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1 Introduction

The average return on stocks is roughly 7% higher per year than the average return on bills across

a large cross-section of countries in the twentieth century (Barro and Ursua, 2008). Mehra and

Prescott (1985) argued that this large equity premium is difficult to explain in simple consumption-

based asset-pricing models. A large subsequent literature in finance and macroeconomics has sought

to explain this “equity-premium puzzle.” In recent years, there has been growing interest in the

notion that the equity premium may be compensation for the risk of rare, but disastrous, events

such as wars, depressions, and financial crises (Rietz, 1988; Barro, 2006).1

In Barro (2006), output is a random walk with drift, and rare disasters are identified as large,

instantaneous, and permanent drops in output. He calibrates the frequency and permanent impact

of disasters to match large peak-to-trough drops in real per-capita GDP in a long-term panel dataset

for 35 countries and shows that his model is able to match the observed equity premium with a

coefficient of relative risk aversion of the representative consumer of roughly 4. More recently,

Barro and Ursua (2008) have gathered a long-term data set for personal consumer expenditure in

over 20 countries and shown that the same conclusions hold using these data. A growing literature

has adopted this model and calibration of permanent, instantaneous disasters (e.g., Wachter, 2008;

Gabaix, 2008; Farhi and Gabaix, 2008; Burnside, et al., 2008; Guo, 2007; and Gourio, 2010).2

An important critique of the Rietz-Barro disasters model calibrated to match the peak-to-trough

drops in output or consumption is that it may overstate the riskiness of consumption by failing

to incorporate recoveries after disasters (Gourio, 2008). A world in which disasters are followed

by periods of disproportionately high growth is potentially far less risky than one in which all

disasters are permanent. Kilian and Ohanian (2002) emphasize the importance of allowing for

large transitory fluctuations associated with disasters such as the Great Depression and WWII in

empirical models of output dynamics. More generally, a large literature in macroeconomics has

debated whether it is appropriate to model output as trend or difference-stationary (Cochrane,

1988; Cogley, 1990).

A second critique of the Rietz-Barro model is that it assumes that the entire drop in output

and consumption at the time of a disaster occurs instantaneously. In reality, most disasters unfold

1Piazzesi (2010) summarizes recent research on the equity premium, emphasizing four main explanations: habits
(Campbell and Cochrane, 1999), heterogeneous agents (Constantinides and Duffie, 1996), long run risk (Bansal and
Yaron, 2004) and rare disasters.

2Barro and Jin (2011) show that the required coefficient of relative risk aversion can be reduced to around three
if the size distribution of macroeconomic disasters is gauged by an estimated power-law distribution.
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over multiple years. This profile implies that even though peak-to-trough declines in consumption

exceeding 30% have occurred in many countries, the annual decline in consumption in these episodes

is considerably smaller. Combining persistent declines in consumption into a single event might not

be an innocuous assumption. The assumption that the entire decline in output and consumption

associated with a disaster occurs in a single year is criticized in Constantinides (2008). Similarly,

Julliard and Ghosh (2010) argue that using annual consumption data as opposed to peak-to-trough

drops yields starkly different conclusions from Barro’s original calibration.3

Given the growing importance of the disasters model in the macroeconomics, international

economics, and asset-pricing literature, a key question is whether it stands up to incorporating

a more realistic process for consumption dynamics during and following disasters. We develop

a model of consumption disasters that allows disasters to unfold over multiple years and to be

systematically followed by recoveries. The model also allows for transitory shocks to growth in

normal times and for a correlation in the timing of disasters across countries. This last feature of

the model allows us to capture the fact that major disasters—such as the world wars of the 20th

century—affect many countries simultaneously. Ours is the first paper to estimate the dynamic

effects—both long term and short term—of these major disasters on consumption.

We estimate our model on annual consumption data from the newly constructed Barro and

Ursua (2008) dataset, using Bayesian Markov-Chain Monte-Carlo (MCMC) methods.4 The model

generates endogenous estimates of the timing, magnitude, and length of disasters, as well as the

extent of recovery after disasters and the variance of shocks in disaster and non-disaster periods.

Our estimation procedure also allows us to investigate the statistical uncertainty associated with

the predictions of the rare-disasters model along the lines suggested by Geweke (2007) and Tsionas

(2005).5

3Julliard and Ghosh (2010) propose a novel approach to estimating the consumption Euler equation based on
generalized empirical likelihood methods, in the context of a representative agent consumption-based asset pricing
model with time-additive power utility preferences. A key difference between our framework and theirs is that they
focus on power utility, as in the original Rietz-Barro framework. We show that allowing for a more general preference
specification is crucial in assessing the asset pricing implications of multi-period disasters and recoveries. Also, our
approach does not rely on the exact timing of asset price returns during disasters. As we discuss below, asset price
returns during disasters play a disproportionate role in determining the equity premium; yet these are also the periods
for which asset price data are most likely to be either missing or inaccurate, for example, because of price controls
during wars.

4We use a Metropolized Gibbs sampler. This procedure is a Gibbs sampler with a small number of Metropolis steps.
See Gelfand (2000) and Smith and Gelfand (1992) for particularly lucid short descriptions of Bayesian estimation
methods. See, e.g., Gelman, Carlin, Stern, and Rubin (2004) and Geweke (2005) for comprehensive treatment of
these methods.

5In particular, we analyze the extent to which the observed asset returns are consistent with the posterior dis-
tribution of the equity premium implied by our model, taking into account parameter uncertainty. Tsionas (2005)
discusses in detail the importance of accounting for finite-sample biases and parameter uncertainty in assessing the
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In estimating the model, we maintain the assumption that the frequency, size distribution, and

persistence of disasters is time invariant and the same for all countries. This strong assumption is

important in that it allows us to pool information about disasters over time and across countries.

The rare nature of disasters makes it difficult to estimate accurately a model of disasters with much

variation in structural characteristics over time and space.

We find strong evidence for recoveries after disasters and for the notion that disasters unfold

over several years. We estimate that disasters last roughly six years on average. Over this period,

consumption drops on average by about 30% in the short run. However, about half of this drop

in consumption is subsequently reversed. The average long run effect of disasters on consumption

in our data is a drop of about 15%.6 We find that uncertainty about future consumption growth

increases dramatically at the onset of a disaster. The standard deviation of consumption growth

in the disaster state is roughly 12% per year, several times its value during normal times. The

majority of the disasters we identify occur during World War I, the Great Depression, and World

War II. Other disasters include the collapse of the Chilean economy first in the 1970’s and again

in the early 1980’s, and the contraction in South Korea during the Asian financial crisis.

Our estimated model yields asset-pricing results that are intermediate between models that

ignore disaster risk and the more parsimonious disaster models considered in the previous literature.

We adopt the representative-agent endowment-economy approach to asset pricing—following Lucas

(1978) and Mehra and Prescott (1985)—and assume that agents have Epstein-Zin-Weil preferences.

Our model matches the observed equity premium with a coefficient of relative risk aversion (CRRA)

of 6.4 and an intertemporal elasticity of substitution (IES) of 2. For these parameter values, a model

without disasters yields an equity premium only one-tenth as large, while a model with one-period,

permanent disasters yields an equity premium 10 times larger. Given the close link between the

equity premium and the welfare costs of economic fluctuations (Alvarez and Jermann, 2004; Barro,

2009), these differences imply that our model yields costs of economic fluctuations substantially

larger than a model that ignores disaster risk, but substantially smaller than the Rietz-Barro

disaster model.

The differences between our model and the more parsimonious Rietz-Barro framework arise

both from the recoveries and the multi-period nature of disasters. Recoveries imply that disasters

ability of alternative models to fit the observed equity premium, particularly in the presence of fat-tailed shocks.
6Cerra and Saxena (2008) estimate the dynamics of GDP after financial crises, civil wars and political shocks

using data from 1960 to 2001 for 190 countries. They find no recovery after financial crises and political shocks but
partial recovery after civil wars. Their sample does not include WWI, the Great Depression and WWII. Davis and
Weinstein (2002) document a large degree of recovery at the city level after large shocks.
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have a much less persistent effect on dividends, reducing the drop in stock prices when disasters

occur. This modification, in turn, lowers the equity premium. The multi-period nature of disasters

affects the equity premium in a more subtle way. To generate a high equity premium, the marginal

utility of consumption must be high when the price of stocks drops. In our model, the price of

stocks crashes at the onset of disasters—with the initial news that a disaster is underway—while

consumption typically reaches its trough several years later. This lack of coincidence between

the stock-market crash and the trough of consumption reduces the equity premium in our model

relative to the Rietz-Barro model. In addition, since households anticipate persistent consumption

declines at the onset of a disaster—they expect things to get worse before they get better—they

have a strong motive to save that does not arise in the Rietz-Barro model. This desire to save limits

the magnitude of the stock-market decline during disasters, further reducing the equity premium.

On the other hand, if agents have EZW preferences with CRRA > 1 and IES > 1, reductions in

expected future consumption growth and increases in uncertainty about future consumption raise

marginal utility for a given value of current consumption.

A key feature of our model is the predictability of consumption growth during disasters—

consumption typically declines for several year before recovering. These features imply that the

IES, which governs consumers’ willingness to trade-off consumption over time, plays an important

role in determining the asset-pricing implications of our framework. There is considerable debate

in the macroeconomics and finance literature about the value of the IES. Several authors—notably

Hall (1988)—argue that the IES is close to zero. However, others—such as Bansal and Yaron (2004)

and Gruber (2006)—argue for substantially higher values of the IES.

The large movements in expected consumption growth associated with disasters provide a strong

test of consumers’ willingness to substitute consumption over time. For a low value of the IES,

our model implies a surge in stock prices at the onset of disasters and a negative equity premium

in normal times. The reason is that entering the disaster state generates a strong desire to save,

because consumption is expected to fall further in the short run. When the IES is substantially

below one, this savings effect dominates the negative effect that the disaster has on expected

future dividends from stocks and, therefore, raises the price of stocks.7 These predictions do not

accord with the available evidence. Disasters are typically associated with stock-market crashes.

This observation supports the view that consumers have a relatively high willingness to substitute

7Gourio (2008) makes this point forcefully in a simpler setting. For similar reasons, an IES larger than one plays
an important role in the long run risk model of Bansal and Yaron (2004).
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consumption over time (at least during disasters), motivating a high value of the IES.

Our estimated model yields additional predictions for the behavior of short-term and long-term

interest rates. One potential concern is that the same factors driving a high equity premium would

also generate a high term premium—a prediction that is not supported by the empirical evidence

(Campbell, 2003; Barro and Ursua, 2008). We show that this is not the case. Our model implies

a positive equity premium but a negative term premium for risk-free long-term (real) bonds that

arises from the hedging properties of long-term bonds during disaster periods. Our model also

generates new predictions for the dynamics of risk-free interest rates surrounding disasters. In

particular, the strong desire to save during disasters drives down the return on short-term bonds,

leading to low real interest rates during disaster episodes, as observed in the data.

We consider an extension of our model that allows for partial default on bonds. Empirically,

inflation risk is an important source of partial default on government bonds. Data on stock and

bond returns over disaster periods indicate that short-term bonds provide substantial insurance

against disaster risk in only about 70% of cases. When we allow for an empirically realistic degree

of default on short-term bonds, a risk aversion parameter of 7.5 is needed to fit the observed equity

premium. Because inflation unfolds sluggishly in the data, the effects of inflation risk on short-

term bonds is less severe than on long-term bonds. Incorporating this fact allows us to match the

upward-sloping term premium for nominal bonds.

We employ the Mehra and Prescott (1985) methodology for assessing the asset-pricing implica-

tions of our model. Hansen and Singleton (1982) pioneered an alternative methodology based on

measuring the empirical correlation between asset returns and the stochastic discount factor. An

important difficulty with employing the Hansen-Singleton approach is that the observed timing of

real returns on stocks and bonds relative to drops in consumption during disasters is affected by

gaps in the data on asset prices as well as price controls, asset price controls and market closure.

