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In the following exchange, Rauma anal'zes several lime series of imprisonment and
prison admission rates and conludes that 1h~ show no support for Blumstein's stability
ofpunishment hypothesis. Blumstein and his colleagues respond, in part, that Rauma
has misinterpreted the empirical implications of their theoy. Rauma defends his ini-

tial conclusions.

THE EDITORS

CRIME AND PUNISHMENT
RECONSIDERED: SOME COMMENTS

ON BLUMSTEIN'S STABILITY OF

PUNISHMENT HYPOTHESIS*

DAVID RAUMA**

ABSTRACT

In a series of articles, Alfred Blumstein has proposed and tested a

homostatic model of punishment in society. Based on ideas found in

Durkheim, Blumstein hypothesizes that, over stable historical periods,

the level of punishment in a society will be stable as well. After analyz-

ing time series of imprisonment rates for three countries, Blumstein finds
support for his hypothesis. In this paper, I re-analyze one of Blumstein's

time series and analyze several others, including data for California

from 1853 to 1970. These analyses and re-analyses, of both imprison-

ment and prison admission rates, show no support for the stability of

punishment hypothesis. As a consequence, I argue that doubts can be
raised about the adequacy of Blumstein's empirical analyses, that the

measure of punishment he uses-imprisonment rates-may not be as

good a measure of punishment as prison admission rates, and that addi-

tional approaches should be explored in order to provide more compel-

ling tests of the stability of punishment hypothesis.

* This research was supported by the National Institute of Justice (Grant No. 78-NI-AX-

0093). Richard A. Berk, Sheldon L. Messinger, and Thomas P. Wilson provided helpful

comments and suggestions. Thanks go to Pat Gibson and Trina Marks Miller for typing
various drafts, and to Kathy Stathopoulos for helping prepare the data.
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I. INTRODUCTION

Among the many controversies current in criminal justice circles is

whether imprisonment is of increasing or decreasing importance for the

punishment of convicted offenders. The late 1960s and the early 1970s

saw an apparent decline in the use of imprisonment, as measured by

both prison admissions and prison populations, and an increase in the

use of alternative interventions. This trend was reversed in the middle

1970s, accompanied by an additional stress on imprisonment for violent

offenders. California's "use a gun, go to prison" law is one example of

this new emphasis. Other states have enacted similar legislation, and

more seems to be on the way. One issue is what best indexes the use of

punishment in society: the size of prison populations; the number of

admissions to prison; or some other measure altogether? Another, larger

issue concerns historical trends in the use of punishment, and whether its

importance rises and falls in response to policy changes, historical

events, or demographic shifts. One popular phrasing of the issue is

whether or not society maintains a relatively stable level of punishment

over time.

In a series of articles, Alfred Blumstein and several colleagues'

("Blumstein") have posed and tested a homeostatic model of punish-

ment in society. Based on ideas proposed by Durkheim, Blumstein hy-

pothesizes that during stable historical periods, societal levels of crime

and punishment (as measured by imprisonment rates) will remain stable

as well. After analyzing relevant data for California, and re-analyzing

some of his, I have found several problems in the statistical procedures

Blumstein employs to test the hypothesis. In addition, there are difficul-

ties with Blumstein's interpretation of Durkheim; imprisonment rates

may not be the best measure to test Durkheim's ideas concerning stable

levels of crime and punishment. In the following pages I will show that

the data do not necessarily support Blumstein's contention that the ag-

gregate imprisonment rate in the United States remained stable during

the period 1926-70. I will also argue that, relative to imprisonment

rates, prison admission rates may be a better measure of punishment. 2

1 Blumstein & Cohen, A Thoy of the Stabli of Punirhment, 64 J. CRIM. L. & C. 198

(1973); Blumstein, Cohen & Nagin, The Dynamics of a Homeostatic Punishment Process, 67 J.

CRIM. L. & C. 317 (1977); Blumstein & Moitra, An Analysis of the Time Series of the Impisonment

Rates in the States of the United States: A Further Test of the Stabiliy ofPunishment Hypothesis, 70 J.

CRIM. L. & C. 376 (1979).
2 Although there is a great deal of ambiguity in the term "imprisonment rate," Blum-

stein defines it as the number of prisoners on hand per 100,000 in the total population. One

source of ambiguity is the "correct" population to standardize prison population by: total

population; young people, who are most likely to go to prison; or some other population

altogether. Such issues will not be addressed here, and all rates in the reported analyses are

consistent with Blumstein's usage.
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However, United States admissions data show little evidence of stability

either. Finally, I will demonstrate that imprisonment and admission

rates for California during the period 1853-1970 do not support the hy-

pothesis of a stable level of crime and punishment.

II. BLUMSTEIN'S THEORETICAL AND EMPIRICAL MODELS

A. THE STABILITY OF PUNISHMENT HYPOTHESIS

Blumstein's theory begins with a posited underlying behavior distri-

bution in society. Individuals engage in a wide variety of activities,
some more common than others, which vary along a unidimensional

continuum of conformity to society's norms. At one extreme of the dis-

tribution are the most conforming behaviors, while at the other end are

the very deviant. It is at this latter extreme that some behaviors, beyond

a certain threshold, are defined as criminal and therefore subject to pun-
ishment. Citing Durkheim, Blumstein 3 hypothesizes that during stable

historical periods, the level of crime will remain relatively constant in

society. Crime is defined by societal reaction against it-punishment-

and serves to reaffirm the norms characteristic of that society (1'e., the
behaviors at the center of the behavior distribution). Thus, crime is only
defined when it is punished in some manner, is natural to any society,

and helps maintain social solidarity.

From these premises, Blumstein develops a homeostatic model of

punishment in society. The distribution of societal behaviors is subject
to change over time as some behaviors become more widespread and

others become less so. As this occurs, it is possible that the behavior

distribution will shift along the continuum of conformity, and forces in

society will cause a shift in the threshold of criminality to maintain a

stable level of crime. If deviant behaviors become more common and

society becomes more deviant, the threshold will be moved to punish
fewer types of behaviors. Since more individuals are engaging in them,

fewer deviant behaviors need be specified as criminal. If the opposite

occurs, and society becomes less deviant, the threshold will be moved to

punish more behaviors. Through this homeostatic, over-time adjust-

ment process, society will maintain a relatively stable mean level of pun-
ished behaviors (crimes).

Roughly outlined, these are the basic tenets of Blumstein's model.

