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CRISPR-Cas9-based mutagenesis frequently
provokes on-target mRNA misregulation
Rubina Tuladhar 1, Yunku Yeu2, John Tyler Piazza1, Zhen Tan3, Jean Rene Clemenceau2, Xiaofeng Wu1,

Quinn Barrett1, Jeremiah Herbert1, David H. Mathews 3, James Kim 4,5, Tae Hyun Hwang 2 &

Lawrence Lum 1

The introduction of insertion-deletions (INDELs) by non-homologous end-joining (NHEJ)

pathway underlies the mechanistic basis of CRISPR-Cas9-directed genome editing. Selective

gene ablation using CRISPR-Cas9 is achieved by installation of a premature termination

codon (PTC) from a frameshift-inducing INDEL that elicits nonsense-mediated decay (NMD)

of the mutant mRNA. Here, by examining the mRNA and protein products of CRISPR targeted

genes in a cell line panel with presumed gene knockouts, we detect the production of foreign

mRNAs or proteins in ~50% of the cell lines. We demonstrate that these aberrant protein

products stem from the introduction of INDELs that promote internal ribosomal entry, con-

vert pseudo-mRNAs (alternatively spliced mRNAs with a PTC) into protein encoding mole-

cules, or induce exon skipping by disruption of exon splicing enhancers (ESEs). Our results

reveal challenges to manipulating gene expression outcomes using INDEL-based mutagen-

esis and strategies useful in mitigating their impact on intended genome-editing outcomes.
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T
echnologies enabling the directed introduction of double-
stranded DNA breaks such as CRISPR-Cas9 have trans-
formed our ability to systematically identify DNA

sequences important in biology1,2. The repair of these double-
stranded breaks by non-homologous end-joining (NHEJ) results
in insertion-deletions (INDELs) of unpredictable length that
upon introduction into exonic sequences could alter the coding
frame and install a premature termination codon (PTC). Ribo-
somes that encounter a PTC in nascent mRNAs, recognized by
the assembly of a complex that includes proteins from the ribo-
some and a 3′ exon–splice junction complex, induces the
destruction of the mutant mRNA3,4. On the other hand, INDELs
that preserve the reading frame may yield proteins with altered
sequences and thus shed light on determinants important for its
function5.

Exonic sequences are laden with regulatory features that con-
trol many facets of the mRNA lifecycle including splicing and
folding, two mRNA attributes that influence protein sequence
composition and sites of initiation/termination, respectively6–8.
Yet, the frequency with which these elements once impacted by
INDELs influence gene expression outcomes remains mostly
unknown. Another potential obstacle to precision gene editing
using INDEL-type mutagenesis is the presence of pseudo-
mRNAs, mRNAs harboring a PTC that can nevertheless incor-
porate introduced INDELs thus altering their potential to pro-
duce proteins9.

To determine the extent to which these molecular events
confound our ability to predict gene expression outcomes from
CRISPR-Cas9 editing, we have taken inventory of the post-
transcriptional and -translational effects of frameshift-inducing
INDELs in a panel of CRISPR-edited cells lines. We observe
changes in the array of transcripts or proteins expressed from
CRISPR-targeted genes in ~50% of the cell lines studied. A
mechanistic account of these phenomena is presented here.

Results
Unanticipated gene expression outcomes with CRISPR editing.
To service several ongoing research programs, we had assembled
a panel of commercially available HAP1 cell lines harboring
frameshift-inducing INDELs that presumably eliminate effective
protein production from the targeted gene by promoting
nonsense-mediated decay (NMD) of the encoded mRNA (Fig. 1a;
Supplementary Table 1). HAP1 cells harbor a single copy of each
chromosome thus reducing the challenges frequently associated
with achieving homozygosity in diploid cells for genetic studies10.
To confirm the effects of the INDEL on-target gene expression,
we used two antibodies each recognizing a different epitope
within the targeted protein (Fig. 1b; Supplementary Table 2). We
observed in some cell lines the anticipated loss of protein pre-
sumably due to the introduced INDEL but in other instances the
appearance of novel proteins detectable by western blot analysis
using a single or both antibodies (4/13 cell lines or ~30%; Fig. 1b).
For example, in the case of the TOP1, SIRT1, CTNNB1, and LRP6
knockout cell lines, we observed the substitution of the canonical
protein for a faster migrating novel protein detected by western
blot analysis.

