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ABSTRACT

Approach we have tested in our submitted rufsr visual- based
copy detection, we find links between video shot key-frans#sgia
probabilistic latent space model over local matches bettleekey-
frame images. This facilitates the extraction of significgroups
of local matching descriptors that may represent commorasém
elements of near duplicate key-frames. For 2009, we hav&eslor
on an optimal representation of the test database. We flesttsbe
discriminant local descriptors. Then, we quantize thecsetelocal
descriptors into a hierarchical structure.

For audio based copy detection, we give results with twaediff
ent feature parameters: 15-bit energy difference parametmilar
to [1] and a feature-based mapping of test frames to quenyesa

Differences we found among the run§Ve submitted 1 run for
the video only copy detection task (same run for Balancedfand
nofa). Four runs were submitted for the "audio only” copyeaibn
task :

Langi s. Gagnon}@tri m ca
Patrick. Cardi nal }@rimca

What we learned about runs/approaches and the research ques
tion(s) that motivated them Approaches based on local descriptor
matching are efficient for video copy detection but very ticos-
suming. Our method is more adapted when there is very litthe-c
mon visual information to establish a link between two kegnfes.
Video copy detection may not need such a good precision. Ueboa
copy detection, mapping each test frame to the nearest daeng
(NN-mapping) results in robust audio copy detection. Theimal
normalized detection cost rate (NDCR) for even the worst ta@s-
formations is less than 0.03 for 2008 queries, and less tiabdor
2009 queries. The algorithm provides easy parallel pracgss a
graphics processing unit, leading to a very fast search.

Index Terms— video copy detection, audio copy detection,
copy detection, near duplicate detection.

1. INTRODUCTION

e CRIM.a.NOFA.EnNN2pass: energy-diff parameter searchvideo copy detection or near-duplicate detection (NDT) iovies

rescored with nearest-neighbor mapping.

is a relatively new topic [2] as it offers an alternative toteranark-
ing for copyright control, business intelligence, adssgtnent track-

e CRIM.a.NOFA.NN22para: search using nearest-neighbofng and law enforcement investigations. Videos often danga-

mapping.

dio. Sometimes the original audio is retained in the copiedenial,

e CRIM.a.BALANCED.EnNN2pass: lower threshold than for Sometimes it is replaced by a new soundtrack. Neverthetesso

NOFA case.

e CRIM.a.BALANCED.EnNN22wt15: fuse Energy-diff pa-

is an important and strong feature for some applicationates of
video copy detection. Audio copy detection is used to moigeer-
to-peer copying of music or any copyrighted audio over theriret.

rameters search (wt 15) with nearest-neighbor mappingi js aiso used to monitor advertisement campaigns over tharid

search.

We fused the video submission from CRIM with each of the four

audio only submissions to get four different submissions do-
dio+video copy detection task. The threshold was adjustedb
on the results of 2008 a+v queries.

Relative contribution of each component of our approa€br
visual-based copy detection, the probabilistic latentcepaodel

radio broadcasts.

Visual NDT often proceeds via a video summarization apgroac
like reducing a video in a set of key-frames. The copy detecti
task then consists of finding near-duplicates in key-framages
[3][4][5]. Matching key-frames through a set of key-poirngsan
interesting strategy as it is robust to occlusions and iithation
changes. Also, invariant descriptors for the key-pointvigle ro-

over local matches between the key-frame images produces a rbustness to view point change. Two different groups of aggites

bust and accurate filtering process in relation to all pdsdiical

based on key-point matching techniques have been propngéd i

matches. It works well even if there are only a few local megch literature. One group (e.g. [6][7]) filters out the outliérstween the
between the key-frames of the copied video in question. We ha Whole key-frames using robust matching methods such as RENS

introduced a new method for SIFT quantizing. It improvesttire
computation performance while keeping a good precisiorSieT
representation.

For audio only copy detection, the fingerprints obtained lapm

or Least Median of Squares (LMS). However, those fitting meth
ods perform poorly when the ratio of inliers falls below 50%his
requires a large overlap between a pair of images for an effici
matching process. In practice however, key-frames of twalar

ping each test frame to the nearest query frame (NN-based fiideo segments can differ significantly due to the presehoetion

gerprints) reduced minimal NDCR by half over that obtainathw
energy-difference based fingerprints.

This work was supported in part by the Natural Science andrieegng
Research Council of Canada (NSERC)

in the scene or the key-frame generation process. Also, F&NS
is not efficient if there are only few inliers between 2 neaplidu
cate key-frames. The second more recent group of approaeké&s
to find common spatial patterns (e.g. [8], [9]). These apgiea
are mainly based on comparing key-point neighborhoods. edery



there is an ambiguity in the choice of the neighborhood ssseldior
the comparison. Moreover, outliers can be present in thghber-
hood. In fact, it is always possible to obtain erroneous megaue
to the presence of common local structures. Some authdr§q[8
use an efficient representation inspired from text anabalied Bag
Of Words (BOW), to represent neighborhoods. BOW represants
text document as a vector; counting the number of occursente
different words as features. In [8], [9], descriptors aramfized into
clusters which are analogous to words in a text document BINW
representation has two shortcomings when dealing with guitigs:
polysemy (i.e. aword having two different meanings) ancbsymy
(i.e. two words with same meaning). BOW generative modgts ca
ture the co-occurrence information between elements inlection

of discrete data by introducing a latent variable (i.e. aexivalue),

in order to raise the ambiguities of the BOW representat®oW
generative models are used in natural language processihgta-
tistical text analysis to discover topics in documents [10]

In advertisement detection, the emphasis is more on finding a
the ads broadcast in the campaign [15] [16] [17]. The protess
speeded up by first using a fast search strategy that oveejese
the possible advertisement matches. These are then camngsng
a detailed match. The detailed match in many instancesdaslu
comparing video features, as in some instances, the sarneraag
be played even though the video frames may be different.

