure rate in the network,

the time cost of the A-star algorithm with distance formulas

growths. On the contrary, the time costs of the Dijkstra’s

algorithm tends to decrease. The reason is as follows, as the

failure rate in the network increases, the errors in the pre-

diction of the heuristic function will increase. Therefore the

backtracking process needs to be performed more times and

cost more time. While in Dijkstra’s algorithm, higher link

FIGURE 7. Comparison of routing calculation time of the Dijkstra’s
algorithm and the cRetor’s A-star algorithm in different link failure rates
when k = 12 (432 servers in total) and k = 16 (1024 servers in total).

failure rate means less edges, and as a result, the calculation

time reduces. It should be noted that in this experiment, even

if the link failure rate has been as high as 20%, the time

cost of A-star with distance formulas is still less than the

Dijkstra’s algorithm. In actual networks, especially the data

center networks, it is almost impossible to find a scenario

where there are 20% link failures at the same time.

B. NETWORK CONVERGENCE TIME

Secondly, we analyzed the network convergence time of

cRetor and compared it with the LLDP-based SDN, tradi-

tional OSPF routing protocol and DCell. Mininet is utilized to

build network topologies of different sizes for comparison of

network convergence time. Because of the different topology

structures, we use the closest network size for Fat-tree and

DCell (16 servers and 128 servers for Fat-tree, 20 servers

and 132 servers for DCell). The network convergence time

is analyzed in the following four implementations: 1) Ryu-

based cRetor controller andmodifiedOpen vSwitch switches,

2) Floodlight SDN controller and original Open vSwitch

switches, 3) Quagga’s OSPF routing algorithms and virtual

Linux switches by Mininet and 4) DCell routing scheme

based on POX controller and Open vSwitch switches.

Different convergence timemeasurement methods are cho-

sen for cRetor, Floodlight and OSPF on the same principle:

the time that the any two nodes are able to communicate

with each other since the simulation starts. For the distributed

OSPF routing algorithm, the time from the running of the

network to the establishment of all the routing table entries

in all switches is counted as the network convergence time.

For the Floodlight SDN network, the time from the startup of

the network to the time that the Floodlight controller detects

all the links in the network through LLDP, i.e., the time when

the Floodlight controller obtains the topology of the whole

network, will be counted as its convergence time. For cRetor

and DCell, as long as the switch establishes a connection

with the controller, the network can be considered to have

converged. Therefore, we choose two nodes in the network

that are located in different Pods as the source and destination

VOLUME 8, 2020 116875



Z. Jia et al.: cRetor: An SDN-Based Routing Scheme for Data Centers With Regular Topologies

FIGURE 8. Comparison of network convergence time of cRetor, OSPF,
Floodlight and DCell in different network sizes.

nodes. The time from network startup to the first packet

reaches the destination node will be regarded as cRetor’s

convergence time.

It is demonstrated in Fig. 8 that in Fat-Tree networks of

k = 4 and k = 8, the convergence time of cRetor is much

smaller than the traditional link state protocol OSPF and

LLDP-based SDN network. During the experiment, cRetor

can complete the transmission of the first packet in less than

1 second. In comparison, both OSPF and Floodlight take tens

of seconds to complete the detection and synchronization

of the network topology. As for the DCell, in a small-sized

network, it converges as long as the cRetor does. While in

a larger network it takes much more time similar to the

Floodlight.

The scalability of these three routing algorithms is also

worth discussing from the convergence time with different

scale of networks. For cRetor, when the network size is

expanded from k = 4 to k = 8, there are only some

fluctuations in the convergence time and basically no major

changes occur. This is due to the fact that the main overhead

in cRetor’s convergence stage is the establishment of secure

channels between switches and the controller, which is less

performance-consuming. For OSPF, Floodlight and DCell,

the convergence time increases as the network scale expands,

because the exchanged information among switches and the

controller (e.g. LSAs and DBs in OSPF and LLDP packets in

Floodlights and DCell) will increase rapidly as the network

scales up. Especially for Floodlight and DCell, the topology

detection mechanism has pretty high-performance require-

ments for SDN controllers, hence the SDN controller is very

likely to become a bottleneck in the entire network.