Given our inability to account for the emergence of these novel
proteins based on the annotated genetic alteration introduced by
CRISPR-Cas9, we next examined the effects of the INDEL on
mRNA splicing given that exonic sequences harbor splicing
regulatory elements8,11,12 (Fig. 1c; Supplementary Table 3). In the
case of the TOP1 knockout cell line where we had observed
the appearance of a novel TOP1 protein, we also witnessed the
emergence of a novel mRNA species. Sequencing a cDNA-
derived amplicon from the novel splice variant revealed the

absence of the INDEL-containing exon suggesting the mutant
protein was generated by an INDEL-induced exon exclusion
event (Supplementary Data 1). In addition to the use of two
different antibodies to evaluate TOP1 protein in the CRISPR-
edited cell line (Fig. 1b), we also observed enrichment of both the
wt and truncated TOP1 protein in the nucleus where the protein
is predominantly localized13 (Fig. 2a). The truncated TOP1
protein nevertheless retained catalytic activity as measured using
an enzymatic assay for monitoring relaxation of supercoiled DNA
(Fig. 2b). The retention of catalytic activity by the truncated
TOP1 protein is consistent with the designation of TOP1 as an
essential gene in HAP1 cells from a gene trap mutagenesis screen
that would preclude its elimination in viable cells10,14. In the case
of the VPS35 and TLE3 cell lines, we observed changes in the
splice variants harboring the CRISPR-targeted exons although no
detectable novel proteins emerged (Fig. 1c).

In contrast to the TOP1 clones, the CTNNB1 and LRP6 cell
lines exhibited no detectable change in mRNA splicing associated
with the targeted exons suggesting the novel proteins are a
consequence of alternative translation initiation (ATI) events
presumably induced by the introduced INDELs (Fig. 1c).
Consistent with this hypothesis, the mutant LRP6 protein is not
glycosylated perhaps as a consequence of default expression in the
cytoplasm in the absence of its N-terminal signal sequence
(Supplementary Fig. 1A, C). Similarly, the novel β-catenin protein
co-migrates on SDS-PAGE with an engineered β-catenin protein
initiating from Met88 (Supplementary Fig. 1B). Similar events
have previously been reported in transcripts with PTCs
introduced proximal to the native initiation site in cancerous
cells15. In summary, in ~50% of CRISPR-edited cell lines acquired
from a commercial source, we observed unexpected changes in
protein expression or mRNA splicing that challenge the notion
that these reagents could be used to report the cellular effects of
complete genetic ablation (Fig. 2c). Although not investigated
here, conceivably the mutant proteins could also contribute to
neomorphic cellular phenotypes.

ATI and pseudo-mRNAs confound CRISPR-based gene
knockout. We had complemented our efforts to generate cells
genetically null for various genes-of-interest with de novo
CRISPR-Cas9-based gene targeting projects. As part of our focus
on the tumor suppressor kinase LKB1, we observed the emer-
gence of unexpected protein products—both smaller and larger
proteins than the canonical protein—that were not readily
explained by the presence of CRISPR-introduced INDELs
(Fig. 3a–c). Given the INDELs created in LKB1 are localized to
the first protein coding exon (Fig. 3d) and the antibody recog-
nizing the C- but not the N-terminus epitope reported the
shortened LKB1 protein on SDS-PAGE (Fig. 3b, c), we concluded
that an ATI event induced by CRISPR-Cas9-introduced INDELs
likely resulted in an LKB1 protein lacking a portion of its N-
terminal sequence (ATI LKB1 protein).