We have experimented with the copy detection and the adeerti
ment detection algorithms. We published a paper on adeengst
detection where we use a fast search followed by a detailedhma
ing algorithm [17]. We also experimented with the energjedénce
parameter used in audio copy detection [1]. We found thathr
rameter is very robust to various query transformation$@é2008
TRECVID copy detection competition [18]. We experimenteithw
a new parameter which maps frames of test audio to nearest que
frames. We show that this mapping is robust to the query fivams.-
tions and reduces the missed segments from 7.7% to 1.6% & 20

In [11] and [12], BOW generative models are used to extracijueries. These new parameters can be computed using aaraphi

and link place features and cluster recurrent physicatioes (key-
places) within a movie. It finds links between key-frames obm-
mon key-place based on the use of a probabilistic latenespacel
over the possible local matches between the key-frames.allbivs
the extraction of significant groups of matching descriptbat may
represent characteristic elements of a key-place. Heragdapt this

processing unit (GPU) resulting in an accurate and fast deypgc-
tion. Rescoring the segments found using the energy diféerpa-
rameters with these new parameters results in 1.7% misgatesgs
with only a small increase in computing.

This notebook paper is organized as follows. Section 2 give d
tails about the methodology and implementation of our apghdor

approach for the video copy detection task. The BOW is used tthe video copy detection task. Section 3 describes the aogipde-

represent key-frame images. BOW generative model filtersiou
informative matches, generated by very common image sirest
and extract groups of matches that may represent strueterakents
representative of near duplicate key-frames. Inliers ateneted,
whatever the outlier number, by using a latent value for eaatch.
A latent value is a context value shared by a group of locatheat
that may represent a structural characteristic elememidggaus to
a topic for text document).

However key-points based methods are very time consunting.
requires a very big database representation. Each videotfre test
database is represented by a set of several key-frames aigictiso
represented by a set of several local descriptors. For 40G valeo,
we get a minimum of 100 millions local descriptors. Some argh
([8][91[5]) use prototype-based clustering such as K-nseamuan-
tize local descriptors into a limited number of prototypbdat 200
000). This quantization introduces errors, since clustetopype
may be not well defined. The cluster prototypes are only aseoar
representation of the clustered descriptors. Also, 200 f¥afo-
types is not enough to represent well all the variabilityt thal 28
dimension size vector could have. We propose a quantizirtade
which reduces the 128 floating point representation intchbrtval-
ues. We also propose an efficient comparison function betwee
quantized descriptors.

When we look at the published papers in audio copy detec-

tion and in advertisement detection, we see that the twosfiedde
evolved differently. In audio copy detection [13] [14], tamphasis

tection system. Section 4 describes the fusion of the audiov@leo
system. Section 5 presents the evaluation process andmparioe
results on the TRECVID dataset 2009.

2. VIDEO COPY DETECTION SYSTEM OVERVIEW

Our approach is derived from our last year’s approach [19Fkwh
finds links between video shot key-frames, based on a pribabi
tic latent space model over local matches between the leeyefr
images. This allows the extraction of significant groups aafal
matching descriptors that may represent common charsiiteei-
ements of near duplicate key-frames. We combine it withouei
pre-processing steps designed to accelerate and imprevadtch-
ing process for any query type, as well as post-processeps ste-
signed to find the copied video segment borders. Figure 4téitas
the global video copy detection system.
(hierarchical

structure) >

\I/

Local descriptor
similarity search

Test dataset

Key-frame
'i> Link

extraction

Query video
pre-process

=

';‘> Post-
Processing

Fig. 1. Video copy detection system.

is on speed, since we compare the copy with a huge reposifory o

copyrighted audio. Small percentage of misses will not nakéy
difference as long as we capture most of the copying. It has to-
bust under various coding schemes and distortions thatlspaay
go through over the internet. A fast audio copy detectiors asglio
fingerprints. In audio fingerprinting, they use energy défeces in
consecutive bands to generate a feature with 32 bits. Thetsesa
speeded up by looking for exact match of these 32 bits in tiredt
repository. A more complete search is only performed ardhede
matching frames. This process has been shown to be robustriip m
coding schemes and audio distortions over the internet [13]
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Fig. 2. Pre-processes for video test database.
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Fig. 3. Pre-processes for query video.

Most of the pre and post processing processes are similar ¢

those from last year (shot detection, key frames selectong-
crop, video insert detection, redundant key frame filteriagal de-
scriptor extraction, post-processing). Figures 2 andu3tithte pre-
processing steps for query videos and test dataset videasfoW
cused this year on an optimal representation of the tessekatén-
deed, we get a minimum of 100 million local descriptors taespnt
400 hour of test dataset videos. We first introduce a nonidigzant
descriptor filtering step based on Latent Dirichlet allamaimodel-
ing. This eliminates about 40% of non relevant local desorg
from the test dataset. We propose a quantizing method foF BH
cal descriptor which reduces the 128 floating point reprasiem

into 17 short values. This is combined with an efficient coriipa

son function between two quantized descriptors. Then, tipegh
descriptors are stored in a hierarchical structure forritsieval.
2.1. Key-frame extraction and local descriptor extraction

Once the automatic shot transition detection is completach shot
is then summarized in a few representative frames (key&suniro

this aim, we compute the overlap between images using aesimpt
method based on camera motion estimation [20]. The algorith

finds the optimal frame path over the shot which then minisithe
overlap between frames. We extract local descriptors foh &ay-
frame. First, Regions Of Interest (ROI) are automaticatyedted
in the image with a difference of Gaussians (DOG) point detec

from which we derive local descriptors using SIFT [21]. We us

SIFT because it performs the best in terms of region reptaten
specificity and robustness to image transformations [22].