For example, stock price data are missing for Mexico in 1915-1918, Austria in WWII, Belgium in

WWI and WWII, Portugal in 1974-1977, and Spain in 1936-1940. The Nazi regime in Germany

imposed price controls in 1936 and asset-price controls in 1943 that lapsed only in 1948. In France,

the stock market closed in 1940-1941 and price controls affected measured real returns over a longer

period. Given these data limitations, Barro and Ursua (2009) take the approach of computing the

covariance between the peak-to-trough decline in asset prices and a consumption based stochas-

tic discount factor using a “flexible timing” assumption regarding the intervals over which these

declines occur. Under this assumption, it is possible to match the equity premium for moderate
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values of risk aversion. Their calculations highlight the disproportionate importance of disasters in

matching the equity premium. Non-disaster periods contribute trivially to the equity premium.8

A number of recent papers study whether the presence of rare disasters may also help to explain

other anomalous features of asset returns, such as the predictability and volatility of stock returns.

These papers include Farhi and Gabaix (2008), Gabaix (2008), Gourio (2008), and Wachter (2008).

Martin (2008) presents a tractable framework for asset-pricing in models of rare disasters. Gourio

(2010) embeds disaster risk in a business-cycle model and shows that time-varying disaster risk can

generate joint dynamics of macroeconomic aggregates and asset prices that are consistent with the

data.

The paper proceeds as follows. Section 2 discusses the Barro-Ursua data on long-term personal

consumer expenditure. Section 3 presents the empirical model. Section 4 discusses our estimation

strategy. Section 5 presents our empirical estimates. Section 6 studies the asset-pricing implications

of our model. Section 7 concludes.

2 Data

In estimating our disaster model, it is crucial to use long time series whose starting and ending

points are not endogenous to the disasters themselves. It is also crucial that the data set contain

information on the evolution of macroeconomic variables during disasters; Maddison’s (2003) ten-

dency to interpolate GDP data during wars and other crises is not satisfactory for our purposes.

Furthermore, to analyze the asset-pricing implications of rare disasters, it is important to measure

consumption dynamics, as opposed to output dynamics.

We use a recently created data set on long-term personal consumer expenditures constructed

by Robert Barro and Jose Ursua and described in detail in Barro and Ursua (2008).9 This data set

includes a country only if uninterrupted annual data are available back at least before World War

I, yielding a sample of 17 OECD countries and 7 non-OECD countries.10 To avoid sample-selection

8Another concern regarding the Hansen-Singleton methodology—emphasized by Geweke (2007) and Arakelian and
Tsionas (2009)—is that parsimonious asset pricing models are sufficiently stylized that formal statistical rejections
may not be very informative.

9These data are available from Robert Barro’s website, at:
http://www.economics.harvard.edu/faculty/barro/data sets barro.
10The OECD countries are: Australia, Belgium, Canada, Denmark, Finland, France, Germany, Italy, Japan,

Netherlands, Norway, Portugal , Spain, Sweden, Switzerland, U.K. and U.S. The “non-OECD” countries are Ar-
gentina, Brazil, Chile, Mexico, Peru, South Korea, and Taiwan. See Barro and Ursua (2008) for a detailed description
of the available data and the countries dropped due to missing data. In cases where there is a change in borders, as
in the case of the unification of East and West Germany, Barro and Ursua (2008) smoothly paste together the initial
per capita series for one country with that for the unified country.
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bias problems associated with the starting dates of the series, we include only data after 1890.

The resulting data set is an unbalanced panel of annual data for 24 countries, with data from each

country starting between 1890 and 1914, yielding a total of 2685 observations.

One limitation of the Barro-Ursua consumption data set is that it does not allow us to distinguish

between expenditures on non-durables and services versus durables. Unfortunately, separate data

on durable and non-durable consumption are not available for most of the countries and time periods

we study. For time periods when such data are available, however, the effect of excluding durables

on the overall decline in consumer spending during disasters is small. The proportionate decline

in spending on non durables and services is on average only 3 percentage points smaller than the

overall decline in consumer spending (Barro and Ursua, 2008). The reason is that for most of the

time period we study, durables accounted for only a small fraction of consumer expenditures. The

effect of excluding durables is even smaller during the largest disasters, because durable consumer

expenditures can at most fall to zero. The remaining fall in consumer expenditures must come

entirely from non-durable expenditures.

In analyzing the asset-pricing implications of our model, we make use of total returns data on

stocks, bills, and bonds from Global Financial Data (GFD), augmented with data from Dimson,

Marsh, and Staunton (2002) and other sources. These data are described in detail in Barro and Ur-

sua (2009). Unfortunately, these data are less comprehensive than the corresponding consumption

series and often contain gaps for disaster periods. Price controls and controls on asset prices also

make the exact timing of real returns difficult to measure during disasters. We therefore use these

data to assess the predictions of our model primarily by considering average returns in non-disaster

periods and cumulative returns over disaster periods.

3 An Empirical Model of Consumption Disasters

We model log consumption as the sum of three unobserved components:

ci,t = xi,t + zi,t + εi,t, (1)

where ci,t denotes log consumption in country i at time t, xi,t denotes “potential” consumption

in country i at time t, zi,t denotes the “disaster gap” of country i at time t—i.e., the amount by

which consumption differs from potential due to current and past disasters—and εi,t denotes an

i.i.d. normal shock to log consumption with a country specific variance σ2ε,i,t that potentially varies

with time.
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The occurrence of disasters in each country is governed by a Markov process Ii,t. Let Ii,t = 0

denote “normal times” and Ii,t = 1 denote times of disaster. The probability that a country that is

not in the midst of a disaster will enter the disaster state is made up of two components: a world

component and an idiosyncratic component. Let IW,t be an i.i.d. indicator variable that takes the

value IW,t = 1 with probability pW . We will refer to periods in which IW,t = 1 as periods in which

“world disasters” begin. The probability that a country not in a disaster in period t−1 will enter the

disaster state in period t is given by pCbW IW,t + pCbI(1− IW,t), where pCbW is the probability that

a particular country will enter a disaster when a world disaster begins and pCbI is the probability

that a particular country will enter a disaster “on its own.” Allowing for correlation in the timing

of disasters through IW,t is important for accurately assessing the statistical uncertainty associated

with the probability of entering the disaster state. Once a country is in a disaster, the probability

that it will exit the disaster state each period is pCe.

We model disasters as affecting consumption in two ways. First, disasters cause a large short-

run drop in consumption. Second, disasters may affect the level of potential consumption to which

the level of actual consumption will return. We model these two effects separately. First, let θi,t

denote a one-off permanent shift in the level of potential consumption due to a disaster in country

i at time t. Second, let φi,t denote a shock that causes a temporary drop in consumption due to the

disaster in country i at time t. For simplicity, we assume that θi,t does not affect actual consumption

on impact, while φi,t does not affect consumption in the long run. In this case, θi,t may represent

a permanent loss of time spent on R&D and other activities that increase potential consumption

or a change in institutions that the disaster induces. The short run shock, φi,t, could represent

destruction of structures, crowding out of consumption by government spending and temporary

weakness of the financial system during the disaster.

We assume that θi,t is distributed θi,t ∼ N(θ, σ2θ). This implies that we do not rule out the

possibility that disasters can have positive long-run effects. Crises can, e.g., lead to structural

change that benefits the country in the long run. We consider two distributional assumptions

for the short-run shock φi,t. Both of these distributions are one sided reflecting our interest in

modeling disasters. In our baseline case, φi,t has a truncated normal distribution on the interval

[−∞, 0]. We denote this as φi,t ∼ tN(φ∗, σ∗2φ ,−∞, 0), where φ∗ and σ∗2φ denote the mean and

variance, respectively, of the underlying normal distribution (before truncation). We use φ and σ2φ

to denote the mean and variance of the truncated distribution. We also estimate a model with

−φi,t ∼ Gamma(αφ, βφ). The gamma distribution is a flexible one-sided distribution that has
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excess kurtosis relative to the normal distribution.

Potential consumption evolves according to

∆xi,t = µi,t + ηi,t + Ii,tθi,t, (2)

where ∆ denotes a first difference, µi,t is a country specific average growth rate of trend consumption

that may vary over time, ηi,t is an i.i.d. normal shock to the growth rate of trend consumption with

a country specific variance σ2η,i. This process for potential consumption is similar to the process

assumed by Barro (2006) for actual consumption. Notice that consumption in our model is trend

stationary if the variances of ηi,t and θi,t are zero.

The disaster gap follows an AR(1) process:

zi,t = ρzzi,t−1 − Ii,tθi,t + Ii,tφi,t + νi,t, (3)

where 0 ≤ ρz < 1 denotes the first order autoregressive coefficient and νi,t is an i.i.d. normal

shock with a country specific variance σ2ν,i. We introduce νi,t mainly to aid the convergence of our

numerical algorithm.11 Since θi,t is assumed to affect potential consumption but to leave actual

consumption unaffected on impact, it gets subtracted from the disaster gap when the disaster

occurs.

Figure 1 provides an illustration of the type of disaster our model can generate. For simplicity,

we abstract from trend growth and set all shocks other than φi,t and θi,t to zero. The Figure depicts

a disaster that lasts six periods and in which ρz = 0.6 and φi,t = −0.125 and θi,t = −0.0025 in each

period of the disaster. Cumulatively, log consumption drops by roughly 0.40 from peak to trough.

Consumption then recovers substantially. In the long run, log consumption is 0.15 lower than it

was before the disaster. This disaster is therefore partially permanent. The negative θi,t shocks

during the disaster permanently lower potential consumption. The fact that the shocks to φi,t are

more negative than the shocks to θi,t mean that consumption falls below potential consumption

during the disaster. The difference between potential consumption and actual consumption is the

disaster gap in our model. In the long run, the disaster gap closes—i.e., consumption recovers—so

that only the drop in potential consumption has a long run effect on consumption. Our model

can generate a wide range of paths for consumption during a disaster. If θi,t = 0 throughout the

11MCMC algorithms have trouble converging when the objects one is estimating are highly correlated. In our case,
zt and zt+j for small j are highly correlated when there are no disturbances in the disaster gap equation between
time t and time t + j. This would be the case in the “no disaster” periods in our model if it did not include the
νi,t shock. In fact, zt and zt+j would be perfectly correlated in this case. It is in order to avoid this extremely high
correlation that we introduce small disturbances to the disaster gap equation.
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disaster, the entire disaster is transitory. If on the other hand φi,t = θi,t throughout the disaster,

the entire disaster is permanent.

A striking feature of the consumption data is the dramatic drop in volatility in many countries

following WWII. Part of this drop in consumption volatility likely reflects changes in the procedures

for constructing national accounts that were implemented at this time (Romer, 1986; Balke and

Gordon, 1989). We allow for this break by assuming that σ2ε,i,t takes two values for each country:

one before 1946 and one after. Allowing for this feature is important in not overestimating the

occurrence of disasters in the early part of the sample. Another striking feature is that many

countries experienced very rapid growth for roughly 25 years after WWII. We allow for this by

assuming that µi,t takes three values for each country: one before 1946, one for the period 1946-

1972 and one for the period since 1973.12 We discuss the implications of allowing for such trend

breaks in section 5.

One can show that the model is formally identified except for a few special cases in which

multiple shocks have zero variance. Nevertheless, the main challenge in estimating the model is the

relatively small number of disaster episodes observed in the data. We, therefore, assume that all the

disaster parameters—pW , pCbW , pCbI , pCe, ρz, θ, σ
2
θ , φ, σ2φ—are common across countries and time

periods. This assumption allows us to pool information about the disasters that have occurred in

different countries and at different times. In contrast, we allow the non-disaster parameters—µi,t,

σ2ε,i,t, σ
2
η,i,t, σ

2
ν,i—to vary across countries.