C. END-TO-END DELAY

In a typical SDN network, when the first packet of a flow is

sent, the controller is supposed to find a forwarding path and

establish it by distributing flow entries. Therefore, the delay

of the first packet reflects the processing performance of

the controller. While the delay of subsequent packets of this

flow depends only on the network topology structure and

the forwarding capability of switches. As a result, in the

end-to-end delay evaluation, the delay of the first packet is

selected as the evaluation criterion.

The Ping command is used to measure the first packet

delay in Mininet network for both cRetor, Floodlight and

DCell. We used different traffic models to evaluate the per-

formance: One-to-One, One-to-All, and All-to-All, which are

representative inter-data center traffic scenarios. The network

for cRetor and Floodlight is a Fat-Tree topology with k = 4,

that is, the numbers of flows in different traffic models are

1, 15 and 240, respectively. In DCell, a 20-server DCell

network is used, with flow numbers of 1, 19 and 380. After

convergence, the node(s) in the network will send out the first

packet of the flows at the same time. The returned routing trip

time (RTT) is divided by 2 to get the end-to-end delay. The

results are as follows:

FIGURE 9. First packet end-to-end delay of cRetor and Floodlight (in a
16-server Fat-tree network), as well as DCell(in a 20-server DCell
network).

We can find in Fig. 9 that the end-to-end delay in cRetor is

lower than both Floodlight and DCell under all three different

traffic modes, even they share the same SDN platform. One

of the reasons is cRetor’s LLDP-based A-star path calcula-

tion algorithm performs better than the Dijkstra algorithm in

Floodlight. Also, the protocol overhead of cRetor is lower

than the traditional SDN technology (As shown in the next

evaluation). And the SDN version of DCell also inherits this

topology discovery mechanism. Therefore, compared with

conventional SDN solutions, cRetor performs better in first-

packet end-to-end delay. Of course, the first packet delay

of cRetor is still relatively high compared with Fat-Tree

two-level routing, BCube source routing, and OSPF algo-

rithms. This is because the forwarding decisions of these

algorithms are determined on switches without interaction

between switches and the controller. We leave this an open

problem for future work to eliminate this kind of delay.

D. CONTROL MESSAGE OVERHEAD

We also use TCPDump to collect the control message over-

heads of the three routing algorithms for the first 120 seconds.

The results are shown in Fig. 10 to Fig. 12. For OSPF, all

the types of control messages specified in the OSPF spec

116876 VOLUME 8, 2020



Z. Jia et al.: cRetor: An SDN-Based Routing Scheme for Data Centers With Regular Topologies

FIGURE 10. Control messages overheads in packet number of the
4 routing algorithms (16 servers for cRetor, OSPF and Floodlight,
20 servers for DCell).

are taken into account. Floodlight and DCell control packets

include OpenFlow messages and LLDP messages between

nodes. OpenFlow messages and Hello messages are counted

for cRetor.

From the perspective of packets number in Fig. 10,

the DCell sends the most packets both at convergence

stage and stable stage with the highest speed of more

3000 packets/s. Although the server number of the DCell

network is a little more than that of the Fat-tree network,

the packet number is much higher than other routing algo-

rithms. The reason is that it sets a smaller LLDP discovery

interval (1 second) for a faster failure recovery time, which is

smaller than that in Floodlight(15 seconds).

In OSPF and Floodlight, it takes tens of seconds for the

control messages number to peak, which is corresponding to

their convergence process (OSPF converges in about 50s and

Floodlight converges in about 10s). After the convergence is

complete, both OSPF and Floodlight are in a stable state. The

corresponding topology detection packets (OSPF Hello for

OSPF, Packet-In and Packet-Out of LLDP for FloodLight)

are sent at regular intervals. As shown in Fig. 10, the Hello

packet interval of OSPF is 10s and the LLDP detection

interval of Floodlight is 15s. It should be noted that even

our experimental scenario is a small Fat-tree topology with

k = 4, the control packets reach 200 packets per flooding. For

a k pod Fat-tree topology, the number of Packet-In messages

will be:

NPacket−In = Nswitch × Nport − Nserver = k3 (8)

where Nswitch is the number of all switches, Nport is port

number per switch andNserver is the number of servers. Hence

for a common k = 48 topology, the number of Packet-In

message will be 110592, which is likely to lead to higher

processing delay as mentioned in section I. It is also worth

noting that there is an LSA update every 30 minutes which

also raises many packets in OSPF.

