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Pooled CRISPR screens allow researchers to interrogate genetic causes of complex phenotypes at the genome-wide
scale and promise higher specificity and sensitivity compared to competing technologies. Unfortunately, two
problems exist, particularly for CRISPRi/a screens: variability in guide efficiency and large rare off-target effects. We
present a method, CRISPhieRmix, that resolves these issues by using a hierarchical mixture model with a broad-tailed
null distribution. We show that CRISPhieRmix allows for more accurate and powerful inferences in large-scale pooled
CRISPRi/a screens. We discuss key issues in the analysis and design of screens, particularly the number of guides

needed for faithful full discovery.
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Background
CRISPR interference and CRISPR activation (CRISPRi
and CRISPRa, respectively) pooled screens allow for high-
throughput functional interrogation of genes through
modifications in gene expression [1-3]. Variable levels
of inhibition and activation allow for the investigation
of a broad range of expression changes [4, 5]. This is in
contrast to CRISPR knockout (CRISPRko) screens, where
ablation typically results in gene silencing [6, 7]. CRISPRa
and CRISPRi screens have multiple other benefits relative
to CRISPRko. Both allow for the investigation of a broader
class of genomic elements, such as long non-coding RNAs
(IncRNAs) [4] and enhancer elements [8, 9]; CRISPRa
specifically allows for gain of function investigations, such
as targeted differentiation and trans-differentiation of spe-
cific cell types [5]; and CRISPRi does not generate double-
stranded breaks that can induce a gene-independent DNA
damage response that can lead to cell death [10, 11].
Unfortunately, the variability in inhibition and
activation levels creates issues in the analysis and
identification of genes associated with the phenotype
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under study. Chromatin organization and epigenetic
effects such as nucleosome positioning [12], DNA folding
[13, 14], and variable transcription start site usage [15]
can lead to unpredictable and irregular guide efficacy.
Even for CRISPRko, varying insertion size and allele
diversity can result in variable effects across sgRNAs [16].
This results in a broad range of sgRNA effects and, more
critically for CRISPRi/a experiments, a percentage of sgR-
NAs that have no effect, even for true positive genes. In
addition, despite promises of high specificity of CRISPR
technologies, we tend to observe rare but large off-target
effects in all three types of screens. These issues make
it problematic to systematically score genes to deter-
mine which genes are highly likely to contribute to the
phenotype of interest, and deserve further investigation.
Consider the situation shown in Fig. 1la. Gene A has
a single sgRNA with an extremely large effect, and the
remainder seem to closely mirror the distribution of the
negative control sgRNAs. It is difficult to determine if
gene A is negative, and this is a random off-target effect
or, alternatively, gene A is positive and by random chance
only one guide worked. Gene B, on the other hand, has
no guides with such a strong effect, but the majority of
the distribution is shifted away from the negative con-
trol guides. This indicates that gene B has a small but
consistent effect for the phenotype. Finally, gene C fol-
lows a clear mixture distribution with a majority of the
guides having no effect and a clear percentage having
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Fig. 1 a A hypothetical situation. Gene A has a single sgRNA with a large effect, while the rest of the sgRNAs have little effect. Gene B has very few
sgRNAs with large effects, but the distribution looks shifted from the negative control. Gene C appears to follow a clear mixture distribution, with
some percentage of the sgRNAs having a large effect but the majority looking like the negative control distribution. b The hierarchical structure of
CRISPhieRmix. Genes can either have no association with the phenotype, in which case they are not interesting, or they are interesting and deserve
further investigation. Without prior knowledge, the genes can be considered as arising from a mixture distribution. For genes that are interesting,
we model sgRNAs as a mixture distribution as well, with some sgRNAs having no effect and following the null distribution and the others having
some effect and following the alternative distribution. ¢ Overview of the CRISPhieRmix algorithm. First, a broad-tailed null distribution is fit using
negative control sgRNAs. Then, a mixture distribution is fit on all sgRNAs, ignoring gene identities. Finally, for each gene, CRISPhieRmix uses the
mixture distribution to calculate the local false discovery rate, equal to the posterior probability that the gene is null. Of the three genes in a, we
estimate that gene A is highly likely to be null, gene B is highly likely to be a true hit, and gene C is probably non-null
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some effect, but all with a lower effect than the top guide
from gene A. Under some strategies of ranking guides,
such as looking at only the few strongest sgRNAs for
each gene, gene A might be ranked the highest of the
three while gene B might be missed. Alternatively, if the
analysis fails to take into account the mixture assump-
tion, then gene A will be ranked low but gene C might
be missed because the majority of the guides support a
null phenotype. How can we suitably weigh the evidence
for genes A, B, and C? If prior knowledge is available,
e.g., gene A is unlikely to be related to the phenotype
under investigation, then we may attribute the large effect

of a single guide to an off-target effect. But without
prior knowledge, how can we do this in a systematic
manner?