4 Estimation

The model presented in section 3 decomposes consumption into three unobserved components:

potential consumption, the disaster gap and a transitory shock. One way of viewing the model is,

thus, as a disaster filter. Just as business-cycle filters isolate movements in output attributable to

the business cycle, our model isolates movements in consumption attributable to disasters. Despite

the large number of unobserved states and parameters, it is possible to estimate our model efficiently

using Bayesian MCMC methods.13

12See Perron (1989) and Kilian and Ohanian (2002) for a discussion of trend breaks in macroeconomic aggregates.
13Bayesian MCMC methods have recently been applied to many problems in finance in which it is necessary to

estimate a large number of unobserved states (see e.g., Pesaran et. al, 2006; and Koop and Potter, 2007). An impor-
tant technical reason that Bayesian MCMC methods work well in our setting is that many of the unobserved states
can be sampled using a Gibbs sampler as opposed to more computationally costly methods. Our algorithm samples
from the posterior distributions of the parameters and states using a Gibbs sampler augmented with Metropolis steps
when needed. This algorithm is described in greater detail in appendix A. The estimates discussed in section 5 for
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To carry out our Bayesian estimation we need to specify a set of priors on the parameters of

the model. The full set of priors we use is:

θ ∼ N(0, 0.2), σθ ∼ U(0.01, 0.25),

φ∗ ∼ U(−0.25, 0), σ∗φ ∼ U(0.01, 0.25),

φ ∼ U(−0.25, 0), σφ ∼ U(0.01, 0.25),

pW ∼ U(0, 0.1), pCbI ∼ U(0, 0.02),

pCbW ∼ U(0, 1), 1− pCe ∼ U(0, 0.9),

ρz ∼ U(0, 0.9),

µi,t ∼ N(0.02, 1), σε,i,t ∼ U(0, 0.15),

ση,i ∼ U(0, 0.15), σν,i ∼ U(0, 0.015).

We consider two specifications for the short run shock φi,t—a truncated normal distribution and

a gamma distribution. Thus, we specify two sets of priors for this shock. For the case of φi,t

shocks that have a truncated normal distribution, we specify priors on φ∗ and σ∗φ—the mean and

standard deviation of the normal distribution before it is truncated. For the alternative case with

gamma distributed φi,t shocks, we place priors on the mean and standard deviation of φi,t—which

we denote φ and σφ. These priors imply a joint prior distribution over αφ and βφ.

A key parameter in our model is θ—the mean long-run effect of the disaster shock, which

determines the extent of recovery from a disaster. Our prior for this parameter is symmetric and

highly dispersed. Thus, the prior is agnostic about whether disasters have any long run effect at

all—and allows for the possibility that in some cases the long-run effect of a disaster might actually

be positive, as could arise if the disaster led to a favorable change in institutions. Our estimated

long run effect of disasters thus comes entirely from the data.

Our priors on the probability of disasters embed the assumption that disasters are in fact rare.

On the one hand, we do not wish to “overestimate” the probability of disasters by choosing a prior

on disasters that places a large prior weight on high disaster frequencies. On the other hand we

do not wish to choose a prior that constrains the posterior distribution of disasters from above. In

fact, our results are relatively insensitive to allowing for more dispersed priors on the probability

both versions of the model, are based on four independent Markov chains each with 2 million draws with the first
150,000 draws from each chain dropped as burn-in. The four chains are started from 2 different starting values, 2
chains from each starting value. We choose these two sets of starting values to be far apart in a sense made precise
in the appendix. We use a number of techniques to assess convergence. First, we employ Gelman and Rubin’s (1992)
approach to monitoring convergence based on parallel chains with “over-dispersed starting points” (see also Gelman,
et al. 2004, ch 11). Second, we calculate the “effective” sample size (corrected for autocorrelation) for the parameters
of the model. Finally, we visually evaluate “trace” plots from our simulated Markov chains.
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of disasters, since the probability of disasters is essentially pinned down by the frequency of large

and unusual events (wars, depressions, and financial crises).

Importantly, our priors in no way downweight the possibility that there are no rare disasters

in the data generating process, or that the disasters are in fact small. Thus, our results on the

importance of disasters are in no sense “built in” to our priors. We further verify this in section 6

by re-estimating the model using artificial data generated from a model without disasters. We show

that if the model were truly generated by a process without disasters, our model would deliver a

tight posterior around zero on the importance of disasters for asset prices—in stark contrast to our

results based on estimating the model using actual data.

We limit the scope of disasters by setting an upper bound on the half-life of the disaster gap. This

restriction rules out the possibility that consumption growth in a given period can be explained by

disasters that occurred decades earlier.14 We also place upper bounds on the frequency of disasters.

Our results are not sensitive to this assumption. Finally, recall that νi,t is introduced mainly to

aid numerical convergence of our MCMC sampling algorithm. We therefore restrict its magnitude

such that it has a negligible effect on the predictions of the model.

We have extensively investigated the robustness of our asset pricing results to alternative spec-

ifications of the priors. For example, priors that restrict disasters to occur less frequently yield

similar results because these specifications still allow for the infrequent occurrence of very large

disasters, which contribute most to the equity premium.

5 Empirical Results

Table 1 presents our estimates of the disaster parameters for our baseline case. For each parameter,

we present the parametric form of the prior distribution, the mean of the prior and its standard

deviation, as well as the posterior mean and posterior standard deviation. We refer to the posterior

mean of each parameter as our point estimate for that parameter.

The principle new features of our model relative to the Rietz-Barro model of permanent, instan-

taneous disasters are 1) the possibility of recoveries after disasters, and 2) the notion that disasters

may unfold over several years. We find strong empirical support for both of these features. We can

gauge the extent to which our results imply that disasters are followed by recoveries by comparing

our estimate of φ—the mean of the short-run shock φi,t—and θ—the mean of the long-run shock θi,t.

14This approach is analogous to one used in the asset-pricing literature of placing restrictions on jumps in returns
and volatility (Eraker, Johannes and Polson, 2003).
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We estimate φ = −0.111, while we estimate θ = −0.025. This implies that the short-term negative

shock to consumption during disasters is on average 11.1% per year, while the long-run negative

impact of the disaster on consumption is only 2.5% per year. In other words, most disasters are

followed by substantial recoveries.

Our estimate of pCe—the probability that a country exits a disaster once one has begun—

provides strong support for the notion that disasters unfold over several years. According to our

estimates, a country that is already in a disaster will continue to be in the disaster in the following

year with a 0.835 probability. This estimate implies that the average length of disasters is roughly

6 years, while the median length of disasters is 4 years.

To get a better sense for what these parameters imply about the nature of consumption disasters,

Figure 2 plots the impulse response of a “typical disaster.” This prototype lasts for 6 years, and

the sizes of the short-run and long-run effects are set equal to the respective posterior means of

these parameters for each of the six disaster years (i.e. φi,t = φ and θi,t = θ). The figure shows that

the maximum short run effect of this typical disaster is approximately a 27% fall in consumption

(a 0.32 fall in log consumption), while the long-run negative effect of the disaster is approximately

14%.15

Our estimates of σφ and σθ—the standard deviation of the short-run shock φi,t and long-run

shock θi,t—are 0.083 and 0.121, respectively. The large estimated values of these standard deviations

reveals that there is a huge amount of uncertainty during disasters about the short-run as well as

the long-run effect of a disaster on consumption. Figure 3 illustrates this. Consider an agent at

time 0 who knows that a disaster will begin at time 1 but knows nothing about the character of

this disaster beyond the unconditional distribution. The solid line in Figure 3 plots the mean of

the distribution of beliefs of such an agent about the change in log consumption going forward

relative to what his beliefs were before he received the news about the start of a disaster.16 The

dashed lines in the figure plot the median, 5%, and 95% quantiles of this same distribution. Figure

3 therefore gives an ex ante view of disasters, while Figure 2 gives an ex post view of a particular

disaster.

Figure 3 illustrates the huge risk associated with disasters. When a disaster strikes, there is a

non-trivial probability that consumption will be more than 50% lower than without the disaster

15The maximum drop is “only” roughly twice the size of the long-run drop even though the average size of the
short-run shocks is more than four times larger than the average size of the long-run shock. This is because the effect
of the short-run shocks in the first few years of the disaster have largely died out by the end of the disaster.

16In other words, the solid line in Figure 3 plots E[∆ci,t+z|Ii,t = 1,Ξt−1] - E[∆ci,t+z|Ii,t = 0,Ξt−1] for z = 0, 1, 2...
and where Ξt−1 denotes the information set known to agents at time t− 1.
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even 20-25 years later. This long left tail of the disaster distribution is particularly important for

asset pricing. The median long-run effect is smaller than the mean long-run effect because the

distribution of disaster sizes is negatively skewed. At first glance, Figure 3 seems to suggest more

permanence in disasters than the typical disaster graph in Figure 2. This pattern arises because

the average short-run effect depicted in Figure 3 averages over many disasters of varying lengths

and is, therefore, muted relative to the individual disasters, which reach their troughs at different

points in time.17

Figure 4 provides more detail about how our model interprets the evolution of consumption

for France, Korea, Chile, and the United States.18 The two lines in each panel plot consumption

and our estimate of potential consumption. The bars give our posterior probability estimate that

a country was in a disaster in each year. For France, the model picks up WWI and WWII as

disasters. The model views WWII as largely a transitory event for French consumption. The

permanent effect of WWII on French consumption is estimated to be only about 7%. The French

experience in WWII is typical for many European countries. For South Korea, our model interprets

the entire period from 1940 to 1960 as a single long disaster that spans WWII and the Korean War.

In contrast to the experience of many European countries, our estimates suggest that the crisis in

the 1940’s and 1950’s had a large permanent effect on South Korean consumption (48%). This

pattern is typical of the experience of Asian countries in our sample during WWII.

While the bulk of the disasters we identify are associated with world disasters, we also identify

a number of idiosyncratic disaster events. Some of these idiosyncratic disasters are associated with

financial or debt crises. For example, we identify a disaster in South Korea at the time of the Asian

Financial Crisis and in Argentina at the time of their 2002 sovereign default.19 Other idiosyncratic

disasters are associated with regional wars, coups, or revolutions. These include Chile’s experience

during the 1970’s.

The last panel in Figure 4 plots results for the United States. Relative to most other countries in

17For example, a short disaster may reach its trough after 2 years while a long disaster may reach its trough after
10 years. The average drop in consumption at a given point in time (relative to the start of the disaster) is an average
over some disaster paths for which consumption is already recovering after having reached its trough at an earlier
point and other disaster paths for which consumption is still falling toward a later trough. The trough in average
consumption is, therefore, far less severe than the average of the troughs across different disasters. In contrast, the
long-run average level of consumption is equal to the average of the long-run levels of consumption across the different
disaster paths. It is the fact that the trough in average consumption is so much less than the average of the troughs
that makes the average disaster path look more permanent than in the case of the prototype disaster.

18More detailed figures for all the countries in our study are reported in a web appendix.
19Countries such as Indonesia and Thailand likely also experienced disasters during the Asian Financial Crisis but

are not in the data set.
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our sample, the United States was a tranquil place during our sample period. The model identifies

two disaster episodes for the United States. The first disaster begins in 1914 and lasts until 1922,

encompassing both WWI and the Great Influenza Epidemic of 1918-1920. The Great Depression

is identified as a second disaster for U.S. consumption. The Great Depression is the larger of the

two disasters with a 26% short-run drop in consumption and a 14% long-run drop.

One could also ask whether the relative tranquility of the U.S. experience since the Great

Depression provides evidence that the United States is fundamentally different from other countries

in our sample. However, the posterior probability for a randomly selected country experiencing no

disasters over a 72-year stretch is 0.12 according to our model. The posterior probability of at

least one out of 24 countries experiencing no disaster over a 73-year stretch is 0.60. Therefore,

the tranquility of the U.S. experience (which is not randomly selected) does not provide evidence

against our model.

Figure 5 plots our estimates of the probability that a “world disaster” began in each year.20 Our

model clearly identifies World War I, the Great Depression, and World War II as world disasters.

