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CRIME, SANCTIONS AND SCIENTIFIC EXPLANATION

THOMAS ORSAGH*

There is no dearth of theoretical and empirical
literature dealing with the relation between crime
and sanctions. In the last decade, interest in
the subject seems to have quickened, no doubt
prompted to some extent by a well advertised and
substantial rise in rates of reported crime. Recent
legalistic developments,1 because of their presumed
influence on crime rates, have also heightened our
interest in the subject. Public pressure to "do
something" about crime and the political responses
to that pressure have provided additional stimuli.
Yet despite a good deal of scholarly attention and
society's compelling need to know what relation,
if any, exists between crime and sanctions, we
cannot honestly say that we know much about the
subject.

To quantify the relation between the two varia-
bles we need data, and it is undoubtedly true that
the quality of the data available for empirical
investigation is unusually poor.2 Criminal statistics
impose constraints on the questions that can be
asked, handicap the research effort and interject
an annoying degree of imprecision in the statistical
results. Yet, these deficiencies are troublesome
nuisances, not roadblocks, in the path of scientific
inquiry. The data are not so bad that the truth
cannot be wrung out of them.' Our poor scholarly
performance has another explanation. There is
good reason to suspect that our problem in under-
standing the crime-sanctions relation lies in the
nature of the relation itself. The purpose of this
study is to demonstrate that past empirical analysis

* Associate Professor of Economics, University of
North Carolina at Chapel Hill.

'The right to counsel, the de facto elimination of
capital punishment and the lengthening time interval
between the criminal act and the initiation of punish-
ment come immediately to mind.

2 For the crime variable the point is well documented.
See, e.g., Biderman, Social Indicators and Goals, in
SOCIAL INDICATORS 68 (A. Bauer ed. 1966); 2 PREsi-
DENT'S COMUMSSION ON FEDERAL STATISTICS, FEDERAL
STATISTICS (1971).

3 Criminal statistics are probably no worse than the
data being used, often with little critical comment, in
certain other specialized areas of social science re-
search. Consider, for example, the quality of the socio-
logical, demographic and economic data utilized in
studies of underdeveloped regions.

of the Crime-Sanctions (C-S) relation has been
incorrect.

It is generally accepted that the relation of
crime to sanctions is likely to be quite complex.
Current theory and empirical research suggest
that the two variables probably interact with each
other and with any number of other variables. But
knowing this is one thing, coping with it something
else. How does one evaluate a highly complex
relation? Instinct says to simplify and to adopt a
procedure which is at once persuasively obvious
and disarmingly direct and easy to apply: analyze
one relation at a time. In this case one might try
to determine the effect of sanctions on crime as one
independent research effort, and then the effect
of crime rates on sanctions as another.

The decision to consider one relation at a time
may not be improper per se, but the consequences
of seeking a quantitative measure of the relation
through conventional statistical procedures can be
improper. Consider the first relation. In order to
determine the effect of sanctions on crime, a proba-
ble formulation for the relation would be:

CRIME = f(SANCTIONS, X),

wherein X represents a collection of control varia-
bles. Specifically, we might evaluate the effect of
sanctions on crime by hypothesizing the existence
of a linear relation of the form

(2) CRIME = f ( 0 + 01 SANCTIONS

+ 62 AGE + 03 POVERTY +.u),

wherein A represents the conventional error term.
We would recognize, of course, that (2) is a sim-
plification of (1) and hence a gross simplification
of our basic conception of the crime-sanctions
relation, and that Age and Poverty are but two
of many variables subsumed in X which, a priori,
deserve consideration. If there is reason to believe
that the other X variable produces only small and
largely self-canceling effects within the universe
from which our observations were drawn, we might
be inclined to believe that the derived coefficients
are essentially correct. Hence, if bi, our regression
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estimate of i, is sufficiently large relative to its
standard error, we would be willing to conclude
that variations in Crime are associated with varia-
tions in Sanctions; or, in other words, a change in
Sanctions, holding Age, Poverty and other varia-
bles constant, induces a change in Crime.