We also noted in MIA, but not HAP1 cells, a slower migrating
protein recognized by LKB1 antibodies emerged in CRISPR-
Cas9-edited clones with frameshift-inducing INDELs (Fig. 3c;
Super LKB1 protein). The appearance of Super LKB1 protein
coincided with the appearance of a new mRNA splice variant that
contained a 131 bp exon not included in the transcript that
encodes the canonical LKB1 protein (Fig. 3e). Consistent with
this exon belonging to an LKB1 pseudo-mRNA not previously
annotated in MIA cells, the addition of cycloheximide (CHX) to
disrupt NMD in parental MIA cells resulted in the emergence of
an LKB1 splice variant that includes this exon (Supplementary
Fig. 2A). Thus, the same INDELs that induced a frameshift in
the canonical transcript now removed a PTC from an LKB1
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pseudo-mRNA and capacitated it for protein production (Fig. 3e).
We noted that HAP1 cells did not transcribe an mRNA
containing this exon thus our introduction of INDELs into exon
1 did not result in the production of the Super LKB1 protein
(Supplementary Fig. 2B). An understanding of both the

transcriptome and the pseudo-transcriptome in cells is thus
critical to anticipating the net effect of frameshift-inducing
INDELs introduced by CRISPR-Cas9 (ref. 9).

To understand how CRISPR-Cas9-introduced INDELs may
have produced the ATI LKB1 protein, we generated cDNAs
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Fig. 1 Unanticipated gene expression outcomes following on-target CRISPR editing. a The effect of CRISPR-introduced frameshift alterations on mRNA and

protein expression was analyzed using a panel of CRISPR-Cas9-edited HAP1 cells that were commercially accessible. The targeted exon, anticipated

PTC location following insertion/deletion mutation and the protein recognition sites of antibodies used in panel b are indicated. b Appearance of novel

proteins in cells edited with CRISPR-Cas9. HAP1 cells were subjected to western blot analysis using two distinct antibodies. Asterisks (*) indicate novel

proteins. c CRISPR-Cas9 gene editing induces expression of novel mRNA species. RT-PCR analysis of edited cells was performed using primers recognizing

flanking exons and the amplicons generated were sequenced. Asterisks (*) indicate novel mRNA species. Source data are provided as a Source Data file
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harboring each of the two INDELs that were found in the edited
cells expressing these proteins (MIA cells, clone M2) in order to
remove any potential contribution of altered mRNA splicing to
the production of the mutant proteins (Fig. 3f). When either
INDEL was introduced into the canonical LKB1 cDNA sequence,
we observed the expression of a protein that co-migrated with the
ATI LKB1 protein. This unexpected protein product also co-
migrated with an engineered protein that initiates at methionine
51 (Fig. 3f). We noted that a cDNA harboring the 1 bp insertion
that provoked the ATI LKB1 protein likely did not induce leaky
scanning (Supplementary Fig. 3), or translational re-initiation16

given the PTC is located downstream (3′) of the predicted ATI
site. We also considered whether or not alternative secondary
structures of the mutant mRNAs might induce this ATI at
methionine 51 using an algorithm for modeling conserved RNA
structures (Supplementary Figs. 4–6). At least using this
approach, we anticipate changes in RNA folding that may
influence the location of ribosomal initiation. At the same time,
we also evaluated the effects of these mutations on cDNAs that
encode the predicted pseudo-mRNA sequence (with the 131 bp
additional exon). As anticipated, we observed the emergence
of proteins that co-migrated with Super LKB1 protein given
that either CRISPR-introduced mutation in a transcript
with the additional 131 bp sequence would eradicate the
naturally occurring PTC present in the pseudo-mRNA sequence
(Fig. 3f).

ATI suppresses NMD. Despite the introduction of a frameshift-
promoting INDEL in LKB1, we presumed that an ATI event,
which restores codon usage to its native phase, would fail to elicit
NMD during the pioneer round of translation. At the same time,
having avoided destruction, the mutant mRNA is now able to
support repeated rounds of translation including presumably
short polypeptides initiating at the canonical start site and ending
at the PTC. Given our initial western blot analysis of the LKB1
CRISPR-edited clones did not capture low molecular proteins
(Fig. 3b, c), re-examination of LKB1 proteins in our CRISPR-
edited clones indeed revealed the presence of a small LKB1
polypeptide. This protein (short LKB1) co-migrates with an
engineered protein that initiates at the canonical start site but

terminates at the presumed PTC introduced by the INDEL
(Supplementary Fig. 7A).

