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Crimean-Congo hemorrhagic fever virus (CCHFV) is transmitted to humans by bite of

infected ticks or by direct contact with blood or tissues of viremic patients or animals. It

causes to humans a severe disease with fatality up to 30%. The current knowledge about

the vector-host-CCHFV interactions is very limited due to the high-level containment

required for CCHFV studies. Among ticks, Hyalomma spp. are considered the most

competent virus vectors. CCHFV evades the tick immune response, and following its

replication in the lining of the tick’s midgut, it is disseminated by the hemolymph in the

salivary glands and reproductive organs. The introduction of salivary gland secretions

into the host cells is the major route via which CCHFV enters the host. Following an initial

amplification at the site of inoculation, the virus is spread to the target organs. Apoptosis

is induced via both intrinsic and extrinsic pathways. Genetic factors and immune status

of the host may affect the release of cytokines which play a major role in disease

progression and outcome. It is expected that the use of new technology of metabolomics,

transcriptomics and proteomics will lead to improved understanding of CCHFV-host

interactions and identify potential targets for blocking the CCHFV transmission.
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INTRODUCTION

Crimean-Congo hemorrhagic fever virus (CCHFV, genus Nairovirus, family Bunyaviridae)
circulates in nature in an enzootic cycle between ticks and non-human vertebrates and poses a
significant public health threat due to its high pathogenicity to humans. Humans are infected
by bite of infected Ixodid ticks (mainly Hyalomma spp.), or by contact with blood or tissues of
viremic patients or animals. The disease (CCHF) is characterized by abrupt onset of fever, headache,
fatigue, and myalgia, as well as gastrointestinal symptoms, such as nausea, vomiting, and diarrhea.
Severe cases present hemorrhagic manifestations ranging from petechiae, epistaxis, ecchymosis,
and gingival hemorrhage to severe hemorrhages from various systems. The fatality rate is up to
30%. Wild and domestic animals present a short viremia (2–15 days) and they do not develop
clinical illness.

CCHFV is a negative sense, single-stranded RNA virus with a tri-segmented genome consisting
of the small (S), medium (M), and large (L) segments which encode the nucleocapsid (N) protein,
the glycoprotein precursor (which gives rise to the envelope glycoproteins Gn and Gc) and the L
protein, respectively. The CCHFV genome is encapsidated by multiple copies of N protein to form
a ribonucleocapsid complex which is critical for the virus replication cycle (Carter et al., 2012). The
L protein contains a viral RNA-dependent RNA polymerase domain and an ovarian tumor (OTU)
domain with deubiquitinating and deISGylating activities, which is thought to suppress immune
signaling (Frias-Staheli et al., 2007).
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CCHF endemic foci are present in Africa, Asia, and Europe.
Its geographic distribution is associated with that of Hyalomma
spp. ticks (mainly H. marginatum, H. rufipes, H. anatolicum,
and H. asiaticum) which are the main competent vectors of the
virus. The term “vector competence” is used to describe the
ability of a vector to acquire, maintain and transmit a pathogen.
H. marginatum is present in southern Europe and some parts of
Asia and Africa. It is characterized by its aggressiveness in seeking
human hosts. In CCHF endemic areas, where the climatic and
environmental factors are suitable for H. marginatum ticks (and
their animal hosts), their population is increased in spring and
summer, accounting for>30% of tick species in the area. CCHFV
has been detected or isolated from additional tick species, but
studies are needed to show whether they are competent virus
vectors, or merely coincidental unmaintained tick infection from
recent feeding on an infected animal or co-feeding (feeding on
an uninfected vertebrate host in close proximity with an infected
tick) or the result of a recent blood meal on an infected animal.
For an arthropod to be incriminated as an actual vector, several
criteria must be met; such as vector competence in laboratory
studies, and evidence that the arthropod species feeds in nature
on a host that develops an appropriate viremia and that it is active
at the time of the year that viral transmission is occurring (Reeves,
1957; Turell, 2007). The virus persists in ticks for the duration
of the tick lifespan, while the overwintering of the infected ticks
plays a critical role in the maintenance of epidemic foci.

As in most arboviral infections, the main players in CCHF
are the vector, the pathogen and the host, resulting in the
infection (or not) of the host. The co-evolution of the ticks,
hosts and pathogens results in conflict or cooperation between
them, benefiting ticks and pathogens and, to a lesser extent,
hosts (de la Fuente et al., 2016). CCHFV-infected humans
may present asymptomatic, mild, severe, or even fatal disease.
The course and the outcome of the disease depend on the
individual characteristics of the vector, the virus strain and
the host, but also on the vector -pathogen-host interactions.
The laboratory studies about these interactions are limited due
to the high-level containment required for CCHFV and the
lack of an animal model, until recently. In this review we will
examine the recent findings on CCHFV and discuss the potential
contribution of the new technologies to future research in order
to better understand the molecular and cellular basis of these
interactions.

