
Crisis Management Systems

A Case Study for Aspect-Oriented Modeling

Jörg Kienzle1, Nicolas Guelfi2 and Sadaf Mustafiz1

with contributions from

Christian Fischer, Damien Garot, Laurent Vuillermoz, Jacques Klein, Alfredo Capozucca, Florencia Balbastro

1School of Computer Science, McGill University, Montreal, Canada

2Laboratory of Advanced Software Systems, University of Luxembourg, Luxembourg

Nicolas.Guelfi@uni.lu, Joerg.Kienzle@mcgill.ca, sadaf@cs.mcgill.ca

SOCS-TR-2009.3

Version 1.0.1

Abstract

The intent of this document is to define a common case study for the aspect-oriented modeling

research community. The domain of the case study is crisis management systems, i.e., systems that

help in identifying, assessing, and handling a crisis situation by orchestrating the communication

between all parties involved in handling the crisis, by allocating and managing resources, and by

providing access to relevant crisis-related information to authorized users. This document contains

informal requirements of crisis management systems (CMS) in general, a feature model for a CMS

product line, use case models for a car crash CMS (CCCMS), a domain model for the CCCMS,

an informal physical architecture description of the CCCMS, as well as some design models of a

possible object-oriented implementation of parts of the CCCMS backend. AOM researchers that

want to demonstrate the power of their AOM approach or technique can hence apply the approach at

the most adequate level of abstraction.

Change Log

Date Version Change

12/4/2009 1.0 Initial release

26/5/2009 1.0.1 Corrected some minor errors in use case 4.2.6, figure 6 and figure 8.

2

Motivation

Aspect-oriented modeling (AOM) has grown out of its infancy. There now exist many AOM techniques

for different modeling notations (class diagrams, sequence diagrams, state diagrams, protocol machines,

component diagrams, live sequence charts, use cases, etc..) and many AOM approaches that can be

applied at different phases of software development (requirements, analysis, architecture, design, imple-

mentation) or to different domains (software product lines, security, fault tolerance, etc...). A considerable

number of papers in journals and high-quality conferences have been published on AOM, and 13 suc-

cessful workshops on AOM have been organized at the AOSD conferences and MoDELS conferences in

the last 7 years. There is also the series of workshops entitled Early Aspects that falls within the context

of AOM. Finally, a special issue of Transactions on Aspect-Oriented Software Development on Aspects

and Model-Driven Engineering is currently in the process of being published.

Despite the many sources of information on AOM, it is not easy for people who want to use AOM

to choose an appropriate AOM technique. Comparing different AOM approaches with each other to

highlight the advantages and disadvantages of each one is not trivial, because each research team applies

their AOM approach within a different context. Finally, it is not clear nowadays how several AOM

approaches that apply to different phases of software development can be combined to produce a coherent

aspect-oriented software development process.

This is why we propose a common case study to the AOM research community. The case study is

chosen in such a way that all AOM approaches should be applicable to (some parts of) it. We will gather

the results (papers / technical reports / models) of all research groups that decide to use this case study

to demonstrate the power of their AOM approach or techniques. The resulting collection of information

will provide a valuable resource for many researchers:

• Researchers that want to learn about AOM will find a concise collection of descriptions of solid and

mature AOM approaches. They will only have to understand one case study in order to appreciate

the sample models shown in every paper.

• Researchers that want to apply AOM for a particular purpose and are looking for the most appro-

priate AOM technique will be able to identify the most promising approach(es) easily. Identifying

similarities between their problem and the case study will help them to determine candidate ap-

proaches.

• AOM experts can readily identify approaches that were able to handle concerns that their own

approach can not handle elegantly. This stimulates cross-fertilization between approaches and col-

laborative research, and brings the AOM community closer to the definition of an aspect-oriented

software development process that covers all software development phases.

The remainder of this document describes the case study in detail. The domain of the case study

is crisis management. In order to make sure that all AOM approaches and techniques are somehow

applicable to this case study, it is on purpose defined in a very broad way. The description of the case

study includes non-formal requirements, use cases / activity diagrams, a domain model, an informal

architecture description, and some detailed design models using standard, non-aspect-oriented notations.

AOM approaches that apply to early phases of software development should either work with the

general crisis management system requirements, or use the more specific car crash crisis management

system requirements. If the AOM approach you want to present applies to a late software development

phase such as design, we request that you apply your approach to the car crash crisis management system

backend / server.

3

Contents

1 Crisis Management System Case Study Overview 6

2 Crisis Management System: Requirements 7

2.1 Crisis Scenario (of a Car Crash Crisis Management System) 7

2.2 Scope of the CMS . 7

2.3 Non-functional Requirements of the CMS . 8

2.4 Car Crash Crisis Management System . 10

2.4.1 Scope of the Car Crash CMS . 10

2.4.2 Car Crash CMS Actors . 11

3 Feature Models 12

4 Use Cases 15

4.1 Use Case Diagram . 15

4.2 Textual Use Cases . 16

4.2.1 Resolve Crisis . 16

4.2.2 Capture Witness Report . 18

4.2.3 Assign Internal Resource . 18

4.2.4 Request External Resource . 19

4.2.5 Execute Mission . 19

4.2.6 Execute SuperObserver Mission . 19

4.2.7 Execute Rescue Mission . 20

4.2.8 Execute Helicopter Transport Mission . 21

4.2.9 Execute Remove Obstacle Mission . 21

4.2.10 AuthenticateUser . 21

5 Domain Model 22

6 Activity Diagrams 24

7 Informal Physical Architecture Description 26

8 Selected Design Models 27

8.1 Creating Missions . 27

8.1.1 Summary of Functionality . 27

8.1.2 Interaction Design . 27

8.1.3 Structural Design . 28

4

List of Figures

1 Crisis Management Systems Feature Diagram . 13

2 Car Crash Crisis Management Systems Feature Diagram 14

3 Car Crash Case: Standard Use Case Diagram . 15

4 Car Crash CMS Domain Model, Part 1 . 22

5 Car Crash CMS Domain Model, Part 2 – Inheritance Hierarchies 23

6 Car Crash Case Study: Assign Internal Resource Activity Diagram 25

7 Car Crash Case Study: Physical Architecture . 26

8 Car Crash Case Study: CreateMission Design Sequence Diagram 28

9 Car Crash Case Study: Partial Design Class Diagram based on CreateMission Design . . 29

5

1 Crisis Management System Case Study Overview

The domain of the case study is crisis management systems (CMS). The need for crisis management