We compared the effects on mRNA stability of an INDEL
associated with ATI with an INDEL that yielded no detectable
LKB1 polypeptides (Supplementary Fig. 7B C) in order to
determine if ATI suppressed NMD as a potential mechanism for
promoting C-terminally truncated proteins. Comparing the levels
of the two LKB1 mRNAs, we observed greater loss of the mRNA
in the CRISPR-edited clone lacking any detectable ATI events
(Supplementary Fig. 7D). We observed little difference induced
by CHX exposure in LKB1 mRNA abundance in the ATI-
associated cells when compared to parental cells suggesting that
NMD is not acting on the mRNA with an ATI-provoking
mutation (Supplementary Fig. 7D). On the other hand, in the case
of the CRISPR-edited cell line that expresses no LKB1 polypep-
tides, we observed a 10-fold change in LKB1 mRNA in the
presence of CHX suggesting the mutant mRNA in this case is
subject to robust NMD action (Supplementary Fig. 7D). In total,
we observed the production of three polypeptides in lieu of the
canonical LKB1 protein following the introduction of a
frameshift-inducing INDEL: Super LKB1, ATI LKB1, and Short
LKB1 (Supplementary Fig. 7E). More generally, our observations
also suggest that introducing INDELs early in the transcript
increases the potential for an ATI event that is able to clear off all
of the splice junction complexes during the pioneer round thus
enabling the synthesis of polypeptides with truncations in the C-
terminal sequence.

Exon symmetry influences CRISPR outcomes. In the analysis of
our assembled HAP1 cell line panel, we also observed ~30% of
the clones exhibited exclusion of the targeted exon in the mRNA.
Exons are replete with splicing regulatory motifs including exon
splicing enhancers and suppressors (ESEs and ESSs, respectively).
These degenerate hexameric sequences dictate the extent to which
exons are included within a transcript12,17. We suspected that
exon exclusion was at least in part due to the disruption of ESEs
by an INDEL event. As part of our efforts focused on studying the
SUFU tumor suppressor protein, we had generated a collection of
cells that presumably were null for SUFU based on western blot
analysis (Fig. 4a, b). Yet, we noted that many of these clones
exhibited exclusion of the targeted exon (Fig. 4c). The extent of
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exon exclusion notably differs suggesting other factors, perhaps
RNA structure changes that contribute to exon splicing regula-
tion, also may be compromised by the introduction of an INDEL
at this position within the SUFU mRNA. We identified a cluster
of potential ESEs in the targeted SUFU exon that was likely
impacted by the INDEL in these clones (Fig. 4d). No ESSs were
identified in this case. To determine how reliably we can induce
exon exclusion by impacting a predicted ESE, we introduced
INDELs at putative ESEs found in other SUFU exons and per-
formed similar analysis of the protein and mRNA in RMS13 cell
line (Fig. 4e–l). In every instance, we observed exon exclusion by
targeted disruption of a putative ESE.

When all the clones presented so far from both commercial
and de novo engineered were considered with respect to predicted
impact on an ESE and exon exclusion, we observed a strong
correlation between these two events (Fig. 4m; Supplementary
Fig. 8). A subset of the clones exhibiting alternative splicing also
expressed novel polypeptides (see TOP1 and SIRT1; Fig. 1b). We
noted in both these cases that the exons were symmetric—
meaning the exon harbors a nucleotide number in multiples of
three, and exclusion of this exon would result in a transcript that

retains the original reading frame. In the case of the SUFU clones,
the majority of exons skipped were asymmetric thus likely
resulting in the lack of protein expression. However, we noted
one targeted and skipped exon (exon 2) was symmetric yet the
resulting transcript failed to generate a detectable protein perhaps
due to misfolding of the mutant protein (Fig. 4e, f). Indeed, the
skipped exon encodes part of an intrinsically disordered region of
the protein that is essential for interaction with members of the
pro-survival BCL2 family members18. From these SUFU clones,
we expect that decreased SUFU mRNA seen in CRISPR-edited
cells was due to NMD provoked by the introduction of a
frameshift-inducing INDEL, or exclusion of the targeted asym-
metric exon and the introduction of a PTC in an NMD-enabling
position within the gene.