For cRetor, the number of cRetor control messages fluc-

tuates very little during the whole time, because there is no

convergence process. Most of the control messages in cRetor

FIGURE 11. Control messages overheads in bytes of the 4 routing
algorithms (16 servers for cRetor, OSPF and Floodlight, 20 servers for
DCell).

are Hello messages. In the experiment, the hello message

interval is set to 1 second, so the total number of Hello

messages in cRetor is higher than the other two algorithms.

However, unlike the LLDP detection packets in Floodlight,

the Hello packets in the cRetor are among switches and won’t

be forwarded to the controller, so that there is no extra load to

the controller. As a result, it consumes less CPU and network

resources of switches and controllers.

From the perspective of bytes of control messages in

Fig. 11, the total number of control messages of Floodlight

during convergence is much larger than cRetor, OSPF and

DCell. The data from 30s to 120s in Fig. 12 demonstrates

the comparison among OSPF, cRetor and DCell more clearly.

The traffic of DCell is still the largest even in the same

topology discovery as cRetor. It also can be seen that the

control message traffic in the OSPF convergence process is

also much larger than the cRetor Hello packet traffic.

FIGURE 12. Control messages overheads in bytes of the 4 routing
algorithms (16 servers for cRetor, OSPF and Floodlight, 20 servers for
DCell).

Therefore, from the perspective of the control messages

overhead, cRetor produces a relatively smooth and pre-

dictable control packet traffic and rarely has bursty control

traffic. And the higher frequency of Hello packets enables

cRetor to discover network failures faster.

VOLUME 8, 2020 116877



Z. Jia et al.: cRetor: An SDN-Based Routing Scheme for Data Centers With Regular Topologies

E. FAILOVER TIME

Finally, we evaluated cRetor’s failover capabilities and com-

pared it to OSPF, Floodlight and DCell. A pair of hosts in

different pods of the experiment network are selected as the

source and destination nodes. On the source node, a client

program runs, which sends a UDP packet to the server every

1 millisecond, with an incremental sequence number in it.

On the destination node, a server program is running, which

will listen to the specific UDP port. It will store the sequence

numbers in received packets and interval between this packet

and the last packet.

The other equivalent path from the source node to the

destination node is disconnected in advance, leaving only one

shortest path. In other words, the routing algorithms have to

find a longer feasible path for new packets after the failure

occurs.

In our experiments, data flow could not be recovered in

Floodlight. It could be found that the default idle age of the

flow table entries sent by Floodlight is 5 seconds, which

means, if no packet hits this flow table entry within 5s,

the flow table will be deleted automatically. In this way,

Floodlight can handle situations where the link is down and

the data flow stops as well. However, in our experiments,

the UDP data flow never stops and the data packets will

always hit the invalid flow table entry, causing the flow

entry cannot be deleted and the data transmission cannot be

resumed.

In the experiment for OSPF, the OSPF Fast Convergence

feature has a great impact on the experimental results. In the

case where Fast Convergence is not enabled by default,

the delay of the SPF Timer is 5s, while the initial value of

the SPF Timer is 50ms after that feature being turned on.

According to Cisco’s documentation [43], the Fast Conver-

gence feature will turn on by default since Apr 2017 (IOS

Release 16.5.1). So we conducted our experiments with both

this feature on and off.

FIGURE 13. The recovery time and lost packet number of UDP flow.
cRetor, OSPF and OSPF with fast convergence enable are in a 16-server
Fat-tree network, while DCell is in a 20-server DCell network.

As shown in Fig. 13, the OSPF algorithm with Fast Con-

vergence off has a flow recovery time of 5 seconds, during

which more than 2,600 packets are lost. As for the DCell,

it takes more than 3 seconds to reconfigure the switches to

forward the flow again. And similar to the OSPF, more than

2600 packets are lost during reconfiguration. While for the

OSPF with Fast Convergence enabled, the flow recovery time

is greatly reduced, and the reconvergence is completed in

about 20ms. But in the process, a small number of packets

are still lost. The recovery time of cRetor outperformed the

OSPF algorithm. The link switching delay is only 17ms, and

no packet loss occurs during the handover.