Existing methods for analyzing pooled CRISPR screens
typically rely upon a hypothesis testing paradigm. The
observed changes in abundance are tested against a
null distribution of changes, and global false discovery
rates (FDRs) are computed using the estimated p values.
However, departure from the assumed model can cause
both false discoveries and false negatives, resulting in a
decreased true positive rate (TPR) and an increased FDR.
To solve these issues, we take a mixture deconvolution
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approach to estimate local false discovery rates, similar
to the approaches of Efron [17], McLachlan et al. [18],
and Strimmer [19] in analyzing gene expression data. To
account for variable guide efficiency, we use a hierarchi-
cal mixture model (Fig. 1b), and to account for possible
off-target effects, we use a broad-tailed distribution that
is estimated from negative control guides (Fig. 1c). This
allows for more flexibility in the model and, when guide
effects are variable, both decreases the false discovery rate
and increases the true positive rate on simulated data.
We tested our method on the identification of essential
genes from a previous CRISPRi screen and found that
our method identifies many more essential genes than
other methods, with many of those missed showing a
clearer mixture distribution than the genes found by all
methods. We also tested CRISPhieRmix on CRISPRko
screens for essential genes and found that CRISPhieRmix
is competitive with the current state of the art algorithms,
despite the fact that there is less variability between sgR-
NAs targeting the same gene. Finally, we investigate the
performance of our method as a function of the number
of sgRNAs per gene and proportion of effective sgRNAs.
Our results suggest that current studies commonly use too
few sgRNAs for full discovery.

Results

Hierarchical mixture model

Suppose that G genes or features (typically genes and we
will refer to them generally as genes from here on) are
interrogated with N sgRNAs or guides (we will use the
two terms interchangeably) in a CRISPR screen. Follow-
ing the terminology of Efron [20], the goal of the screen is
to identify the class of “interesting” genes that are likely to
be causal for the phenotype studied and are candidates for
further investigation. We assume that the vast majority of
genes are uninteresting or null. The observed changes in
the abundance of the guides corresponding to the uninter-
esting genes should all follow some distribution f; that we
call the null distribution. Of course it may be possible that
a large number of genes have small effects, but these are
of little interest to expend further resources investigating
and are grouped with the uninteresting genes.

We assume that changes in abundance of the guides
corresponding to interesting genes follow an alternative
distribution f; that is sufficiently different from fy. With-
out prior knowledge of which genes are interesting or
uninteresting, the observed changes in guide abundances
will follow a mixture distribution (1 — p)fo + pfi, with
p equal to the proportion of interesting genes. This is
commonly called the two groups model in the statistics
literature [21].

When we examine positive hits, for example at known
essential genes in CRISPRi dropout screens [22, 23], we
observed a clear mixture distribution on guides targeting
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genes known to be interesting, essential in this case
(Additional file 1: Figure S1). Similarly, we observe
a mixture distribution in known interesting genes
CRISPRko screens, albeit to a lesser extent (Additional
file 1: Figure S1). To handle the possibility that some
guides are ineffective, we assume that the guides from
interesting genes also follow a mixture distribution.
Specifically, we assume that some percentage 1 — ¢
of guides will “not work” and follow the null distribu-
tion fp, while the remainder will follow the alternative
distribution f;.

The full model is detailed in the “Model” section.
One issue in estimating the model is that p and g are
not simultaneously identifiable. Since our primary inter-
est is in gene-level inference, we integrate out the nui-
sance parameter g (“Identifiability” section). For each
gene, we compute the posterior probability that it is
null, called the local false discovery rate (local fdr) by
Efron [17, 20]. To allow for comparison with other meth-
ods that use a hypothesis testing paradigm, we compute
global false discovery rates (global FDR) by averaging
the empirical distribution of local false discovery rates
(“The local false discovery rate” section).

Normal hierarchical mixture
Consider the case where both f) and f; are normal distri-
butions. As we will discuss later, this is likely an incorrect
assumption, but this simple case will illustrate the power
of the hierarchical mixture.

Evers et al. [22] produced a “gold standard” dataset, per-
forming both a CRISPRko screen and a CRISPRi screen
for 46 known essential genes and 47 known non-essential
genes. This dataset had an average of 7.3 guides per gene
with 3 replicates, each sequenced to an average of 4500
reads per guide in every experiment. Therefore, sequenc-
ing depth and variability between replicates are unlikely
to introduce bias and create difficulties in the analy-
sis, at least compared to other data sets that typically
have 2 replicates and sequence 100 to 1000 reads per
guide per experiment. We used DESeq2 [24] to compute
sgRNA-level normalized log2 fold changes for this
CRISPRi screen (Additional file 1: Figure S1).

We applied the normal hierarchical mixture
(NormHierMix) to the estimated log2 fold changes,
as well as MAGeCK in both robust ranking aggrega-
tion (RRA) [25] and maximum likelihood estimation
(MLE) [26] mode to the raw count data. We measure
how well the methods distinguish essential from non-
essential genes by the area under the receiver operator
characteristic curve (ROC-AUC). The ROC-AUC of
NormHierMix was much higher than either MAGeCK
methods (Additional file 1: Figure S2), indicating that it
cleanly discriminated essential from non-essential genes
better than either MAGeCK methods.