More will be said about the model later; for now the focus is on his

empirical tests of the stability hypothesis. Blumstein proposes using im-

prisonment rates (the number of prisoners per 100,000 individuals in the
total population) to test the hypothesis. He reasons that if punishment

3 Blumstein & Cohen, supra note 1, at 200; Blumstein, Cohen & Nagin, supra note 1, at

317-20; Blumstein & Moitra, supra note 1, at 376-77.
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does remain stable, with only minor fluctuations around the mean (per-

haps due to the over-time adjustment), so should the imprisonment rate.

Blumstein analyzes various time series of imprisonment rates-for the

United States as a whole, 1926-74; for forty-seven states during the same

period; for Canada, 1880-1959; and for Norway, 1880-1964-and he

finds support for the stability hypothesis.4

A fundamental objection can be made to the univariate time series

model Blumstein proposes for the aggregate United States data. The

United States imprisonment rate series,5 shown in Figure 1, looks suspi-

ciously like what Box and Jenkins refer to as "uncontrolled series, "6

which result from nonstationary processes and generally exhibit little or

no stability over time. In his analysis, Blumstein models the U. S. series

as the realization of a stationary process (ze., the homeostatic punish-

ment process), and the implications of this model are crucial for his hy-

pothesis. If they are to provide evidence for the stability hypothesis,

Blumstein's series must be modeled as realizations of processes with sta-

ble means, of which stationary processes are one case. I will argue that

Blumstein's model for the U. S. series is perhaps incorrect and is cer-

tainly not unique, and therefore provides no compelling evidence for the

stability hypothesis. However, some discussion is first necessary of sta-

tionary and nonstationary processes, their implications for modeling ob-

served time series, and their implications for Blumstein's hypothesis.

B. STATIONARY AND NONSTATIONARY PROCESSES

Univariate time series, such as the United States imprisonment rate

series, can often be characterized as realizations of either stationary or

nonstationary stochastic processes. Stochastic only means that the pro-

cess generating the observed series is not entirely deterministic, but that

its values are drawn from a probability distribution. The conditions for

a stationary process are rather straightforward in principle, but often

difficult to meet in practice. A stationary process is by definition time-

invariant, with a stable mean, stable variance, and stable autocovari-

4 Blumstein, Cohen & Nagin, supra note 1, at 330; Blumstein & Moitra, supra note 1, at

389.

5 1 U. S. DEP'T. OF COMMERCE, HISTORICAL STATISTICS OF THE UNITED STATES: CO-

LONIAL TIMES TO 1970 420 (1975). Prison population data were available for all years from

1926-70, and total United States population was constructed by linear interpolation between

census years. From these data imprisonment rates were constructed per 100,000 in the total

population. Blumstein's series extends to 1974, but it is doubtful that the four more observa-

tions would have any impact on the models estimated here.

6 G. Box & G. JENKINS, TIME SERIES ANALYSIS 85-86 (1976).
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FIGURE 2

EXAMPLES OF STATIONARY AND NONSTATIONARY

TIME SERIES

(a)

time

(b)

time

1777



DAVID RA UMA

ances. In fact, all the moments of the probability distribution are fixed. 7

As a consequence, if the same stochastic process were observed in differ-

ent time intervals, the means, the variances, and the univariate models
describing these observed series would, within sampling error, be identi-

cal. Figure 2(a), for example, is the realization of a stationary process.

With some chance fluctuations, it is stable around a single mean level

and it has a constant variance.

On the other hand, there are virtually unlimited ways in which
stochastic processes can be nonstationary. In general, two types of non-

stationary processes can be distinguished: integrated processes and non-
homogeneous processes. The difference between the two depends on

which moment of the probability distribution is problematic. Inte-

grated processes have no stable mean;8 rather, they have changes in
mean level which may be deterministic, stochastic, or some combination

thereof. Figure 2(b) shows a realization of an integrated process with a

constant increment in the mean. Except for that increment over time,

the process is stationary. In contrast, Figure 2(c) shows a series with

entirely stochastic changes in the mean. The underlying process has
random changes in mean level, and, depending on the time interval, the

observed time series will show a variety of trends and/or changes in

mean level. Except for those random changes, this process is also statio-

nary. Combinations of determifnistic and stochastic changes are more

difficult to portray, but a common pattern is an over-time trend that is
itself subject to randomness.

The other type of nonstationary process, a non-homogeneous pro-

cess, has no constant variance. 9 It may also have no stable mean, but,

for time series modeling purposes, the variance problem is usually the

first concern. For example, an observed time series with a constant

mean but an increasing or decreasing variance over time (Le., increasing

or decreasing oscillations around the mean) is a realization of a non-

homogeneous process. Series with exponential growth patterns, and

therefore no constant mean, are also realizations of non-homogeneous

processes.

7 Box and Jenkins describe a strictly stationary stochastic process as one in which the

joint probability distribution for T observations is unaffected by a change in time origin. The

mean, variance, autocovariances, and all higher order moments must be unaffected by time

origin-they are time invariant. Normally, time series analysis proceeds under the assump-

tion of weak stationarity, where all moments up to some order are assumed to be unaffected

and the probability distribution is assumed to be multivariate normal. Second-order station-

arity, in which the mean and the variance are assumed constant, and the assumption of nor-

mality are enough to produce strict stationarity. Id. at 26-30.
8 Id. at 84-114; C. GRANGER & P. NEWBOLD, FORECASTING ECONOMIC TIME SERIES 40-

41 (1977).

9 C. GRANGER & P. NEWBOLD, supra note 8, at 304.
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As a consequence, the first issue in time series modeling is whether

or not an observed series is the result of a stationary process. Plots of the

series and its autocorrelation function can be used to determine if the

observed series results from a stationary process or an integrated process.

Non-homogeneous processes are sometimes more difficult to identify,

and the autocorrelation function is of limited use as a diagnostic device.

Although certain types of nonstationarity can be tested for (e.g., linear

trends), a formal statistical test for stationarity has not been developed:

a single test cannot be applied to determine if a series results from a

stationary or nonstationary process.10 However, through various diag-

nostic devices the nature of the underlying process can usually be ascer-

tained. Since there are a wide variety of ways in which nonstationarity

can occur, it is not always readily apparent, nor is it always clear-cut.

Some series can be modeled equally well as realizations of stationary or

nonstationary processes. Consequently, a wide variety of diagnostic

checks are sometimes necessary.