CRISPinatoR. Purposeful disruption of ESEs in asymmetric
exons could improve gene knockout efficiency given that even
INDELs that fail to alter the coding frame would have a second
opportunity for introducing a PTC by skipping the exon alto-
gether. In addition to the evidence provided here, the ability of
mutations in ESEs to alter mRNA splicing have been documented
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proteins that co-migrate with the Super LKB1 protein observed in MIA Clone M2. On the other hand, the same mutations in LKB1 cDNA give rise to proteins

that co-migrate with the ATI LKB1 protein found in Clone M2, and with the protein that initiates at Met51. Source data are provided as a Source Data file
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elsewhere19,20. To systematize this strategy, we developed the
CRISPinatoR, a website that identifies asymmetric exons found in
a given gene and CRISPR-Cas9 guide sequences that help to
deliver double-stranded breaks within proximity of a putative ESE
(Fig. 5a, Supplementary Fig. 9). At the same time, the portal could
be used to induce the skipping of an exon harboring a deleterious
mutation in order to generate a novel protein that may retain
function. We note that when analyzing genome-wide CRISPR
libraries, that ratio of guides targeting symmetric and asymmetric
exons was fairly consistent, suggesting that these algorithms
do not factor in potential gene elimination efficiency based
on exon symmetry (Supplementary Fig. 10A, B). Similarly, the

CRISPinatoR could be used to re-evaluate previously reported
phenotypes using CRISPR-Cas9 based on the potential for the
sgRNA for inducing exon skipping.

Targeting RNA-regulatory elements for gene knockout agen-
das. We tested the ability of CRISPinatoR to design guides that
induce exon skipping for either degradation of mRNA or pro-
duction of novel protein-encoding mRNAs by targeting asym-
metric or symmetric exons, respectively. Using the WNT receptor
LRP5 as a case study, we asked the CRISPinatoR to identify
sgRNAs that presumably would be able to induce exon skipping
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in each exon class (Fig. 5b). We identified clones that harbored
INDELs at the anticipated LRP5 exonic sequence by targeted
sequencing of isolated genomic DNA (Fig. 5c). Using RT-PCR
analysis coupled with targeted sequencing, we observed exon
skipping in clones associated with both guides (Fig. 5d; Supple-
mentary Fig. 11). We observed an absence of LRP5 protein in the
clone exhibiting exclusion of an asymmetric exon (Fig. 5e).
However, in the clone exhibiting exclusion of a symmetric exon,
we observed the appearance of a faster migrating protein (Fig. 5e).
We confirmed that this new protein retains glycosyl moieties,
suggesting that its signal sequence localized to the N-terminus is
intact unlike in the case of the LRP6 edited HAP1 clone (Fig. 5f;
Supplementary Fig. 1A, C). The presence of a secreted protein
and evidence for skipping of the CRISPR-targeted exon suggest
that the novel LRP5 protein formed would harbor a compromised
β-propeller domain—one of two that contributes to WNT3A
binding (Fig. 5g). Indeed, we observed response of a clone
expressing the truncated LRP5 protein to exogenously supplied
WNT conditioned medium using a WNT pathway reporter
(Fig. 5h). The weakened response compared to WT HAP1 cells
likely reflects reduced total LRP5 protein levels and/or reduced
WNT-binding affinity with deletion of exon 16 sequence. On the
other hand, the cell expressing the LRP5 mRNA excluding the
CRISPR-edited asymmetric exon showed a loss of WNT pathway
response consistent with the absence of LRP5 protein production
from an mRNA lacking an asymmetric exon (Fig. 5h).