Daley et al. Genome Biology (2018) 19:159

We estimated the global FDR of NormHierMix by aver-
aging all smaller local fdrs. Because there are so few genes
in this screen, this estimate may be highly variable. As a
check, the maximum global FDR estimated by NormHier-
Mix is 0.44, not far from the fraction of genes that are
non-essential (47/93 & 0.51), and the latter is equal to the
true FDR if all genes were called essential. At a global FDR
of 0.1, NormHierMix called 51 genes as essential, with
42 correctly essential, giving an empirical FDR of 0.18.
MAGeCK RRA only called 12 genes as essential (but at an
empirical fdr of 0), and MAGeCK MLE called a single gene
as essential. It appears that both MAGeCK methods are
far too restrictive in calling genes, possibly because of the
lack of a mixture assumption that is needed for CRISPRi/a
screening data, but the normal hierarchical mixture model
is too liberal, that we believe is due to the fact that the null
guide distribution is not normal.

Choice of the null distribution fy

Under proper normalization, fp should be standard nor-
mal [20]. In our experience, we typically observe that the
distribution of non-targeting negative control sgRNAs,
which should reflect the null distribution, has longer tails
than a normal distribution (Additional file 1: Figure S1).
We find that the normal distribution provides a poor fit
for the empirical distribution of both truly negative genes
(Additional file 1: Figure S1) and negative control guides
(Additional file 1: Figure S3).

While some screens investigate bidirectional pheno-
types, e.g., ricin resistance and susceptibility in Gilbert
et al. [2], most screen for one direction, e.g., screens for
essential genes look for depleted genes [6, 27] and gain
of function screens look for enriched genes [5]. We typi-
cally see a longer tail in the distribution of negative control
guides in the same direction as the investigation. This
makes it difficult to estimate the null distribution with-
out negative control guides, as Efron [20] does in the
case of gene expression data by using the central peak in
the distribution with the reasonable assumption that all
observations in the main peak are highly likely to be null.
A broader tail towards one side means that the central
peak is not likely to reflect the whole distribution. It is
clear that we need a distribution that is both asymmet-
ric and heavier tailed than the normal distribution. We
will have to choose a family of distributions that is flexible
enough to capture this behavior.

We tested several families of distributions, including
non-parametric approaches, and found success with the
skew-t distribution (“The skew-t distribution” section).
The usage of a more general family of distributions
improves the fit tremendously in all three types of CRISPR
screens, with both visual checks (Additional file 1: Figures
S3 & S5 and Additional file 1: Figures S4 & S6) as well
as with model selection by Bayesian information criteria
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(BIC) (Table 1 and Additional file 1: Table S1). This gain
in flexibility in modeling the null distribution will help
us to down-weight genes that have a single outlier obser-
vation, like gene A in Fig. 1. In our experience, such
genes are problematic to deal with systematically. They
occur too frequently and are observed too consistently
across experiments to be considered true outliers, yet they
often make little sense biologically. Improving our under-
standing of how such outliers occur will help to improve
experimental protocol and reduce their occurrence. In the
meantime, our flexible statistical modeling strategy can
help to handle such problems and improve the accuracy of
inferences.

Note that permutation-based estimation of the null dis-
tribution, such as in Li et al. [26] and Jia et al. [28], should
in theory handle such situations, as long as there is suffi-
cient data to empirically estimate the null distribution.

Comparison of methods on a semi-simulated dataset

To produce a dataset to compare methods using negative
controls, we take a hybrid approach to simulation. The
true positive genes are taken directly from the experiment,
and negative genes will be simulated from negative con-
trol guides. Rosenbluh et al. [23] performed a CRISPRi
screen on 33 genes with an average of 68 guides per gene
targeting each TSS, as well as 959 negative control guides.
These genes were chosen to be known essential genes or
oncogenes. Since the screens were performed on cancer
cell lines, silencing of these genes is expected to inhibit
cell growth or lead to cell death and should decrease the
abundance of the gene targeting guides in either case.
Unfortunately, the authors did not include any negative
control genes, genes that are known to be not essential or
affect the growth rate, so we will simulate them from the
negative control guides.

To simulate null non-essential genes, we first simu-
lated the number of guides per gene by sampling from a
negative binomial distribution with parameters fit from
the essential gene counts (u = 67.8, r = 26.3). We
then sampled a negative control guide at random and
computed the simulated counts as independent negative
binomial random variables with mean parameter equal to
the observed counts for the sampled negative guide and
the size parameter equal to 200. We did this for 104 (=

Table 1 Bayesian information criteria (BIC) of the normal model
(shown in Fig. 3) and the skew-t fit (shown in Additional file 1:
Figure S4) for the negative control guides of the indicated
experiments

Gilbert Liu Jost Jost
(2014) (2017) (2017) (2017)
CRISPRI CRISPRa
Normal BIC 127718 11586 —1366.1 44559
Skew-t BIC 111352 —431.9 — 4098 1011.2

A smaller BIC is preferred and is in italics for each experiment
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3 - 34) negative genes, so that p = 0.25. This gave us 5920
guides corresponding to negative genes. The distribution
of DESeq2-normalized log, fold changes are shown in
Additional file 1: Figure S7. The guides corresponding to
the simulated negative genes had a very similar empirical
distribution as the negative control guides. The guides tar-
geting essential genes have a peak at zero, which looked
similar to the distribution of negative control guides, but
with a longer and heavier tail on the negative side. These
are the guides that induce a phenotype that resulted in
their dropout from the pool of cells.