systems has grown significantly over time. A crisis can range from major to catastrophic affecting many

segments of society. Natural disasters (e.g. earthquakes, tsunamis, twisters, fire, floods, etc...), terrorist

attacks or sabotage (explosions, kidnapping, etc...), accidents (plant explosion, pollution emergency, a

car crash, etc...), and technological disruptions are all examples of emergency situations that are unpre-

dictable and can lead to severe after-effects unless handled immediately. Crisis management involves

identifying, assessing, and handling the crisis situation. A crisis management system facilitates this pro-

cess by orchestrating the communication between all parties involved in handling the crisis. The CMS

allocates and manages resources, and provides access to relevant crisis-related information to authorized

users of the CMS.

Different existing AOM approaches and techniques are meant to be used during different phases of

software development. As a result, different AOM approaches work with different kinds of models and

modeling notations at different levels of abstraction. In order to make sure that all AOM approaches and

techniques are somehow applicable to this case study, we present a set of models in this technical report:

1. Short, informal requirements text describing the domain of crisis management systems in more de-

tail. It also mentions some non-functional requirements of a CMS, e.g. security and dependability.

This text probably contains information that is important to everyone that wants to work on this

case study. The information description is presented in Section 2 on page 7.

2. Feature diagrams highlighting the software product line aspect of crisis management systems.

Crisis management systems can be used to handle many types of crises (e.g., natural disasters,

epidemics, accidents, attacks, etc...) and may have to interface and interoperate with different

types of external services (e.g., military systems, police systems, government, medical services,

etc...). The feature diagram models are presented in Section 3 on page 12.

3. Use cases describing a particular CMS suitable for dealing with car crash crises. The Car Crash

CMS use case model description can be found in Section 4 on page 15.

4. A domain model of the car crash crisis management system that documents the key concepts, and

the domain-vocabulary of the Car Crash CMS is presented in Section 5 on page 22.

5. An activity diagram that shows how the extended use case model can be translated into a formal

requirements specification. An example activity diagram model is shown in Section 6 on page 24.

6. An informal description of a possible physical architecture for the car crash crisis management

system is presented in Section 7 on page 26.

7. Some detailed design models for the car crash crisis management system backend are given in

Section 8 on page 27.

AOM approaches that apply to early phases of software development should either work with the

general crisis management system requirements, or use the more specific car crash crisis management

system requirements. If the AOM approach you want to present applies to a late software development

phase such as design, we request that you apply your approach to the car crash crisis management system

backend / server.

You are not allowed to add new functional or non-functional requirements to the case study. On the

other hand, you are allowed to correct eventual errors or clarify ambiguities in the document and the

models provided you justify the need to do so.

6

2 Crisis Management System: Requirements

The user requirements outlined in this section are based on [4]. The general objectives of a crisis man-

agement system (CMS) include the following:

• To help in the coordination and handling of a crisis;

• To ensure that an abnormal or catastrophic situation does not go out of hand;

• To minimize the crisis by handling the situation using limited resources;

• To allocate and manage resources in an effective manner;

• To identify, create, and execute missions in order to manage the crisis;

• To archive the crisis information to allow future analysis.

2.1 Crisis Scenario (of a Car Crash Crisis Management System)

A crisis management scenario is usually triggered by a crisis report from a witness at the scene. A coor-

dinator, who is in charge of organizing all required resources and tasks, initiates the crisis management

process. The coordinator has access to the camera surveillance system. The surveillance system is an

external system used to monitor traffic on highways or other busy routes. The cameras are installed only

in specific locations. If a crisis occurs in locations under surveillance, the crisis management system can

request video feed that allows the coordinator to verify the witness information.

A super observer, an expert in the field (depending on the kind of crisis), is assigned to the scene to

observe the emergency situation and identify the tasks necessary to cope with the situation. The tasks

are crisis missions defined by the observer. The coordinator is then required to process the missions by

allocating suitable resources to each task.

Depending on the type of crisis, human resources could include firemen, doctors, nurses, police-

men, and technicians, and hardware resources could include transportation systems, computing resources,

communication means (such as PDAs or mobile phones), or other necessities like food or clothes. An-

imals, for instance police dogs, are also used as resources in some situations. The human and animal

resources act as first-aid workers. Each first-aid worker is assigned a specific task which needs to be exe-

cuted to recover from the abnormal situation. The workers are expected to report on the success or failure

in carrying out the missions. The completion of all missions would allow the crisis to be concluded.

2.2 Scope of the CMS

A crisis management system (CMS) should include the following functionalities:

• initiating a crisis based on an external input from a witness,

• processing a crisis by executing the missions defined by a super observer and then assigning internal

and/or external resources,

• wrapping-up and archiving crisis,

• authenticating users,

• handling communication between coordinator/system and resources.

7

CMS replace existing crisis management systems that a) still manually keep track of important crisis-

related information and that b) operate largely without automated support for crisis resolution strategies

in order to respond to a crisis.

2.3 Non-functional Requirements of the CMS

The crisis management system shall exhibit the following non-functional properties:

• Availability

– The system shall be in operation 24 hours a day, everyday, without break, throughout the year

except for a maximum downtime of 2 hours every 30 days for maintenance.

– The system shall recover in a maximum of 30 seconds upon failure.

– Maintenance shall be postponed or interrupted if a crisis is imminent without affecting the

systems capabilities.

• Reliability

– The system shall not exceed a maximum failure rate of 0.001%.

– The mobile units shall be able to communicate with other units on the crisis site and the

control centre regardless of location, terrain and weather conditions.

• Persistence

– The system shall provide support for storing, updating and accessing the following informa-

tion on both resolved and on-going crises: type of crisis; location of crisis; witness report;

witness location; witness data; time reported; duration of resolution; resources deployed;

civilian casualties; crisis management personnel casualties; strategies used; missions used;

location of super observer; crisis perimeter; location of rescue teams on crisis site; level of

emissions from crisis site; log of communications; log of decisions; log of problems encoun-

tered.