Discussion
The microRNA-like behavior of short interference RNAs (siR-
NAs) has long posed a challenge to using RNA interference
(RNAi) for selective gene product ablation in both early discovery
and therapeutic settings21,22. Whereas this issue is not inherent in
DNA-editing systems such as CRISPR-Cas9, we show here that
this technological advantage is offset by the unanticipated effects
stemming from the on-target changes that impact the regulation
of the RNA product and the translation of the protein it encodes.
Exon skipping events, for example, associated with CRISPR have
been previously observed although the mechanistic basis for these
phenomena was not well-understood23. Our incomplete under-
standing of RNA splicing regulatory mechanisms, inability to
accurately predict RNA structural changes introduced by
INDELs, and limited accounting of the pseudo-transcriptome
challenge our ability to anticipate transcriptional and translation
outcomes as a consequence of introducing INDELs in exonic
sequences (Fig. 6). Indeed, we assume these trials extend to other
INDEL-producing gene editing systems that have been applied in
human cells such as the CRISPR endonuclease Cpf1 (ref. 24).

A number of considerations in guide design could be installed
in our design workflow to increase the fidelity of DNA sequen-
cing information for predicting protein translational outcomes. A
map of RNA-regulatory motifs (such as ESEs) that might be
impacted by a CRISPR-Cas9-delivered INDEL such as that gen-
erated by the CRISPinatoR for the human genome could help in
improving gene elimination or protein engineering campaigns.
We acknowledge that the impact of RNA structure and possibly
other determinants that can influence the function of regulatory
sequences involved in RNA splicing, for example, are not
accounted for by our database. At the same time, an under-
standing of lineage-associated pseudo-transcripts that would be
edited alongside the intended target transcripts would also help to
anticipate the emergence of novel protein products such as Super
LKB1 from conversion of a pseudo-mRNA to a protein-
encoding mRNA.

Perhaps the most daunting challenge that we encountered
from our analysis of CRISPR-edited cell lines is the emergence
of IRESs likely due to INDEL-induced changes in RNA struc-
ture. We anticipate that the number of ATI events associated
with INDELs will be higher than what is reported here given the
shortage of antibodies useful for detecting native as well as
potentially truncated proteins that emerge from ATI. In this
regard, the use of translation inhibitors such as CHX combined
with RT-PCR could be a simple method to flag mRNAs that
harbor CRISPR-Cas9-introduced frameshift-inducing INDELs
yet for reasons including ATI subversion are not substrates for
NMD. Although we have attempted to account for the ATI
events we observed in our LKB1 gene editing projects using an
in silico RNA structure prediction strategy, admittedly other
factors such as potential changes in RNA-binding protein
interactions could contribute to alterations in translation
initiation sites.

Our observations also have implications for the use of INDEL-
based genome editing tools for gene rescue efforts where induced
exon skipping can excise sequences that harbor a mutation thus
producing a viable gene25. These outcomes are currently achieved
by using two CRISPR guides that flank a mutated exon26–28, or
target an exon-specific splice junction using a single guide29.
However, the ability to use a single guide targeting an ESE to
achieve a similar outcome should reduce the dangers of using two
CRISPR guides and expand the number of single guide options
with acceptable off-target risks. In this regard, guides identified by
the CRISPinatoR targeting ESEs found in symmetric exons could
be used to systematically identify such opportunities in genes
involved in disease. Needless to say, mRNA splicing is a complex
phenomenon and this approach should serve as a starting point

Fig. 4 Compromised ESEs account for INDEL-induced exon skipping. a Genomic structure of SUFU and exonic sequence targeted by SUFU exon 8 sgRNA.