2.2. Local descriptor quantizing

Each SIFT descriptor is in fact composed of 16 gradient isims
concatenated representing 16 independent regions. Dherefach
of these 16 regions can be represented independently. W defi
vocabulary set to represent each region. We use normalesdre
on a regular grid in a four dimensional space to define ourtwoca
lary. We chose a regular grid to be able to represent equajipas-
sible region configuration. Therefore, we get a vocabulésjze 16
and we use 16 bit value to code each region. Each region hestog
is projected in the vocabulary space. K& },_, , be the vocab-

is set if C3&C] # 0 for all j. The following scheme (figure 4)
illustrates our coding scheme. We create an additional tqasgh

SIFT vector
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Fig. 4. SIFT coding scheme.

value (coarse quantized value) for each descriptor by wssignilar
coding process with a dictionary of size 2 associated witmeax
comparison function. We use this index to filter out quick&sdrip-
tors pairs for the finest comparison measure. The advanfatso
guantization method is that the precision level can be defayethe
vocabulary size or by the number of partitions of the desoripec-
or (number of regions). The quantization error is limited@use of
he multi assignment approach to vocabulary vectors fdn eagion.

2.3. Hierarchical representation

We use the 2 previously presented descriptor quantizee velare-
ate a hierarchical indexing structure. We first cluster afiatiptors
using the first quantized value (fine index). A new clusteréated
if a quantized descriptor value from the dataset does nothreaty
other clusters using the comparison function with the firengjaed
value. The fine quantized value becomes the new clustersepre
tation. We obtain about 4 million clusters. Each descrijiothe
dataset is then assigned to one or several clusters. Thersluse
themselves indexed using their coarse quantized valuesgoa-
dex). For descriptor similarity retrieval, we parse coargkexes to
select relevant cluster fine indexes. We then parse thetedléne
indexes to select a cluster. All quantized values from thecsed
cluster are then compared with the query value.

2.4. Key-frame link extraction

ulary set, X the normalized histogram projection in the vocabularyWe extract groups of local matches between near duplicate ke

space and; thei-th bit of the corresponding code valdéfor X.
For eachi, if d(V;, X) < Threshold, ¢; = 1 elsec; = 0 whered
is the L1 distance. We also project the vector composed bydha
values of each region histogram in the vocabulary spaceieldre,

frames. We use the concept of Bag of visterms (BOV) for repre-

senting each key-frame where a visterm is a set of local ii¢scs
participating in a local match. We then apply a generativabpr
abilistic model to extract groups of local matches that espnt a

we obtain a vector composed of 17*16 bit size values to remtes common structure representative of 2 near duplicate layds. We
one SIFT descriptor. We can now use a very fast distance meaise the Latent Dirichlet Allocation (LDA) generative mod2P],

sure to make correspondence between descriptors. If twaipes

which is a new model derived from pLSA [10], to provide a diter



discriminant analysis over matches. The significant ettcheis-
term distributions are seen as part of latent topics whiehiarfact,
typical structural elements of a key-frame. Latent topics ased
as context values for visterms. A group of local matchedduiss)
sharing the same latent topic constitutes a topic link aciosiges.
See [19],[11] and [12] for more details.

2.5. Descriptor filtering

In order to accelerate the linking process, we need to dehl tve
fewest possible number of local descriptors. One idea stmsif
eliminating the more common local descriptors which aredist
criminative enough. For instance, local descriptors apoading to
straight lines or corners can be found in many images. Tipis tf
local descriptor is not specific enough to accurately dbsain im-
age. We apply the BOW generative models [22], over the queahti
local descriptors from key frame test dataset. This proviaelis-
crete discriminant analysis over the quantized local detsrs. It
eliminates about 40% of non relevant local descriptors ftoentest
dataset.

2.6. Post-Processing

Copied video segments are detected once links are extiaeteden
the query and the reference key-frames. We apply RANSACeén th
temporal domain in order to estimate the time shift and iditebe-
tween the times codes of the detected links. This step enshia¢
detected links are forming a coherent segment in time uprenafa-
tion and scaling factors. Finally, the shot boundaries franich the
selected near-duplicate key-frame belongs to, define e tange
of the near duplicate video segment. The confidence valuadsi-c
lated from the number of local matches first extracted by tobgp
bilistic latent space model and then selected by the videy seg-
ment RANSAC estimation.

3. AUDIO COPY DETECTION SYSTEM

3.1. AUDIO Copy Detection System Overview

The overall system shown in Fig. 5 first computes the audicefing
prints of the audio query. We tried two different audio fingénts.
One fingerprinting method is based on energy differenceom ¢
secutive sub-bands [1] [13], and results in a very fast $egiing
good results. The other fingerprints are based on classificat
each frame of the test to the nearest frame of the dudilyese fea-
tures result in even better performance. These featuresi@seto
compute, but can be speeded up by parallel processing on a GPU

find counts of
matching
fingerprints

Output start,
— end, and count
of best segment

Compute audiq

Query audio —» fingerprints

test
fingerprints

Fig. 5. Audio copy detection algorithm using fingerprints.