– The system shall provide support for storing, updating and accessing the following infor-

mation on available and deployed resources (both internal and external): type of resource

(human or equipment); capability; rescue team; location; estimated time of arrival (ETA) on

crisis site.

– The system shall provide support for storing, updating and accessing the following informa-

tion on crisis resolution strategies: type of crisis; step-by-step guide to resolve crisis; con-

figuration of missions required; links to alternate strategies; applications to previous crises;

success rate.

• Real-time

– The control centre shall receive and update the following information on an on-going crisis

at intervals not exceeding 30 seconds: resources deployed; civilian casualties; crisis man-

agement personnel casualties; location of super observer; crisis perimeter; location of rescue

teams on crisis site; level of emissions from crisis site; estimated time of arrival (ETA) of

rescue teams on crisis site.

8

– The delay in communication of information between control centre and rescue personnel as

well as amongst rescue personnel shall not exceed 500 milliseconds.

– The system shall be able to retrieve any stored information with a maximum delay of 500

milliseconds.

• Security

– The system shall define access policies for various classes of users. The access policy shall

describe the components and information each class may add, access and update.

– The system shall authenticate users on the basis of the access policies when they first access

any components or information. If a user remains idle for 30 minutes or longer, the system

shall require them to re-authenticate.

– All communications in the system shall use secure channels compliant with AES-128 stan-

dard encryption.

• Mobility

– Rescue resources shall be able to access information on the move.

– The system shall provide location-sensitive information to rescue resources.

– Rescue resources shall communicate their location to the control centre.

– The system shall have access to detailed maps, terrain data and weather conditions for the

crisis location and the routes leading to it.

• Statistic Logging

– The system shall record the following statistical information on both on-going and resolved

crises: rate of progression; average response time of rescue teams; individual response time

of each rescue team; success rate of each rescue team; rate of casualties; success rate of

missions.

– The system shall provide statistical analysis tools to analyse individual crisis data and data on

multiple crises.

• Multi-Access

– The system shall support at least 1000 witnesses calling in at a time.

– The system shall support communication, coordination and information access for at least

20000 rescue resources in deployment at a time.

– The system shall support management of at least 100 crises at a time.

– The system shall support management of at least 200 missions per crisis at a time.

• Safety

– The system shall monitor emissions from crisis site to determine safe operating distances for

rescue resources.

– The system shall monitor weather and terrain conditions at crisis site to ensure safe operation

and withdrawal of rescue resources, and removal of civilians and casualties.

9

– The system shall determine a perimeter for the crisis site to ensure safety of civilians and

removal of casualties to a safe distance.

– The system shall monitor criminal activity to ensure safety of rescue resources, civilians and

casualties.

– The safety of rescue personnel shall take top priority for the system.

• Adaptability

– The system shall recommend alternate strategies for dealing with a crisis as the crisis condi-

tions (e.g., weather conditions, terrain conditions, civilian or criminal activity) change.

– The system shall recommend or enlist alternate resources in case of unavailability or shortage

of suitable resources.

– The system shall be able to use alternate communication channels in case of unavailability or

shortage of existing channels.

– The system shall be able to maintain effective communication in areas of high disruption or

noise at the crisis site.

• Accuracy

– The system shall have access to map, terrain and weather data with a 99% accuracy.

– The system shall provide up-to-date information to rescue resources.

– The system shall record data upon receipt without modifications.

– The communication between the system and rescue resources shall have a maximum deterio-

ration factor of 0.0001 per 1000 kilometres.

2.4 Car Crash Crisis Management System

In some of the models presented in this technical report, we have focused on one particular CMS: the

car crash crisis management system. The car crash CMS includes all the functionalities of general crisis

management systems, and some additional features specific to car crashes such as facilitating the rescuing

of victims at the crisis scene and the use of tow trucks to remove damaged vehicles.

2.4.1 Scope of the Car Crash CMS

A car crash is defined in Wikipedia as following:

A car accident or car crash is an incident in which an automobile collides with anything that

causes damage to the automobile, including other automobiles, telephone poles, buildings or

trees, or in which the driver loses control of the vehicle and damages it in some other way,

such as driving into a ditch or rolling over. Sometimes a car accident may also refer to an

automobile striking a human or animal.

Our Car Crash CMS addresses car crashes involving single or multiple vehicles, humans, or other

objects. This case study is however limited to management of human victims only and does not provide

rescue missions specifically for animals. First-aid animal workers are not included in the scope of this

case study either.

Car crash specific functionalities include the following:

10

• facilitating the rescue mission carried out by the police by providing them with detailed information

on the location of the crash;

• managing the dispatch of ambulances or other alternate emergency vehicles to transport victims

from the crisis scene to hospitals;

• facilitating the first-aid missions by providing relevant medical history of identified victims to the

first-aid workers by querying data bases of local hospitals;

• facilitating the medical treatment process of victims by providing important information about the

crash to the concerned workers, i.e. paramedics, doctors, upon arrival at the hospital;

• managing the use of tow trucks to remove obstacles and damaged vehicles from the crisis scene.

2.4.2 Car Crash CMS Actors

The actors involved in the Car Crash CMS are defined in this section.

• Coordinator oversees management of the crisis by coordinating the resources and communicating

with all the CMS employees and external workers.

• Super Observer is dispatched to the crisis scene to evaluate the situation and define the necessary

missions to cope with the crisis.

• CMS Employee is an internal human resource who is qualified and capable of performing missions

related to his field of expertise. The worker acts as a facilitator actor when he is in charge of or

operating local resources (for example, tow trucks or ambulances).

• External Worker is an external resource who is specialized and capable of performing missions

related to his field of expertise. The worker acts as a facilitator actor when he is in charge of or

operating external resources (for example, police trucks or fire trucks).

• System Admin is the specialist who maintains the system and creates all profiles of workers and

resources to feed the crisis management database.

• Witness is the person who reports the crisis by calling the crisis management center.

• Phone Company is an external entity contacted for verification of witness purposes.

• Surveillance System is an external entity which monitors traffic in highways and cities with the

use of cameras.

11

3 Feature Models

Since there are so many different kinds of crises, the domain of crisis management systems is very broad.