The foregoing is a fair description of the best
practice in the field at the present time. It is not
always the correct practice. There are a class of
relations for which the above procedure is improper
even though the usual regression equation condi-
tions are met.4 If the true state of the world is not
characterized by a single relation between two
variables but by a system of relations, the coeffi-
cients we estimate within a single regression equa-
tion such as (2) can be consistently incorrect not
only in magnitude but even as to the sign of the
coefficient. A mathematical proof of the proposition
that single equation estimates are biased in such
instances is easily developed,5 but for our purposes
is unnecessary. The flaw in the single equation
approach to the C-S relation can be demonstrated
rather easily.

Suppose the true C-S relation has the form
given by Model 3:

(3a) CRIME = Po + i SANCTIONS

+ BX +it

(3b) SANCTIONS = a0 + a, CRIME

+ AZ + v,

wherein X and Z represent appropriate collections
of independent variables with their respective sets
of coefficients, B and A, and where /z and P are
the conventional error terms. Suppose, in the
interests of simplification, we proceed with a
regression analysis as we did with (2). What we
might find is a configuration of observations in the
C-S plane such as is illustrated by the five observa-
tion points in Figure 1. The Poverty and Age
dimensions are not shown in the diagram. One can
regard the observations in Figure I as having been
"corrected" for Age and Poverty or as having
come from a universe in which Age and Poverty
are invariant. The estimated (partial) linear
regression between Crime and Sanctions is also
shown.

4 The disturbance term must be a random variable
with zero expectation, constant variance and no inner
correlation, no exact linear relation must exist between
any two or more independent variables, etc.

6 See the Technical Appendix infra.

CRIME

SANCTIONS

FiGU 1.

Assuming that b1 is large relative to its standard
error, what may we infer from Figure 1? If bi is
statistically significant by our criterion, we must
conclude fl > 0. However such a conclusion is
troubling, since present belief, provisional and
imperfect though it is, strongly suggests _' < 0.6
No doubt our impulse would be to try a more
refined model, such as introducing more of the X
variables or trying non-linear functions. Yet, no
matter what we do, if Model 3 is a correct descrip-
tion of the world, we are destined to obtain biased
estimates of #1 except by the purest of accidents.

To illustrate: Suppose, in fact, the conventional
hypothesis is true, viz. 61 < 0; that is, holding all
X variables constant, more severe sanctions de-
presses the crime rate. Suppose it is also true that,
holding all Z variables constant, an increase in
crime rates leads to a rise in sanctions. (For ex-
ample, society may react to a rising crime rate by
imposing increasingly severe penalties.) From an
empirical point of view, what would we observe?
If the world is nonstochastic and all X and Z
variables are constant, we would have the result
depicted in Figure 2a. The downward sloping line
shows Crime as a function of Sanctions, holding
X and all random variation constant. The Sanc-
tions function is similarly interpreted. The interac-
tion of the two functions provides a unique equilib-

61 refer to "average" situations, and readily concede
that aberrant cases may exist for which 6 < 0; as, for
example, the case of civil rights workers who com-
mitted a crime because legal sanctions would be im-
posed.

19731
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CRIME

rium solution: a crime rate of ci and a sanctions
level si. Under the conditions we have stipulated,
we would observe only one data point, (cl, Si).

Now suppose one and only one variable is per-
mitted to assume different values, X, in X. Figure
2b illustrates the configuration of functions and
data points that might arise. (X* is X with xi
omitted.) Empirical observation would reveal three
data points or observations, and since we disallow
random variation, these observations would pro-
duce an exact linear relation which we might
write as follows:

(4) CRIME= b0 + bl SANCTIONS, bi > 0.

But note: b1 is not an estimator of fll but of ai,
and indeed is exactly equal to ai! Thus, in this
simplified scheme, if the Sanctions function remains
constant while the Crime function varies, the
Sanctions function is estimated. Conversely, if the
Crime function is to be estimated, it must remain
constant, and the Sanctions function must vary.
Variation in the latter will trace out the pattern
of the former.