Fortunately, realizations of integrated and non-homogeneous

processes can often be transformed and modeled as though the underly-

ing processes were stationary. Observed time series can be differenced to

remove changes in mean level."' Differencing involves subtracting past
values of the time series from current values in order to remove those

changes, resulting in a new series with a zero mean. However, a series

without a constant variance cannot be differenced to solve the problem;

other transformations are necessary, the most common being the loga-

rithmic. 12 And if the log transformed series has changes in mean level, it

must also be differenced to produce a new series with a constant mean

and a constant variance. Here again, the usual diagnostic devices can

be used to judge if the transformations were necessary and resulted in a

stationary series. (The underlying process and the observed time series

10 In general, the existing tests for stationarity all require some specification of the form

that the possible nonstationarity takes. For example, Dickey and Fuller propose a test based

on the null hypothesis that the observed series is generated by a particular type of integrated

process called a "random walk." Dickey & Fuller, Distribution of the Estimatorsfor Autoregressive

Time Series with a Unit Root, 74 J. AM. STATISTICAL A. 427 (1979). Box and Pierce and Box

and Jenkins propose a test (the Q-statistic) for the autocorrelation function to test the ade-

quacy of estimated univariate models. Box & Pierce, Distrbution of Residual Autocorrelations in

Auto-Regressive Integrated Moving Average Time Series Models, 65 J. AM. STATISTICAL A. 1509

(1970); G. Box & G. JENKINS, supra note 6, at 290-93. Other tests are possible, including
Blumstein's test for a deteministic trend, but they involve specific assumptions about the na-

ture of the non-stationarity. Consequently, diagnosing nonstationarity can be a trial and
error process: different transformations are tried, and different time series models are esti-
mated, and at each stage the relevant diagnostics are checked and compared to other possible

representations of the underlying process. The general aim is to find the most parsimonious
model possible to adequatel'y represent the underlying stochastic process.

1 See generally G. Box & G. JENKINS, supra note 6, at 85-114.
12 C. GRANGER & P. NEWBOLD, supra note 8, at 304.
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will hereafter be referred to interchangeably. This is a convention in

time series modeling which, for the purposes of exposition, is often more

convenient than distinguishing between the two.)

Whether or not the observed series is transformed, standard time

series modeling procedures can be employed after stationarity has been
determined. Various orders of autoregressive and/or moving average

models can be estimated to represent the stochastic process generating

the observed series. Alternative models are occasionally possible, and a

choice must then be made as to which is the "best" model. The most

often used criterion for choosing a model is parsimony (ie., the fewest

transformations and the fewest estimated parameters), but the selection

among equally credible models can be difficult. Univariate models in

general have little substantive meaning; it is instructive to distinguish

stationary from nonstationary series, and autoregressive from moving

average processes, but little additional insight is gained from distin-
guishing, for example, various orders of autoregressive processes. Conse-

quently, parsimony is primarily a statistical criterion, not a theoretical

criterion for model choice.

The implications of stationarity for Blumstein's hypothesis should

be apparent. The homoestatic punishment process, as Blumstein de-

scribes it, is a stationary process (or, at worst, a non-homogeneous pro-

cess with a constant mean), and observed time series of imprisonment

rates should have constant means. Furthermore, in the absence of a de-

finitive test for stationarity, Blumstein must make a compelling case that

series he models as stationary are not nonstationary. Blumstein imposes

a theoretical constraint on these series, and he must show that the con-

straint is statistically valid. In other words, Blumstein must demonstrate

that any alternative time series models, perhaps equally parsimonious

but resting on the assumption of nonstationarity, are less plausible than

the models he presents. Since evidence for the stability hypothesis re-
quires that observed time series have stable means, nonstationarity

should be ruled out as a competing explanation for the behavior of such

series.

C. TIME SERIES MODELS FOR UNITED STATES IMPRISONMENT RATES

Blumstein models the United States imprisonment rate series (and

other series as well) as a stationary series, but oni because it does not

have a deterministic linear trend over time.' 3 However, at first glance

13 Blumstein tests for a deterministic linear trend by regressing each of the imprisonment

rate series, for the United States and the individual states, on linear counters. Blumstein &

Moitra, .supra note 1, at 377-81. This is a test for a purely deterministic linear trend, and

Blumstein never discusses other types of nonstationarity, not due to linear trends. There is no

indication that he considered other types when modeling the various series.
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(see Figure 1), the series seems to have different trends in two parts of

the series: a positive trend in the period 1926-39; and another positive

trend, with a different slope, in the period 1946-61. The other sections

of the series appear to have negative trends, but they are short and

therefore difficult to judge. As Blumstein notes, the series tends to re-

main within a particular range, but he only rules out the possibility of a

deterministic trend, and changes in mean level are apparent regardless.

If the series were longer, changes in mean and slope could become more

pronounced. For example, although her data are incomplete, Cahalan14

provides evidence that United States imprisonment rates were, on the

average, lower during the 1800s.15 If the United States series does not

TABLE 1

REPLICATION OF BLUMSTEIN'S UNIVARIATE MODEL FOR

U.S. IMPRISONMENT RATES 1926-70

at
yt = g, +

(1 -, ,B' - 4b2 B2 )

Parameter Coefficient t-Value

IL (Mean)* 107.66 29.77
4), (1st AR parameter)** 1.54 15.11

(P2 (2nd AR parameter)*** - .70 - 6.86

N = 45 Residual Mean Square Error = 16.04
Q-Statistic = 14.3 (for 10 lags, p > .05)

*Blumstein reports the parameter 8, rather than the mean, t.. The mean is a

more useful parameter, but one can be converted to the other.

**A first-order Autoregressive parameter

***A second-order Autoregressive parameter

14 Cahalan, Trends in Incarceration in the UnitedStates Since 1880, 25 CRIME & DELINQUENCY

9 (1979).
15 Cahalan makes some interesting historical points, but her lack of data tends to invali-

date her argument that imprisonment rates have been increasing since the 1880s. With data

for only nine years over an eighty year span, it is difficult to determine whether a trend exists

or whether the data are for atypical years in the series. Her use of ordinary least squares to

estimate a trend for onl'y nine obsenaations is misleading-the standard errors will probably be

enormous and any trend would be indistinguishable from chance. It should be noted that, in

his rebuttal, Blumstein's estimation of a dummy variable regression model for those nine data

points is equally misleading. Blumstein & Moitra, Growing or Stable Incarceration Rates: A Com-

ment on Cahalan'r "Trends in Incarceration in the United States Since 1880", 26 CRIME & DELIN-

QUENCY 91 (1980).
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have a constant mean, as Figure 1 suggests, Blumstein's evidence for a

homeostatic punishment process is weakened.