However, any crisis management system has a common set of responsibilities and functionalities. It

is therefore natural to build a framework or product line of crises management systems, which can be

specialized to create crisis management systems for a particular kind of crisis and a particular context. A

feature diagram listing many possible features of a crisis management system is given in figure 1. It has

been taken from [3].

Selection of some features requires the selection of other features. Examples of such dependencies

are:

• Natural Disasters requires Fire Department and External Company

• Terrorist Attack requires Army Special Unit and Police and Police Special Unit and Public Hospital

• Major Accident requires Police and Fire Department and Public Hospital and Private Hospital and

Independent First-Aid Doctor and Private Ambulance Company

• Plant Explosion requires Police and Fire Department and Public Hospital

• Nuclear Plant Explosion requires The Army and Army Special Unit

Figure 2 presents a possible set of features selected for the car crash CMS.

12

Figure 1: Crisis Management Systems Feature Diagram

13

Figure 2: Car Crash Crisis Management Systems Feature Diagram

14

4 Use Cases

The use case model includes a summary use case diagram (presented in subsection 4.1, and individual

use cases presented in subsection 4.2.

4.1 Use Case Diagram

Fig. 3 shows the use cases related to the summary-level goal Resolve Crisis in the Car Crash Crisis

Management System, by means of a use case diagram.

Crisis Management System: Car Crash Case Study

<
<
include>

>
<<include>>

<<include>>

<
<
in

cl
ud

e>
>

Resolve Crisis

Capture

Witness Report

Assign

IntResource

Request

ExtResource
Execute

Mission

Execute Helicopter

Transport Mission

Execute

Rescue Mission

Execute

SuperObserver

Mission

1

Coordinator

1

Super

Observer

*

CMS

Employee

Authenticate

User

Execute

Remove Obstacle

Mission

External

Resource

System

*

1

Phone

Company

*

Surveillance

System

<<inclu
de>>

<<include>>

1..*

Witness

*

FirstAid

Worker

1

Pilot

*

Hospital

ResourceSystem

*

Resource

Figure 3: Car Crash Case: Standard Use Case Diagram

Details of all the use cases that directly relate to the summary level use case Resolve Crisis are given in

section 4.2. The listed use cases are: Resolve Crisis, Capture Witness Report, Assign Internal Resource,

Assign External Resource, Execute Mission, Execute SuperObserver Mission, Execute Rescue Mission,

and Authenticate User.

Use cases describing other missions, such as the Execute Helicopter Transport Mission, or Execute

Remove Obstacle Mission are not shown for space reasons. Likewise, details of use cases related to

the management of the resource database are not included for space reasons. Such use cases would, for

instance, include:

• Creating records for CMSEmployees

• Managing access rights of CMSEmployees

• Updating the availability of CMSEmployees due to sickness or vacation

• Dealing with problems of the CMS-controlled vehicles that are not related to a crisis

15

Finally, following a dependability-focussed requirements engineering process such as DREP [1], ex-

ceptional situations that a CMS might be exposed to should also be considered. For this case study,

several exceptional situations were discovered that affect the context in which the system operates, and

that require the system to react in a certain way to continue to provide reliable and safe service. The

situations are:

• Severe Weather Conditions: Bad weather makes helicopter transportation impossible.

• Strike: A strike affects the availability of CMS employees and external workers.

• Risk of Explosion: Leaking gas and open fire threatens the safety of workers.

• VIP Victim: One of the crash victims is a VIP (such as for instance, the president). Handling of

the crisis should therefore be coordinated by the appropriate office.

• Criminal Case: The reason for the crash is of criminal nature, and therefore the rescue missions

have to be carried out accordingly.

To detect and to handle the above situations, we added the following exceptional actors: Weather-

InformationSystem, NationalCrisisCenter. The detailed handler use cases that describe the functionality

that such a reliable car crash CMS is to provide are not described in this document for space reasons.

4.2 Textual Use Cases

Use cases are a widely used formalism for discovering and recording behavioral requirements of software

systems, since they can be effectively used as a communication means between technical as well as non-

technical stakeholders of the software under development. In short, use cases are stories of using a system

to meet goals. They are in general text-based, but their strength is that they both scale up or scale down

in terms of sophistication and formality, depending on the need and context.

The use cases presented here follow a textual template. The main success scenario is a numbered list

of lines of text (subsequently named steps) that describes the possible interactions between the primary

actor, potential secondary actors and the Car Crash CMS (subsequently named System) that occur to

reach a particular goal. Alternate ways of achieving a goal, or situations in which the goal can not be

reached, are described in the extension part of the template.

4.2.1 Resolve Crisis

Use Case 1: Resolve Crisis

Scope: Car Crash Crisis Management System

Primary Actor: Coordinator

Secondary Actor: Resource

Intention: The intention of the Coordinator is to resolve a car crash crisis by asking employees and external

workers to execute appropriate missions.

Main Success Scenario:

Witness places a call to the crisis centre, where it is answered by a Coordinator.

1. Coordinator captures witness report (UC 2).

2. System recommends to Coordinator the missions that are to be executed based on the current information

about the crisis and resources.

3. Coordinator selects one or more missions recommended by the system.

16

For each mission in parallel:

4. For each internal resource required by a selected mission, System assigns an internal resource (UC 3).

5. For each external resource required by a selected mission, System requests an external resource (UC 4).

6. Resource notifies System of arrival at mission location.

7. Resource executes the mission (UC 5).

8. Resource notifies System of departure from mission location.

9. In parallel to steps 6-8, Coordinator receives updates on the mission status from System.

10. In parallel to steps 6-8, System informs Resource of relevant changes to mission / crisis information.

11. Resource submits the final mission report to System.

12. In parallel to steps 4-8, Coordinator receives new information about the crisis from System.

13. Coordinator closes the file for the crisis resolution.

Use case ends in success.

Extensions:

1a. Coordinator is not logged in.

1a.1 Coordinator authenticates with System (UC 10).

1a.2 Use case continues with step 1.

4a. Internal resource is not available after step 4.

4a.1 System requests an external resource instead (i.e., use case continues in parallel with step 5).

5a. External resource is not available after step 5.

5a.1 Use case continues in parallel with step 2.

6a. System determines that the crisis location is unreachable by standard transportation means, but reachable

by helicopter.