TICK-PATHOGEN INTERACTIONS

Ticks serve as vectors and reservoirs of CCHFV which can
be maintained by transovarial and transstadial (from larva to
nymph and adult), and, less efficiently, by venereal transmission
(Gonzalez et al., 1992). Ixodid ticks, particularly members of
the Hyalomma genus, are considered main competent vectors,
while additional tick species may maintain the enzootic foci
of CCHFV circulation between ticks and wild and domestic
mammals (Hoogstraal, 1979). The virus has to overcome the
midgut and the salivary gland barriers in the tick body (Figure 1).
Tick vector competence is influenced by the ability of transmitted

pathogens to evade tick innate immune response (Hajdusek et al.,
2013).

The molecular events at the tick-pathogen interface are not
known. Most likely, the first step is the interaction of CCHFV
envelope glycoproteins and the epithelial cells of the ticks. The
glycoprotein Gc was shown to be a class II viral fusion protein
(Garry and Garry, 2004). Like other invertebrates, ticks do not
present adaptive immunity, and they rely on innate immune
response consisting of phagocytosis, encapsulation, nodulation,
and secretion of humoral factors in the hemolymph (McNally
and Bloom, 2014). An additional important mechanism of
innate antiviral defense of arthropods (including ticks) against
arboviruses, RNA interference (RNAi), was investigated on
Hazara nairovirus, which is considered as a surrogate CCHFV
model. It was shown that small interfering RNAs (siRNAs),
targeting Hazara nairovirus N protein mRNA, inhibited virus
replication, and the antiviral effect was stronger when siRNAs
were combined with ribavirin (Flusin et al., 2011). The exact role
of RNAi in tick-CCHFV interactions remains to be elucidated.

Following a blood meal, CCHFV evades the tick humoral
and cellular immune responses and replicates in the lining of
the tick’s midgut; then it is disseminated to the hemolymph and
infects various tissues, with highest viral titers being observed in
the proliferating tissues (e.g., salivary glands and reproductive
tissues) (Dickson and Turell, 1992). The minimum virus titer
necessary to infect the ticks varies among tick species (Shepherd
et al., 1991). Following intracoelomic inoculation of CCHFV,
virus titer is not affected by tick’s sex and feeding status (unfed or
engorged), but it is positively related with blood feeding (Dickson
and Turell, 1992). CCHFV replication in tissues of an infected
tick may be stimulated by tick attachment and feeding on a
susceptible host, probably by reducing the stress on a tick induced
by viral replication while the tick is waiting to find a vertebrate
host, but increase the potential for viral transmission once a host
had been acquired (Turell, 2007).

Using a transmission model for CCHFV and next generation
sequencing it was shown that many mutations in CCHFV were
recovered from ticks after only a single transstadial transmission,
whereas no mutations were detected in CCHFV recovered from
the mammalian host, with greater viral intra-host diversity in the
tick rather than the vertebrate host (Xia et al., 2016).

CCHFV is generally not the sole microbe in ticks;
endosymbionts and several pathogens may be present at
the same time (Papa et al., 2017). Metagenomic studies showed
that the microbiome has an effect on tick fitness and pathogen
infection and transmission. As an example, Francisella-like
endosymbionts have been detected in Hyalomma spp. ticks
(Ivanov et al., 2011; Szigeti et al., 2014). Although the presence
of additional pathogens or endosymbionts may affect the
physiology and immune response of the ticks, there are no
related studies.

Viral infections in ticks are not entirely silent and may
affect the tick survival, behavior and gene expression
(McNally and Bloom, 2014). Next generation sequencing
of infected and uninfected ticks microbiome may give
more insights into the interactions between pathogens and
ticks.
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FIGURE 1 | Tick-host-CCHFV interactions. Factors playing a major role are shown in the boxes.

TICK-HOST INTERACTIONS

The general issues concerning tick-host interactions likely apply
to CCHFV. The first contact between the tick and the host
occurs during the tick bite and the prolonged complex process
of the tick feeding on the host. The introduction of salivary gland
secretions into the feeding lesion is the major, if not exclusive,
route via which pathogens and toxins access the vertebrate
host and mediate the host reactions (Kaufman, 1989). Despite
the host’s hemostatic, inflammatory and immune responses,
the tick manages to remain attached for blood-feeding via the
pharmacy located in its salivary glands and secreted in saliva.
Anticoagulants, cytolytic substances, vasoactive mediatiors (such
as prostaglandins) and cement, which anchors the mouthparts
to the skin, are among the secreted agents. Saliva activated
transmission, subsequently renamed saliva-assisted transmission
(SAT), affects the host in ways that are exploited by many
pathogens to facilitate infection (Nuttall, 1999); SAT is thought
to play an additional critical role facilitating the infection of
uninfected ticks feeding at the same time on the same host in
the absence of an overt host viremia (co-feeding or mechanical
transmission) (Gordon et al., 1993). There are no reports on the
role of SAT on CCHFV. Because the salivary glands are the most
important route for pathogen transmission by arthropod vectors,
it is expected that the volume of saliva secreted into the host
would be a major factor determining the efficacy of transmission
(Kaufman, 2010). Time of attachment may also affect the level
of tick-host interaction. Abiotic (environmental and climatic)
factors are involved indirectly in the tick-host interactions by