To more formally test for changing levels in the U. S. series, I re-

estimated Blumstein's1 6 univariate model and then developed an alter-

native. Table 1 contains the replication of Blumstein's model. The

model is estimated with four more observations than Blumstein's, but

the difference is trivial: the coefficients are approximately the same, and

the model does seem to fit. However, there are two qualifications to

Blumstein's model, the latter of which applies to any model estimated

for this data set. First, within sampling error, the model and therefore

the underlying process is nonstationary. The estimated coefficients do

not sum to greater than 1.0, which is an easy check for stationarity in a

second-order autoregressive process;17 however, if a confidence interval

of only plus or minus one standard error were placed around the coeffi-

cients, they could sum to over 1.0. Also, the coefficients are correlated at

.87, which suggests that they are unstable and that their exact values are

almost inseparable from one another. These are reasons for uneasiness

about the model, although, without a test for stationarity, Blumstein's

model cannot be rejected outright.

The second qualification is the sample size. With forty-five obser-

vations, the estimated coefficients may differ greatly from the parame-

ters for the underlying process and the standard errors may be biased.

The Box-Jenkins time series techniques used here are maximum likeli-

hood techniques, which are only fully appropriate for larger samples

than the U. S. series. Box and Jenkins1 8 recommend that no fewer than

TABLE 2

ALTERNATIVE UNIVARIATE MODEL FOR U.S.

IMPRISONMENT RATES 1926-70

at
(1 - B)yt=

(1 - dl
1

Parameter Coefficient t-Value

4'1 (AR parameter)* .57 4.60

N = 45 Residual Mean Square Error = 18.27
Q-Statistic = 13.0 (for 10 lags, p > .05)

*A first-order Autoregressive parameter

16 Blumstein, Cohen & Nagin, supra note 1, at 321.

17 G. Box & G. JENKINS, supra note 6, at 58.

18 Id. at 18. The class of maximum likelihood estimators is not unbiased and efficient for

small samples. Rather, they are only asymptotically consistent and efficient. See J. KMENTA,
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fifty observations be used; therefore, the United States series is a border-

line case and estimated models may differ greatly from the underlying

process. Any results for the United States series should be treated with

caution.

Table 2 contains the results for the alternative model. After exam-

ining the autocorrelation functions for the imprisonment rate series and

its first difference (of order one), I decided that the first difference was

needed to produce a stationary series. I also examined the autocorrela-

tion function for the second-differenced series (each of order one) be-
cause second-differencing is often required when the original series has

changes in slope, 19 but the additional transformation did not seem nec-

essary. I then estimated a first-order autoregressive model with a first

difference, a specification consistent with the autocorrelation function

for the first-differenced series. The model passes all diagnostics, indicat-
ing a reasonable fit to the data. To test for a deterministic linear trend

in the data (neither the plot nor the autocorrelation functions showed

signs of nonlinear trends), I added a trend parameter to the model.20

The parameter was not significant and was dropped. The result is a

different univariate model than Blumstein's, with different substantive

conclusions for his hypothesis. The two models are equally simple, but

the alternative model contains a first difference, implying that the series

was not stationary for the forty-five year period. Again, it must be em-

phasized that the sample size is small and the estimated model may be

erroneous: if a different time interval was observed, the result could be a

series with a visibly stable mean. If these results have not refuted Blum-

stein's contention that United States imprisonment rates were stable,

they at least provide a viable alternative model, consistent with the data

and inconsistent with the stability hypothesis. The residual mean

square error for the alternative model is slightly higher than for Blum-

stein's, but the transformed series is stationary and the Q-statistic for the

autocorrelation function is slightly better. In short, the two models are

at least equally plausible.2
1

ELEMENTS OF ECONOMETRICS 174-82 (1971) for a discussion of maximum likelihood estima-
tors and their properties.

19 G. Box & G. JENKINS, supra note 6, at 91.

20 A trend parameter, estimated for a first-differenced series, is the constant increment in

the series over time-it is a slope parameter.
21 One characteristic of a stationary series is that differencing it will not produce a nonsta-

tionary series. G. Box & G. JENKINS, supra note 6, at 29-30. It could therefore be argued that

the first-differenced United States series has to be stationary if the original series is stationary.

There are two responses to this argument. First, the autocorrelation function for the original

series shows the common pattern for an integrated process-large positive autocorrelations

that do not decrease quickly to zero at longer lags. The first-differenced series shows the

common pattern for a stationary, first-order autoregressive process-a large correlation at a
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Thus far, a different model has been posed for only one of the fifty

series Blumstein's conclusions are based on. The weight of evidence is

still with Blumstein; however, there are enough questions about the rep-

licated analysis to raise similar questions about the results of his other

analyses.22 To summarize, Blumstein fails to consider the possibility of

nonstationarity that is not due to a linear trend. In fact, all of the series
he presents graphically show signs of nonstationarity in various forms,
often not due to a linear trend. Furthermore, the time series for the total

United States and the individual states are short and models for them

should be treated cautiously. Finally, it is hard to believe that, if the

United States series is not stationary around a single mean level, partic-

ular states will necessarily be stationary. Blumstein's evidence for the
stability hypothesis is less compelling than it appears because at least

one alternative model for the United States series, containing a first
difference, cannot be ruled out.

III. ADMISSION RATES: AN ALTERNATIVE MEASURE OF STABILITY?

Although the evidence for the stability hypothesis is questionable, it

remains an intriguing idea. Imprisonment rates, however, may not be

an adequate index of punishment in the United States as a whole or in

individual states. For one thing, imprisonment rates confound the

length of prison sentences, a measure of severity, with the actual number

of individuals being punished. Also mixed in are policy variables such
as parole, probation, indeterminate sentencing, and other alternative in-

terventions. On these grounds, it seems that actual prison admissions
might be a better measure of punishment. Also, a careful reading of

Durkheim supports this conclusion.

For Durkheim 2 3 crime is a normal feature of all societies. The col-
lective sentiments that, according to Durkheim, make a society are dis-

tributed in varying degrees throughout it. Some individuals will hold

these sentiments less strongly than others and be more likely to deviate

from them (this is similar to Blumstein's underlying behavior distribu-
tion). When these individual deviations offend sentiments strongly held

by other members, there is likely to be strong reaction against them,

resulting in punishment of some type. The qualification is that crimes

lag of one, and quickly decreasing autocorrelations at longer lags. Second, even if the original

U. S. series is stationary, or almost stationary, no restrictions are necessarily implied on alter-

native models. An equally parsimonious and adequate model might be estimated for the

differenced series as for the original series.