The recognition sites of antibodies used in panel b are indicated. b Western blot analysis of HAP1 cells edited with SUFU exon 8 sgRNA shows no

detectable expression of SUFU. c Exon skipping is prevalent in CRISPR-Cas9-edited SUFU clones. RT-PCR analysis using primers flanking exons 6 and 10 of

SUFU in CRISPR-Cas9-edited SUFU clones. Sequencing of amplicons reveals exon skipping in all of clones except clones H9 and H10. d Disruption of exon

splicing enhancers (ESEs) by CRISPR-introduced INDELs triggers skipping of the edited exons. Genetic mutation and the presence/absence of exon

skipping events for each clone are indicated. Putative ESEs were identified using the RESCUE-ESE web server. e Multiple sgRNA sequences located in

symmetric or asymmetric exons of the SUFU gene used for targeted disruption of ESEs. f sgRNAs described in “e” were used to edit the SUFU gene in

RMS13 cells. Western blot analysis of lysates derived from the CRISPR-Cas9-edited RMS13 clones show no detectable SUFU protein. g Genomic sequences

of RMS13 clones edited with SUFU exon 3 sgRNAs. CRISPR-introduced mutations and putative exon splicing enhancer (ESE) and exon splicing silencer

(ESS) sequences are indicated. h RT-PCR analysis and cDNA sequencing result of clones R2 and R3 using primers flanking exon 1 and 5. i Genomic

sequences of RMS13 clones edited with SUFU exon 2 sgRNA. CRISPR-introduced mutations and putative ESE/ESS sequences are indicated. j RT-PCR

analysis and cDNA sequencing result of clones R1 and R4 using primers flanking 5′ UTR and exon 4. k Genomic sequences of RMS13 clones edited with

SUFU exon 8 sgRNA. CRISPR-introduced mutations and putative ESE and ESS sequences are indicated. l RT-PCR analysis and cDNA sequencing result of

the clones R1 and R4 using primers flanking exon 6 and exon 10. m Disruption of ESE code is highly reliable in anticipating CRISPR-Cas9-induced exon

skipping. Twenty-four CRISPR-Cas9-edited cell lines with different mutations were analyzed for the presence/absence of exon skipping events and changes

in ESE sequences due to CRISPR-introduced INDELs. Source data are provided as a Source Data file
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for evaluating the potential effects of INDELs on mRNA
regulation.

Materials and methods
Cell lines and reagents. WT and CRISPR-edited HAP1 knockout commercial cell
lines were purchased from Horizon Discovery (Supplemental Table 1). HELA, MIA

PaCa-2, and RMS13 cell lines were purchased from ATCC. Hela cells (listed in the
database of commonly misidentified cell lines, ICLAC) lack endogenous LKB1
expression and therefore was used in an experiment to monitor the protein
expression encoded LKB1 cDNA constructs harboring CRISPR-introduced
INDELs. All the cell lines were tested for mycoplasma contamination. None of the
cell lines were authenticated since all the cell lines were directly purchased from
commercial suppliers.
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Fig. 5 Targeting RNA-regulatory elements for gene knockout agendas. a CRISPinatoR: a web-based guide RNA design tool that utilizes targeted ESE

disruption for achieving gene elimination. CRISPinatoR identifies sgRNA sequences that target ESEs in asymmetric exons and calculates off-targeting

potential and the number of splice variants impacted by the sgRNAs. A scoring system that integrates all three parameters is used to provide sgRNAs with

high gene knockout potential. b Genome structure of the LRP5 gene and sgRNA sequences targeting the asymmetric exon 2 and the symmetric exon 16.

c Genomic sequencing results of HAP1 clones edited using LRP5 exon 2 and exon 16 sgRNAs. CRISPR-introduced mutations and the putative ESE sequences

are indicated. d Exclusion of an asymmetric or a symmetric exon with INDEL-induced changes to the putative ESE sequences. RT-PCR analysis and cDNA

sequencing result of HAP1 cells edited with LRP5 exon 2 and exon 16 sgRNAs. e Targeted ESE disruption in asymmetric exon increases gene knockout

potential. Western blot analysis of HAP1 clones edited with LRP5 exon 2 sgRNA (Clone 21) and exon 16 sgRNA (Clone 3) was probed with two distinct

antibodies indicated in “b”. ESE disruption in symmetric exon 2 produces internally truncated in-frame LRP5 protein. f The internally truncated LRP5

protein is glycosylated. Lysates derived fromWT or LRP5 ΔE16 HAP1 cells were incubated with the deglycosidase PNGase F then subjected to western blot

analysis. g Exclusion of LRP5 exon16 would delete a sequence adjacent to the WNT3A binding domains. h The LRP5 ΔE16 protein formed post skipping of a

symmetric exon is functionally active. WNT/β-catenin pathway activity in response to WNT3A conditioned medium (WNT3A CM) was measured for