Our estimate of pW—the probability that a world disaster begins—is 3.7% per year. Countries

are estimated to have a 62.3% probability of entering disasters conditional on a world disaster,

but a much lower (0.6% per year) probability of entering a disaster “on their own.” The overall

probability that a country enters a disaster is 2.8% per year.21

Our Bayesian estimation procedure does not deliver a definitive judgment on whether a disaster

occurred at certain times and places but rather provides a posterior probability of whether a disaster

occurred. For expositional purposes, however, it is useful to define “disaster episodes” as periods

when the posterior probability of a disaster is estimated to be particularly high. We define a

disaster episode as a set of consecutive years for a particular country such that: 1) The probability

of a disaster in each of these years is larger than 10%, and 2) The sum of the probability of disaster

for each year over the whole set of years is larger than one.22 In a few cases, our model is not able

20This is the posterior mean of IW,t for each year. In other words, with the hindsight of all the data up until 2006,
what is our estimate of whether a world disaster began in say 1940?

21The overall probability that a country will enter a disaster is pW pCbW +(1−pW )pCbI . Since the three parameters
involved are not independent, we cannot simply multiply together the posterior mean estimates we have for them to
get a posterior mean of the overall probability of entering a disaster. Instead, we use the joint posterior distribution
of these three parameters to calculate a posterior mean estimate of the overall probability that a country enters a
disaster.

22More formally: A disaster episode is a set of consecutive years for a particular country, Ti, such that for all t ∈ Ti
P (Ii,t = 1) > 0.1 and

∑
t∈Tt

P (Ii,t = 1) > 1. The idea behind this definition is that there is a substantial posterior
probability of a disaster for a particular set of consecutive years. We stress that the concept of a disaster episode
is purely a descriptive device and does not influence our analysis of asset pricing. One could consider broader or
narrower definitions (lower or higher cutoffs) of disaster episodes. In our experience, there are few borderline cases.
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to distinguish between two or more episodes of economic turmoil that occur in the same country

over a short span of time and therefore lumps these events into one long disaster episode.23

Using this definition, we identify 53 disaster episodes. Summary statistics for the main disaster

episodes are reported in Table 2, including the short-run and long-run effects of the disaster. In all

cases, these statistics measure the negative effect of the disaster on the level of consumption relative

to the counter-factual scenario where the country instead experienced normal trend growth. On

average, the maximum drop in consumption due to the disasters is 29%, while the permanent effect

of disasters on consumption is on average 14%, consistent with our estimates of the permanent and

transitory components of disaster shocks.

The goal of our empirical model is to capture the dynamics of consumption during major

disasters. To assess how well the model performs on this dimension, Figure 6 compares the path of

consumption after the onset of disasters in the model and in the data. For the data, we consider

the 49 disaster episodes that are not left censored in our data—i.e., begin after the first year of data

we have for that country. For these disaster episodes we consider the evolution of consumption for

10 years after the onset of the disaster episode relative to its level in the year before the disaster

episode began and calculate the median across episodes for each year. For the model, we simulate

1000 disasters, consider analogous paths for consumption and calculate the median as well as the

25th and 75th quantiles of the distribution of outcomes for consumption across these disasters.

The path of consumption after the onset of a disaster in the model turns out to match its data

counterpart quite well. At all horizons, the median for the data is well within the inter-quartile

range for the model.

Tables 3 and 4 present the remaining parameter estimates for our empirical model. Table

3 presents country-specific estimates of the mean growth rate of potential consumption for the

countries in our sample. In most cases, the growth rate of potential consumption is estimated to

have risen in 1946 and fallen in 1973, consistent with the large literature on the post-WWII “growth

miracle” and the “productivity slowdown.” The structural features of the economy generating such

breaks are not incorporated into our model, since investors assume that any changes in long-run

growth rates they may have observed in the past will not repeat themselves in the future. An

interesting question is whether there is a systematic tendency of such breaks to be positive or

negative following disaster episodes. Such a pattern does not appear to be present in the data.

While WWII was followed by a 30 year period of high growth in many countries, this pattern did

23Examples include WWII and the Korean war for South Korea and WWI and the Great Depression for Chile.
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not apply following WWI or the Great Depression. Nakamura, Sergeyev, and Steinsson (2012)

analyze movements in long-run growth rates around disaster periods.24

Table 4 presents country-specific estimates of the variances of the permanent and transitory

shocks to consumption. We find a great deal of evidence for a break in the variance of the transitory

shock in 1946. For all but five of the countries in our data set, our estimates of the variance of the

transitory shocks to consumption fell dramatically from the earlier period to the later period. Romer

(1986) argues that in the case of the United States this volatility reduction is due to improvements

in measurement.

For robustness, we have estimated an alternative specification of our model in which we assume

that φi,t—the short-run disaster shock—has a Gamma distribution. Most of the estimates are

similar to the baseline case. The main difference is that the gamma model assigns a somewhat

larger portion of the volatility of consumption during disasters to the short-run shock as opposed

to the long-run shock.

6 Asset Pricing

We follow Mehra and Prescott (1985) in analyzing the asset-pricing implications of the consump-

tion process we estimate in section 5 within the context of a representative consumer endowment

economy. We assume that the representative consumer in our model has preferences of the type

developed by Epstein and Zin (1989) and Weil (1990). For this preference specification, Epstein and

Zin (1989) show that the return on an arbitrary cash flow is given by the solution to the following

equation:

Et

[
βξ
(
Ci,t+1

Ci,t

)(−ξ/ψ)
R

−(1−ξ)
w,i,t+1Rj,i,t+1

]
= 1, (4)

where Rj,i,t+1 denotes the gross return on an arbitrary asset j in country i from period t to period

t+1, and Rw,i,t+1 denotes the gross return on wealth of the representative agent in country i, which

in our model equals the endowment stream. The parameter β represents the subjective discount

factor of the representative consumer. The parameter ξ = 1−γ
1−1/ψ , where γ is the coefficient of

relative risk aversion (CRRA), and ψ is the intertemporal elasticity of substitution (IES), which

governs the agent’s desire to smooth consumption over time.25

24Bansal and Yaron’s (2004) long-run risk model suggests that persistent movements in the average growth rate of
consumption and time variation in economic uncertainty could raise the equity premium implied by our model.

25The representative-consumer approach that we adopt abstracts from heterogeneity across consumers. Wilson
(1968) and Constantinides (1982) show that a heterogeneous-consumer economy is isomorphic to a representative-
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The asset-pricing implications of our model with Epstein-Zin-Weil (EZW) preferences cannot

be derived analytically. We therefore use standard numerical methods.26 We begin by calculating

returns for two assets: a one period risk-free bill and an unleveraged claim on the consumption

process. In section 6.3, we calculate asset prices for a long-term bond and allow for partial default

on bills and bonds during disasters.

Our asset pricing data includes rates of return for stocks, bonds and bills for 17 countries over

long periods. The average arithmetic real rate of return on stocks is 8.1% per year, while the average

arithmetic real rate of return on short term bills is 0.9% per year. The average equity premium is

therefore 7.2% per year. If we view stock returns as a levered claim on the consumption stream,

the target equity premium for an unleveraged claim on the consumption stream is lower than that

for stocks. According to the Federal Reserve’s Flow-of-Funds Accounts for recent years, the debt-

equity ratio for U.S. non-financial corporations is roughly one-half. This amount of leverage implies

that the target equity premium for an unleveraged consumption claim in our model should be 4.8%

per year (7.2/1.5).27 We therefore take 4.8% per year as the target for the equity premium in our

analysis.

To analyze the asset-pricing implications of our model we must choose values for the CRRA,

γ, the IES, ψ, and the discount factor, β. There is little agreement within the macroeconomics

and finance literature about the appropriate value for the IES. Hall (1988) estimates the IES to

be close to zero. This estimate is obtained by analyzing the response of aggregate consumption

growth to movements in the real interest rate over time. Yet, as noted by Bansal and Yaron

(2004) and Gruber (2006), the interest rate and consumption growth result from capital-market

equilibrium, making it difficult to estimate the causal effect of one on the other without strong

consumer economy if markets are complete and agents have expected utility preferences. See also Rubinstein (1974).
Constantinides and Duffie (1996) argue that highly persistent, heteroscedastic, uninsurable income shocks can resolve
the equity-premium puzzle.

26We solve the integral in equation (4) on a grid. Specifically, we start by solving for the price-dividend ratio for
a consumption claim. In this case we can rewrite equation (4) as PDRCt = Et[f(∆Ct+1, PDR

C
t+1)], where PDRCt

denotes the price dividend ratio of the consumption claim. We specify a grid for PDRCt over the state space. We
then solve numerically for a fixed point for PDRCt as a function of the state of the economy on the grid. We can then
rewrite equation (4) for other assets as PDRt = Et[f(∆Ct+1,∆Dt+1, PDR

C
t+1, PDRt+1)], where PDRt denotes the

price dividend ratio of the asset in question and ∆Dt+1 denotes the growth rate of its dividend. Given that we have
already solved for PDRCt , we can solve numerically for a fixed point for PDRt for any other asset as a function of
the state of the economy on the grid. This approach is similar to the one used by Campbell and Cochrane (1999)
and Wachter (2008).

27Dividing the equity premium for levered equity by one plus the debt-equity ratio to get a target for unleveraged
equity is exact in the simple disaster model of Barro (2006). A concern with this approach in our case is that firms
may have an incentive to default during disasters. We abstract from this issue. Abel (1999) argues for approximating
levered equity by a scaled consumption claim. Bansal and Yaron (2004) and others have adopted this approach. For
our model, the two approaches yield virtually indistinguishable results.
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structural assumptions. These concerns are sometimes addressed by using lagged interest rates as

instruments for movements in the current interest rate. However, this instrumentation strategy is

successful only if there are no slowly moving parameters of preferences and technology (including

especially parameters related to uncertainty) that affect interest rates and consumption growth.

Alternative procedures for identifying exogenous variation in the interest rate sometimes generate

much larger estimates of the IES. For example, Gruber (2006) uses instruments based on cross-

state variation in tax rates on capital income to estimate a value close to 2 for the IES. As a

consequence, a wide variety of parameter values for the IES are used in the asset-pricing literature.

On the one hand, Campbell (2003) and Guvenen (2008) advocate values for the IES well below

one, while Bansal and Yaron (2004) use a value of the IES of 1.5 and Barro (2009) relies on Gruber

(2006) to use a value of 2. We argue below that low values of the IES are starkly inconsistent

with the observed behavior of asset prices during consumption disasters. We therefore focus on

parameterizations with an IES equal to two—ψ = 2—as our baseline case.

We present results for several different values of the CRRA. Our baseline value of the CRRA

is chosen to match the equity premium in the data. Differences in the discount factor β have only

minimal effects on the equity premium in our model.28 They do, however, affect the risk-free rate.

We choose the discount factor β to match the risk-free rate in the data for our baseline values for

γ and ψ. This procedure yields a value of β = exp(−0.034).

The consumption data we analyze reflect any international risk sharing that agents may have

engaged in. The asset-pricing equations we use are standard Euler equations involving domestic

consumption and domestic asset returns. In principle, we could also investigate the asset-pricing

implications of Euler equations that link domestic consumption, foreign consumption, and the

exchange rate (see, e.g., Backus and Smith, 1993). A large literature in international finance

explores how the form that these Euler equations take depends on the structure of international

financial markets. Analyzing these issues is beyond the scope of this paper. However, recent work

suggests that rare disasters may help to explain anomalies in the behavior of the real exchange

rate.29

28In the continuous time limit of our discrete time model, the equity premium is unaffected by β.
29Papers on this topic include Bates (1996), Brunnermeier et al. (2008), Burnside et al. (2008), Farhi et al. (2009),

Farhi and Gabaix (2008), Guo (2007) and Jurek (2008).
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6.1 The Equity Premium with Epstein-Zin-Weil Preferences

Table 6 presents our main results regarding the equity premium. The equity premium is reported for

three cases: our baseline model as estimated in section 5, a version of our model without disasters

as in Mehra and Prescott (1985), and a version of the model in which disasters are permanent and

occur in a single period as in Barro (2006).30 The statistics we report are the logarithm of the

arithmetic average gross return on each asset (logE[Rj,i,t+1]). These calculations are based on the

posterior means of the parameters of our model.31 We discuss sampling uncertainty below.