We applied CRISPhieRmix to this simulated data (the fit
is shown in Additional file 1: Figure S8). At a local fdr of
0.2 (or a posterior probability equal to 0.8 of begin essen-
tial), we identified 18 genes (Additional file 1: Figure S9),
all of which are truly essential. These 18 genes are assigned
a very high probability of being interesting, and the other
16 true positive genes are assigned a lower probability.
An inspection of the distribution of each class reveals a
clear difference in the distribution of these two groups
(Additional file 1: Figure S10). At a global FDR of 0.1
(as estimated by averaging the ordered local fdr values),
CRISPhieRmix identified 21 genes as interesting with all
correct, and at a global FDR of 0.2, CRISPhieRmix iden-
tified 26 genes as interesting with 24 correct, giving an
empirical FDR of 0.08.

For comparison, we also applied MAGeCK MLE and a
Mann-Whitney test that compares the log, fold changes
of gene targeting guides versus the negative control
guides. For the Mann-Whitney test, we used Benjamani-
Hochberg-corrected false discovery rates. We also applied
MAGeCK RRA to the count data, but no genes were
determined to be significant at any FDR level, so the
results are excluded from further analysis.

We found that both CRISPhieRmix highly discriminated
the positive genes from the simulated negative genes, with
an area under the receiver operator curve (ROC-AUC) of
around 0.95 (Fig. 2a). The other tested methods had signif-
icantly lower ROC-AUCs, indicating that CRISPhieRmix
can better discriminate the true genes from the simulated
negative genes.

The ROC-AUC only takes into account the gene rank-
ing and ignores the actual threshold used in the gene
rankings. We also investigated which algorithms correctly
control the false discovery rates at their stated values
(Fig. 2b). In this case, all methods control the FDR prop-
erly, with curves near or below the diagonal line which
indicates perfect estimation of the FDR. Note that this is
not the case for the normal hierarchical mixture model
(Additional file 1: Figure S11), as the normal distribution
is unable to handle what is commonly considered outlier
effects.

We performed identical simulations with the corre-
sponding CRISPRko data from Rosenbluh et al. [23]. In
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this case, MAGeCK RRA obtained usable results, so we
included it in our comparisons. MAGeCK RRA and the
Mann-Whitney test were able to perfectly distinguish the
true genes from the simulated null genes, as indicated
by an ROC-AUC of 1 (Fig. 2c). CRISPhieRmix made one
mistake, ranking only one null gene above only one true
gene, resulting in an ROC-AUC of 0.998. CRISPhieRmix
was able to do this while controlling the empirical FDR,
something all other methods fail to do (Fig. 2d). The
stark difference in performance for the Mann-Whitney
test between the CRISPRi and the CRISPRko simulations
is interesting, and we believe it may be due to the differ-
ences in guide efficiency between the two technologies.
We discuss this in more depth in the “Discussion” section.

Overall, these results indicate that CRISPhieRmix
can distinguish true positive genes from null genes
while effectively controlling the false discovery rate and
can perform well on both CRISPRi and CRISPRko

screens.

Performance with fewer guides

The Rosenbluh data has a lot of guides per gene, and this
helps to distinguish the true genes from the simulated
null genes. Most libraries have fewer sgRNAs per genes,
typically 5. To evaluate the performance of the methods
when fewer guides are available, we randomly down-
sampled the simulated CRISPRi and CRISPRko libraries
100 times at various levels of average number of sgR-
NAs per gene, from a lower limit of 5 to the total
number of guides per gene (68 in the CRISPRi simu-
lated data and 59 in the CRISPRko simulated data). We
looked at the ROC-AUC, the percentage of true essen-
tial genes called at an estimated FDR of 0.1 (TPR), the
empirical FDR of at the same cutoff, and running times
for CRISPhieRmix, MAGeCK MLE, and Mann-Whitney
tests in the CRISPRi simulated data. For the CRISPRko
simulated data, we also included MAGeCK RRA in our
comparisons.

For the CRISPRi downsample simulations, we observed
that the number of truly essential genes called by CRIS-
PhieRmix, as well as the empirical FDR and the ROC-
AUC, stayed relatively stable when we downsampled
down to an average of of 23 guides per gene (Fig. 3).
Beyond that, the performance dipped slightly at 14 and
5 guides per gene, but at 5 guides per gene, CRIS-
PhieRmix loses the ability the control the FDR, albeit
slightly. MAGeCK MLE, in contrast, controlled the FDR
at all number of guides, but the ROC-AUC and TPR
were lower than that of CRISPhieRmix at all numbers
of average guides per gene. In contrast, the perfor-
mance of the Mann-Whitney tests decreased sharply at
any level of downsampling. This agrees with the results
that we present in the next section, as there we have
10 guides per gene.
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Fig. 2 a Receiver operator curves for gene scores computed by CRISPhieRmix, the Mann-Whitney test, and MAGeCK MLE on the Rosenbluh CRISPRI
simulated data. The diagonal line y = 1 — x indicates performance by random chance. b The corresponding estimated false discovery rates (x-axis)
plotted against the corresponding empirical false discovery rates (y-axis). The diagonal line y = x indicates perfect control of the false discovery rate.
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For the CRISPRko downsample simulations (Additional
file 1: Figure S12), MAGeCK RRA had a nearly perfect
ROC-AUC for all levels of downsampling, with CRIS-
PhieRmix close behind. Similarly, MAGeCK RRA had the
highest TPR at all levels of downsampling, at a cost of
not quite controlling FDR. CRISPhieRmix, on the other
hand, perfectly controls the FDR up till 5 guides per gene,
but at the cost of lower discovery in the true positive
rate. Meanwhile, the Mann-Whitney test was competi-
tive for large numbers of sgRNAs per gene, but broke
down for the lowest numbers. These results indicate that
MAGeCK RRA is still the current state of the art for ana-
lyzing CRISPRko screens. CRISPhieRmix still performed
well in these simulations, but our belief is that the signal
from CRISPRko screens is typically strong enough that
there will be a loss of power when including a mixture
assumption. It is in cases where one can expect variable
sgRNA efficiency or effects that we believe CRISPhieRmix
will perform the best.