We use these fingerprints to find test segments that may b

copies of the queries. Fingerprint matching is done by npvire
query over the test and counting the total fingerprint mat¢heeach
alignment of the query with the test. One such alignmentasvshin

1These features are not strictly fingerprints, as their vahanges when
we change the query.

Fig. 6. In this alignment, the matching test segment is itiedtby
the matching start frame (frame 4), the last matching frainmzeme
8), and the number of fingerprint matches (3 matches). If we ha
100 frames/sec, then the count/sec will be 3 * 100/(8-4+1) =The
best matching segment is the segment with the highest cainig.

is similar to the scoring used in [1].

Since the same query is matched against all the test segments
the total count is a good measure of match between the query an
the test segment. However, when comparing matches foreiiffe
queries, count/sec is more relevant, since the queriesivaryration
from 3 secs to 3 minutes.

Query fingerprints

| fpl | fp2 | fp3 | fpa | o5 | fp6 | fp7 | fp8 |

matching fingerprints

| fp15 | fol4 | fp13 | fp;S | fp12 | fg;s | fp11 | fp7 | fp10 | fp9 |

Test fingerprints

Fig. 6. One example of matching query to a test.

3.2. Feature Parameters for Audio Copy Detection

We experimented with two different feature parameters. flits¢
feature corresponds to the audio fingerprint used in musickend
other copy detection tasks [1] [13]. The fingerprint we usegdrilar

to that used in [1]. These fingerprints have 15 bits/frames didio
signal is lowpass filtered to 4 KHz and divided into 25 ms windo
with 10 ms frame advance. A pre-emphasis of 0.97 is applied an
then multiplied by a Hamming window before computing thef@u
transform. The spectrum between 300Hz and 3000 Hz is divided
into 16 bands using mel-scale. A triangular window is theadus
to compute energy in each band. The energy differences batwe
the sub-bands are used to compute the fingerprintt B(n, m)
represents the energy value of th€ frame at them!”™ sub-band,
then them'” bit F(n, m) of the 15-bit fingerprint is given by

F(n,m)=1, if EB(n,m)— EB(n,m+1) >0,
Otherwise, F(n,m) = 0.

In the original formulation, Haitsma and Kalker [13] use 3&b
generated from consecutive sub-band and consecutive fildfae
ences. Using 15 bits from one frame is more robust to bandwidt
limitations and extraneous speech addition. With 15 bits,see
more frequent repetition of the fingerprints even for thasfarmed
audio. We call this feature anergy difference fingerprint

To search for a test segment that matches a query, we hash the
fingerprints of the query. For example, if the fingerprint fame
k of the query isfp, thenhash(fp) = k. For each framg of the
test, we keep a count(j) of query frame matches when the first
frame of the query starts at frameof the test. If the test frame
t has a fingerprinfpl, then the count(¢ — hash(fpl)) is incre-
ented wherhash(fpl) exists. At the same time, we also update
the first and the last matching test frames for query stadingst
framet — hash(fpl). Since more than one frame can have the fin-
gerprint fpl, hash(fpl) can have multiple values, and therefore
all the counts:(t — hash(fpl)) are updated. The maximum count
c(t1) for some test frame, and the corresponding start and end test
frames gives the best matching test segment. As we can sge, th



are only three operations involved per test frame. So, thgoting
to search for the best test segment that matches the quergjas t

1 shows the average mMNDCR as we vary the weighting for the
video score. From the Table, we can see that a weight of 2 iimapt

Note that, we search for a segment in the test that matches thveith min_.NDCR of 0.014. We also tried keeping the weight of video

query. Since the query is fixed, the count of number of fingetpr

qguery when the test segments do not overlap as 2, and inogehsi

matches in a segment is a good measure of the match. Howevevgight when the two test segments overlap. However, thigegly
when we want to use a threshold across many queries, ther a belid not improve the mitNDCR. When we get one threshold for all

ter measure is the count/sec. The reason is simple. Queayiaur
varies from 3 secs to several minutes. Therefore, the loligion of
matching fingerprint counts for test segments will be veffedent
when the query lengths differ. Using counts/sec across&giaor-
malizes the counts and leads to fewer false alarms and higbalt
rate. We compute a counts/sec threshold that gives miniDaRl

The second feature parameter maps each frame of the test to
closest frame of the query. For computing this measure skciess,
we compute 12 cepstral coefficients and normalized enerdyitan
delta coefficients. The distance between the test frame fachea of
the query is defined as the sum of the absolute differencedagithe
corresponding cepstral parameters.qilf..., g, are the query cep-
stral parameters for a frame and ..., t,, are the cepstral parameters
for a test frame, then this distance is computed&$ , |¢: — t:|.
The test frame gets the frame number of the query frame dltses
this test frame. We call this feature W#l-based fingerprint

Computing the closest query frame for each test frame is com-

pute intensive. Two possible alternatives can reduce thgating.
One is to organise the frames in a binary tree and traversdiitd
the best frame. The other choice is to use a graphics processit

the transformations, the miNDCR increases to 0.015.

Table 1. min.NDCR (averaged over 70 transformations) for NOFA

case for fusion of audio+video queries from 2008 as we vaey th

weight of video score from zero to 4.

th "Weight [0 | 1 [ 2 [ 3 [ & ]
[ minimal NDCR ] 0.017 ] 0.016 | 0.014 [ 0.016] 0.017 |

The optimal weight for video for all four audio+video sub-
missions turns out to be 2 in each case. For one threshold for
all transforms, the milNDCR when combined with NN22para is
0.011, when combined with EnNN22wt15 (fusion of energy aliftl
nearest-neighbor fingerprints), it is 0.008.