playing a role in the abundance and aggressiveness of ticks, thus
affecting the chance of a host to be bitten by ticks (Figure 1).

HOST-PATHOGEN INTERACTIONS

CCHFVmust overcome the epithelium and preferentially escape
at the basolateral membrane of epithelial cells to establish
infection (Connolly-Andersen et al., 2007). CCHFV replicates to
high titers at the site of inoculation, in epithelial cells, dendritic
cells, and tissue resident macrophages. The productive infection
of these cells facilitates spread of the virus and results in early
infection of local lymph nodes and peripheral blood-borne
monocytes supporting systematic spread of the virus (Burt et al.,
1997; Connolly-Andersen et al., 2009; Akinci et al., 2013).

To date the receptor of CCHFV in target cells is not known.
The viral glycoproteins Gn and/or Gc are involved in the initial
attachment of CCHFV to the cell plasma membrane. It was
suggested that Gc is responsible for binding to the cellular
receptors, and mediates fusion later, during the early step of
replication cycle. An interaction between CCHFV glycoproteins
and cell surface nucleolin, a protein found predominantly within
nucleoli, has been suggested as putative entry factor; however,
more investigations are needed to support the involvement of
nucleolin in CCHFV internalization (Xiao et al., 2011). CCHFV
enters the cells using clathrin- and the clathrin pit adaptor
protein-2 complex, but not caveolin-1 (Simon et al., 2009a;
Garrison et al., 2013). Internalization is cholesterol- and pH-
dependent (Simon et al., 2009b). Then, CCHFV particles are
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transported to early endosomes and to multivesicular bodies
where the fusion of the virus envelope with cellular membranes
takes place. These processes use components of the endosomal
sorting complex required for transport regulators (Shtanko et al.,
2014).

Cytoskeleton components, including microtubulin and actin
filaments, are essential for CCHFV internalization, replication
and progeny virus production (Andersson et al., 2004; Simon
et al., 2009a). The predicted actin-interacting domain is localized
within the central stalk region of the CCHFV N protein adjacent
to the coiled-coil motif. The key residue responsible for N
protein-actin interaction, D219, and is also crucial for self-
association of the N protein (Levingston Macleod et al., 2015).
Furthermore, it has been recently shown that the CCHFV N
protein interacts with cellular chaperones of the heat shock
protein 70 family (including actin), which, in association with
DnaJ cofactor adapter proteins, play roles that relate to correct
folding and transport of newly synthesized and misfolded
proteins and to the assembly of multicomponent complexes
(Surtees et al., 2016). One other protein which has been recently
demonstrated to be involved in CCHFV replication is aquaporin
6, a water channel that facilitates fluxes of water and small solutes
across membranes (Molinas et al., 2016).

The infection of endothelial cells and peripheral blood-
bornemonocytes results in extravasation into parenchymal tissue
enabling the virus to interact with basolateral cells receptors
in target organs (Connolly-Andersen et al., 2007). Secondary
replication in these organs facilitates the systemic spread of the
virus in humans (Akinci et al., 2013). This theory is supported by
studies in animal models, which showed that on the first day of
infection, the viral replication occurs in the blood, on the second
day in spleen and liver, and then spreads systemically to the lungs,
kidneys, and brain (Bente et al., 2010).

The virus enters the blood stream overcoming the vascular
endothelial surface barrier and the endothelial junctions (Becker
et al., 2010). Endothelial cells are targeted either directly by
the virus, or indirectly, by virus-induced host-derived soluble
mediators that cause endothelial activation (Connolly-Andersen
et al., 2011). This has been previously demonstrated for other
viral hemorrhagic fevers (Schnittler and Feldmann, 2003). To
date, it is not known how CCHFV causes microvascular
instability. It is more likely that it is mediated indirectly
by increased levels of proinflammatory cytokines, or by
a combination of virus infection and the cytokine storm
(Connolly-Andersen et al., 2007; Papa et al., 2016).