CRISPhieRmix increases the identification of truly essential
genes in dropout screens
In previous existing datasets, the ground truth is not
known. This forces us to use proxy measures to compare
and benchmark methods. In the previous section, we used
a semi-simulated approach, but the assumptions in such
simulations (such as the assumption that the distribution
of negative control guides and negative gene targeting
guides is the same) may not reflect the underlying reality.
In this section, we will use an experiment with a well-
studied phenotype to compare and benchmark methods.
Gilbert et al. [2] performed a genome-scale CRISPRi
screen to examine ricin sensitivity and resistance for
15,977 genes with 10 sgRNAs per gene and 10,569 nega-
tive control sgRNAs. They sequenced the initial popula-
tion, the treated population, and the untreated population.
To estimate ricin sensitivity, they compared the treated to
the untreated population, as this will control for growth-
related effects from the inhibited genes. We can, however,
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compare the untreated versus the initial population and
look for genes that dropout of the screen. These genes
should be responsible for either cell death or decreased
cell growth. Thus, we can look at known essential and
non-essential genes to compare various algorithms. Of
course, essential genes vary by context and in strength. To
prevent such bias, we will use the reference set of Hart
et al. [29], who used multiple screens to find a core set
of essential genes. We use their ConstitutiveCoreEssential
gene set as a positive set of known essential genes and
their NonEssential gene set as a negative set of known
non-essential genes. The ConstitutiveCoreEssential gene
set contains 217 genes, all interrogated by Gilbert et al.
[2], and the NonEssential gene set contains 927 genes,
with 460 interrogated by Gilbert et al. [2]. Naturally, since
the cell type used in the experiment is a cancer cell line,
we should expect a multitude of other types of genes to be

positive in the screen, such as oncogenes or tumor sup-
pressor genes. The reference set provides a known basis
that we can use as a proxy to measure the performance of
the tested methods.

We applied all the methods described in the
“Comparison of methods on a semi-simulated dataset”
section to the raw count data, computing log, fold changes
with DESeq2. The lowest p value calculated by MAGeCK
RRA was 0.5 and identified no genes as significant at
any FDR < 1, and we will not discuss those results any
further.

At a global FDR of 0.1, CRISPhieRmix (fit is shown in
Additional file 1: Figure S13) identified a total of 1425
genes as interesting with 172 of these contained in the
ConstitutiveCoreEssential gene set and only 2 contained
in the NonEssential set (Table 2), giving an estimated FDR
of 0.01. At the same global FDR of 0.1, MAGeCK MLE
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Table 2 The number of genes identified at a global FDR of 0.1.
Essential genes are defined as genes in the ConstitutiveCoreEssential
gene set of Hart et al. [29] and similarly for non-essential genes

CRISPhieRmix MAGeCK MLE M-W
Total genes 1425 795 1383
Essential genes 172 106 52
Non-essential genes 2 3 96

M-W Mann-Whitney

identified 795 genes with 106 contained in the Consti-
tutiveCoreEssential gene set and 3 in the NonEssential
set. This gives an empirical FDR of 0.028, indicating that
MAGeCK MLE does a good job at controlling the FDR in
this situation. The Mann-Whitney test, on the other hand,
had difficulty in separating the two classes and does lit-
tle better than random chance in distinguishing essential
from non-essential genes (Table 2 and Additional file 1:
Figure S14).

MAGeCK MLE does a reasonably good job in discrim-
inating essential from non-essential genes, but misses a
lot of genes compared to CRISPhieRmix at the same FDR.
In fact, CRISPhieRmix identifies nearly all (105 out of
106) of the genes identified by MAGeCK MLE. We exam-
ined the distribution of the genes called by both methods
and the genes only called by CRISPhieRmix (Additional
file 1: Figure S15). The essential genes identified only by
CRISPhieRmix look much more like a mixture distribu-
tion with more guides that look null and weaker signal
than the genes called by both methods. We verified this is
true by looking at individual genes (e.g., Additional file 1:
Figure S16). This indicates that MAGeCK needs more
guides significantly different from the null distribution to
identify genes. This is, of course, solved by the mixture
assumption on guides in CRISPhieRmix.