Our estimated model matches the observed equity premium given a CRRA of 6.4. For this

CRRA, the model yields an equity premium about ten times larger than the model without dis-

asters. The model without disaster risk implies essentially no equity premium, in line with Mehra

and Prescott (1985). Our analysis shows, therefore, that even accounting for the partially tran-

sitory nature of disasters, and the fact that they unfold over multiple years, disaster risk greatly

amplifies the equity premium. On the other hand, the model with permanent, one-period disasters

of the type analyzed in Barro (2006) yields an equity premium roughly 10 times larger than our

estimated model. Our analysis, thus, also shows that ignoring recoveries and the multi-year nature

of disasters greatly overstates their asset-pricing implications. Given the close link between the

equity premium and the welfare costs of economic fluctuations (Alvarez and Jermann, 2004; Barro,

2009), these differences imply that our model yields costs of economic fluctuations substantially

larger than a model that ignores disaster risk but substantially smaller than the Rietz-Barro model

of permanent and instantaneous disasters.

Figure 7 depicts equity and bond returns over the course of a “typical” disaster when IES = 2

and γ = 6.4. When the news arrives that a disaster has struck, the stock market crashes. In

contrast, the return on risk-free bills is not affected in this initial period. This crash in the value of

stocks relative to bonds at the onset of the disaster coincides with a sizable drop in consumption.

The fact that stocks payoff poorly at the onset of disasters, when consumption is low and the

marginal utility of consumption is high, implies that stocks must yield a considerable return-

premium over bills in normal times. In other words, the equity premium in normal times in our

model is compensation for the risk of a disaster occurring.

30For the model without disasters, we set the probability of entering a disaster to zero. For the model with
permanent, one-period disasters, we set the probability of exiting a disaster equal to one, assume that φi,t = θi,t, and
that the distribution of these shocks corresponds to the distribution of the peak-to-trough drop in consumption over
the course of disasters in our baseline model.

31For the parameters σ2
ε,i,t and µi,t we use the values for the post-1946 and post-1973 periods, respectively. And

we assume that agents view these parameters as being fixed.
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The consumption decline in any given year of a disaster is substantially smaller than the peak-

to-trough declines used to calibrate simpler disaster models—we estimate the short-run effect of

the disaster on consumption to be about 10% on average. In Barro (2006), disasters of a magnitude

of 10% have essentially no effect on the equity premium. How, then, do our estimates generate a

sizable disaster premium? The key point is that the current short-run decline in consumption is

paired with news about future declines in consumption and a large increase in uncertainty about

future consumption—effects that do not arise in simpler disaster models. The dramatic decline

in expected future consumption growth and increase in uncertainty at the onset of the disaster

contribute to the magnitude of the stock-market decline and to the premium households are willing

to pay for assets that insure against disaster events.

Table 7 presents more detailed results and results for additional parameterizations. For each

specification, we present results on the one hand for a long sample with a representative set of

disasters and on the other hand for a long sample for which agents expect disasters to occur with

their normal frequency but no disasters actually occur. This latter case is meant to capture asset

returns in “normal” times, such as the post-WWII period (at least up to 2006) in most OECD

countries.

To assess the importance of allowing for recoveries after disasters, specification 2 presents asset-

pricing results for the case in which disasters are completely permanent (but unfold over several

years).32 With permanent disasters and a CRRA of 6.4, the equity premium doubles to 10%. A

world in which disasters are completely permanent is clearly much riskier than a world in which

there is substantial recovery after disasters. This specification of the model matches the equity

premium in the data when the CRRA is set to 4.4.33 The fact that our model allows for partial

recovery after disasters thus accounts for a large part of the difference in our results and the results

of Barro (2006) and Barro and Ursua (2008).

To assess the role of the multi-period nature of disasters in our model, specification 3 presents

results for a case in which the drop in consumption associated with a disaster occurs in a single

period and the drop is permanent. With a CRRA of 6.4, this model yields an equity premium

of 47%. We can match the equity premium in the data for this specification of the model with

32We consider a version of our model in which φi,t = θi,t and set the mean and variance of these shocks for each
year of the disaster equal to the mean and variance of peak-to-trough drops in consumption due to disasters in our
baseline model divided by the expected length of disasters.

33Notice that we lowered the CRRA by roughly 30% and this change leads to a drop in the equity premium of about
50%. This pattern illustrates that the equity premium is highly convex in the CRRA in our model. Specifications 5
and 6 of Table 7 illustrate this point further.
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a CRRA of 3.0.34 This specification raises the equity premium because the stock market crash

coincides perfectly with the trough in consumption—when the marginal utility of consumption is

highest. In contrast, when disasters unfold over multiple periods, the stock market crash occurs at

the onset of the disaster, while a large fraction of the drop in consumption occurs in subsequent

periods. Also, if the drop in consumption associated with a disaster occurs in a single period,

it does not lead to an increased desire to save. In multi-period disasters, expectations of further

drops in consumption increase the desire to save. This response strengthens the demand for stocks,

limiting the magnitude of the stock-market crash.

To assess the importance of the short-run drop in consumption during disasters, specification 4

presents results for a case in which the short-run disaster shocks are set to zero. In this specification,

the occurrence of a disaster does not bring with it a sharp drop in consumption followed by a partial

recovery. Rather, consumption falls gradually due to the long-run disaster shocks while the disaster

persists. With a CRRA of 6.4, this specification yields an equity premium of 3.0%—about 60%

of the equity premium in the benchmark specification. This shows that both the short-run and

long-run effects of disasters on consumption are important for the equity premium.

An advantage of our formal estimation approach is that it allows us to investigate the strength

of the statistical evidence for disaster risk as an explanation for the equity premium. Because they

occur rarely, there is much less information on the frequency, size, and shape of disasters than on

business-cycle phenomena. This perspective suggests that the statistical uncertainty regarding the

estimates of the equity premium presented above may be large. The posterior distribution for the

equity premium implied by the posterior distribution of the parameters of our model is plotted in

Figure 8 for our baseline parameter values. Figure 8 shows that our estimates place more than

90% weight on parameter combinations that generate an equity premium of more than 3.3%. The

centered 90% probability interval for the equity premium implied by the model is [3.0%, 7.0%].

A different way of assessing this issue is to plot the posterior distribution of the value of the

CRRA that matches the observed equity premium. This distribution is plotted in Figure 9.35 The

centered 90% probability interval for the CRRA is [5.3, 7.8]. Thus, despite the limited data, the

34The model analyzed in specification 3 is very similar to the model analyzed by Barro and Ursua (2008). Their
model matches the equity premium when γ = 3.5, while the model in specification 3 matches the equity premium
for γ = 3.0. This difference arises because the size distribution of disasters in our model is relative to trend, while
the peak-to-trough distribution used by Barro and Ursua (2008) does not adjust for trend growth over the course
of the disaster and because of differences between our approach to estimating the distribution of disasters and the
non-parametric approach used by Barro and Ursua (2008).

35For every parameter combination sampled from the estimated posterior distributions of the parameters, we
calculate the value of the CRRA required to match the equity premium.
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observed disasters provide substantial statistical evidence that it is possible to explain the observed

equity premium with values of the CRRA less than 10.

To check that our results are not somehow “built in” to our priors or estimation algorithm,

we analyze what our estimation algorithm implies for a data set generated from a model without

disasters; that is, a setting similar to the one used by Mehra and Prescott (1985). In this counter-

factual exercise, it is important that we allow ourselves only as many observations as we have in

the data. We therefore simulate an artificial dataset of the same size as our data (24 countries and

a total of 2685 observations) from our model with the disaster probabilities set to zero. We then

estimate our model on these data and calculate the posterior distribution of the equity premium.

This distribution is plotted in Figure 10. For this alternative data set, our model places a large

probability on the equity premium being below 1%. These results are strikingly different from

those implied by our estimated model (Figure 8), indicating that it is the data—not our priors or

estimation algorithm—that lead us to the conclusion that the fear of rare disasters can explain a

sizable equity premium.

It is interesting to note in Figure 10 that while the majority of the mass is located close to

zero, the distribution has a long right tail. This distribution implies that even if no disasters were

observed in a sample the size of ours, agents might still place some weight on the notion that

disasters occur with a non-trivial probability and that the sample they had observed was simply

not representative of the underlying process (a “Peso problem”).

For robustness, we also calculated asset-pricing results for the alternative specification of our

model in which the short-run disaster shocks follow a Gamma distribution. This case yields similar

asset pricing results, which are presented in specification 7 of Table 7. With γ = 6.4 and an IES

of 2, the equity premium is 3.2% and the risk-free rate is 2.2%. The gamma model matches the

equity premium and risk-free rate when γ = 7.7. This difference arises because the gamma model

allocates slightly more of the overall volatility in consumption to the short-run shock than to the

long-run shock, compared to the baseline model.

6.2 The Equity Premium with Power Utility

Much work on asset pricing—including Mehra and Prescott (1985), Rietz (1988) and Barro (2006)—

considers the special case of power utility. In this case, the coefficient of relative risk aversion

equals the reciprocal of the IES—γ = 1/ψ. In other words, a single parameter governs consumers’

willingness to bear risk and substitute consumption over time. Asset pricing results for our model
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with power utility are presented in specifications 8-10 of Table 7. With γ = 1/ψ = 4—the utility

specification used by Barro (2006)—our model yields starkly different results from those with an

IES of 2. The most striking difference is that the equity premium in normal times is negative,

i.e., lower than in a model in which no disasters can occur. Since the overall equity premium is

positive, this model implies that high returns during disasters make up for low returns in normal

times. This outcome contrasts with Barro (2006), in which the equity premium arises in normal

times, and stocks do poorly during disasters.

Why does our model with power utility yield such different results from earlier work by Barro

(2006)? The key difference is that the multi-period disasters in our model yield large movements in

expected consumption growth. Figure 11 presents a time-series plot of the behavior of equity and

bond returns over the course of a “typical” disaster for our baseline multi-period disaster model with

power utility. Notice that there is a huge positive return on equity at the start of the disaster (when

the news arrives that a disaster has struck). The reason is that entering the disaster state causes

agents in the model to expect further drops in consumption going forward. Given the low value of

the IES in this model (1/4) this generates a tremendous desire to save to smooth consumption that

is large enough to drive up stock prices, despite the bad news about future dividends associated

with the disaster. This pattern implies that agents need not be compensated for holding stocks in

normal times to offset disaster risk—in fact, equity is a hedge against disaster risk and, therefore,

commands a negative premium in normal times. During disasters, stockholders demand an equity

premium as compensation for the risk associated with the stock-market crash that occurs at the

end of the disaster. Needless to say, the prediction that stocks yield hugely positive returns at the

onset of disasters is highly counterfactual. We take this as strong evidence against low values of

the IES at least during times of disaster.36

These counterintuitive asset-pricing results arise because, in our estimated model, disasters

unfold over multiple periods, leading to strong movements in expected consumption growth. Figure

12 presents a plot analogous to Figure 11 for the case of a single-period permanent disaster when

agents have power utility. In this case, there is no change in expected consumption growth going

forward, since the disaster is over as soon as it begins. As a consequence, there is no increased

desire to save pushing up stock prices. Equity, thus, fares extremely poorly relative to bonds at

36Similarly counter-intuitive results for the case of IES < 1 have been emphasized by Bansal and Yaron (2004) and
Barro (2009). Bansal and Yaron (2004) observe that with an IES < 1 a fall in the growth rate of consumption or a
rise in uncertainty leads to a rise in the price-dividend ratio of stocks. Barro (2009) shows that with an IES < 1 a
rise in the probability of disasters also leads to a rise in the price-dividend ratio of stocks.
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times of disasters, and this behavior generates a large equity premium in normal times.

Another counterintuitive feature of the power utility case—emphasized by Gourio (2008)—is

that one-period permanent disasters yield a lower equity premium than one-period disasters that

are followed by partial recoveries—see specifications 9 and 10 in Table 7.37 The reason for this

difference is that, when agents expect a partial recovery after a disaster, they would like to borrow

when the disaster strikes to smooth consumption. This force depresses stock prices and thus raises

the equity premium. With an IES substantially below one, this force is strong enough that it

outweighs the fact that the news about future dividends is not as bad in the case of partially

permanent disasters as in the case of fully permanent disasters.