With these considerations in mind, let us return
to the main thread of the argument. Let Model 3
accurately describe the world. Let the research
worker see only Figure 1. (In a very real sense,
Model 3 is always essentially unknowable.) What
can this investigator make of Figure I? If he thinks
that there is a likelihood that Model 3 correctly
describes the world, he will recognize that the
configuration of points in Figure 1 does not neces-
sarily describe either a Crime or a Sanction func-
tion and that there are a number of possible inter-
pretations for Figure 1. To pick two examples:
(1) each observation may have arisen from varia-

SANCTIONS

(A&
FiGuRE 2.

tions in both the Crime and Sanctions functions
as shown in Figure 3a; and (2) there may have
been three upward shifts in the Sanctions func-
tion-with Sanctions being unresponsive to Crime,
incidentally-and a continuous outward shift in
the Crime function, as shown in Figure 3b. Thus,
with Figure 1 subject to so many possible inter-
pretations, single equation estimating procedures
are clearly inappropriate.

The conceptual problem which we have outlined
above is one familiar to economists. If Figure 2a
is relabeled so that price and quantity are measured
on the axes, and if the two functions are named
Demand and Supply, the attempt to estimate one
or both of the functions would confront us with
the economist's classic "identification" problem.
Becker,7 an economist, appears to be the first
person to give theoretical recognition to the fact
that C-S relation involves interrelated functions,
and therefore that one must seek a joint solution.
More recently, Hahn8 has applied conventional
price theory analysis to an interrelated system
involving "production set" and "social welfare"
functions. He also refers to "crime and anticrime
supply and demand functions." Since Becker is
not interested in empirically determining the
parameters of his model, the identification problem
never arises in his study. On the other hand, Hahn
makes explicit reference to the identification
problem, but is pessimistic about our ability to
devise a model whose parameters can be estimated
in the near future.

7 Becker, Crime and Punishment: An Economic Ap-
proach, 76 J. PoL. EcoN. 169 (1968).

8 Hahn, Crime and the Cost of Crime: An Economic
Approach, 9 J. REs. CRBS. & DELmQuENCy 12 (1972).

CRIME

SANCTIONS

(a)
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The relevant empirical literature deals with the
deterrent influence of sanctions on criminal activ-
ity. An important debate, initiated by Gibbs, and
(temporarily) ending with Logan,9 because of its
empirical orientation, provided a natural forum
for the discussion of the identification problem.
Only Logan has recognized the problem, but he
saw no way of surmounting it.0 Phillips and
Votey" treat the deterrence question, but without
explicit reference to the Gibbs-Logan controversy.
They do recognize the presence of the identification
problem and provide estimates for an automobile
theft, clearance rate relation, but the means by
which they devised simultaneous estimates is not
clear.'

2

Blumstein and Larsen"3 have dealt with models
involving an interrelationship between crime and
sanctions. Their models involve a chain of Markov-

0 See Gibbs, Crime, Punishment, and Deterrence, 48

SOUTHwEsT. Soc. Scr. QUART. 315 (1968); Gray &
Martin, Punishment and Deterrence: Another Analysis
of Gibb's Data, 50 Soc. Sci. Q. 189 (1969); Chiricos and
Waldo, Punishment and Crime: An Examination of
Some Empirical Evidence, 18 Soc. PROB. 200 (1970);
Logan, General Deterrent Effects of Imprisonment, 51
Soc. FoRcEs 64 (1972).

10 See 51 Soc. FoRcEs, supra note 9, at 68.
" Phillips & Votey, An Economic Analysis of the

Deterrent Effect of Law Enforcement on Criminal
Activity, 63 J. CRwm. L. C. & P.S. 330 (1972).

12 In their paper the specific technique used is not
specified. The- technique apparently is described in
Economic Crimes: Their Generation, Deterrence and
Control, 41, 23a, 27a (NATIONAL TECHINICAL INFomRA-
ToN SERviCE PB 194 984, 1969).