V. RELATED WORK

The emergence of the SDN leads to the revolution of network-

ing programmability from user configuration of routers and

FPGA-based hardware programming to the new OpenFlow-

based diagram with decoupled control and data plane as well

as centralized controllers. This improvement of networking

programmability makes the network more dynamic, robust

and able to experiment with new ideas and protocols [44].

In recent years, programmability in the control plane

of networks is moving from low-level languages such as

OpenFlow to higher-level languages. High-level program-

ming languages can be powerful tools for implementing

and abstracting different important functions of SDN such

as network-wide structures, distributed updates and virtual-

ization [15]. NetCore [45] is a high-level, declarative lan-

guage for defining packet-forwarding policies on SDNs.

FatTire [46] focuses more on the degree of fault tolerance

required, though it is also used to specify the forwarding

rules of packets in the network. In contrast, TPDL pays more

attention to the network topology itself instead of forward-

ing strategies for packets. TPDL itself is a tool for network

topology description, which provides support for upper-layer

network forwarding decisions.

The existing software-defined networking scheme enables

the programmability of the networking control plane, while

the forwarding process is still burned in the switch chip. As a

result, there is increasing concern over the extensibility in

new protocols and actions supporting. The updates of new

protocols and features rely heavily on hardware redesigns by

networking vendors, which also means higher cost and longer

update period. Consequently, P4 [47] is proposed to allow one

to program packet parsing and forwarding, setting more open

networking and devices in motion. Instead of being created as

a replacement of P4, TPDLworks in the control planes, lever-

aging the data plane programmability brought by P4 to lay the

foundation for more efficient forwarding schemes. Moreover,

as mention in section I, TPDL parser could be embedded into

switches for higher-performance. In that situation, one can

make use of the capacities of P4 for implementing switch-side

routing scheme, like storing distance formulas and neighbor

table looking up.

VI. CONCLUSION AND FUTURE WORK

In this paper, an SDN-based topology-aware routing scheme

cRetor for regular network topologies is proposed, which

116878 VOLUME 8, 2020



Z. Jia et al.: cRetor: An SDN-Based Routing Scheme for Data Centers With Regular Topologies

leverages the regularities of topology in the data center

networks to achieve efficient topology description and dis-

tance calculation. A formalized topology description method

and corresponding topology description language are cre-

ated, so that network operators can describe the topology

of the entire network in a simple way. Then we designed

and implemented a routing scheme based on TPDL and

SDN technology, as well as an efficient routing calculation

method and fault handling mechanism based on the A-star

algorithm and TPDL. The experimental results show that

compared with the OSPF, the conventional SDN network

with Floodlight controller and DCell, the route calculation

of the cRetor is faster, the network convergence time is

shorter, the control message overheads are more stable and

predictable, and the fault recovery performance is also excel-

lent. It is believed that cRetor can exploit the potential of

data center networks better and improve the efficiency of the

network.

Further research on TPDL and cRetor are also in process,

such as 1) TPDL application in both controllers and switches

and 2) automatic generation of distance formulas by machine

learning algorithms. There are also many open problems in

the framework of cRetor, e.g., 1) adaptability to network

dynamic changes, 2) load balancing using the global view

of SDN and the equal-cost multipath feature in data center

networks, and 3) integrate additional information (such as

bandwidth, etc.) into the distance formulas to get a more

accurate cost.