22 Se also notes 13 & 15 supra.

23 E. DURKHEIM, THE RULES OF SOCIOLOGICAL METHOD 66 (S. Solovay & J. Mueller

trans. 1930).
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can only be defined when there is reaction against them.24 The reaction

is the one universal characteristic of crime.

As such, crime is "useful" to society for the response it evokes. 25

Punishment of offenders serves to clarify and reinforce the collective sen-

timents of society in non-offenders. The aim is not merely to punish the

offender, but to instruct others in the meaning of society. This is a form

of general deterrence, where non-criminals are warned from becoming
criminals. Durkheim26 notes that in advanced societies, the organiza-

tion of penal law, with predetermined sentences for specific crimes, does

not by itself constitute punishment. The only organization that consti-

tutes "punishment proper" is the tribunal, acting as an intermediary

between society and the offender. "Punishment consists, then, essen-
tially in a passionate reaction of graduated intensity that society exer-

cises through the medium of a body acting upon those of its members

who have violated certain rules of conduct. '27 It is the act of punish-

ment, such as the jury trial or the sentencing to prison, that is important for

society, and not just the existence of criminal law, criminal justice sys-

tems, or prison populations.

With these things in mind, I examined the United States prison

admission rates (the number of individuals admitted to federal and state

institutions per 100,000 in the total population) for the period 1926-70.28

The data include both new admissions and individuals returned by the

courts for new violations (e.g., parole violators). Re-commitment is an

act of punishment (often involving a court hearing); consequently, indi-

viduals returned to prison have been included in the admissions data.29

Figure 3 is the graph of this time series. Although it is more ambiguous,

the series also shows signs of changes in mean level. There seems to be

no trend in the early years, unlike the imprisonment rate series, but

there is a slight trend in the period 1946-61. The autocorrelation func-

tion for the undifferenced series is striking because it is nearly identical

to that for the undifferenced imprisonment rate series. In other words,

the patterns of autocorrelations at various lags for the two observed

series are about the same in terms of signs and magnitudes. Since the

imprisonment rate series is apparently nonstationary, it is likely that the

admission rate series is nonstationary as well. The first-differenced series

(of order one), however, is stationary. In fact, after differencing,

24 E. DURKHEIM, THE DIvIsION OF LABOR IN SOCIETY 70 (G. Simpson trans. 1933).

25 Durkheim seems to stop short of describing crime as "functional" for society.

26 E. DJRKHEIM, supra note 24, at 94.

27 Id. at 96.

28 1 U.S. DEPsT OF COMMERCE, supra note 5, at 420.

29 The same analysis was done using only new United States admissions, and the results

were the same. The series is a random process after first differencing.
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the admission rate series is a normal random process, meaning that there

are no systematic patterns of statistically significant autocorrelations to

model. A simple model with a first difference and a trend parameter

was estimated, but the trend parameter was not significant. The

univariate model for the United States admission rate series is a first

difference of order one. Again, there is no apparent support for the sta-

bility of punishment hypothesis-there was no stable level of prison ad-

missions in the United States for the period 1926-70.

IV. IMPRISONMENT AND ADMISSIONS IN CALIFORNIA

Thus far, the models presented have been for very short series

(forty-five observations) that are risky for Box-Jenkins techniques. They

are not conclusive evidence for or against the stability hypothesis. As an

additional test of Blumstein's model, apart from the tests with Blum-

stein's data, I analyzed California's imprisonment and admission rates

for the period 1853-1970.3o The California data actually provide an op-

portunity to do several things. First, there are 118 observations in each

series and Box-Jenkins techniques can be used with greater confidence

to test the stability hypothesis. Second, there is the chance to test Blum-

stein's 3' contention that a fundamental change in United States society

after World War I altered the level of punishment. In response to

Cahalan,32 Blumstein asserts that the positive trends she reports for

United States imprisonment rates over a longer time period are really

due to an upward shift in the 1920s from one stable level to another.33

30 The California data come from a larger study of California prison admissions for the

period 1851-1970, funded by the National Institute of Justice (Grant No. 78-NI-AX-0093).

Sheldon L. Messinger and Richard A. Berk are principal investigators of that project. The

first two years of the data set, 1851-52, are dropped here because they precede the construc-

tion of San Quentin prison and are outliers relative to the following years. Imprisonment

rates are for prisoners on hand, on one day of the year: on December 31 until 1867, and on

June 30 thereafter (the end of the California fiscal year). Admission rates include new felony

admissions, court commitments (e.g., parole violators, or civilly committed drug addicts), and

a number of lesser categories (e.g., escapees returned). The admissions data therefore repre-

sent the widest possible punishment "net," when punishment is defined in terms of prison

admissions. An analysis was done using only new felony admissions, and the conclusions

remained the same-there was no evidence for the stability hypothesis, nor for a shift during

the 1920s. Also, an analysis was done using total prison and parole population. The results

were predictable--there was again no evidence for the stability hypothesis, nor for a shift

during the 1920s. From these various analyses, of both the U. S. and California series, it is

clear that the results are robust with respect to the definition of punishment. In each case, no

evidence for the stability hypothesis emerges.

31 Blumstein & Moitra, rufpra note 15.

32 Cahalan, supra note 14.

33 See note 15 supra for comments on the Cahalan-Blumstein exchange.
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According to Blumstein, increased mobility and urbanization in the

1920s led to a loosening of community controls on deviance and in-

creased reliance on formal controls represented by the criminal justice

system. The change was apparently not a movement in the underlying

behavior distribution, but a change in the underlying homeostatic pro-
cess and perhaps a change to another societal type. Imprisonment rates

therefore increased during that period, but became stable at a new,

higher level. Using an intervention model (directly analogous to the

dummy variable regression model Blumstein estimates for Cahalan's

data), a test for such a shift can be made.3 4 Blumstein's data for.the

United States and the individual states begin in 1926 and he is unable to

test for that shift.

Figure 4 shows California's imprisonment rates from 1853 to 1970.

Recalling the U. S. series, this series also exhibits signs of stochastic

changes in level, with perhaps several levels and a downward trend in
the middle. The autocorrelation functions for the original and first-dif-

ferenced series (of order one) showed that a first difference was necessary

for a stationary series. Table 3 contains the results for the final

univariate model, which is a first difference and a first-order moving

average process. A model with a trend parameter was also estimated,
but the parameter was not significant and was dropped. Consistent

with the United States data, the first difference is evidence that Califor-

nia imprisonment rates were not constant over the 118 year period.