6.3 Long-Term Bonds, Inflation Risk, and Partial Default

The predictable movements in consumption surrounding disasters yield equilibrium movements in

real interest rates that do not arise in simpler disaster models. During disasters, consumers expect

consumption to keep falling and thus have an incentive to save. This force drives up the price-

dividend ratio for assets and drives down their expected returns. As a consequence, stock and bill

returns are lower on average during disasters than in normal times, even after the initial crash (see

Figure 7). Furthermore, the return on assets is temporarily high during the recovery period after

a disaster.

These features of asset prices in our model line up well with the data. Barro (2006) reports

low returns on bills and stocks during many disasters. He also presents evidence that real returns

on U.S. Treasury bills were unusually low during wars. This regularity is inconsistent with many

macroeconomic models (Barro, 1997, Ch. 12). There is, furthermore, some evidence that real

returns on bills are temporarily high after wars; for example, in the United States after the Civil

War and WWI. These features are absent in random-walk models of disasters, in which expected

consumption growth is constant.

The variation in expected consumption growth during disasters also implies a non-trivial term

structure of real interest rates. Our data contain information on real returns on long-term bonds

for 15 countries over a long sample period. The underlying claims are nominal government bonds

usually of around ten-year maturity. The average arithmetic real rate of return on these bonds is

37In specification 10, the probability of exiting a disaster equals one, implying that disasters last only one period.
The distribution of φi,t is equal to the distribution of the peak-to-trough drop in consumption over the course of
disasters in our baseline model. Finally, the distribution of θi,t is equal to the distribution of the long-run effect of a
disaster on consumption in our baseline model.
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2.7% per year. The real return on bills for the same sample is 1.5% per year. Thus, the average

real term premium in these data is 1.2% per year.

To approximate long-term bonds in our model, we consider a perpetuity with coupon payments

that decline over time. We denote the gross annual growth rate of the coupon payments by Gp.

We report results for Gp = 0.9, a value that implies a duration for our perpetuity close to that of

10-year coupon bonds.38

We begin by considering real bonds with no risk of default. The returns on such long-term

bonds in our baseline model are reported in the first column of Table 8. The average return on

such bonds is -2.1% per year. This result implies a term premium of -3.2% per year. In contrast,

the term premium in a version of our model without disasters is virtually zero. The reason the

long-term bonds have such low average returns in the presence of disasters is that they are an

excellent hedge against disaster risk.

To understand why the long bond is a valuable hedge against disasters, it is useful to compare

it to stocks. When a disaster occurs, stocks are affected in two ways. First, the disaster is a

negative shock to future expected dividends. This effect tends to depress stock prices. Second, the

representative consumer has an increased desire to save, which tends to raise stock prices. With

an IES=2, the first effect dominates the second one, and stocks decline in value at the beginning

of a disaster. The difference between a long-term bond and stocks is that the coupon payments on

the bonds are not affected by the disaster. The only effect that the disaster has on the long-term

bond is therefore to raise its price because of consumers’ increased desire to save. Since the price of

long-term bonds rises at the onset of a disaster, these bonds provide a hedge against disaster risk

and earn a lower rate of return than bills in normal times.

A potentially important feature of the data that we have so far left out of our model is the

possibility of partial default on nominal bonds. While literal default on bills is rare, even during

disasters, inflation may lead to partial default on bills, particularly during disasters. To calibrate the

probability of partial default, we follow Barro and Ursua (2009) in considering peak-to-trough drops

in stock prices over time periods that correspond roughly to consumption disasters. Extending their

empirical asset-price calculations to bills, we find that in 74% of the largest consumption disasters—

25 cases out of 34—stock returns are lower than bill returns.39 The average stock return in these

38The duration of 10-year bonds with yields to maturity and coupon rates between 5% and 10% ranges from 6.5
years to 8 years. Our perpetuity has a duration of 7 years when its yield is 5%.

39Here we identify disasters as events in which the peak-to-trough drop in consumption is larger than 17%. We
choose this cutoff because applying it to the data yields a set of events that corresponds closely to the disaster episodes
identified by our model. For the subset of countries that we use to estimate our model, we get 48 events as compared
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25 cases is -34%, while the average bill return is -3%. In the remaining 9 cases, the real return on

stocks and bonds are similar. In these cases, the low real returns on bills (and bonds) are caused

by huge amounts of inflation. These cases also tend to be ones in which the measurement of the

timing of returns is most suspect because of market closure and controls on goods and asset prices.

These calculations suggest that an appropriate calibration of the probability of partial default

is 26% (9/34). To be conservative, we set the probability of partial default to 40%, as in Barro

(2006). The second and third columns of Table 8 report results for calibrations that allow for

partial default on bills. For a CRRA of 6.4, this modification lowers the equity premium from 4.8%

to 3.3%. Raising the CRRA to 7.5 restores the equity premium to 4.8%.

The news that a disaster has struck may affect the returns on long-term bonds more than the

returns on bills if it raises inflationary expectations without leading to an immediate jump in the

price level. This is one possible reason for the positive term premium on long-term nominal bonds

in the data. We can match this term premium by raising the probability of partial default on

long-term bonds relative to short-term bonds. The fourth column in Table 8 reports results for a

case in which the probability of partial default on the perpetuity is 84%, while the probability of

partial default on short-term bonds is 40%. For these probabilities of partial default, our model

matches the term premium on nominal bonds in the data.

Our model implies that, without default risk on bonds, the term structure is downward sloping;

but introducing partial default can match the observed upward-sloping term structure for nominal

bonds. If most of the default risk comes from inflation risk, our model implies that the term

structure for real bonds should be less upward sloping or even downward sloping. In the United

Kingdom, a large and liquid market for indexed government bonds has existed for several decades.

Piazzesi and Schneider (2006) document that while the U.K. nominal yield curve has been upward

sloping, the real yield curve has been downward sloping. In the United States, indexed bonds

(TIPS) have been trading since 1997. Piazzesi and Schneider (2006) document that the TIPS curve

over this period appears to be mostly upward sloping, contrary to our prediction. They caution,

however, that this evidence is hard to assess because of the short sample and poor liquidity in the

TIPS market.40

to 53 disaster episodes identified by our model. The average drop in consumption for these events is 32%, compared
to 29% for our disaster episodes. There are 34 events for which we have data on both stock and bill returns.

40See also Evans (1998), Barr and Campbell (1997) and Campbell, Shiller, and Viceira (2009).
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6.4 Additional Predictions

Recent work by van Binsbergen, Brandt, and Koijen (2010) and Binsbergen et al. (2010) has shown

that short term dividend strips on the aggregate stock market have substantially higher expected

returns than the stock market as a whole.41 They point out that this fact is difficult to match

using leading equilibrium asset-pricing models, such as Campbell and Cochrane (1999), Bansal and

Yaron (2004), and Barro (2006). In contrast, this feature arises naturally in our model. For the

baseline calibration of our model, a one-year dividend strip on unleveraged equity—i.e., an asset

that pays off a single dividend equal to consumption in the next period—has a return premium of

13.7% over bills outside of disasters, compared to an unleveraged equity premium of 4.9% for the

stock market as a whole. This pattern reflects the presence of recoveries in our model, which raise

the riskiness of short-term assets relative to long-term assets.42

Our model is related, in general terms, to other explanations for the equity premium in which

predictable movements in consumption play an important role. A leading example is the long-run

risks model of Bansal and Yaron (2004). However, one important difference between our model and

theirs is that, while consumption growth is highly predictable during disasters and in the periods

immediately following disasters, we do not require that it be predictable in other periods. Since

disasters occur infrequently, the explanatory power of the price-dividend ratio in predicting future

consumption growth at medium and short horizons is close to zero in our model.43 In contrast, the

long-run risks model generates substantial forecastability of consumption growth using the price-

dividend ratio. Beeler and Campbell (2009) argue that this feature of the model is hard to reconcile

with U.S. consumption data, particularly in the post-WWII period.

The analysis of this section suggests that variation in expected consumption growth surrounding

disasters has important implications for asset pricing. It is nevertheless useful to ask what param-

eters would best approximate our estimated consumption process in the simpler random walk

framework studied by Rietz (1988) and Barro (2006). The equity premium in the random-walk

41The price of a k-year dividend strip is the present value of the dividend paid in k years.
42Lettau and Wachter (2007) present a model in which long-horizon assets are less risky than short-horizon assets.

A key feature of their model—like ours—is that negative shocks to dividends are associated with increases in expected
dividend growth. Lettau and Wachter posit an exogenous stochastic discount factor that generates important asset
pricing implications of these shocks for the cross-section of expected returns and use asset-price data to calibrate its
parameters. In our model, the stochastic discount factor is derived from the utility function of the representative
consumer and the dynamics of consumption. Our model therefore provides evidence of an important role for these
shocks based on consumption data alone.

43Specifically, we have analyzed regressions of consumption growth at 1, 3 and 5-year horizons on the current price
dividend ratios. The R2 of such regressions is consistently 3% or less.
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model is,

logERe − logRf = γσ2 + pE{b[(1− b)−γ − 1]},

where p denotes the probability of disasters, b denotes the permanent instantaneous fraction by

which consumption drops at the time of disasters, σ2 denotes the variance of consumption growth

in normal times, and γ denotes the coefficient of relative risk aversion. Fixing the probability of

disasters at our empirical estimate of 2.8%, we can replicate our baseline equity premium results

in the random-walk model with a fixed disaster size of b = 0.27.44 This value of b is substantially

smaller than in the parameterizations implied by Barro (2006) and Barro and Ursua (2008) where

the risk-adjusted disaster size is roughly 0.4.45 The smaller “effective” size of disasters implied by

our estimates arises from the importance of recoveries and multi-period disasters.

7 Conclusion

We estimate a quantitative model of consumption disasters that allows for recoveries, and for

disasters to unfold over multiple periods. We find strong evidence for both of these features.

Allowing for recoveries implies less risk associated with disasters, lowering the equity premium for

given risk aversion. Allowing disasters to unfold over multiple periods implies strongly predictable

movements in consumption, which also leads to a reduction in the equity premium. Even accounting

for these features of the data, and for the statistical uncertainty arising from the rare nature of

disasters, disaster risk greatly amplifies the equity premium.

Our estimated model matches the observed equity premium given a coefficient of relative risk

aversion (CRRA) of 6.4, with a centered 90% probability interval of [5.3, 7.8]. For these parameters,

a Mehra-Prescott type model that ignores disaster risk implies an equity premium close to zero. On

the other hand, the Rietz-Barro model yields an equity premium more than 10 times as large as our

benchmark model. These conclusions are robust to the inclusion of empirically realistic amounts

of default risk on government bonds.

The predictable movements in consumption growth we estimate surrounding disasters imply

that the intertemporal elasticity of substitution plays a more important role than in simpler disaster

44Specifically, this is the value of b that matches the observed equity premium for our baseline estimate of risk
aversion of γ = 6.4 and disaster probability p = 2.8%.

45Both Barro (2006) and Barro and Ursua (2008) study models with a distribution of disaster sizes. However, it is
possible to solve for the value of b that matches their equity premium results for a given value of p and γ. Barro and
Ursua (2008) analyze a model with a disaster probability of 0.0363 and γ = 3.5, implying that the equity premium
results can be replicated with b = 0.4. Barro’s (2006) calibration assumes a disaster probability of 0.017 and γ = 4,
implying that b = 0.36 is required to fit the equity premium.
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models. At the onset of a disaster, agents expect steep future declines in consumption, implying

a strong desire to save. If the intertemporal elasticity of substitution is low, stock prices will

counterfactually boom at the onset of disasters. This counterfactual prediction provides evidence

against low values of the IES at least during times of disaster. The predictable movements in

consumption we estimate also yield equilibrium movements in interest rates, a non-trivial term

structure of interest rates, and predictions for dividend strips on stocks that line up well with

recent empirical estimates.