13 Blumstein & Larsen, Problems of Modeling and
Measuying Recidivism, 8 J. Rzs. CRim & DELINQUENCY
124 (1971); and Models of a Total Criminal Justice
System, 17 OPERATIONS REs. 199 (1969).

process probabilities, the parameters of which are
readily estimated. However, their models assume

away interactions of the kind posited in Figure 2a.
The models generate point estimate solutions.
They do not and cannot yield estimates of the
slope coefficients of the C-S relation.' 4 Thus, with
the single exception of the paper just published
by Phillips and Votey,15 the empirical literature

dealing with the C-S relation is fatally flawed.
In recent years econometricians have provided

us with several techniques for simultaneous least

squares regression equation estimation. Under
appropriate conditions these methods are capable

of providing unbiased estimates of both the Crime
and Sanctions functions. "Appropriate conditions"
is, however, an important caveat. In order that

the least squares estimates be trustworthy, the
following minimum conditions must be satisfied.' 6

(1) Model 3 must truly describe the world as it
is. For example, if the true Crime-Sanctions rela-
tion is characterized by a structure of the form

(4a) CRIME = f(SANCTIONS, X)

(4b) PROTECT = f(CRIME, Y)

(4c) SANCTIONS = f(PROTECT, Z),

wherein PROTECT refers to the volume or type

of protective service personnel, then Model 3 is
inappropriate.17

14 Id. at 207.
15 See note 11 supra.

For more detail, see the Technical Appendix infra.
17 Note, however, that simpler models need not be

inconsistent with their more complex counterparts.
With appropriate values for its coefficients, Model 4

CRIME

SANCTIONS
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SANCTIONS

(a.)
FMURE 3.
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(2) All important X and Z variables must
appear in Model 3's regressions.

(3) The usual statistical requirements for
ordinary single equation least squares estimation
must be met.

Obviously, the first condition asks the impossi-
ble.18 The validity of our results depends upon our
picking the correct model of the world. But which
model is correct? Since we cannot know the un-
knowable, how can we select the correct model
from an infinite number of possibilities? We make
an educated guess based upon the best information
available. If informed opinion indicates that Model
A best describes the world, then the desired param-
eters of the world ought to be estimated within
the framework of Model A.'To do otherwise is
methodologically incorrect and has a greater
likelihood of seriously misrepresenting the relation
we seek to evaluate.

At this general level one more comment is
relevant: I have chosen as my example-Model 3
and Figure 1-a particularly strong case, one in
which ordinary least squares produces a totally
incorrect estimate of the coefficients we wish to
estimate. It is my impression, based on a cursory
examination of the coefficients produced by ordi-
nary least squares as compared to those produced
by one of the simultaneous equation methods, that
the two sets of coefficients often produce broadly
similar results. But this is only a personal impres-
sion and, because of the difficult interpretive
questions involved, is not documented in this
paper.19 In any event, large divergences can arise
to the discredit of the single equation model.
Hence, ordinary least squares estimates must
always be suspect when there is a reasonable
likelihood that the world is characterized by a
complex relation among the variables which we
wish to explain.

The following is a concrete example of the use
of simultaneous equation estimation and a com-
parison of its results with that of ordinary least
squares. The relation between the rate of reported

reduces to Model 3 and Model 3 to a single equation
system.

18 In a way, so does the second. But practically
speaking it seems easier to single out potential variables
than to specify the correct structure for the variables.

19 Several attempts at strictly controlled comparisons
have been made, but they necessarily involve such
simplified models that their applicability to the more
complex, practical situations of applied research is
questionable. For a summary of such comparisons, see
C. CHmsT, EcoNo rnumc MODELS AND METHODS 474
(1966).

felony crime and the risk of legal punishment has
been selected for investigation. This relation is
given the following structure:

(5a) CRIME = to + ,6 RISK + 62 AGE

+ #3 POOR + J64 CITY + J

(5b) RISK = ao + al CRIME + a2 AGE

+ a POOR + a4 COP + V,

wherein the variables are defined as follows:
CRIME: Per capita reported felony crime for

the conventional seven major felonies
-the F.B.I.'s index crimes.

RISK: Number of persons convicted of a
felony relative to number of felonies
reported. (This is all reported felo-
nies.)