To test for a shift in level during the 1920s, I set up an intervention

TABLE 3

UNIVARIATE MODEL FOR CALIFORNIA IMPRISONMENT

RATES 1853-1970

(1 - t= (1 - 0 1B)at

Parameter Coefficient t-Value

01 (MA parameter)* -. 42 -5.20

N = 118 Residual Mean Square Error = 67.93
Q-Statistic = 19.5 (for 36 lags, p > .05)

*A first-order Moving Average parameter

34 Intervention models, in their simplest form with shifts from one level to another, are
nothing more than regression models with parameters for serial correlation in the residuals.
Intervention models are superior to generalized least squares because both autoregressive and

moving average processes can be estimated with maximum likelihood techniques. GLS is in
practice a weighted least squares procedure that is usually limited to simple autoregressive

models. For an excellent discussion of intervention models, see Box & Tiao, Intervention Anay-
sir with App lications to Economic and Environmental Problens, 70 J. AM. STATISTICAL A. 70 (1975).
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model with a dummy variable for the change in level. Intervention

models are simply regression models with autoregressive and/or moving

average parameters to model serial correlation in the residuals. How-

ever, using a dummy variable to model a shift in level poses an impor-

tant theoretical issue: a dummy variable tests for a deterministic change
in level from one mean to another. In terms of the regression model, the

residuals are the realization of a normal random process, the dummy

variable is a shift in mean for that process at some point in time, and the

observed series (the dependent variable) is an integrated process result-

ing from the stationary residual series and the shift in mean level. Fig-

ure 2(c) is an example of a series that could perhaps be modeled as an

integrated series with a single shift in mean level (provided there were

theoretical reasons for believing the change was deterministic). Previ-

ously, I have been modeling the various univariate time series as though

changes in level were stochastic, but Blumstein's argument is that a shift
was caused by a second variable (Le., a change in United States society).

In that case, there should be no need to difference the observed series

because the dummy variable will model that change. However, if there

were only stochastic changes in mean level, or if additional shifts oc-

curred earlier or later, the observed series will still have to be differenced
and a simple change in level is no longer being modeled. If differencing

is not required, yet another test is whether the dummy variable has a

positive and significant effect. To summarize, if a change in level oc-

curred during the 1920s, there should be no need to difference the Cali-

fornia series, and the coefficient for the dummy variable should be

positive and statistically significant.

TABLE 4

INTERVENTION MODEL FOR CALIFORNIA IMPRISONMENT

RATES 1853-1970

(1 - B1)yt = wo(1 - B1)Xt + (1 - OlB1)at

Parameter Coefficient t-Value

w. (shift parameter) .05 .01
01 (MA parameter)* -. 42 -5.15

N = 118 Residual Mean Square Error = 68.52
Q-Statistic = 19.5 (for 36 lags, p > .05)
*A first-order Moving Average parameter

I initially set up the intervention model with no differences and no

parameters for possible serial correlation in the residuals, only the

dummy variable and the mean. The autocorrelation function for that
model showed the residuals to be nonstationary despite the dummy vari-
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able for a shift, and I differenced both the independent and dependent

variables.35 Table 4 contains the results for the final model. The coeffi-

cient for the dummy variable is not significant; otherwise, the model is
identical to the model estimated for the univariate series. The dummy

variable adds nothing to the model, either in terms of explained variance

or reparameterization. In case the year in which the shift had occurred
was misspecified, I examined the cross correlations between the residuals

of the model and the dummy variable, before and after the dependent
variable was differenced. Blumstein is not clear on the specific year of

the change (he guesses at 1925). In place of exact theory, I looked for

large positive cross correlations between the dummy variable and the

residuals at other lags, and settled in 1925 as the most likely year for the

change. I also looked for patterns in the cross correlations showing dy-
namic changes from level to level, but saw none.36 The conclusion is

that there was no stable level for California's imprisonment rates, nor

was there an increase in level during the 1920s.

I performed the same analyses on California's admission rate series

for the 118 year time period. Figure 5 shows the series. These analyses
were more complicated than the previous because the admission rate

series is nonhomogeneous. Looking at Figure 5, one can see that fluctua-

tions in the series are greater earlier than later. I took the natural loga-

rithm of the series, which resulted in a new series with a constant

variance.37 The logged series is in terms of percent changes from year to
year, but the change in units has no effect on Blumstein's stability hy-

pothesis, nor on his assertion of a shift during the 1920s. As discussed
earlier, the mean is at issue in Blumstein's model. The log transforma-

tion will change the units of the observed series, but the notion of a

stable mean, or several means still applies whether the data are in origi-

nal units or in terms of percent changes.

35 A dummy variable representing a shift from one level to another, when differenced,

becomes a single value of one in a series of zeros. If the dependent variable is differenced, the

dummy variable may or may not be differenced depending on the type of shift in the original

series that is being modeled. I examined cross-correlations between the residuals of the inter-

vention model and the differenced and undifferenced dummy variable, but in neither case

was there a hint of Blumstein's shift.
36 Intervention models have the added advantage over dummy variable regression models

(OLS and GLS) of conveniently modeling dynamic effects in the transition from one level to

another. A parameter can be included in the model to represent a gradual shift to a new level

(with increments over several time periods). If the parameter is positive, there was a gradual

shift; but if the parameter is negative, there was an oscillation with both increases and de-

creases until the new level was reached. See Box & Tiao, sufra note 32.
37 C. GRANGER & P. NEWBOLD, supra note 8, at 304.

1791



1792 DAVID RA UMA [Vol. 72

,0

,....

000

z

to co

C4.

CC

CO.

0 0
C... -

0 C0> 0 0> 0 0



COMMENTS ON BL UMSTEIN'S HYPOTHESIS

TABLE 5

UNIVARIATE MODEL FOR CALIFORNIA PRISON

ADMISSION RATES 1853-1970

(1 - B1)Inyt = (1 - 01Bl)Inat

Parameter Coefficient Value

01 (MA parameter)* .18 2.03

N = 118 Residual Mean Square Error = .024
Q-Statistic = 28.8 (for 36 lags, p > .05)
*A first-order Moving Average parameter

The autocorrelation function for the logged series showed that a

first difference (of order one) was necessary in order to produce a statio-

nary series. Table 5 contains the results for the final model, which is a

first difference and a first-order moving average process. I tried adding

a trend paramater because there is a slight downward trend in the series,

but it was not significant for a one-tailed test at the .05 level. The

univariate model for the logged California admission rate series contains

a first difference, which, again, is evidence against the stability of pun-

ishment hypothesis.