5. COPY DETECTION RESULTS

5.1. Dataset for Copy Detection

(GPU). GPU's are cheap, a GPU with 1 Gbyte of memory and 24dhe test data for copy detectio.n. comes from NIST sponsored
processors costs less than $500. The query, and the frantbe of | RECVID 2008 and 2009 competitions [18] [23] [24]. All toger,

test can be transferred to the GPU and the calculation doparin

allel in the GPU. Our implementation on a GPU has reduced the

overall computing by a factor of over 100.

The search for the test segment that matches the queryia.triv
As before, we keep a counf:) for each frame of test as a pos-
sible starting point for the query. Assume that for each fieehe
i, m(4) is the query frame that is closest to the test fram&@hen
for each test frame, we increment the counf{:i — m(7)). We also
update the starting test frame, and the last test framesgoneling
to frame(i — m(2)). The counte(j) then corresponds to the num-
ber of matching frames between the test and the query if theyqu
started at framg. The framej with the highest count(;) and the
corresponding start and end matching frames is the beshingtc
segment.

4. AUDIO+VIDEO COPY DETECTION

In 2008, there were 10 transformations per video query, anans-
formations per audio query. This resulted in a total of 7@gfar-
mations per query, or there were 70*201 total audio+videerigs.
One of the queries (query 166) had two test segments, so we
moved this query. We ran fusion on these 70*200 a+v quer@s fr
2008 in order to tune our algorithms. For merging audio+@ide

we have 385 hours of video + audio.

The queries for the 2009 submission also come from 201 origi-
nal queries that are different from the 2008 queries. Fo©26aly
seven video transforms are used, for a total of 1407 videoiegie
For audio only also, there are seven transforms for a totauof7
audio only queries. The audio+video queries are a comloimatf

all the audio and video transforms, and therefore there@t&r27=
9849 queries. The seven video transformations for 2009haners

in table 2. The seven audio transformations for 2008 and 2089
shown in table 3.

Table 2. Query video transformations used in TRECVID 2009.

[ Transform ] Description |
T1 original video is inserted in font of background vid¢o
T2 insertions of pattern
T3 strong reencoding
T4 change of gamma
T5 decrease in quality
T6 3 post production transformations

re- 17 3 random transformations

For audio copy detection, the system was developed usirig aud

queries, we used the audio submission of EnNN2pass. We therggueries from TRECVID 2008. These are 1407 queries (201 egsleri

the corresponding audio and video query into one if the tegt s

* 7 transforms). Query 166 occurred twice in the test, so iswa

ments overlapped. Since we have more confidence in audio segsmoved from the development set.

mentation, we took the start and end of test segment fromutie a
query. The overall score was weighted addition of the twoeso
If the test segments for video and audio did not overlap, tlen
only output the test segment with the highest weighted sdordy

5.2. Video only 2009 query results

During the final experimentation on the test database fo20G9

one test segment per audio+video query was output. We kept thvideo copy detection tasks, we found that reading indexatg ttom

weight of audio score as 1, while we varied the weight of titkegi
score from 0,1,2,3,4 in order to find the optimal weight. Wa-es
mated the average miNDCR over all the 70 transformations. Table

the disk took 90% of the total processing time. We truncatedest
database drastically in order to resolve this problem. \Weatiled
all clusters with more than 150 descriptor value. This reeao&0%



Table 3. Query audio transformations used in TRECVID 2008/2009.

[ Transform | Description |
T1 nothing
T2 mp3 compression
T3 mp3 compression and multiband companding
T4 bandwidth limit and single-band companding
T5 mix with speech
T6 mix with speech, then multiband compress
T7 bandpass filter, mix with speech, compress

of the test database. Big clusters represent less specsiciplrs.
However, it results in an accurate precision detectionrétyn (low
false alarm) while the recall rate is between 30% and 75%. e n
ticed that about 30% of our submitted detection (see tablea%)
considered as false alarm while the visual content was ctear
duplicated. Indeed, we may have found redundant visuakobrait

a different place in a movie. Redundant visual segments ast m
often grouped together on the timeline. Therefore, we geaarew
results (see table 5) with larger copy detected video segi@én
seconds were added before and after the initially deteadpied
segment).

Table 4. Video only submitted detection results.

Transform | 1 [ 2 [ 3] 4]5] 6] 7]
N. queries 134 134 | 134 | 134 | 134 | 134 134
Miss rate 048 | 0.4 | 0.61| 0.43| 0.28| 0.7 0.71
FA count 17 15 21 13 14 10 11
Mean F1 0.72 | 0.73] 0.61 | 0.64 | 0.68| 0.63 | 0.61
Mean time(s) 1374 | 796 | 989 | 765 | 780 | 1123 | 1136
Opt NDCR B 0.84 | 0.87 ]| 0.85| 0.89| 0.69| 0.83 | 0.96
OptNDCRNF| 0.84 | 0.87| 0.90| 0.89 | 0.69| 0.98 | 0.96

5.3.1. Energy difference fingerprint

The copy detection using Energy difference fingerprints mason
1400 queries from 2008 and 385 hours of test audio from TRECVI
The results were compiled for no FA case (Rtarget = 0.5/hrisgSM
1, CFA = 1000). We calculated the no FA result separately &che
transform. We also give results when we use one thresholdlffor
the transforms. This is the case in real life, where we do notk
the transformation the query has gone through. (Also, tithé
threshold we need to provide in our submission).

Table 6. Minimal NDCR for no FA for energy diff fingerprints with
one optimal threshold per transform for 2008 queries.