We next sought to evaluate all methods on a CRISPRko
screen, again using a dropout screen and evaluating meth-
ods based on the reference set of Hart et al. [29]. We
applied CRISPhieRmix, MAGeCK MLE, MAGeCK RRA,
and the Mann-Whitney test on the six experiments from
Hart et al. [30], downloaded from the TKO website [31].
DESeq2 log2 fold changes are shown in Additional file 1:
Figure S17. We only tested the methods on the base
library, which has an average of 5 sgRNAs per gene tar-
geting 17,231 genes. We did not test BAGEL [32] because
it uses the reference set as a baseline in their semi-
supervised method and would likely perform perfectly.
Additionally, we are primarily interested in unsupervised
identification of genes, as formulated in the two groups
model [21]. This ensures the broadest applicability of the
method, since even when there are known positive genes
these can be used as a post-ranking validation.
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In all six experiments, CRISPhieRmix and MAGeCK
RRA performed the best, and actually quite similarly with
a maximum difference in ROC-AUC of 0.02 (Additional
file 1: Figure S18). Similarly, all methods performed sim-
ilarly in controlling the FDR. This indicates that even on
CRISPRko screens CRISPhieRmix can perform competi-
tively with the current state of the art.

We used dropout screens to compare screens because
more is known about the underlying biology of these
screens than almost any other screen. The availability
of a gold standard reference set gives us a proxy mea-
sure to easily compare methods. We should note, how-
ever, that we believe that dropout screens for essential
screens have higher signal than other screens. When the
signal is smaller, we believe that the mixture deconvo-
lution approach of CRISPhieRmix will be able to better
distinguish true genes from false positives.

Designing experiments: how many guides to include to
optimize discovery?

Recent works have developed methods to classify and
design better guides that have higher on-target effects or,
in other words, a higher chance of working [15, 23, 33].
Despite these improvements in guide design, it remains
difficult to design guides with sufficiently strong func-
tional phenotype (e.g., activate or repress genes to suf-
ficient fold change for an observable phenotype). For
example, if in a CRISPRa screen a gene is not primed
for activation and its promoter is closed, then it might
be difficult for the dCas9 to bind and sufficiently acti-
vate the target gene. Designing effective guides is a well-
discussed issue in CRISPRko screens, see for example
Listgarten et al. [34] and Haeussler et al. [35]. The dif-
ference in CRISPRko screens is that the chance that a
random guide works is higher, but the libraries tend to
have less guides per gene, typically 3 or 5 compared to 5
or 10 in CRISPRi/a screen. As such, there is still a small
chance that no effective guides for a particular gene are in
the library. Consider the case where 95% of guides work.
If the library contains 5 guides per gene and we need at
least 2 effective guides to prevent false positives, then the
chance of missing a random gene is approximately 0.05%.
On the other hand, if the library contains only 3 guides
per gene, then the chance of missing a random gene is
approximately 3%. Of course, this was just a hypotheti-
cal example but a real example was recently discussed in
Rauscher et al. [36].

Rosenbluh et al. [23] estimated that only 40% of guides
in their screen were effective at achieving transcriptional
inhibition. To investigate the performance at other levels
of guide efficiency, we will take a fully simulated approach.
We will assume that the negative distribution is a skew-
t with parameters § = 0,0 = l,aa = —15v = 6
the positive genes have an effect size that is normally
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distributed with mean — 3 and standard deviation 0.75;
and the effective guides are normally distributed with
mean equal to the gene effect size and standard devia-
tion equal to 1. This implies that the overall distribution
of effective guides for positive genes is normal with mean
— 3 and standard deviation 1.25. We varied the percentage
of effective guides from 10 to 100% and varied the num-
ber of guides from 1 to 35. Example densities are shown in
Additional file 1: Figure S19. We applied CRISPhieRmix
and the Mann-Whitney test to the simulated data and
looked at the percentage of positive genes correctly identi-
fied at an estimated FDR of 0.1 and the ROC-AUC, which
measures how well the positive genes were ranked relative
to null genes.

We found that even with a low number of guides (> 3)
and a reasonable percentage of good guides, both meth-
ods do a reasonably good job in ranking the positive genes
above the null genes, as indicated by the high AUC (Fig. 4
and Additional file 1: Figure S20). We suspect that this
generalizes to other methods as well. On the other hand,
we find that it is difficult to correctly identify all of the
positive genes with a low number of sgRNAs. Even at 95%
guide efficiency, 88% of true positive genes were identi-
fied at 3 sgRNAs per gene by CRISPhieRmix. Increasing
the number of guides to 5 or 10 guides per gene increases
the percentage of positive genes identified to 93% and
99%, respectively. Meanwhile, the ROC-AUC was equal
to 0.97, 0.99, and 0.995 in these cases, indicating that
the gene rankings were highly similar. The number of
genes correctly identified by the Mann-Whitney test was
lower (69%, 82%, and 97% at 3, 5, and 10 guides per gene,
respectively).