Although the slight downward trend in the series implies that there

was no upward shift in the 1920s from one level to another, I con-

structed an intervention model as a formal test. The results for the final

model are in Table 6. The story is the same as for the California impris-

onment rate series: Blumstein's model did not work-the residuals were

nonstationary and the dependent variable had to be differenced. The

dummy variable is not significant and the rest of the model is identical

to the univariate model. I examined the cross correlations and put the

TABLE 6

INTERVENTION MODEL FOR CALIFORNIA PRISON

ADMISSION RATES 1853-1970

(1 - Bl)lnyt = wo(1 - B1)Xt + (1 - 01B1)lnat

Parameter Coefficient t-Value

w (shift parameter) .18 1.19
01 (MA parameter)* .19 2.04

N = 118 Residual Mean Square Error = .024
Q-Statistic = 27.7 (for 36 lags, p > .05)

*A first-order Moving Average parameter

1981] 1793



9 DAVID RA UMA

shift at 1922. There were no hints of dynamic changes. Again, there is

no evidence in California for Blumstein's hypothesis.

For the purpose of comparison, it should be noted that Blumstein

modeled the California imprisonment rate series from 1926 to 1974 as a

stationary series. I replicated that analysis for the period 1926 to 1970

and found the series to be non stationary. In fact, the model for that

series is identical to the model for the 118 year series: a first difference

and a first-order moving average process. After extensive analysis of the

California data, I can find no evidence that imprisonment rates, nor

admission rates, have remained stable over long periods of time, but that

is not the model Blumstein proposes. That argument also raises the is-

sue of what stability means and how it can be measured. These issues

will be considered later.

V. BLUMSTEIN'S HOMEOSTATIC MODEL

In addition to the objections concerning his empirical work, several

objections can be made to Blumstein's homeostatic model of punish-

ment. Perhaps the most serious error he makes is in formulating the

policy implications of the model. I will briefly present these objections

in turn.

A significant problem with Blumstein's model, and his whole ap-

proach, is the role of aggregation. The process described-the stability

of punishment-takes place on a system-wide level, and Blumstein

makes little attempt to understand its behavioral implications for lower

levels in the system. How the various levels of organization work to-

gether to produce a homeostatic system is never clearly explained. At

one point, Blumstein states that "[i]f prison populations get too large,

police can choose not to arrest, prosecutors can choose not to press

charges, judges can choose not to imprison, or parole boards can choose

to deny [sic] requests."'38 This is the extent to which he describes the

lower levels of the system. Police, prosecutors, judges, and parole boards

certainly do have the discretionary power attributed to them, but the

questions remain as to why any of them should care if the prisons are too

full, how they would find out, what pressures might be exerted on them

to reduce prison populations, and why officials in one state would care

what happens in another state. That it all somehow "works out" is not a

satisfactory answer to a problem that has long plagued macro sociolo-

gists and macro economists. Other, similar questions could be raised,

but Blumstein never addresses these important social science issues. In-

38 Blumstein & Moitra, supra note 1, at 377. 1 assume that this is a typographical error in

the sentence; otherwise, it is inconsistent with the point Blumstein is making.
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stead of providing a behavioral explanation of the mechanism maintain-

ing the stability of punishment, he only provides a description of the
outcome: stable imprisonment rates.

Another objection, discussed earlier in another context, is to Blum-

stein's use of imprisonment rates to test the stability hypothesis. In one

article, Blumstein 39 poses a three-population model as a description of

how the homeostatic punishment process works on a societal level.

However, his division of society into prison, criminal, and law-abiding

populations does not imply the stability hypothesis at all. Rather,

length of prison sentences is again confounded with the actual number

of punishments meted out at any given moment. As such, Blumstein's

model is a control model, not a punishment model. If imprisonment

rates did remain stable over time, the implication would be that a cer-

tain percentage of the population always remained under control in

prison, not that a certain percentage was punished. This is a very differ-

ent result than intended, and may be an inconsistency in Blumstein's

argument.

A third objection is to his estimation of flow rates for the three-

population model, simulation of changes in the model, and formulation

of policy implications.4 The system Blumstein proposes, with popula-

tion flows between the prison, criminal, and law-abiding groups, is un-

deridentified. The intent is to show how changes in these populations,
particularly the exchanges between the criminal and law-abiding, work

to maintain a relatively stable prison population. The system is charac-

terized by seven values, only three of which are known for the data set

he uses as an example (Canadian imprisonment rates from 1925 to

1960). Of the seven parameters in the model, only one is known for that

data set. The other six are estimated using "guesstimates" of the four

unknown system values. For example, one guess is that, over this period,

33 percent of released prisoners returned immediately to the criminal

population. Another unknown value is the actual size of the criminal

population. Blumstein calculates the other model parameters using sev-

eral estimates of that value, simulates changes in the system based on

changes in the individual parameters, all others held constant, and

draws conclusions from this simulation analysis. To assert that the con-

clusions have policy implications is inappropriate. Blumstein estimates

39 Blumstein, Cohen & Nagin, sufira note I. Blumstein poses two models, but concentrates

on this one. Therefore, I have chosen it to discuss rather than the other.

40 Although Blumstein's estimation of flow rates is based on the second-order autoregres-

sive model he consistently finds for imprisonment rates in various countries, the following

criticisms apply regardless of the time series model estimated. The aim in this section is to

discuss Blumstein's general approach; his particular time series analyses have already been

argued.

1981] 1795



DAVID RA UMA

model parameters only for the Canadian series, yet he broadly asserts

that the activities of the criminal justice system "alone have very little
impact on the size of the criminal population."' 4 1 In contrast, econo-

mists have also used aggregate data and many more explanatory vari-

ables (and often equally fuzzy assumptions) to estimate the deterrent
effects of punishment in the United States. In a review of these studies,

Brier and Fienberg4 2 "find no reliable empirical support in the existing

econometrics literature either for or against the deterrence hypothesis."

Using weak data and a tenuous model, Blumstein makes statements that

are thinly supported by any of the empirical or simulation analyses he

provides.

VI. CONCLUSIONS

After re-analyzing one of Blumstein's time series, analyzing several
others, and trying alternative measures of punishment, I find no support

for the stability of punishment hypothesis. In the case of California,

when tests are made for possible shifts in level, no support for the hy-

pothesis emerges. Blumstein has other time series that he analyzes, and

the sheer mass of evidence may be on his side. However, competing
explanations cannot be ruled out. Blumstein tests only for linear trends

in the data, and ignores other sources of instability such as changes in

mean level.