6a.1 System informs the Coordinator about the problem.

6a.2 Coordinator instructs System to execute a helicopter transport mission (UC 09).

6a.3 Use case continues with step 6.

6b. Resource is unable to contact System.

6b.1 SuperObserver notifies System that resource arrived at the mission location.

6c. Although Resource should be at mission location by now, Resource has not yet notified System.

6c.1 System requests Resource to provide an update of its location.

6c.2 Use case continues at step 6.

7a. One or more further missions are required in step 6.

7a.1 Use case continues in parallel with step 2.

7b. The mission failed.

7b.1 Use case continues with step 2.

8a. Resource is unable to contact System.

8a.1 SuperObserver notifies System that resource is leaving the mission location.

8b. Although mission should be completed by now, Resource has not left mission location.

8b.1 System requests Resource to provide the reason for the delay.

8b.2 Use case continues at step 7.

9a. Changes to mission are required.

9a.1 Use case continues in parallel with step 2.

11a. Resource never files a mission report.

11a.1 Mission use case ends without mission report.

12a. Changes to mission are required.

12a.1 Use case continues in parallel with step 2.

17

4.2.2 Capture Witness Report

Use Case 2: Capture Witness Report

Scope: Car Crash Crisis Management System

Primary Actor: Coordinator

Secondary Actor: PhoneCompany, SurveillanceSystem

Intention: The Coordinator intends to create a crisis record based on the information obtained from witness.

Main Success Scenario:

Coordinator requests Witness to provide his identification.

1. Coordinator provides witness information1 to System as reported by the witness.

2. Coordinator informs System of location and type of crisis as reported by the witness.

In parallel to steps 2-4:

2a.1 System contacts PhoneCompany to verify witness information.

2a.2 PhoneCompany sends address/phone information to System.

2a.3 System validates information received from the PhoneCompany.

3. System provides Coordinator with a crisis-focused checklist.

4. Coordinator provides crisis information2 to System as reported by the witness.

5. System assigns an initial emergency level to the crisis and sets the crisis status to active.

Use case ends in success.

Extensions:

1a,2a. The call is disconnected. The base use case terminates.

In parallel to steps 3-4, if the crisis location is covered by camera surveillance:

3a.1 System requests video feed from SurveillanceSystem.

3a.2 SurveillanceSystem starts sending video feed to System.

3a.3 System starts displaying video feed for Coordinator.

4a. The call is disconnected.

4a.1 Use case continues at step 5 without crisis information.

5a. PhoneCompany information does not match information received from Witness.

5a.1 The base use case is terminated.

5b. Camera vision of the location is perfect, but Coordinator cannot confirm the situation that the witness

describes or the Coordinator determines that the witness is calling in a fake crisis.

5b.1 The base use case is terminated.

1Witness information includes the first name, last name, phone number, and address.
2Crisis information includes the details about the crisis, the time witnessed, etc.

4.2.3 Assign Internal Resource

Use Case 3: Assign Internal Resource

Scope: Car Crash Crisis Management System

Primary Actor: None

Secondary Actor: CMSEmployee

Intention: The intention of System is to find, contact, and assign a mission to the most appropriate available

CMSEmployee.

Main Success Scenario:

System selects an appropriate CMSEmployee based on the mission type, the emergency level, location and

requested expertise. In very urgent cases, steps 1 and 2 can be performed for several CMSEmployees concur-

rently, until one of the contacted employees accepts the mission.

1. System sends CMSEmployee mission information.

2. CMSEmployee informs System that he accepts the mission.

18

Use case ends in success.

Extensions:

1a. CMSEmployee is not logged in.

1a.1 System requests the CMSEmployee to login.

1a.2 CMSEmployee authenticates with System (UC 10).

1a.3 Use case continues at step 1.

1b. CMSEmployee is unavailable or unresponsive.

1b.1 System selects the next appropriate CMSEmployee.

1b.2 Use case continues at step 1.

1b.1a No other CMSEmployee is available. Use case ends in failure.

2a. CMSEmployee informs System that he cannot accept the mission.

2a.1 System selects the next appropriate CMSEmployee.

2a.2 Use case continues at step 1.

2a.2a No other CMSEmployee is available. Use case ends in failure.

4.2.4 Request External Resource

Use Case 4: Request External Resource

Scope: Car Crash Crisis Management System

Primary Actor: Coordinator

Secondary Actor: ExternalResourceSystem (ERS)

Intention: The System requests a mission from an external resource, such as a fire station, police station or external

ambulance service.

Main Success Scenario:

1. System sends mission request to ERS, along with mission-specific information1.

2. ERS informs System that request can be processed.

Use case ends in success.

Extensions:

2a. ERS notifies System that it partially approves request for resources. Use case ends in degraded success.

2b. ERS notifies System that it can not service the request. Use case ends in failure.

1Mission-specific information includes things such as the location and emergency level of the mission, the

quantity of vehicles requested, special characteristics of the aid worker or vehicle, etc.

4.2.5 Execute Mission

Use Case 5: Execute Mission

Intention: The Resource executes a mission in order to help resolve a crisis. ExecuteMission is an abstract use

case. The details of the interaction for specific missions are presented in child use cases such as ExecuteSuper-

ObserverMission (UC 6), or ExecuteRescueMission (UC 7).

4.2.6 Execute SuperObserver Mission

Use Case 6: Execute SuperObserver Mission

Scope: Car Crash Crisis Management System

Primary Actor: SuperObserver

Secondary Actor: None

Intention: The intention of the SuperObserver is to observe the situation at the crisis site to be able to order

appropriate missions.

19

Main Success Scenario:

SuperObserver is at the crisis location.

1. System sends a crisis-specific checklist to SuperObserver.

2. SuperObserver feeds System with crisis information.

3. System suggests crisis-specific missions to SuperObserver.

Steps 4-8 is repeated as many times as needed.

4. SuperObserver notifies System of the type of mission he wants to create.

5. System sends a mission-specific information request to SuperObserver.

6. SuperObserver sends mission-specific information1 to System.

7. System acknowledges the mission creation to SuperObserver.

8. System informs SuperObserver that mission was completed successfully.

9. SuperObserver judges that his presence is no longer needed at the crisis location.

Use case ends in success.