[ Transfoom| 1 [ 2 [ 3 | 4 [ 5 ] 6 [ 7 |
[ minNDCR | .007 | .007 [ .030 [ .022 [ .060 | .053] .053 |

For no FA case, results for each transform are given in Table 6
where the decision threshold for each transform is compsige-
rately. The first four transforms do not have any extranepegsh
added, while the last three add extraneous speech to thg dr@r
the first two transforms, the number of missed test segmeatgss
than 1%. Even for transforms with extraneous speech adted, t
worst result is 6% missed segments. In no FA case, the mimioral
malized detection cost rate (NDCR) corresponds to a thiéstith
no false alarms: all the errors are due to missed test segroent
responding to the queries. Table 7 shows minimal NDCR when we
have one threshold for all the transforms. In this case tmeNBGICR
more than doubles for the last three transforms.

Table 7. Minimal NDCR for no FA for energy diff fingerprints with
one optimal threshold for all transforms for 2008 queries.

[Transform] 1 | 2 [ 3 [ 4 [ 5] 6 ] 7|

Table 5. Video only detection results with larger copy detectedwide
segment.

[Transform| 1 | 2 | 3 ] 4 ] 5] 6 [ 7 |
N. queries | 134 134 | 134 | 134 | 134 134 134
Miss rate 0.44 | 0.35| 058 | 0.39| 0.24 | 0.68 0.7
FA count 11 8 17 7 8 8 9
Mean F1 0.29 | 0.27| 0.3 | 0.28]| 0.28| 0.3 0.3
Mean time | 1374 | 796 | 989 | 765 | 780 | 1123 | 1136

Our detection performance of our submitted result is dight
better than the median performance.

[minNDCR | .015] .037 | .037 | .022 ] .127 ] .135] .165 |

Let us look at the distribution of counts for the matching tes
segments. For energy difference fingerprints, we only kegments
with counts greater than 30. Table 8 shows total number b6tz
ments that match the queries with a given count. Over 350@&€0
segments have a matching count of 35. However, if we rejstt te
segments with counts less than 36, the minimal NDCR goesgdp si
nificantly. This means that a significant number of correnthtch-
ing test segments have counts below 36. The counts for magtchi
segments vary between 32 and 2300. The counts are consisient
correct segment has higher count than the incorrect segimdatv-
ever, across queries, these counts cannot be used to getigeod
crimination. For discrimination across queries, we usents/gec.

Table 8. Segments with matching counts N for the 1400 queries.

5.3. Audio only development on 2008 queries and results onf

countN | 31 [ 35 [ 45 | 55 [ 75 [ 100

2009 queries |

segments| 738464 | 354898 133572 74480 | 16492 ] 1796 |

The audio only copy detection system was developed on 2008

queries. We give detailed performance figures and ratidhoaldne
four submissions for the 2009 queries. Basically, we expented
with the energy difference fingerprints and the NN-basedefing
prints and their combinations.

The average query processing time for the energy differénee
gerprints is 15 secs on Intel Core 2 quad 2.66GHz processer (w
only use one processor). For searching through 385 hounsdid,a
this search speed is very fast.



Table 9. Minimal NDCR for no FA for NN-based fingerprints with  Table 12 Segments with matching counts N for the 1400 queries.

one optimal threshold per transform for 2008 queries.
[ Transform]| 1 [2] 3 | 4 [ 5 [6] 7 |
[ min NDCR | 0.007 [ 0 [ 0.007] 0.007 ] 0.022] 0 | 0.03 ]

5.3.2. NN-based fingerprint

The copy detection using NN-based fingerprints was run osahee
2008 queries and 385 hours of test data. The results in Tatue 9
one optimized threshold per transform are better than tim$able

6 for the energy difference fingerprints. Results for oneghold
across all transforms are shown in first row of Table 10. These
sults are nearly the same as those for one threshold pefarams

[countN [ 11 [20] 25]30] 35] 40 |
[ segments| 12147] 71 [ 61 ] 22[ 36| 28|

Since rescoring energy-difference fingerprints with NN-
based fingerprints results in very fast compute times (20
secs/query) and low NDCR, we submitted one run for nofa
(CRIM.a.nofa.EnNN2pass) and one for the balanced case
(CRIM.a.balanced.EnNN2pass) using this rescoring. Thiy on
difference was the threshold: for nofa, the threshold cpoads
to the score for correct detection just above the highestestay
any false alarm. For balanced case, the threshold corrdspton

except for a small increase in min NDCR for transforms 3 and 4highest score for any false alarm. Table 13 shows the refarlts

One surprising result is that we do not miss any segmentsdnst

form 6 even though extraneous speech has been added to tiesque

with this transformation.

Table 10. Minimal NDCR for no FA for NN-based fingerprints with
one optimal threshold for all transforms. second row shogscor-
ing of energy diff results with NN-based features

| Transform | 1 [2] 3 [ 4 ] 5 6] 7]
NN-based .007| 0| .015| .015| .022| O | .03
NN-based rescorg .007 | 0 | .007 | .007 | .037 | .03 | .03

2009 queries. The results show optimal NDCR and actual NDCR
using the thresholds from 2008 queries. First, the resalt:ibfa
and for balanced case are exactly the same. Second, theabptith
actual min NDCR are the same, except for a small difference fo
transforms three and six. The mean processing time is 2@$% se
It turns out that these results are close to the best resrlthdth
computing speed and min NDCR.