REFERENCES

[1] M. Al-Fares, A. Loukissas, and A. Vahdat, ‘‘A scalable, commodity data

center network architecture,’’ in Proc. ACM SIGCOMM Conf. Data Com-

mun., 2008, p. 63.
[2] S. Azizi, N. Hashemi, and A. Khonsari, ‘‘HHS: An efficient network

topology for large-scale data centers,’’ J. Supercomput., vol. 72, no. 3,

pp. 874–899, Jan. 2016.
[3] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,

D. A. Maltz, P. Patel, and S. Sengupta, ‘‘VL2: A scalable and flexible data

center network,’’ in Proc. ACM SIGCOMM Conf. Data Commun., 2009,

p. 51.
[4] M.Walraed-Sullivan, A. Vahdat, andK.Marzullo, ‘‘Aspen trees: Balancing

data center fault tolerance, scalability and cost,’’ in Proc. 9th ACM Conf.,

New York, New York, USA, 2013, pp. 85–96.
[5] Y. Yu and C. Qian, ‘‘Space shuffle: A scalable, flexible, and high-

performance data center network,’’ IEEE Trans. Parallel Distrib. Syst.,

vol. 27, no. 11, pp. 3351–3365, Nov. 2016.
[6] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and

S. Lu, ‘‘BCube: A high performance, server-centric network architecture

for modular data centers,’’ inProc. ACM SIGCOMMConf. Data Commun.,

2009, pp. 63–74.
[7] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu, ‘‘Dcell: A scalable

and fault-tolerant network structure for data centers,’’ in Proc. ACM SIG-

COMM Conf. Data Commun., 2008, p. 75.
[8] T. A. Nguyen, D. Min, E. Choi, and T. D. Tran, ‘‘Reliability and avail-

ability evaluation for cloud data center networks using hierarchical mod-

els,’’ IEEE Access, vol. 7, pp. 9273–9313, 2019. [Online]. Available:

https://ieeexplore.ieee.org/document/8604034/
[9] F. Gilabert, M. E. Gãmez, P. Lápez, and J. Duato, ‘‘On the influ-

ence of the selection function on the performance of fat-trees,’’ in

Euro-Par Parallel Processing (Lecture Notes in Computer Science),

vol. 4128, W. E. Nagel, W. V. Walter, and W. Lehner, Eds. Berlin,

Germany: Springer, 2006, pp. 864–873. [Online]. Available: http://link.

springer.com/10.1007/11823285_91

[10] A. Farouk and H. M. El-Boghdadi, ‘‘On the influence of selec-

tion function on the performance of fat-trees under hot-spot traffic,’’

in Proc. 9th IEEE/ACS Int. Conf. Comput. Syst. Appl. (AICCSA),

Dec. 2011, pp. 120–127. [Online]. Available: http://ieeexplore.ieee.org/

document/6126622/
[11] J. Cao, D. Maltz, R. Xia, P. Yang, C. Guo, G. Lu, L. Yuan,

Y. Zheng, H. Wu, and Y. Xiong, ‘‘Per-packet load-balanced, low-

latency routing for clos-based data center networks,’’ in Proc. 9th ACM

Conf. Emerg. Netw. Exp. Technol., 2013, pp. 49–60. [Online]. Available:

http://dl.acm.org/citation.cfm?doid=2535372.2535375
[12] Z. Qian, F. Fan, B. Hu, K. L. Yeung, and L. Li, ‘‘Global round

robin: Efficient routing with cut-through switching in fat-tree data cen-

ter networks,’’ IEEE/ACM Trans. Netw., vol. 26, no. 5, pp. 2230–2241,

Oct. 2018. [Online]. Available: https://ieeexplore.ieee.org/document/

8469071/
[13] A. Zhao, Z. Liu, J. Pan, and M. Liang, ‘‘A novel addressing and routing

architecture for cloud-service datacenter networks,’’ IEEE Trans. Services

Comput., early access, Oct. 8, 2019. [Online]. Available: https://ieeexplore.

ieee.org/document/8862883/, doi: 10.1109/TSC.2019.2946164.
[14] S. Habib, F. S. Bokhari, and S. U. Khan, ‘‘Routing techniques in data center

networks,’’ in Handbook Data Centers. New York, NY, USA: Springer,

Mar. 2015, pp. 507–532.
[15] J. Esch, ‘‘Prolog to, ‘software-defined networking: A comprehensive sur-

vey,’’ Proc. IEEE, vol. 103, no. 1, pp. 10–13, Jan. 2015.
[16] S. Jain, M. Zhu, J. Zolla, U. Hölzle, S. Stuart, A. Vahdat, A. Kumar,