AGE: Persons between the ages of 15 and
30 relative to all persons.

POOR: An index of poverty. Combines the
proportion of all families who have
incomes of less than $3000-a con-
ventional index of poverty-with the
infant mortality rate. Both variables,
alone, are seriously flawed indicators
of poverty. Their combined value
may be'more representative of true
poverty levels.

COP: Number of police and sheriffs, per-
sonnel, sworn and civilian, per capita.

A brief justification for the variables included
in the model is probably desirable, though not
essential, since we are primarily concerned with
methodological considerations. Age, poverty and
risk have often been cited as affecting the crime
rate, hence their inclusion in (5a). 21 CITY serves
in a multiple capacity: it may be correlated with
the degree to which attitudes tend to be asocial,
if not anti-social, with the per capita number of
possibilities (targets) for property crime, and with
the expected payoff per crime. Inclusion of AGE in
(5b) derives from the well known hypotheses that
younger people are less likely to be arrested, to be
charged if arrested, to have the charge reduced to a
misdemeanor, or to be convicted if charged with a
felony. The converse applies to POOR. The raison
d'etre for COP is obvious. Finally, the inclusion of

20 The ages 15 to 30 represent a somewhat arbitrary
truncation of a continuous age-arrest function which
peaks in the early twenties. Alternative reasonable
ranges for the crime susceptible ages would not yield
significantly different values, however.

[Vol. 64
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TABLE 1
ORDINARY AND TWO-STAGE LEAST SQUARES EsTmxATEs OF THE C -SANCTIONS RELATION

(t Values in Parentheses)

Ordinary Least Squaresa
(1) CRIME = -. 34 RISK - .07 AGE + .20 POOR + .66 CITY R' = .54

(3.1) (.7) (1.8) (7.0)
(2) RISK = -. 38 CRIME - .09 AGE + .53 POOR + .09 COP R2 = .35

(2.7) (.8) (4.8) (.6)
Two Stage Least Squaresa

(3) CRIME = -2.30 RISK - .22 AGE + 1.22 POOR + .42 CITY R2 = .50
(2.3) (1.8) (2.3) (2.7)

(4) RISK = -. 06 CRIME - .09 AGE + .51 POOR - .11 COP R 2 = .26
(.2) (.8) (4.3) (.5)

R2 and t values are adjusted for degrees of freedom.
Source of the data:

CRIME, RISK, COP: CALIFORNIA DEPARTMENT Or JUSTICE, CRIME IN CALIFO.NIA 1960.
AGE, POOR, CITY: U.S. BUREAU OF THE CENSUS, CENSUS OF POPULATION 1960.

CRIME in (5b) derives from the hypothesis that,
with a given level of police activity (COP), the
risk of apprehension will diminish because police
services are spread more thinly.

No doubt Model 5 can be faulted on both its
structure and its choice of variables. The model
oversimplifies reality: the structure represented by
Model 4 would probably get closer to the truth.
Furthermore, it is not clear that the correct set of
variables has been chosen for inclusion in the
model, or that the variables have received their
correct formulation. (For example, should protec-
tive service personnel other than police be included
in COP?) Yet, despite these deficiencies, Model 5
will serve quite nicely. Our concern is with method-
ology, not with the substantive question of the
magnitude and expected sign of certain regression
coefficients. To ferret out the "correct" system of
equations and the "correct" set of variables would
require an extensive analysis of the literature and
a more thoughtful, more closely reasoned set of
hypotheses concerning the interrelatedness of the
variables suggested by the literature, and is not
the proper subject of this paper.