We suspect that the low number of guides in current
libraries prevent some truly interesting genes from being
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identified, either through varying sgRNA efficiency or
through varying gene effect sizes. Genes with larger effect
are easier to distinguish from null genes, and it takes more
evidence to distinguish genes with small effects. This can
only be done with more guides per gene. In our simula-
tions, the effect size of the genes could be considered to
be moderate but the resulting densities resemble densities
of real screen (e.g., Additional file 1: Figure S17). The true
genes will be easier to identify when genes have a larger
effect. If researchers only want to investigate the few genes
with the largest effects, then a smaller library will suffice,
but we believe that 3 sgRNAs per gene severely limits the
ability to investigate interesting biology.

Discussion
We presented a new method of analyzing large-scale
CRISPRi and CRISPRa screens that utilizes a hierarchi-
cal mixture model to allow for the possibility of vary-
ing guide efficiency and response. Though we presented
our method primarily in terms of CRISPRi/a screens, we
showed that it can be applied to CRISPRko screens if there
is any possibility of varying guide efficiency. This prob-
lem is not nearly as pronounced in CRISPRko screens
as it is in CRISPRi/a screens. Therefore, we expect that
the improvement in such cases will only be small, but we
showed that even in CRISPRko screens CRISPhieRmix is
competitive with the current state of the art algorithms.
We showed that the improvement in CRISPi/a screens is
dramatic. The ability to model guides as a mixture distri-
bution helps to distinguish genes that have varying guide
efficiencies.

Our results indicate that a large number of guides and
negative control guides may be unnecessary if researchers
have plans to only study the top few genes, say if they
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Fig. 4 The true positive rate (the percentage of true interesting genes correctly identified) for CRISPhieRmix at an FDR of 0.1 (left) and ROC-AUC
(right) for simulated data with varying percent of effective sgRNAs and number of sgRNAs per gene. The ROC-AUC is high for most parameters,
implying that ranking the genes is usually easy, and the percent of correctly identified genes is much smaller, implying that it is difficult to correctly
identify all truly interesting genes while simultaneously effectively controlling the false discovery rate
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decide beforehand to investigate the top 10 or 20 genes.
The gene rankings can be estimated effectively without
guides using a normal hierarchical mixture model or, in
the case of no varying guide efficiency, a normal mix-
ture model. This may help to save money, since the more
guides requires higher sequencing depth, at the cost of
decreased sensitivity. On the other hand, full discovery
likely requires more guides than is currently standard. Five
or fewer guides per gene may be inhibiting full investiga-
tion, as our results indicate that important genes can be
missed in the case of varying guide efficiency.

Our method is specifically designed to rank genes and
does not produce estimates of effect size, as MAGeCK
MLE does. This is because of the identifiability issue in
the simultaneous estimation of the gene and guide mix-
tures. To circumvent this issue, one could identify which
genes are highly likely to be non-null and then estimate
effect sizes only for these genes using a hierarchical mix-
ture with f; as a prior. Doing this, on the other hand, will
result in an upwardly biased estimate of the percentage of
guides that work, as genes that by random chance had few
or no working guides in the screen will be excluded from
this second-level analysis.

An interesting outcome of our simulations is that we
sometimes observed low power for the Mann-Whitney
test. This behavior of the Mann-Whitney test was surpris-
ing to us, as it is a workhorse method for non-parametric
hypothesis testing and is typically suggested in small to
moderate sample sizes [37], although in our case the sam-
ple size is both large (for the negative control guides)
and small (for guides targeting a specific gene). Such a
large difference in sample size is rarely encountered in
the statistics literature and has not been investigated in
depth. A subsequent literature search revealed recent dis-
cussions on issues with the Mann-Whitney test [38—40].
Though the two sample Mann-Whitney test is designed
to test whether they arose from the same distribution, in
reality, it can only detect divergences from Pr(X < Y) =
0.5 [41]. Therefore, the Mann-Whitney test may have low
power when the percentage of effective guides is below
50%. This is a possible explanation for the stark differ-
ence in performance between our CRISPRko and CRISPRi
simulations.

We have made the CRISPhieRmix software avail-
able as an open source R package at https://github.
com/timydaley/CRISPhieRmix. Detailed instructions and
exampled are given in the manual, in the vignette section.

Conclusion

Variable guide efficiency can create major issues in the
analysis of CRISPRi/a screens, as well as CRISPRko
screens. Accounting for this in the analysis greatly
improves inferences and helps to identify genes that are
likely to be related to the phenotype of interest but suffer
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from low guide efficiency. Our method, CRISPhieRmix,
improves identification while effectively controlling the
false discovery rate in both simulated and real data.

We used simulations to estimate how performance
changes as a function of guide efficiency. These indicated
that while it is easy to identify the genes with the highest
effect, full discovery requires more than 3 guides per gene.
This indicates that current studies may be using too few
guides and researchers may by random chance be missing
out on important biology.

Methods
Model
Let g; : {1,...,N} — {1,...,G} denote the mapping
from sgRNAs to genes; Z, be the latent indicator vari-
able that gene g is interesting, with Z; ~ Binomial(p); Y;
be the latent indicator variable that guide i works, with
Y; = 0if Z;, = 0 (e.g, if the gene corresponding to
guide { is null) and Y; ~ Binomial(q) if Z,, = 1; and
let x; be the log, fold change of guide i, typically com-
puted by averaging the empirical log, fold changes across
replicates or by count analysis software such as DESeq2
[24] or edgeR [42]. Throughout the paper, we will use
DESeq2-moderated log, fold changes when raw counts
are available, and provided log, fold changes if the raw
counts are not available.