A concern for tractability has required us to make a number of simplifying assumptions when

specifying our empirical model. For example, we assume that the short-run and long-run disaster

shocks are uncorrelated. In reality, these may be positively correlated. We also abstract from any

correlation in the size of contemporaneous disasters across countries and our specification for the

correlation in the timing of disasters is very simple (e.g. abstracts from geographic variation and

autocorrelation). Also, we do not incorporate time variation in growth and uncertainty during

normal times. Nakamura, Sergeyev, and Steinsson (2012) estimate a model that incorporates these

last two features and find that they have important asset pricing implications. As computational

costs continue to fall, we hope that future research will be able to relax more of these assumptions.

An interesting extension of our approach would be to estimate a model of time-variation in

disaster probabilities and trend growth rates. Aside from variation in the actual probability of

disasters, the perceived disaster probability may vary due to learning. Even conditioning on all

the available time-series data, our estimates suggest there is substantial uncertainty regarding

the disaster parameter, implying that learning may play an important role. Variation in disaster

probabilities and expected future growth rates, whether real or perceived, have the potential to

generate significant volatility of asset returns—an important feature of the asset pricing data.
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A Model Estimation

We employ a Bayesian MCMC algorithm to estimate our model. More specifically, we employ

a Metropolized Gibbs sampling algorithm to sample from the joint posterior distribution of the

unknown parameters and variables conditional on the data. This algorithm takes the following

form in the case of our model.

The full probability model we employ may be denoted by

f(Y,X,Θ) = f(Y,X|Θ)f(Θ),

where Y ∈ {Ci,t} is the set of observable variables for which we have data,

X ∈ {xi,t, zi,t, IW,t, Ii,t, φi,t, θi,t}

is the set of unobservable variables,

Θ ∈ {pW , pCbW , pCbI , pCe, ρz, θ, σ2θ , φ, σ2φ, µi, σ2ε,i,t, σ2η,i, σ2ν,i}

is the set of parameters. From a Bayesian perspective, there is no real importance to the distinction

between X and Θ. The only important distinction is between variables that are observed and

those that are not. The function f(Y,X|Θ) is often referred to as the likelihood function of the

model, while f(Θ) is often referred to as the prior distribution. Both f(Y,X|Θ) and f(Θ) are

fully specified in sections 3 and 4 of the paper. The likelihood function may be constructed by

combining equations (1)-(3), the distributional assumptions for the shocks in these equations and

the distributional assumptions made about Ii,t and IW,t in section 3. The prior distribution is

described in detail in section 4.

The object of interest in our study is the distribution f(X,Θ|Y ), i.e., the joint distribution of

the unobservables conditional on the observed values of the observables. For expositional simplicity,

let Φ = (X,Θ). Using this notation, the object of interest is f(Φ|Y ). The Gibbs sampler algorithm

produces a sample from the joint distribution by breaking the vector of unknown variables into

subsets and sampling each subvector sequentially conditional on the value of all the other unknown

variables (see, e.g., Gelman et al., 2004, and Geweke, 2005). In our case we implement the Gibbs

sampler as follows.

1. We derive the conditional distribution of each element of Φ conditional on all the other

elements and conditional on the observables. For the ith element of Φ, we can denote this

conditional distribution as f(Φi|Φ−i, Y ), where Φi denotes the ith element of Φ and Φ−i
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denotes all but the ith element of Φ. In most cases, f(Φi|Φ−i, Y ) are common distributions

such as normal distributions or gamma distributions for which samples can be drawn in a

computationally efficient manner. For example, the distribution of potential consumption for

a particular country in a particular year, xi,t, conditional on all other variables is normal.

This makes using the Gibbs sampler particularly efficient in our application. Only in the case

of a (ρz, σ
2
ε,i,t, σ

2
η,i, σ

2
ν,i, φ, σ2φ, σ2θ) are the conditional distributions not readily recognizable.

In these cases, we use the Metropolis algorithm to sample values of f(Φi|Φ−i, Y ).46

2. We propose initial values for all the unknown variables Φ. Let Φ0 denote these initial values.

3. We cycle through Φ sampling Φt
i from the distribution f(Φi|Φt−1

−i , Y ) where

Φt−1
−i = (Φt

1, ...,Φ
t
i−1,Φ

t−1
i+1, ...,Φ

t−1
d )

and d denotes the number of elements in Φ. At the end of each cycle, we have a new draw

Φt. We repeat this step N times to get a sample of N draws for Φ.

4. It has been shown that samples drawn in this way converge to the distribution f(Φ|Y ) under

very general conditions (see, e.g., Geweke, 2005). We assess convergence and throw away an

appropriate burn-in sample.

In practice, we run four such “chains” starting two from one set of initial values and two from

another set of initial values. We choose starting values that are far apart in the following way: The

first set of starting values has Ii,t = 0 for all i and all t and sets xi,t = ci,t and zi,t = 0 for all i and all

t. The second set of starting values is constructed as follows. Ii,t = 1 for all i and all t. We extract

a smooth trend (with breaks in 1946 and 1973) from ci,t. Denote this trend by cti,t and denote the

remaining variation in consumption as cci,t = ci,t − cti,t. We set zi,t = min(max(−0.5, cci,t), 0) and

xi,t = ci,t − zi,t. The first set of starting values thus attributes all the variation in the data to xi,t,

while the second attributes the bulk of the variation in the data around a smooth trend to zi,t.

Given a sample from the joint distribution f(Φ|Y ) of the unobserved variables conditional on

the observed data, we can calculate any statistic of interest that involves Φ. For example, we can

46The Metropolis algorithm samples a proposal Φ∗i from a proposal distribution Jt(Φ
∗
i |Φt−1

i ). This proposal dis-
tribution must by symmetric, i.e., Jt(xa|xb) = Jt(xb|xa). The proposal is accepted with probability min(r, 1) where
r = f(Φ∗i |Φ−i, Y )/f(Φt−1

i |Φ−i, Y ). If the proposal is accepted, Φti = Φ∗i . Otherwise Φti = Φt−1
i . Using the Metropolis

algorithm to sample from f(Φi|Φ−i, Y ) is much less efficient than the standard algorithms used to sample from known
distributions such as the normal distribution in most software packages. Intuitively, this is because it is difficult to
come up with an efficient proposal distribution. The proposal distribution we use is a normal distribution centered
at Φt−1

i .
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calculate the mean of any element of Φ by calculating the sample analogue of the integral∫
Φif(Φi|Φt−1

−i , Y )dΦi.
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Prior Dist. Prior Mean Prior SD Post. Mean Post SD.
pW Uniform 0.050 0.029 0.037 0.016
pCbW Uniform 0.500 0.289 0.623 0.076
pCbI Uniform 0.050 0.029 0.006 0.003
1-pCe Uniform 0.500 0.289 0.835 0.027
ρz Uniform 0.450 0.260 0.500 0.034
φ Uniform* -0.176 0.064 -0.111 0.008
θ Normal 0.000 0.200 -0.025 0.007
σφ Uniform* 0.098 0.047 0.083 0.006
σθ Uniform 0.130 0.069 0.121 0.015

TABLE I
Disaster Parameters

We specify uniform priors on φ* and σφ*, the mean and standard deviation of the underlying
normal distribution (before truncation). These priors imply (non-uniform) priors on φ and σφ. The
numbers in the table refer to the prior mean and standard deviation of φ and σφ.



Country Start Date End Date Max Drop Perm Drop Perm/Max Country Start Date End Date Max Drop Perm Drop Perm/Max
Argentina 1890 1908 -0.23 0.02 -0.07 Japan 1940 1952 -0.61 -0.41 0.67
Argentina 1914 1917 -0.13 -0.05 0.37 South Korea 1940 1960 -0.58 -0.48 0.83
Argentina 1930 1933 -0.16 -0.10 0.65 South Korea 1997 2004 -0.23 -0.18 0.81
Argentina 2000 2004 -0.10 -0.01 0.07 Mexico 1914 1918 -0.16 0.27 -1.66
Australia 1914 1923 -0.29 -0.14 0.48 Mexico 1930 1935 -0.24 -0.06 0.23
Australia 1930 1934 -0.24 -0.16 0.65 Netherlands 1914 1919 -0.45 -0.07 0.15
Australia 1939 1956 -0.31 -0.09 0.27 Netherlands 1940 1952 -0.55 -0.10 0.18
Belgium 1913 1920 -0.40 0.05 -0.12 Norway 1914 1924 -0.13 -0.04 0.33
Belgium 1939 1950 -0.52 -0.14 0.26 Norway 1940 1944 -0.08 -0.07 0.84
Brazil 1930 1932 -0.12 -0.05 0.46 Peru 1930 1933 -0.17 -0.08 0.47
Brazil 1940 1942 -0.07 0.00 0.01 Peru 1977 1993 -0.40 -0.37 0.93
Canada 1914 1926 -0.37 -0.20 0.55 Portugal 1914 1921 -0.28 -0.16 0.56
Canada 1930 1933 -0.29 -0.28 0.94 Portugal 1940 1942 -0.09 -0.07 0.74
Chile 1914 1934 -0.53 -0.36 0.69 Spain 1914 1919 -0.10 0.00 0.02
Chile 1955 1958 -0.07 -0.02 0.34 Spain 1930 1961 -0.59 -0.54 0.91
Chile 1972 1987 -0.58 -0.56 0.95 Sweden 1914 1923 -0.21 -0.15 0.72
Denmark 1914 1926 0 16 0 08 0 54 Sweden 1940 1951 0 28 0 14 0 51

Disaster Episodes
TABLE II

Denmark 1914 1926 -0.16 -0.08 0.54 Sweden 1940 1951 -0.28 -0.14 0.51
Denmark 1940 1950 -0.28 -0.11 0.40 Switzerland 1914 1921 -0.14 -0.09 0.62
Finland 1890 1893 -0.08 -0.01 0.18 Switzerland 1940 1950 -0.23 -0.15 0.65
Finland 1914 1921 -0.42 -0.22 0.52 Taiwan 1901 1916 -0.24 -0.09 0.37
Finland 1930 1934 -0.23 -0.11 0.49 Taiwan 1940 1955 -0.65 -0.46 0.71
Finland 1940 1945 -0.29 -0.14 0.48 United Kingdom 1914 1921 -0.20 -0.10 0.50
France 1914 1921 -0.22 0.08 -0.36 United Kingdom 1940 1946 -0.20 -0.08 0.39
France 1940 1945 -0.56 -0.07 0.12 United States 1914 1922 -0.24 -0.14 0.57
Germany 1914 1932 -0.45 -0.22 0.48 United States 1930 1935 -0.26 -0.14 0.53
Germany 1940 1950 -0.48 -0.35 0.71
Italy 1940 1949 -0.33 -0.15 0.45 Average -0.29 -0.14 0.42
Japan 1914 1918 -0.04 0.12 -2.73 Median -0.24 -0.10 0.48
A disaster episode is defined as a set of consecudite years for a particular country such that: 1) The probability of a disaster in each of these years is larger than
10%, 2) The sum of the probability of disaster for each year over the whole set of years is larger than 1. Max Drop is the posterior mean of the maximum
shortfall in the level of consumption due to the disaster. Perm Drop is the posterior mean of the permanent effect of the disaster on the level potential
consumption. Perm/Max is the ratio of Perm Drop to Max Drop.