The sample data to evaluate Model 5 are drawn
from California for the year 1960. The 41 largest
counties as measured by the number of felonies
reported, were used and have been combined with
the remaining 17 counties into a single region. All
cities having a population in excess of 100,000
persons-there were 13 of these-have been with-
drawn from their respective counties and have been
treated as separate regions. Thus, the sample size
is 55. All variables were transformed into standard

normal deviates-zero mean and unit standard
deviation-to facilitate comparisons among coeffi-
cients. The coefficients of Model 4 were estimated
by ordinary least squares (OLS) and by two-stage
least squares (TSLS). For a variety of technical
reasons, TSLS seems to be preferred to the alterna-
tive multiple equation methods, and is today the
most commonly used of these methods.2

The statistical results are displayed in Table 1.
What can be said about the effect of Risk on
Crime? The first TSLS equation shows that a one
standard deviation increase in risk leads to a 2.3
standard deviation decrease in reported crime,
whereas the corresponding OLS equation shows a
decline of only 0.34 standard deviations. To revert
to the original, nontransformed Crime and Risk
units, this means that an increase in the ratio of
convictions to reported felony crimes from, say,
92 per 1000 (the mean ratio for the 55 regions) to
101 per 1000 (a ten percent increase) leads to an
estimated decline in per capita rates of reported
crime from 10.2 per 1000 (the mean crime rate) to
8.4 per 1000 based on TSLS (an 18 percent de-
crease) but a decline to only 9.9 per 1000 based on
OLS (a 2.6 percent decrease). Since both estimates
seem to be large relative to their own standard
errors, they seem to offer contradictory estimates
of fti.2 The difference in results for the Risk equa-

21 For some experimental results with alternative
estimating techniques see CHIST, supra note 19, at 474.

22 The TSLS t values in Table 1 are not exact. They
are only meant to suggest a general level of statistical
significance. The probability distribution for TSLS
coefficients is, indeed, known for two equation sys-
tems-but only two equation systemsI-but the

19731
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R=-F(c 1A, F, cp)

0 LS

(FL) (9 )
FIGuRE 4.

tion are even more marked. The TSLS equation
suggests that crime rates do not affect risk levels,
whereas the OLS equation suggests that a rise in
the crime rate induces a large (in a statistical
sense) decline in the risk of punishment. A sum-
mary view of the differences in the estimates of
ac and 61l can be had by recourse to a two dimen-
sional representation of the Crime-Risk relation.
In Figure 4a the TSLS equations are presented,
in Figure 4b the OLS equations. 2

It is hoped that these California data have made
the necessary point, that crime and risk must be
treated as belonging to an interdependent system
of relations. A priori we would have expected an
interaction between Crime and Risk. The data
support the hypothesis, since the treatment of
Crime and Risk as belonging to a system of rela-
tions yields estimates that depart markedly from
single equation estimates. In particular, OLS
undervalues the impact of Sanctions on Crime.
While we cannot be confident that our particular
TSLS estimates of al and /3l are the correct esti-
mates for California for 1960, we would do well to

computation of the correct standard errors is quite
tedious and not worth the effort involved, given an
unwillingness to accept the model as being an accurate
description of reality. For the probability distribution
of the TSLS coefficients, see Sawa, The Exact Sampling
Distribution of Ordinary Least Squares and Two-Stage
Least Squares Estimators, 64 J. AaER. STAT. Assoc. 923
(1969).

23The equations go through the origin since all
variables have been expressed as deviations from their
arithmetic means.

prefer these estimates over those derived by OLS.
Moreover, even though extrapolation from one
model and one body of data is necessarily haz-
ardous, the implication of the foregoing analysis
is that past empirical studies have tended to under-
estimate the negative influence of Sanctions on
Crime.24

A word about the other coefficients in Table 1.
The variables of Model 5 were not chosen to get
at the true Crime-Risk relation, but rather to
illustrate two final points. First, the coefficients
of the independent variables in a TSLS system are
often statistically indistinguishable from their
OLS counterparts, but not always: in the Risk
function note the very different values for the
POOR variable. The second point is more im-
portant. It concerns the statistically nonsignificant
value of the COP coefficient. It is possible, of
course, that the estimate, a 4, derives from a world
in which a 4 - 0 and hence accurately represents
the real world, but there are solid reasons for
believing in a 4> 0, and no plausible reason for
believing in a world of a.4 < 0. An obvious and
more palatable explanation for our inability to
rule out a 4 = 0 is readily available. It could be
that COP varies systematically with some factor,
x, and that x varies inversely with RISK. If x
does not appear explicitly in the Risk function,
the COP coefficient would reflect the net effect of
the two variables rather than a "pure" COP effect.