S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J. Wanderer, and

J. Zhou, ‘‘B4: Experience with a globally-deployed software defined

WAN,’’ in Proc. ACM SIGCOMM Conf., 2013, pp. 1–10.
[17] C.-Y. Hong, S. Mandal, M. Al-Fares, M. Zhu, R. Alimi, C. Bhagat,

S. Jain, J. Kaimal, S. Liang, K. Mendelev, S. Padgett, F. Rabe, S. Ray,

M. Tewari, M. Tierney, M. Zahn, J. Zolla, J. Ong, and A. Vahdat, ‘‘B4 and

after: Managing hierarchy, partitioning, and asymmetry for availability and

scale in Google’s software-defined WAN,’’ in Proc. Conf. ACM Special

Interest Group Data Commun., Aug. 2018, pp. 74–87.
[18] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,

‘‘Hedera: Dynamic flow scheduling for data center networks,’’ in Proc.

NSDI, Apr. 2010, pp. 9–19.
[19] Y. Afek, A. Bremler-Barr, S. L. Feibish, and L. Schiff, ‘‘Detecting heavy

flows in the SDN match and action model,’’ Comput. Netw., vol. 136,

pp. 1–12, Dec. 2018. [Online]. Available: http://www.sciencedirect.com/

science/article/pii/S1389128618300859
[20] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma,

and S. Banerjee, ‘‘DevoFlow: Scaling flow management for high-

performance networks,’’ in Proc. ACM SIGCOMM Conf., 2011,

pp. 254–265.
[21] R. Trestian, G.-M. Muntean, and K. Katrinis, ‘‘Micetrap: Scalable traffic

engineering of datacenter mice flows using openflow,’’ in Proc. IFIP/IEEE

Int. Symp. Integr. Netw. Manage., Mar. 2013, pp. 904–907.
[22] H. Xu and B. Li, ‘‘RepFlow: Minimizing flow completion times with

replicated flows in data centers,’’ in Proc. IEEE Conf. Comput. Commun.,

Apr. 2014, pp. 1581–1589.
[23] H. E. Egilmez, S. T. Dane, K. T. Bagci, and A. M. Tekalp, ‘‘Open-

qos: An openflow controller design for multimedia delivery with end-

to-end quality of service over software-defined networks,’’ in Proc. Asia

Pacific Signal Inf. Process. Assoc. Annu. Summit Conf., Feb. 2012,

pp. 1–8.
[24] H. Zhang, F. Tang, and L. Barolli, ‘‘Efficient flow detection and

scheduling for SDN-based big data centers,’’ J. Ambient Intell.

Humanized Comput., vol. 10, no. 5, pp. 1915–1926, May 2019.

http://link.springer.com/10.1007/s12652-018-0783-6
[25] J. Li, J. Hyun, J.-H. Yoo, S. Baik, and J. W.-K. Hong, ‘‘Scal-

able failover method for data center networks using OpenFlow,’’

in Proc. IEEE Netw. Oper. Manage. Symp. (NOMS), May 2014,

pp. 1–6.
[26] B. Raeisi and A. Giorgetti, ‘‘Software-based fast failure recovery in load

balanced SDN-based datacenter networks,’’ in Proc. 6th Int. Conf. Inf.

Commun. Manage. (ICICM), Oct. 2016, pp. 95–99.
[27] H. Jin, G. Yang, B.-Y. Yu, and C. Yoo, ‘‘FAVE: Bandwidth-aware

failover in virtualized SDN for clouds,’’ in Proc. IEEE 12th Int. Conf.

Cloud Comput. (CLOUD), Jul. 2019, pp. 505–507. [Online]. Available:

https://ieeexplore.ieee.org/document/8814526/
[28] A. Shirmarz and A. Ghaffari, ‘‘Performance issues and solutions in SDN-