Extensions:

7a. Mission cannot be created and replacement missions are possible.

7a.1 System suggests replacement missions to SuperObserver.

7a.2 Use case continues with step 4.

7b. Mission cannot be created and no replacement missions are possible.

7b.1 System suggests notifying the NationalCrisisCenter.

7b.2 Use case continues with step 4.

8a. Mission failed.

8a.1 System informs SuperObserver and Coordinator about mission failure.

8a.2 Use case continues with step 4.

1Mission-specific information includes things such as the quantity of vehicles requested, special characteristics

of the aid worker or vehicle, etc.

4.2.7 Execute Rescue Mission

Use Case 7: Execute Rescue Mission

Scope: Car Crash Crisis Management System

Primary Actor: FirstAidWorker

Secondary Actor: HospitalRS

Intention: The intention of the FirstAidWorker is to accept and then execute a rescue mission that involves trans-

porting a victim to the most appropriate hospital.

Main Success Scenario:

FirstAidWorker is at the crisis location.

1. FirstAidWorker transmits injury information of victim to System.

Steps 2 and 3 are optional.

2. FirstAidWorker determines victim’s identity and communicates it to System.

3. System requests victim’s medical history information from all connected HospitalResourceSystems.

FirstAidWorker administers first aid procedures to victim.

4. System instructs FirstAidWorker to bring the victim to the most appropriate hospital.

5. FirstAidWorker notifies System that he is leaving the crisis site.

6. FirstAidWorker notifies System that he has dropped off the victim at the hospital.

7. FirstAidWorker informs System that he has completed his mission.

Use case ends in success.

Extensions:

4a. HospitalResourceSystem transmits victim’s medical history information to System.

20

4a.1 System notifies FirstAidWorker of medical history of the victim relevant to his injury.

4a.2 Use case continues at step 4.

4.2.8 Execute Helicopter Transport Mission

Use Case 8: Execute Helicopter Transport Mission

Scope: Car Crash Crisis Management System

Primary Actor: Pilot

Secondary Actor: None

Intention: The intention of the Pilot is to accept and then execute a transport mission that involves transporting a

CMSEmployee to and from a mission location.

Main Success Scenario: To be defined.

4.2.9 Execute Remove Obstacle Mission

Use Case 9: Execute Remove Obstacle Mission

Scope: Car Crash Crisis Management System

Primary Actor: TowTruckDriver

Secondary Actor: None

Intention: The intention of the TowTruckDriver is to accept and then execute a remove obstacle mission that

involves removing a crashed car from a mission location.

Main Success Scenario: To be defined.

4.2.10 AuthenticateUser

Use Case 10: AuthenticateUser

Scope: Car Crash Crisis Management System

Primary Actor: None

Secondary Actor: CMSEmployee

Intention: The intention of the System is to authenticate the CMSEmployee to allow access.

Main Success Scenario:

1. System prompts CMSEmployee for login id and password.

2. CMSEmployee enters login id and password into System.

3. System validates the login information.

Use case ends in success.

Extensions:

2a. CMSEmployee cancels the authentication process. Use case ends in failure.

3a. System fails to authenticate the CMSEmployee.

3a.1 Use case continues at step 1.

3a.1a CMSEmployee performed three consecutive failed attempts.

3a.1a.1 Use case ends in failure.

21

5 Domain Model

The Domain Model offers insight into the problem domain, in our case Car Crash crisis management

systems. Taking the form of a UML class diagram, it provides a description of the concepts of the

problem domain relevant to the Car Crash CMS, by representing the concepts as classes, attributes and

associations between classes. Although any domain concept could be added to the domain model, we

decided to include here only concepts that must define information that must be recorded for the purpose

of fulfilling the system’s responsibilities over time. In other words, the domain model presented here

only contains concepts that are used to describe the necessary information to fulfill system goals.

Because of size constraints, the domain model is split into two figures. Figure 4 depicts the Crisis

and Mission concepts and how they relate to the other concepts, whereas figure 5 shows the inheritance

hierarchies inherent in the domain of the Car Crash CMS.

observedBy

1..*

10..*

witnessCL

1

missionCL 1

CheckListCrisisType

CarCrash

0..*

1

Worker
emergencyLevel
location
startTime
endTime
status
detailedInfo

Mission involvedW

0..*

ExternalWorkerCMSEmployee

External
ResourceSystem

1 employer

0..*

MobileEmployee
0..*0..1

transportedBy
Vehicle

missionLeader 1

0..* crashedVehicle

Victim
involvedVictim

0..*

0..1

wasIn

Medium
gatheredMedium

0..* emergencyLevel
affectedArea
startTime
endTime
status
detailedInfo

Crisis

assignedTo

1
Coordinator

Witness

Figure 4: Car Crash CMS Domain Model, Part 1

22

name
address
identification
phone
dateOfBirth

Person

Witness
gsm
expertise

Worker

loginId
password
accessRights
status

CMSEmployee
id
currentLocation

ExternalWorker

Coordinator

SuperObserver

Pilot

deceased
concious
mobile
injury

Victim

SysAdmin
currentLocation
pdaNumber

MobileEmployee

Logistician

FirstAidWorker

name
address
phone

External
ResourceSystem

MedicalRS GovernmentRS LogisticRS

HospitalRS Private
AmbulanceRS

PoliceRS Fire
DepartmentRS

MechanicRS

TowingRS

CleaningRS

Road
RepairRS

license
serialNumber
color

Vehicle

Car

Truck

Bike

Train

Helicopter

Ambulance

Medium

Photo

Movie

Sound

SurveillanceRS

Figure 5: Car Crash CMS Domain Model, Part 2 – Inheritance Hierarchies

23

6 Activity Diagrams

The use cases presented in section 4 are text-based, and can hence be effectively used as a communication

means between technical as well as non-technical stakeholders. In order to elaborate a more formal spec-

ification, use cases are typically refined and then depicted using sequence diagrams or activity diagrams.

In this section we give one example of a use case represented using an activity diagram. Figure 6

shows the activity diagram created based on the use case Assign Internal Resource already presented in

subsection 4.2.3 and reproduced here for convenience. The interested reader is referred to [2] where we

have defined precise transformation rules that make it possible to automate mappings from use cases to

activity diagrams.