214The analysis in the Technical Appendix lends
further credence to this expectation.

CRIME CRIME

TS LS
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There is another, more interesting possibility.
It could be that the Cop-Risk relation is itself
misspecified. Perhaps the Cop-Risk relation goes
two ways. There is the obvious direction: the more
police, the higher the risk of apprehension. But
what about the other direction, that is, the higher
the risk, the fewer the police? Could it not be that
the community has its own conception of the
appropriate level of police activity, and that this
level may be a function of the risk level? If too
many crimes go unpunished, might the community
not hire more police? Since this hypothesis is
plausible, we are obliged to reconsider the merits of
Model 5. If there is a Cop-Risk interaction, (5a)
is inappropriate and a more complex model, in-
volving at least three equations, will have to be
developed. Thus, we see how treacherous it is to
adopt a single equation view of the world.

TzcmIcAL APPENDIX

The diagrammatic demonstration which showed
that OLS procedures can result in biased esti-
mators, as well as the numerical demonstration,
using California data for 1960, which showed that
the error can be substantial, invite a more general
proof of the existence of OLS bias and a more
general appraisal of the magnitude of the OLS
bias. Let us posit a two-equation model containing
two exogenous variables:

(6a) C =00 +IS +92X+A

(6b) S = ao + a1C + a 2Z + v

We solve for C and S, obtaining

(7a) C = (aol + a 2fl Z + flo + fl2X

+ #Iv + 0)/(1 - aL)

(7b) S = (ao + ag + ao + aL6X

+ a 2Z + v)/(1 - a18)

The OLS estimate of 61, written 01, with all varia-
bles expressed in terms of deviations from their
means, is

(8) 61 = s 2 x - 2cx 2sx] / [Y e 2 )0

- (2 sx)2]

Now place Equation (7), in deviation form, in
(8) and allow the sample size to become infinitely

large. Assuming that X and Z are independent of
ju and v and independent of each other, we obtain

(+ x~)~+ 2 + t3 ._ + 6..
(9) 2 2 2aa~ +2cc~+ar + 2r

where a, u and oz are the covariance of A
and v and the variances of A, v and Z, respectively.
We now isolate ,i so as to compare the discrepancy
between ,a and fl:

(10) i = 6 + + 2 + 2 2 + 2

The right hand expression is, of course, the least
squares bias ascribable to the use of OLS with
Model 6. This expression will be zero only if a, =
a2 = 0 and o,, = 0. Note that a, = 0 is necessary
but not sufficient. Thus my discussion in the text
dwelt on just one of the sources of OLS bias.

Intuition suggests that this bias will be positive.
We believe that a, _ 0 and 61 _< 0. Hence all
terms in the expression for bias are positive, with
the possible exception of o-,. A priori there is little
reason to suppose that 1i and v will be strongly
negatively correlated. Hence our guess is that
OLS will tend to understate the negative effect of
Sanctions on Crime.

The foregoing results are special in a number of
ways. If X and Z are not independent, orZ must
be replaced in (10) by the variance of (Z - Z),
where Z is derived from the regression of Z on X.
The effect of this should be transparent. I have
estimated only the asymptotic bias. The small
sample properties of the bias expression are not
known, but it is doubtful that our conclusions
would be changed by an examination of the ex-
pected value of the bias for finite samples. We
have examined the OLS bias only for the case of
two equations and two exogenous variables, one
per equation. Bronfenbrenner 1 has evaluated the
asymptotic bias for the general linear model, i.e.
a model involving any number of equations and
variables. Unfortunately, the bias expression is
quite complex, and the results are so opaque as to
be devoid of practical significance, except that
they demonstrate that the bias exists.

21 Bronfenbrenner, Sources and Size of Least-Squares
Bias in a Two-Equation Model, in STDIEs IN EcONO-
imnuc METHoD 221 (W. C. Hood and T. C. Koop-
mans, eds. 1953).
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