The endothelial damage is responsible for hemostatic failure
by stimulating aggregation and degranulation of the platelets,
and activation of the intrinsic coagulation cascade (Weber
and Mirazimi, 2008; Bodur et al., 2010). During CCHFV
infection, apart from the activated macrophages, an increase
in the numbers of natural killer cells and CD3+ CD8+ T
cells is observed (Yilmaz et al., 2008; Akinci et al., 2009).
But as the disease progresses, the uncontrolled apoptosis of
lymphocytes contributes to a depletion in lymphocyte counts,
which is presented as lymphopenia (Bente et al., 2010). It has
been demonstrated that CCHFV infection can induce apoptosis
indirectly, through the release of cytokines from infected cells

(Karlberg et al., 2015). This finding fits nicely with the hypothesis
described above. Recently it has been shown that CCHFV codes
for a non-structural protein, NSs, which may induce apoptosis
via both intrinsic and extrinsic pathways (Barnwal et al., 2016).

Soon after the presentation of CCHFV antigen to host cells,
innate and adaptive immune responses are activated (Figure 1).
DC-SIGN (a calcium-dependent [C-type] lectin cell-surface
molecule), which is expressed in the antigen-presenting dendritic
cells, was suggested as probable entry factor for CCHFV (Suda
et al., 2016). In vitro studies showed that RIG-I acts as a
pattern recognition receptor for CCHFV and mediates a type
I interferon (IFN) antiviral response via the cellular adaptor
MAVS (Spengler et al., 2015). As in other viral hemorrhagic
fevers, replicating CCHFV delays substantially the IFN response,
possibly by interfering with the activation pathway of IRF-
3, allowing the rapid viral spread in the host (Andersson
et al., 2008). Downregulation of IFN-I signaling pathways
relies on the cleavage of ubiquitin and ISG15 from various
host proteins (Frias-Staheli et al., 2007). It is of interest that
the related CCHFV OTU proteases show clear preferences
for ISG15s from certain mammalian species (Deaton et al.,
2016).

Several cytokines and chemokines are released during the
course of CCHF, especially in severe cases (Ergonul et al., 2006;
Papa et al., 2006, 2015, 2016; Saksida et al., 2010). Preliminary
analysis showed that the expression of microRNAs related to
regulation of cytokine expression is altered in CCHF patients
(Demir et al., 2017). Genetic factors and immune status of the
host, as well as genetic differences in CCHFV strains, may play a
significant role in the virus-host interface, however, there are no
studies available.

TOOLS FOR RESEARCH ON
TICK-HOST-CCHFV INTERACTIONS

Tick cell lines are now available to enable the CCHFV studies
in vitro, offering an alternative approach to understand the
way that tick cells respond to virus infection (Bell-Sakyi et al.,
2012). The recent development of CCHF virus-like particle
(VLP) systems can be used to study cell entry and viral
transcription and replication (Devignot et al., 2015; Zivcec
et al., 2015). The fact that VLPs are non-infectious will
greatly facilitate the tick-pathogen interaction studies under
non-BSL-4 conditions. The widespread adaptation of RNA
interference (RNAi) will aid in studying tick gene functions
(de la Fuente et al., 2005). Interferon response knockout mice
have been recently described as animal models for CCHF
(Bente et al., 2010; Bereczky et al., 2010; Zivcec et al.,
2013). An in vivo transmission model for CCHFV in a
BSL4 biocontainment was established recently using interferon
knockout mice, which is an additional tool to study the
transmission and interaction of CCHFV with its tick vector
(Gargili et al., 2013). Advances in the study of molecular
events at the tick-host-pathogen interface are expected by the
increasing number of available genomic resources, including
metabolomics, transcriptomics and proteomics. Mathematical
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and relational models are being constructed for the challenging
integration of multi-source datasets from biological systems and
cellular networks that would improve our understanding of
CCHF pathogenesis (Vidal et al., 2011; Gomez-Cabrero et al.,
2014).

FUTURE PERSPECTIVES

Over the last decades considerable progress has been made in
the identification of the cellular components involved in tick-
host-pathogen interactions. However, there is limited knowledge
so far in the case of CCHFV due to the high-level containment
required for studies with the virus. The identification of the
molecular drivers that promote CCHFV survival in the tick,
persistence and pathogen transmission provides the opportunity
to disrupt these processes and lead to a reduction in tick burden
and prevalence of tick-borne diseases (De la Fuente et al., 2017),
while the identification of the molecular signaling pathways
taking place during the CCHFV-host interactions provides the
opportunity to design novel control and vaccine strategies for

CCHF. Potential targets could be the cell fusion step during
virus entry to the host cells (Garry and Garry, 2004), the pattern
recognition receptors for CCHFV (Spengler et al., 2015), the
chaperones of the HSP70 family (Surtees et al., 2016), the OTU
domain (Frias-Staheli et al., 2007), and the immunogenic factors
(Papa et al., 2016). Scientists now have tremendous opportunities
to utilize new technologies and in vitro models to increase our
understanding of CCHFV pathogenesis for the good of Public
Health.
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