Prior Dist. Prior Mean Prior SD Post. Mean Post SD. Post. Mean Post SD. Post. Mean Post SD.
Argentina Normal 0.02 1.00 0.015 0.010 0.018 0.011 0.008 0.011
Australia Normal 0.02 1.00 0.014 0.006 0.023 0.005 0.020 0.003
Belgium Normal 0.02 1.00 0.007 0.006 0.027 0.005 0.019 0.003
Brazil Normal 0.02 1.00 0.025 0.008 0.037 0.009 0.017 0.008
Canada Normal 0.02 1.00 0.027 0.005 0.025 0.005 0.018 0.004
Chile Normal 0.02 1.00 0.019 0.009 0.024 0.009 0.040 0.011
Denmark Normal 0.02 1.00 0.018 0.004 0.022 0.005 0.012 0.004
Finland Normal 0.02 1.00 0.025 0.006 0.043 0.007 0.024 0.006
France Normal 0.02 1.00 0.003 0.003 0.038 0.003 0.019 0.002
Germany Normal 0.02 1.00 0.014 0.004 0.051 0.005 0.018 0.003
Italy Normal 0.02 1.00 0.010 0.003 0.046 0.004 0.021 0.003
Japan Normal 0.02 1.00 0.005 0.004 0.075 0.005 0.022 0.004
Korea Normal 0.02 1.00 0.017 0.005 0.037 0.010 0.053 0.006
Mexico Normal 0.02 1.00 0.005 0.008 0.025 0.007 0.016 0.007
Netherlands Normal 0.02 1.00 0.011 0.004 0.035 0.007 0.016 0.004
Norway Normal 0.02 1.00 0.015 0.004 0.027 0.004 0.026 0.004
Peru Normal 0.02 1.00 0.020 0.006 0.030 0.006 0.013 0.008
Portugal Normal 0.02 1.00 0.017 0.008 0.042 0.007 0.030 0.006
Spain Normal 0.02 1.00 0.011 0.005 0.055 0.008 0.021 0.004
Sweden Normal 0.02 1.00 0.026 0.003 0.025 0.004 0.013 0.003
Switzerland Normal 0.02 1.00 0.013 0.003 0.027 0.003 0.009 0.002
Taiwan Normal 0.02 1.00 0.007 0.007 0.058 0.009 0.056 0.006
United Kingdom Normal 0.02 1.00 0.010 0.003 0.020 0.004 0.024 0.003
United States Normal 0.02 1.00 0.018 0.003 0.025 0.003 0.022 0.003
Median 0.015 0.005 0.029 0.005 0.019 0.004
Simple Average 0.015 0.005 0.035 0.006 0.022 0.005

Post-1973
Mean Growth Rate of Potential Consumption

TABLE III

Prior Pre-1946 1946-1972



Dist. Prior Mean Prior SD Post. Mean Post SD. Post. Mean Post SD. Post. Mean Post SD.
Argentina Uniform 0.075 0.04 0.053 0.009 0.020 0.013 0.013 0.009
Australia Uniform 0.075 0.04 0.017 0.004 0.036 0.008 0.004 0.003
Belgium Uniform 0.075 0.04 0.020 0.002 0.013 0.009 0.003 0.002
Brazil Uniform 0.075 0.04 0.047 0.006 0.062 0.011 0.010 0.007
Canada Uniform 0.075 0.04 0.024 0.003 0.026 0.009 0.003 0.002
Chile Uniform 0.075 0.04 0.043 0.009 0.038 0.018 0.018 0.010
Denmark Uniform 0.075 0.04 0.021 0.003 0.005 0.004 0.005 0.003
Finland Uniform 0.075 0.04 0.031 0.005 0.020 0.008 0.004 0.003
France Uniform 0.075 0.04 0.014 0.002 0.031 0.005 0.002 0.001
Germany Uniform 0.075 0.04 0.019 0.002 0.011 0.006 0.002 0.002
Italy Uniform 0.075 0.04 0.019 0.002 0.011 0.003 0.003 0.002
Japan Uniform 0.075 0.04 0.022 0.003 0.017 0.005 0.003 0.002
Korea Uniform 0.075 0.04 0.026 0.004 0.027 0.007 0.004 0.003
Mexico Uniform 0.075 0.04 0.036 0.004 0.034 0.008 0.005 0.004
Netherlands Uniform 0.075 0.04 0.023 0.003 0.017 0.006 0.003 0.002
Norway Uniform 0.075 0.04 0.022 0.002 0.004 0.003 0.004 0.003
Peru Uniform 0.075 0.04 0.033 0.004 0.007 0.005 0.004 0.003
Portugal Uniform 0.075 0.04 0.033 0.004 0.023 0.008 0.005 0.003
Spain Uniform 0.075 0.04 0.024 0.003 0.045 0.008 0.003 0.002
Sweden Uniform 0.075 0.04 0.019 0.002 0.020 0.004 0.003 0.002
Switzerland Uniform 0.075 0.04 0.012 0.001 0.039 0.005 0.002 0.001
Taiwan Uniform 0.075 0.04 0.033 0.004 0.018 0.016 0.004 0.003
United Kingdom Uniform 0.075 0.04 0.018 0.002 0.003 0.002 0.003 0.002
United States Uniform 0.075 0.04 0.018 0.002 0.021 0.004 0.003 0.002

Median 0.023 0.003 0.020 0.006 0.003 0.002
Simple Average 0.026 0.004 0.023 0.007 0.005 0.003

TABLE IV

Permanent
Temporary             
Pre-1946

Temporary             
Post-1946Priors

Standard Deviation of Non-Disaster Shocks



Prior Dist. Prior Mean Prior SD Post. Mean Post SD.
pW Uniform 0.050 0.029 0.035 0.017
pCbW Uniform 0.500 0.289 0.715 0.094
pCbI Uniform 0.050 0.029 0.008 0.004
1-pCe Uniform 0.500 0.289 0.847 0.029
ρz Uniform 0.450 0.260 0.541 0.037
φ Uniform 0.100 0.058 0.075 0.011
θ Normal 0.000 0.200 -0.020 0.006
σφ Uniform 0.130 0.069 0.091 0.008
σθ Uniform 0.130 0.069 0.110 0.012

TABLE V
Disaster Parameters with Gamma Shocks

Equity 
Premium

Risk-Free 
Rate

Baseline 0.048 0.010
No Disasters 0.005 0.042
Permanent, One Period Disasters 0.466 -0.378

Disasters and the Equity Premium
TABLE VI

All cases have CRRA = 6.4, IES = 2 and β = exp(-0.034). The return statistics are
the log of the average gross return for each asset. The "Equity Premium" is the
different between the average return on an unlevered equity claim and bills. The
"Risk-Free Rate" is the average return on bills. These results are produced by
simulating a long sample from the model with a representative set of disasters.



Specification
Equity 

Premium
Risk-Free 

Rate
Equity 

Premium
Risk-Free 

Rate

1. Baseline 6.4 2 0.048 0.010 0.049 0.011

Permanence and Disaster Length:
2. Permanent 4.4 2 0.048 0.007 0.046 0.015
3. Permanent and One Period 3.0 2 0.048 0.000 0.057 -0.002

Disasters with No Short-Run Shocks
4. No Short-Run Shocks 6.4 2 0.030 0.025 0.028 0.028

Sensitivity to Gamma:
5. Low Gamma 4.4 2 0.020 0.031 0.020 0.033
6. High Gamma 8.4 2 0.083 -0.017 0.086 -0.019

Model with Gamma Shocks:
7. Gamma Shocks 6.4 2 0.032 0.022 0.032 0.025

Power Utility:
8. Power Utility 4.0 0.25 0.012 0.097 -0.011 0.099
9. Power Utility -- One Period/Perm 3.0 0.33 0.048 -0.001 0.060 -0.001
10. Power Utility -- One Period 2.3 0.43 0.048 0.033 0.060 0.009

In all cases, β = exp(-0.034). For case 1, the model of consumption dynamics is parameterized according to the
estimates presented in tables 1 through 4. Cases 2-6 and 8-10 are variations on this parameterization. Case 7 is
parameterized according to the estimates presented in tables 5 and corresponding estimates of the non-disaster
parameters (not-reported). The return statistics are the log of the average gross return for each asset. "Full Sample"
refers to a long sample with a representative set of disasters. "No Disaster" refers to a long sample in which agents
expect disasters to occur with their normal frequency but non actually occur. The "Equity Premium" is the different
between the average return on an unlevered equity claim and bills. The "Risk-Free Rate" is the average return on bills.

Asset Pricing Results for Unleveraged Equity
TABLE VII

CRRA IES

Full Sample No Disasters

(1) (2) (3) (4)

Parameters:
Coefficient of relative risk aversion 6.4 6.4 7.5 7.5
Intertemporal elasticity of substitution 2 2 2 2

Probability of partial default on perpetuity 0.0 0.4 0.4 0.84
Probability of partial default on one period bond 0.0 0.4 0.4 0.4

Asset Pricing Results:
Return on one period bond 0.010 0.024 0.014 0.014
Return on perpetuity -0.021 -0.005 -0.025 0.026

Term premium -0.032 -0.029 -0.039 0.012
Equity premium 0.048 0.033 0.048 0.048

Average duration of perpetuity in normal times 11.3 9.6 11.9 7.4

TABLE VIII
Long Term Bonds and Partial Default

In all cases, β = exp(-0.034). The return statistics are the log of the average gross return for each asset. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

FIGURE I 
A Partially Permanent Disaster 

Note: The figure plots the evolution of consumption and potential consumption during and after a disaster lasting six 
periods with ρ = 0.6,  = -0.125 and  = -0.025 in each period of the disaster. For simplicity, we abstract from trend 
growth and assume that all other shocks are equal to zero over this period. 
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FIGURE II 

A Typical Disaster 
Note: The figure plots the evolution of log consumption during and after a disaster that strikes in period 1 and lasts 
for 6 years. Over the course of the disaster, both  and  take values equal to their posterior means in each period. 
For simplicity, we abstract from trend growth and assume that all other shocks are equal to zero over this period.  
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FIGURE III 

Ex Ante Disaster Distribution 
Note: The solid line is the mean of the distribution of the change in log consumption relative to its previous trend 
from the perspective of agents that have just learned that they have entered the disaster state but do not yet know the 
size or length of the disaster. The black dashed line is the median of this distribution. The grey dashed lines are the 
5% and 95% quantiles of this distribution. 
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Figure IV 

Consumption, Potential Consumption and Disasters in France, Korea, Chile and the U.S. 



 
 
 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIGURE V 

World Disaster Probability 
Note: The figure plots the posterior mean of IW,t, i.e., the probability that the world entered a disaster in each year evaluated using data 
up to 2006. 

 
 
 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIGURE VI 

Median Path of Consumption after Onset of a Disaster in Model and Data 
Note: The figure plots the median path of consumption after the onset of a disaster in the model and in the data. For the model, the 
25% and 75% quantiles are also plotted (broken lines). For the data, we consider the 49 disaster episodes that are not left censored 
(i.e., don’t begin in the first period we observe for that country). For each episode, we calculate the change in consumption relative to 
the year before the disaster began. We then take the median across episodes for each year. For the model, we simulate 1000 disaster 
episodes and calculate the median change in consumption relative to the year before the disaster began as well as the 25th and 75th 
quantile of the distribution of consumption changes.   



 
 
 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIGURE VII 

Asset Prices in Baseline Case with Epstein-Zin-Weil Utility 
Note: The figure plots asset returns and detrended log consumption for a “typical” disaster in the baseline case of multi-
period disasters with partial recovery when agents have Epstein-Zin-Weil preferences with a coefficient of relative risk 
aversion of 6.4 and an intertemporal elasticity of substitution of 2. The typical disaster is a disaster that lasts 6 periods and 
in which the short run and long run disaster shocks take their mean values in each period of the disaster. All other shocks 
are set to zero. 
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Figure VIII 
Posterior Distribution of the Equity Premium 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure IX 
Distribution of the Coefficient of Relative Risk Aversion 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure X 
Distribution of the Equity Premium in Data without Disasters 

 



 
 
 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIGURE XI 

Asset Prices in Baseline Case with Power Utility 
Note: The figure plots asset returns and detrended log consumption for a “typical” disaster in the baseline case of multi-
period disasters with partial recovery when agents have power utility with a coefficient of relative risk aversion of 4. The 
typical disaster is a disaster that lasts five periods and in which the short run and long run disaster shocks take their mean 
values in each period of the disaster. All other shocks are set to zero. 
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FIGURE XII 

Asset Prices in Permanent, One Period Case with Power Utility 
Note: The figure plots asset returns and detrended log consumption for a “typical” disaster in the case of fully permanent, 
one-period disasters when agents have power utility with a coefficient of relative risk aversion of 3. The typical disaster is 
a disaster that lasts one period and in which the short run and long run disaster shocks are equal to -0.40. All other shocks 
are set to zero. 
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