On the other hand, univariate models of imprisonment and admis-

sion rate time series are not adequate tests for the presence of homestatic
tendencies. For example, there may be tremendous oscillation in these

series over time only because of shifts in the underlying behavior distri-

bution and complementary shifts in the use of punishment. The rates

are an end result of the adjustment process, and are not necessarily sta-

ble over time. Despite apparent instability in the observed rates, the
underlying punishment process may tend toward stability and observed

rates may not explicitly show it. Furthermore, representing a time series

with a univariate model assumes that the current values of the series are

determined solely by its past values and both current and past random

shocks. In other words, the univariate series is primarily self-driven, and
only random events are allowed to affect it otherwise.

Blumstein's homeostatic model suggests that more is going on than

can be represented by a univariate model. If there are frequent or dra-

matic shifts in the underlying behavior distribution resulting in a non-

stationary imprisonment rate series, there may still be evidence for a

41 Blumstein, Cohen & Nagin, supra note 1, at 329.

42 Brier & Fienberg, Recent Econometric Modeling of Crime and Punishment:. Supportfor the Deter-

rence Hypothesis?, 4 EVALUATION REV. 147, 188 (1980).
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tendency toward stable levels of punishment. The supposed shift in

United States society during the 1920s is an example, which was tested

for as a possible source of nonstationarity in the California data. In

addition, Blumstein's hypothesis assumes stable historical periods, but it

is unclear how stable periods are defined. Figure 1 shows adjacent peaks

and valleys in the United States imprisonment rate series corresponding

to such destablizing periods as the Great Depression and World War II.

The longer California series span the entire history of the state to 1970,

from the Gold Rush years through the close of the frontier in the 1890s,

the great dust bowl migrations of the 1930s, and the tremendous post-

World War II population growth. Can this be considered a stable his-

torical period? If the underlying behavior distribution in society is fre-

quently or constantly changing, can society ever be considered stable? If

the idea of a homeostatic process is to be empirically useful, additional

thought must be given to the concept of stability, how it can be mea-

sured, and how it can be tested. Of particular importance are general

questions such as the following. Does a homeostatic process necessarily

imply an observed stability (such as a stationary series), or only a ten-

dency toward stability which may seldom be realized? Under what con-

ditions do tendencies toward stability emerge, and how can these

tendencies be measured? Finally, what other factors affect the use of

punishment besides shifts in individual behavior, and do these factors

imply stability or instability?

The questions of what constitutes stability and how it can be mea-

sured are involved and of interest if one wants to explicitly test for a
homeostatic punishment process. Of more general interest, whether or

not one posits homeostatic processes, are what other factors may affect

the use of punishment over time. There are a number of other possible

explanations which do not depend on the presence or absence of homeo-

static processes. Several of these explanations will be mentioned here, in
passing, to give a sense of the alternatives and to demonstrate the limita-

tions of univariate time series models for understanding complex social

phenomena.
43

One promising perspective, which is hardly new, is represented by

the work of Rusche and Kirchheimer.44 Their theory of punishment

contains two key variables: labor supply and economic conditions.

When labor is in short supply, there will be less tendency to use punish-

43 For a fuller treatment, as well as direct tests for homeostatic tendencies, see Berk,

Rauma, Messinger & Cooley, A Test of the Stability of Pknishment Hypothesis: The Case of Calior-

nia, 1851-1970, 46 AM. Soc. REV. (forthcoming).

44 G. RUSOHE & 0. KIRCHHEIMER, PUNISHMENT AND SOCIAL STRUCTURE (1939);

Rusche, Labor Market andPenalSanctiotw Thoughts on the Sociologv of CriminalJstice, 10 CRIME &

SOC. JUSTICE 2 (1978).
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ments that are wasteful of labor (e.g., mutilation in earlier historical pe-

riods, or the death penalty). Unless imprisonment can be economically

profitable, fines will be more common so as not to deprive the economic

system of workers. When economic conditions are hard, such as periods

of depression, harsher penalties will be more common. In support of

their theory, Rusche and Kirchheimer present a history of punishment

since the Middle Ages. Related historical accounts, generally support-

ing their position, can be found in Foucault, 45 Perry,46 and Ruggiero.4 7

It is also possible that changes in penal philosophy and/or changes

in legal systems will affect the use of punishment. Ignatieff48 details the

history of punishment during England's Industrial Revolution and how

changes in penal policies affected the construction, use, and operation of

prisons. Currie,49 for example, contrasts the punishment of witches in

England and in continental Europe during the Renaissance, and finds

tremendous differences in the use of punishment resulting from funda-

mental differences in their respective legal systems. For even more

grounded accounts, actual prison records can be read and a great deal

learned about penal philosophy, the daily operations of prisons, and

how prison officials view their roles as society's "punishers." 50

Whether or not a homeostatic process is posited, multivariate mod-

els for the use of punishment should be considered and tested. The

univariate and intervention models tested here are often termed "mod-

els of ignorance." When theory is simple or nonexistent, such models

frequently suffice, but the homeostatic process Blumstein proposes is

more complex than the empirical tests he makes. Blumstein only tests

for a vz'sibl' stable outcome of the process, and, for example, ignores

shocks to the system such as wars, depressions, or other social upheavals.

Such shocks may be compensated for in a homeostatic manner, but the

homeostatic punishment process cannot be explicitly represented by

univariate models and therefore no direct tests for it can be made. Even

though no evidence has been found here for Blumstein's stability hy-

pothesis, much more work remains to be done before a good case, for or

against, can be made.

45 M. FOUCAULT, DISCIPLINE AND PUNISH: THE BIRTH OF THE PRISON (1980).

46 M. PERRY, CRIME AND SOCIETY IN EARLY MODERN SEVILLE (1980).

47 G. RUGGIERO, VIOLENCE IN EARLY RENAISSANCE VENICE (1980).
48 M. IGNATIEFF, A JUST MEASURE OF PAIN (1979).

49 Currie, Cn'mes Without Criminals: Witchcraft and Its Control in Renairsance Europe, 3 LAw &

Soc. REV. 7 (1968).
50 Annual reports of the California State Board of Prison Directors, dating back to the

1850s, are fascinating reading. Not only are details provided about the actual operations of

prisons, but some idea of evolving penal philosophies and actual policies is evident over a long

time span. Occasionally, there are even attempts by the directors and the wardens to theorize

about punishment, social control, and their own role in society.
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