Use Case 3: AssignInternalResource

Scope: Car Crash Crisis Management System

Primary Actor: None

Secondary Actor: CMSEmployee

Intention: The intention of System is to find, contact, and assign a mission to the most appropriate available

CMSEmployee.

Main Success Scenario:

System selects an appropriate CMSEmployee based on the mission type, the emergency level, location and

requested expertise. In very urgent cases, steps 1 and 2 can be performed for several CMSEmployees concur-

rently, until one of the contacted employees accepts the mission.

1. System requests the CMSEmployee to login.

2. System sends CMSEmployee mission information.

3. CMSEmployee informs System that he accepts the mission.

Use case ends in success.

Extensions:

1a. CMSEmployee is already logged in.

1a.1 Use case continues at step 2.

2a. CMSEmployee is unavailable or unresponsive.

2a.1 System selects the next appropriate CMSEmployee.

2a.2 Use case continues at step 1.

2a.1a No other CMSEmployee is available. Use case ends in failure.

3a. CMSEmployee informs System that he cannot accept the mission.

3a.1 System selects the next appropriate CMSEmployee.

3a.2 Use case continues at step 1.

3a.1a No other CMSEmployee is available. Use case ends in failure.

In the activity diagram presented in figure 6 the outcomes of the use case are modelled as return

parameters of the activity, and hence visualized as ActivityParameterNodes or output pins. The type of

outcome is identified with the predefined stereotypes ≪ success ≫, ≪ degraded ≫ and ≪ failure ≫.

The exceptional nature of degraded and failure outcome flows is depicted using exceptional pins.

To prevent confusion, data flow is always separated from control flow, i.e., if the activity requires

input or output parameters, separate input and output pins are used.

The AssignInternalResource activity is composed of several subactivities beginning with DetermineMostAp-

propriateEmpl. After succcessfully selecting a CMSEmployee, the flow of AssignInternalResource con-

tinues to the activity RequestLogin. If DetermineMostAppropriateEmpl fails, the parent activity also fails.

Next if the login is successful, it is followed by the activity SendMissionInformation. On a successful

outcome, the system waits for a reply from the employee which is part of the activity AwaitingMission-

Acceptance. If the login is unsuccessful or if the mission information is not transmitted successfully, the

activity AssignInternalResource restarts by choosing an alternate worker.

24

AssignInternalResource

<<failure>>

EmplNotLoggedIn

LoginRequestNotSent

DetermineMost
AppropriateEmpl

missionDetails:

MissionDescription

Request
Login

chosenEmpl:

CMSEmployee

chosenEmpl:

CMSEmployee

<<failure>>

SendFailure

SendMission
Information

loggedEmpl:

CMSEmployee

loggedEmpl:

CMSEmployee

<<failure>>

MissionRefused

ResponseFailureAwaitingMission
Acceptance

informedEmpl:

CMSEmployee

informedEmpl:

CMSEmployee

assignedEmpl:

CMSEmployee

missionDetails: MissionDescription

<<success>>

MissionAssigned

<<failure>>

EmplUnavailable

<<success>>

<<success>>

EmplLoggedIn

<<success>>

Stopped

<<success>>

MissionAccepted

assignedEmpl:

 CMSEmployee

[chosenEmpl.loggedIn]
[else]

Figure 6: Car Crash Case Study: Assign Internal Resource Activity Diagram

The AssignInternalResource activity has 2 different outcomes. It can either succeed (≪ success ≫

MissionAssigned) or fail (≪ failure ≫ EmplUnavailable).

If desired, all use cases can be transformed into activity diagrams following the same mapping rules

to create a complete specification of the system’s behavior using activity diagrams.

25

7 Informal Physical Architecture Description

A typical architecture for a crisis management system contains many machines that are connected with

different types of networks. Figure 7 gives an overview of the kinds of machines and communication

networks that could be used in an instance of the Car Crash CMS.

Terminal

Workstation

Government
System

Desktop PC

Macintosh

Laptop

Police
System

VPN Gateway
File Server

Relational Database

Single Server
or Server Cluster

Long-term StorageLogging Host

Phone

Cellular
Phone

Authentication
Server

GSM Antenna

PDA
GPS

Hospital
System

Fire Department
System

Surveillance
System

Figure 7: Car Crash Case Study: Physical Architecture

The backend of the system is composed of a server or a server cluster that implements most of the

business functionality. Local CMS employees, such as the coordinators and the system administrators,

use terminals or desktop machines to access the backend through a private network. External services and

mobile CMS employees with laptops are connected to the backend by means of virtual private networks

on top of public networks. Cell phones, GPS devices and PDAs are reached using a GSM antenna.

In the network layer, several protocols can be used to transport the communications: GSM for voice,

GSM for SMS, UDP/TCP/IP for voice, and TCP/IP for data exchange. In the application layer, several

protocols can be used to transport the communications: proprietary protocols or standardized protocols

(HTTP, SMTP, POP3, IMAP, XMPP, etc...)

26

8 Selected Design Models

During design, a blue print of a solution that satisfies the requirements defined by the analysis models

is devised. In object-oriented design, the conceptual state has to be mapped to objects, and then the

developer has to decide how the conceptual state changes specified in every system operation are to be

implemented by interacting objects at run-time.

The concepts identified during analysis, in our case e.g. Crisis, Mission, CMSEmployee, are initial

candidates for becoming design objects that hold the application state. However, some concepts may be

implemented using several objects, or, alternatively, some concepts may be implemented as attributes.

The granularity of objects affects several aspects of the system under development. Too fine-grained

decomposition leads to systems with thousands of objects. Such systems might be hard to understand

and maintain due to their high coupling, and generate huge communication overhead. On the other hand,

a coarse decomposition leads to bulky architectures, and objects with unclear responsibilities, which

can also be hard to understand and maintain. Good designers try to maximize object coherence, while

minimizing object coupling.

The idea of this section is to present some design models of a possible object-oriented design of

the Car Crash CMS backend. Currently, the only functionality that is designed is the CreateMission

functionality that is triggered by the SuperObserver when ordering missions to deal with the crash.