Table 13 optimal and actual NDCR for no FA and balanced cases
for Energy-based fingerprints rescored with NN-based fipgets
for 2009 queries

The computing for finding the query frame closest to the

test

frame is significantly higher than that for the energy difere fin-
gerprint. To reduce computing, we programmed it in a GPU
240 processors and 1 Gbyte of memory. The nearest neighbor

vith
co

Jdransfoom | 1 | 2 | 3 ] 4] 5] 6 [ 7]
mean proc time | 20.4 | 20.3 | 20.3| 20.5| 209 | 21.2| 21
mean F1 921 936 | .924| .89 | 92 | .90 | .90
optmin NDCR | .052 | .06 | .067 | .06 | .06 | .075| .082
actual min NDCR| .052 | .06 | .075| .06 | .06 | .09 | .082

putation lends itself easily to parallelization. The réisigl average

compute time per query is 360 seconds when we use 22 features

(12 cepstral features + normalized energy + 9 delta cepsiagn
though these parameters are very accurate, they are muoeér $to
compute than the energy difference parameters. As we retiece
number of features used to compute the nearest query framest
sults get worse. Table 11 gives the minimal NDCR for 13 fesgur
(12 cepstral features + normalized energy).

Table 11 Minimal NDCR for no FA for NN-based fingerprint with
one optimal threshold per transform, using 13 cepstral paeters.

Since the results for NN-based feature search are the bdst an
most reliable, we submitted one nofa submission using Néétha
features computed using 22-cepstral features. Table lvsshe
sults for this case. Compared to the ENNN2pass submissieset
results are slightly better for many transforms. Howeves,dverall
computing has gone up from 20.5 secs/query to 376 secs/query

Table 14 optimal and actual NDCR for no FA for copy detection
with NN-based fingerprints for 2009 queries

[ Transform | 1 [2] 3 | 4 [ 5 [ 6 [ 7 ]| Transfoom [ 1 [ 2 | 3 ] 4] 5] 6 [ 7]
[ mMinNDCR | .007 [ 0 [ .022] .022 ] .022 | .007 ] .03 | [ meanproctime [ 376 | 376 | 376 | 376 | 376 | 375 | 376
mean F1 921 | .93 .92 .89 | .925 .88 .90
We can reduce the computing time by just rescoring the répt min NDCR | .052 | .052 | .067 | .06 | .052 | .067 | .075
sults from energy difference parameters with the NN-basatlfes, actual min NDCR| .052 | .06 | .075| .067 | .052 | 0.075 | .082

Rescoring lowers average CPU time/query to 20 secs. Min NBCR
shown in the second row of Table 10. Compared to energy diffar
feature, min NDCR has reduced significantly.

Table 12 shows total number of test segments that match one

5.3.3. Fusion of Energy difference and NN-based fingerprint

of the queries and have a given count. The number of test sedVe fused the two results by combining the counts/sec fronrdsyne

ment matches with a given count drops dramatically witheasing
counts. The count threshold for no FA is 23. Above 23, theeenar
false-alarm segments. Using counts/sec instead of cowets mbt

diff fingerprint with counts from NN-based fingerprints. Waeaulii-
plied by 15 the counts/sec to achieve a proper balance. Goresgs
common in the two fingerprints (same query, overlapping degt

reduce minimal NDCR. Counts itself are a good measure of copynent), we added the weighted scores and output the segnmeext co

detection, even across queries of different lengths. SolNidased
fingerprints generate very few false alarms, and the boynber
tween false alarms and correct detection is well marked.

sponding to the NN-based fingerprints. For segments not im- co
mon, we output the weighted score for the segment. The sefault
no FA case for 2008 queries are shown in Table 15. The results f



Table 15 Minimal NDCR for fused results from the two fingerprints Table 18 optimal and actual NDCR for balanced case for copy

for no FA case (separate threshold per transformation). detection with fusion of energy difference and NN-baseeffprints
for 2009 queries
[ Transform | 1 [2] 3 [4] 5 [6] 7 |
[minNDCR] .007| 0] 007[ 0] .022]0]0i5] [ Transfom [ 1 [ 2 [ 3] 4 [ 5 [ 6 [ 7 |
mean proc time | 390 | 389 | 389 | 389 | 390 | 389 | 390
mean F1 921 93 | 92 | .88 | 925 | .88 .90
Table 16 Minimal NDCR for fused results from the two fingerprirjts opt min NDCR | .052 | .052 | .06 | .052 | .052 | .052 | .082
for no FA case (one threshold for all the transformations). actual min NDCR| .052 | .052 | .06 | .06 | .052 | .075| .137
[ Transform | 1 [2] 3 [4] 5 [6] 7 |
[ mnNDCR | .007 ] 0].007]0].022] 0] .022 | Table 19. Comparison of averaged min NDCR across all transforms
for the different 2009 audio query detection submissions.
no FA with just one threshold across all transformationshisas mgmgg ?\jpé?;g miﬁcl\tllgCI:R avtgi;n?ePU
in Table 16. When we compare Tables 10 and 16, we see signifi :
cant reduction in min NDCR due to fusion. If we average acefiss €nergy diff + NN-based 2nd pags 0.065 0.068 20.5 sec
transformations, the min NDCR goes down from 0.016 to 0.0@8. NN-based fingerprints 0.0607 0.066 376 sec
ble 17 compares this averaged minimal NDCR for energy diffee fused results 0.057 0.070 390 sec
fingerprints versus NN-based fingerprints versus the fussalts for
2008 queries. Note that rescoring results from energy difires
with NN-based features results in only a small increase finmging e CRIM.m.BALANCED.EnNNZ2pass: fuse 2009 video sub-
while reducing min NDCR from 0.077 to 0.017. mission (weight 2) with audio only submission EnNN2pass.

e CRIM.m.BALANCED.EnNN22wt15: fuse 2009 video
submission (weight 2) with audio only submission