based data center: A survey,’’ J. Supercomput., vol. 2020, pp. 1–49,

Jan. 2020. [Online]. Available: http://link.springer.com/10.1007/s11227-

020-03180-7

VOLUME 8, 2020 116879

http://dx.doi.org/10.1109/TSC.2019.2946164


Z. Jia et al.: cRetor: An SDN-Based Routing Scheme for Data Centers With Regular Topologies

[29] S. Subbiah and V. Perumal, ‘‘Energy awake network traffic steering using

SDN in cloud environment,’’ in Proc. 2nd Int. Conf. Recent Trends Chal-

lenges Comput. Models (ICRTCCM), 2017, pp. 31–36. [Online]. Avail-

able: http://ieeexplore.ieee.org/document/8057504/
[30] Q. Liao and Z. Wang, ‘‘Energy consumption optimization scheme of

cloud data center based on SDN,’’ Procedia Comput. Sci., vol. 131,

pp. 1318–1327, Oct. 2018. [Online]. Available: https://linkinghub.

elsevier.com/retrieve/pii/S1877050918307075
[31] M. D. S. Conterato, T. C. Ferreto, F. Rossi, W. D. S. Marques,

and P. S. S. de Souza, ‘‘Reducing energy consumption in SDN-based

data center networks through flow consolidation strategies,’’ in Proc.

34th ACM/SIGAPP Symp. Appl. Comput., Apr. 2019, pp. 1384–1391.

http://dl.acm.org/citation.cfm?doid=3297280.3297420
[32] S. I. Alliance. Whitepaper on SDN Controller Performance in Data

Center Scenario. Accessed: Jan. 14, 2020. [Online]. Available:

https://www.ixiacom.com/zh/resources/sdn-controller-performance
[33] Open vswitch. Accessed: Nov. 20, 2019. [Online]. Available:

http://www.openvswitch.org/
[34] A. Mendiola, J. Astorga, E. Jacob, and M. Higuero, ‘‘A survey on the

contributions of software-defined networking to traffic engineering,’’ IEEE

Commun. Surveys Tuts., vol. 19, no. 2, pp. 918–953, 2nd Quart., 2017.

[Online]. Available: http://ieeexplore.ieee.org/document/7762818/
[35] J. W. Guck, A. Van Bemten, M. Reisslein, and W. Kellerer,

‘‘Unicast QoS routing algorithms for SDN: A comprehensive

survey and performance evaluation,’’ IEEE Commun. Surveys Tuts.,

vol. 20, no. 1, pp. 388–415, 1st Quart., 2018. [Online]. Available:

http://ieeexplore.ieee.org/document/8027021/
[36] P. Zeng, Y. Shen, Z. Qiu, Z. Qiu, and M. Guo, ‘‘SRP: A routing pro-

tocol for data center networks,’’ in Proc. 16th Asia–Pacific Netw. Oper.

Manage. Symp., Hsinchu, China, Sep. 2014, pp. 1–6. [Online]. Available:

http://ieeexplore.ieee.org/document/6996564/
[37] Antlr Another Tool for Language Recognition. Accessed: Nov. 16, 2019.

[Online]. Available: https://www.antlr.org/index.html
[38] RYN SDN Framework. Accessed: Nov. 16, 2019. [Online]. Available:

https://osrg.github.io/ryu/
[39] Mininet: An Instant Virtual Network on Your Laptop (or Other PC).

Accessed: Nov. 16, 2019. [Online]. Available: http://mininet.org/
[40] Quagga Routing Suite. Accessed: Nov. 16, 2019. [Online]. Available:

https://www.nongnu.org/quagga/index.html
[41] Dcell Data Center Network Structure Implemented With Software-

Defined Networking (SDN). Accessed: Apr. 20, 2020. [Online]. Available:

https://github.com/chuyangliu/dcell
[42] A. A. Hagberg, D. A. Schult, and P. J. Swart, ‘‘Exploring network structure,

dynamics, and function using network,’’ in Proc. 7th Python Sci. Conf.,

G. el Varoquaux, T. Vaught, and J. Millman, Eds, Pasadena, CA USA,

2008, pp. 11–15.
[43] L. D. Ghein. Change of Default OSPF and is-is SPF and Flooding