The likelihood of the observed log, fold changes is given by

Lo fupwlxijyi=1,...,N,j=1,...,])

G
=[[a-p» [] @ +p [] (@ -+ afix).

g=1 iigi=g igi=g
1)

The full likelihood, where the latent variables are
assumed to be known, is given by

L(fo, fis ptlxijs Zg, Yisi=1,...,N,j=1,...,],g=1,...,G)
G 1-7, Z,
=TI{ I1AG [ foG)"Yifien"
g=1 \igi=¢ iigi=g
(2)

Identifiability
Note that the factorization (2) can be written as

N

1-YiZy,) YiZy,
l_[f()( ’4 )fl ¢4 . (3)
i=1

Therefore, if we were to use an EM algorithm in the
straightforward manner, p and g are not simultaneously
identifiable.

We can, however, estimate T = pg, the probability that
a randomly chosen guide arises from f;, with relative ease.
Let W; = Y;Z,,. Then, the complete likelihood is given by
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N

A=Wy W;
[16 A"
i=1

and W; is a Bernoulli(t) random variable. We assume that

fi is the Normal(u,az) density. Therefore, we can esti-
mate /1, 02, and 7 with a simple EM algorithm, with the
two cases discussed above: f fixed (when negative control
guides are provided), or fy a Normal(j1o, 6¢) density, and
o and 002 estimated in the EM (when negative control
guides are not provided).

Since we are only interested in determining the inter-
esting genes, the primary quantities of interest are the
posterior probabilities that each gene is interesting. In this
case, ¢, the mixing parameter on guides for the interest-
ing genes, is a nuisance parameter. As is standard, we can
eliminate g by marginalization. Let 7 denote the estimated
value of T = pq. The gene-level posterior probability for
gene g is then given by

/1 @ /D [igmg (ah ®) + (1 — Dfo(x))
b /D) Mg (@h @) + (1 — fo @) + (L — (/) [Tg_g o)

ay(q),

(4)

where ¥ (g) is the prior distribution of g. We typically set
¥ (q) to be the uniform distribution in case of no prior
knowledge of g. It should be noted that i/ cannot have
support less than pg, as this would result in p > 1.

To speed up calculation of the quantity (4), we use Gaus-
sian quadrature [43] when possible. For example, when
¥ (q) is a uniform distribution, the weights and points can
be calculated from transformed Legendre polynomials,
which are precomputed to speed up calculation.

Above we assumed that f; is a unimodal distribution,
as is the case when one is interested in a unidirectional
phenotype (e.g., essential genes). If one is interested in a
bidirectional phenotype (e.g., drug resistance and suscep-
tibility), then extending the framework above to allow for
fi to be a bimodal distribution is straightforward and is
available as an option in the CRISPhieRmix software.

The local false discovery rate
The local false discovery rate (fdr) for gene g is defined as
[17, 18]

fdr, = Pr(gene g is uninteresting|x; : g; = g).

Note that in our mixture model, this is also equal to the
posterior probability that gene g is null. In other words,
fdry is equal to one minus the posterior probability of
being interesting, which is given in Eq. (4).

The local fdr tends to be less restrictive than the global
FDR, which is defined as the expected fraction of incor-
rectly identified genes at a given threshold. We can see
this by considering a univariate x and a one-sided test.
The local fdr is equal to Pr(uninteresting|X = x) while the
global FDR is equal to Pr(uninteresting|X > x), so that
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one can think of the local fdr as akin to the probability
density function (pdf) while the global FDR is akin to the
cumulative distribution function (cdf). In our multivari-
ate setting, this relationship is not so simple as we must
identify the level sets of the local fdr to integrate over the
boundary. This will be extremely difficult as the level sets
are not convex. In two dimensions, they will look similar
to a four-pointed star, and in higher dimensions, they are
likely even more complicated.

Instead we can use the empirical distribution of the local
fdr to estimate the global FDR. If s, = 1,..., G are the
gene scores and s(1), . . ., 5(G) are the ordered gene scores,
then the genes called at a global FDR of 7 satisfy

K

1
S(1)r--1SK) ¢ E Zs(k) <.
k=1

As a sanity check, consider the extreme example of aver-
aging across all genes. Then, the global FDR is estimated
as the proportion of genes that are null, exactly what we
would expect.

The skew-t distribution

A real valued random variable X follows a skew-t¢ dis-
tribution with parameters &, w,«,v (written as X ~
ST (&, w,a,v)) if it has density

f(y;é,w,a,v)=2tv<H)Tv+l a)’—$ v+1 !
w w w v+(y%‘5)

where ¢, and T), respectively denote the pdf and cdf of a ¢
distribution with v degrees of freedom [44].

The R package sn [45] provides procedures for obtaining
maximum likelihood estimates and density estimates.

Additional file

Additionalfile 1: Figure S1-520. Supplementary Information. (PDF 6653 kb)
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