Table 17. Comparison of averaged min NDCR across all transforms EnNN22wt15.
for different fingerprints when using one threshold for edrtsforms
for 2008 queries. As can be seen from Table 20, the actual min NDCR is close to the
_ _ optimal min NDCR except for the first one. All the processiingets
Method | minimal NDCR | avg CPU time] 4re high due to the average of 995 sec processing time pep vide
energy diff fingerprints 0.077 15sec query. Overall, the system NN22para performed well for tzattio
energy diff + NN-based 2nd pags 0.017 20 sec and audio+video submissions.
NN-based fingerprints 0.016 360 sec
fused results 0.008 375 sec

Table 20. Comparison of averaged min NDCR across all transforms

We also gave a submission using this fusion for the balanceéor the different 2009 audio+video query detection subfois

case for 2009 queries. The results are shown in Table 18.€Budts Method opt min actual avg CPU
are good except for the actual results for the transformrseVae Method NDCR | min NDCR | time(sec)
compute time per query is 390 secs. CRIM.m.nofa.EnNN2pass | 0.056 1.34 1016

Table 19 summarizes the results for the four submissiong faQtR|M.m.balanced.EnNN2pass  0.056 0.063 1016
2009 audio queries. For min and actual NDCR, we average the cRriM.m.nofa.NN22para 0.055 0.06 1371
NDCR across all transformations in order to see relativaatge| criM.m.balanced.EnNNN22wt1% 0.052 0.058 1385
of each algorithm. The optimal min NDCR keeps going down witt

the improved algorithms. However, the actual min NDCR gags u

for the fused results due to transform 7. This was due to dse fa

alarm that was above the given threshold. This was brougttab 6. CONCLUSIONS

by the energy diff parameter. This was the primary reasomdéor

submitting any runs with energy diff parameter alone, evmugh  For visual-based copy detection, approaches based ondesetip-

they are the fastest to compute. tor matching are efficient for this task. It is robust to maransfor-
mations. However, local descriptor matching is very timestoning
5.4. Audio+video 2009 query results and we have to deal with a very big database if we want to mainta

high precision. We introduce an efficient SIFT quantizingttmd
We computed the audio+video query results as describedditioBe and use it to build a hierarchical indexing structure fot fagrieval.
4. We gave four audio+video submissions correspondingetddtr ~ However, we could not really take advantage of this apprdhish
audio only submissions. The results (optimal min NDCR anidalc  year because we encountered many problems while tryingfito ef
min NDCR averaged across all 49 transformations) are shown iciently store and swap from the disk our indexing structuféie
Table 20. These results correspond to the following subatiss probabilistic latent space model over local matches beatwesy-
. . .. frames allows a fast, robust and accurate filtering procesmg all
¢ CRI.M.m.NO.FA.EnI.\lNZpass. f‘!se. 2009 video SUbrnISSIOnpossible local matches. This method is better adapted wheme t
(weight 2) with audio only submission EnNNZ2pass. is very little common visual information to establish a libk&tween
e CRIM.m.NOFA.NN22para: fuse 2009 video submissiontwo key-frames. Video copy detection may not need such a good
(weight 2) with audio only submission NN22para. precision. However, our results are close to the mediaropeence



for visual copy detection and we get best results for sevrnsfor-
mations when we combine with audio.

TRECVID 2008 task using two different audio fingerprints.nFi
gerprints derived from energy differences in consecutiaeds take
only 15 seconds/query and give good results. When we conjymtte
one optimized threshold over all queries and average théN\DiGR
over all transformations, we get a value of 0.077 for no F&, iwe
miss 7.7% of the test segments that match the queries. Fdyasiel
fingerprints that map each test frame to the nearest quamefréor
the same scenario, we get min NDCR of 0.016. In other words; av
age segment miss rate goes down from 7.7% to 1.6%. However, wéol
need to use a GPU to get reasonable compute times, and tlagaver
compute time for one query increases to 360 seconds. Howiéver [11]
we just rescore the energy diff based results with NN-basatiifes,

the miss rate goes down from 7.7% to 1.7% while the computing
increases from 15 secs to 20 secs. When we fuse the resuttsefor
two fingerprints, the min NDCR goes down from 0.016 to 0.008. | [12]
other words, the segment miss rate goes down from 1.6% to 0.8%
when averaged over all transformations. However, we do eet s
a similar decrease for 2009 queries. For 2009 queries, ttimalp
min NDCR goes down from 0.065 (for rescoring with NN-based fin [13]
gerprints) to 0.057 (fused results). However the actual NIDCR
fluctuates around 0.070 due to the difficulty of picking anumate a
priori threshold.

When we combine audio + video queries, the INIDCR varies

(6]

We compare copy detection results on audio queries from

(7]

(8]
(9]

(14]

between 0.015 and 0.008 for 2008 queries when we estimate one
threshold for all the transformations. The best result ignvive
merge video submission with the fusion of energy-diffeeeiand
nearest-neighbor fingerprints. For 2009 audio+video gsethe op-
timal min NDCR averaged over all transformations varieduvaetn
0.056 and 0.052. The actual min NDCR averaged over all trans-
formations varies between 1.34 and 0.058. The reason isttisat
difficult to come up with an a priori threshold from 2008 qesrthat
will work well for the 2009 queries. The only system that weadk
well in all scenarios was NN22para where we use NN-basedrfinge
prints for search. For NN-based fingerprints, the threshatd more
stable, resulting in low min NDCR for both 2008 and 2009 ceeri
in all scenarios.

(1]

(2]

(3]

[4]

5]
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