Timers and ISPF Removal. Accessed: Nov. 20, 2019. [Online]. Available:

https://www.cisco.com/c/en/us/support/docs/ip/ip-routing/211432-

Change-of-Default-OSPF-and-IS-IS-SPF-and.html
[44] F. A. Lopes, M. Santos, R. Fidalgo, and S. Fernandes, ‘‘A software engi-

neering perspective on SDN programmability,’’ IEEE Commun. Surveys

Tuts., vol. 18, no. 2, pp. 1255–1272, 2nd Quart., 2016.
[45] C. Monsanto, N. Foster, R. Harrison, and D. Walker, ‘‘A compiler and run-

time system for network programming languages.,’’ in Proc. POPL, 2012,

p. 217.
[46] M. Reitblatt, M. Canini, A. Guha, and N. Foster, ‘‘FatTire—Declarative

fault tolerance for software-defined networks,’’ in Proc. HotSDN, 2013,

p. 109.
[47] P. Bosshart, ‘‘P4: Programming protocol-independent packet processors,’’

SIGCOMM Comput. Commun. Rev., vol. 44, pp. 87–95, Jul. 2014.

ZEQUN JIA received the B.E. degree in computer

science and technology from Beijing Jiaotong

University, China, where he is currently pursu-

ing the Ph.D. degree with the School of Com-

puter and Information Technology. His research

interests include data center networking, software-

defined networking, vehicular networking, and

information-centric networking.

YANTAO SUN (Member, IEEE) received the B.S.

degree from the Shandong University of Tech-

nology, in 1999, the M.S. degree from Shandong

University, in 2002, and the Ph.D. degree from the

Institute of Software, Chinese Academy of Sci-

ences, in 2006. He studied at Columbia University

as a Visiting Scholar, from September 2012 to

September 2013. He is currently an Associate Pro-

fessor with the School of Computer and Infor-

mation Technology. He has published over 30

articles on international journals and conferences, such as WCMC, Mobile

Networks and Applications, the Journal of Communication, GLOBECOM,

LCN, and the Journal of Software. He also holds six patents. His research

interests include cloud computing, data center networks, wireless sensor

networks, the Internet of Things, multimedia communication, and network

management.

QIANG LIU was born in Changsha, Hunan, China,

in 1980. He received the B.S. and Ph.D. degrees in

communication and information system from the

Beijing Institute of Technology, Beijing, China,

in 2002 and 2007, respectively.

From 2007 to 2018, he was an Assistant Pro-

fessor with the School of Computer and Infor-

mation Technology, Beijing Jiaotong University,

where he has been an Associate Professor, since

2019. He is the author of more than 50 articles and

four patents. His research interests include mobile ad-hoc networks, UAV

ad-hoc networks, wireless media access control, wireless routing, and swarm

intelligence.

SONG DAI received the B.E. degree in software

engineering from Jiangxi Agricultural University.

He is currently pursuing the M.E. degree with the

School of Computer and Information Technology,

Beijing Jiaotong University, China. His research

interests include software-defined networking and

mobile ad hoc networking.

CHENGXIN LIU received the B.E. degree in

computer science and technology from Beijing

Jiaotong University, China, where he is currently

pursuing the M.E. degree with the School of Com-

puter and Information Technology. His research

interests include software-defined networking and

satellite networking.

116880 VOLUME 8, 2020


	INTRODUCTION
	DEFINITION AND DESCRIPTION OF REGULAR TOPOLOGY
	FORMALIZED DEFINITION OF REGULAR TOPOLOGY
	DISTANCE FORMULAS
	TOPOLOGY DESCRIPTION LANGUAGE TPDL
	DEVICES DEFINITIONS
	CONNECTIONS DEFINITIONS
	DISTANCE FORMULAS DEFINITIONS


	DESIGN AND ALGORITHMS
	FRAMEWORK OF cRetor
	PATH CALCULATION ALGORITHM
	FAILURE-FREE NETWORK TOPOLOGIES
	NETWORK TOPOLOGIES WITH FAILURESP

	FAILOVER MECHANISM

	EXPERIMENTS AND EVALUATIONS
	PATH CALCULATION PERFORMANCE
	NETWORK CONVERGENCE TIME
	END-TO-END DELAY
	CONTROL MESSAGE OVERHEAD
	FAILOVER TIME

	RELATED WORK
	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	ZEQUN JIA
	YANTAO SUN
	QIANG LIU
	SONG DAI
	CHENGXIN LIU