8.1 Creating Missions

8.1.1 Summary of Functionality

The CreateMission functionality allows the SuperObserver to inform the Car Crash CMS about a mission

that needs to be accomplished in order to deal with the crash. The system has to store the relevant mis-

sion information, determine the candidate CMSEmployees that could accomplish the mission, establish

contact with at least one of them and propose the mission to him. The design of CreateMission also

implements some secondary functionality. For instance, it takes care of gathering statistics on how many

potential candidate employees the system was able to choose from when assigning the mission. Also, it

makes sure that employees have properly logged into the system (and hence authenticated) before sending

them mission related information.

8.1.2 Interaction Design

It is assumed that somehow the user interface on the PDA allows the SuperObserver to select the ap-

propriate mission kind, select the emergency level of the mission and enter detailed mission information

before sending the request to the Car Crash CMS backend. The sequencing of message exchanges be-

tween objects that are triggered by this request are shown in a sequence diagram in Figure 8.

The initial request is directed to the CrisisManager. After instantiating a new mission object and

linking it to the crisis, the crisis manager hands the responsibility of assigning the mission to a CM-

SEmployee to the ResourceManager. The resource manager has access to a hash table of employees

indexed by expertise, and hence is able to obtain a collection of employees that are qualified to execute

the mission. The resource manager then proceeds by looping though this list, and inserting any available

employee (i.e. an employee that currently is not affected to other missions or otherwise unavailable) that

is close enough to the mission location (i.e. can get to the mission location in a reasonable amount of

time) into a priority queue. In the queue, the employees are sorted with respect to their ”adequacy” for

performing the mission. Once this list is established, the size of the list is remembered for statistical

27

currentEmpl := next()

emplLocation := getLocation()

: Map

size := getSize()

foundEmployees := clone()

available := isAvailable()

 missionLocation := getLocation()

exp := getRequiredExpertise()

foundEmployees := find(exp)
 foundColl := get(exp)

: Resource
Manager

m: Mission

myEmployees:
EmplHashTable

foundEmployees:
EmplColl

initiateAssignment(m)

foundColl:
EmplColl

loop [currentEmpl within foundEmployees]

currentEmpl:
CMSEmployee

opt [available]

time := travelTime(emplLocation, missionLocation)

opt [time < maxStartDelay]

 maxStartDelay := getMaxStartDelay()

create()

candidates:
EmplPriorityList

create()

insert(currentEmpl, score)

 score := adequacyScore(currentEmpl, time)

: Statistics
numberOfCandidates(size)

empl := removeFirst()

empl: CMSEmployee
contactAbout(m)

alt [not loggedIn]

req: Login
RequestSMS

create(emplSMSNumber)

: SMSSender

send(req)

[else]
: PDASender

sendMissionProposal(myPDAConnection, m)

 setStatus(contacting, m)

 setStatus(proposing, m)

setCandidates(candidates)

: Crisis
Manager

createMission

 (su: SuperObserver,

 kind: MissionKind,

 level: EmergencyLevel,

 details: MissionDetails)

create(currentCrisis,

 level, details)
currentCrisis:

Crisis

addMission(m)

su: Super
Observer

currentCrisis := getCrisis()

Figure 8: Car Crash Case Study: CreateMission Design Sequence Diagram

purpose. Finally, the resource manager proceeds by contacting the first employee on the list. If that

employee is not currently logged in, then he is requested to do so by sending him an SMS.

The interaction design ends here, because the system now has to wait for an answer from the employee

(which can either be a login request, or a mission acceptance notification).

8.1.3 Structural Design

The chosen design solution presented in the sequence diagram has many implications on the design.

It assumes, for instance, the existence of many classes with particular fields and method definitions.

Also, some permanent associations are assumed to be existing. For example, a super observer must be

28

associated with a crisis. This is obvious from the first message in the sequence diagram in Figure 8.

Another example is the employee hash table that can find employees based on a particular expertise. The

CreateMission design assumes that this hash table already exists, which means that the functionality that

deals with the creation of employees must also take care of building this hash table, which established

permanent references between expertise and groups of employees.

The classes, attributes and methods, and the dependencies and associations between classes created,

used and assumed by the CreateMission design are shown in Figure 9.

numberOfCandidates(int)

<<system-wide>>

Statistics
1

employees

1

Request
LoginSMS

destNumber
SMS

boolean isAvailable()
Location getLocation()
setStatus(EmplStatus,Mission)
contactAbout(Mission)

available: boolean
loc: Location
status: EmplStatus

CMSEmployee

create(Crisis,EmergencyLevel,MissionDetails)
Location getLocation()
float adequacyScore(CMSEmployee,Time)
Time getMaxStartDelay()
Expertise getRequiredExpertise()

level: EmergencyLevel
details: MissionDetails
loc: Location

Mission

relatedMission

0..1

createMission(SuperObserver, MissionKind,
EmergencyLevel,MissionDetails)

<<system-wide>>

CrisisManager
1

EmplColl find(Expertise)
EmplColl get(Expertise)

EmplHashTable

Expertise
EmplColl clone()
CMSEmployee next()

EmplColl

0
..
*insert(CMSEmployee, float)

int getSize()
CMSEmployee removeFirst()

EmplPriorityList

0
..
*

<<instantiate>>

candidates

0..1

initiateAssignment(Mission)

<<system-wide>>

ResourceManager
1

Time travelTime
 (Location, Location)

<<system-wide>>

Map

addMission(Mission)

Crisis

0
..
*

1

SuperObserver
observedCrisis

0..1 0..*

send(SMS)

SMSSender 1

sendMissionProposal
 (PDA,Mission)

PDASender 1

Figure 9: Car Crash Case Study: Partial Design Class Diagram based on CreateMission Design

References

[1] Sadaf Mustafiz and Jörg Kienzle. A Requirements Engineering Process for Dependable Reactive

Systems. In Methods, Models and Tools for Fault Tolerance.

[2] Sadaf Mustafiz, Jörg Kienzle, and Hans Vangheluwe. Model transformation of dependability-focused

models. In MiSE ’09: Proceedings of the 2009 International Workshop on Models in Software

Engineering, New York, NY, USA, 2009. ACM. To be published.

[3] Optimal Security. Product line document: Version 0.7. March 2009.

[4] Optimal Security. Requirements document: Version 0.8. March 2009.

29