HAP1 WT, LRP5 ΔE2, and LRP5 ΔE16 cells. WNT pathway inhibitors WNT974 (PORCNi) and IWR1 (TNKSi) serve as negative and positive control,

respectively. All error bars represent mean of triplicates ± s.d. The experiment was repeated three times with similar results. Statistical testing was

performed using Student’s t-test, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. Source data are provided as a Source Data file
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Puromycin was purchased from Fisher Scientific (ICN10055225).
Cycloheximide was purchased from EMD Millipore (239765). NE-PER Nuclear
and Cytoplasmic extraction reagent (78833) was purchased from ThermoFisher.

Western blot analysis. Cell lysates were generated with PBS/1% NP40 buffer
supplemented with protease inhibitor cocktail (Sigma Cat. No. S8820). Protein
sample loading buffer was added to cell lysates and proteins were separated on
SDS-PAGE (BioRad Criterion TGX Precast Gel). The following primary antibodies
were used for immunoblotting at the indicated dilutions: Cell Signaling Technol-
ogy: AXIN1 (2087 and 2074; 1:1000), BAP1 (13271; 1:1000), BCL2L2 (2724;
1:1000), LRP6 (2560; 1:1000), PTEN (9552; 1:1000), RICTOR (9476; 1:1000),
SIRT1 (2493; 1:1000), TBK1 (3504; 1:1000), TLE3 (4681; 1:1000), LKB1 (3050;
1:1000), SUFU (2520; 1:1000), LRP5 (5731; 1:1000). Bethyl Laboratories: BAP1
(A302-243A-T; 1:1000), RICTOR (A300-459A; 1:1000), SIRT1 (A300-688A;
1:1000), TOP1 (A302-589A and 302-590A; 1:1000), VPS35 (A304-727A; 1:1000).
Abcam: TBK1 (40676; 1:1000), PPM1A (14824; 1:1000), SUFU (52913; 1:1000).
Santa Cruz Biotechnologies: LRP6 (sc-25317; 1:1000), TLE3 (sc-9124; 1:1000),
LKB1 (sc-374334; 1:1000), LRP5 (sc-390267; 1:1000). LS BioScience: BCL2L2 (LS-
C382259-100; 1:1000), PPM1A (LS-C169090-100; 1:1000). Sigma-Aldrich:
CTNNB1 (C2206; 1:1000). Invitrogen: PTEN (44-1064; 1:1000). BD Biosciences:
CTNNB1 (610153; 1:1000). Genetex: VPS35 (GTC108058; 1:1000).

Transfection of sgRNAs. 1 × 106 MIA PaCa-2 or HAP1 cells were seeded per six-
well plate and co-transfected with 0.5 μg pCas-Guide plasmid using Effectene
transfection reagent (Qiagen). Twenty-four hours after transfection, cells were
trypsinized and plated in 150 mm2 culture dishes in various dilutions for clonal
selection.

Clonal isolation of CRISPR-edited cells. Cells in 150 mm2 culture plates were
treated with 0.5 μg/ml of puromycin in order to enrich for cells expressing Cas9.
Puromycin selection was maintained for 10 days after which single colonies were
isolated and grown in a 96-well plate. Cells from single colonies were passaged
multiple times until sufficient cells were available for analyzing genomic DNA,
RNA, and protein.

Genomic DNA extraction and genomic sequencing. Genomic DNA was
extracted from the CRISPR-edited cells using Genomic DNA Minikit (Bioland
Scientific) according to the manufacturer’s instructions and used as a template for
PCR amplification. PCR primers encompassing the CRISPR-targeted region were
designed. PCR was performed with GoTaq Green Master Mix (Promega M7122)
with following conditions: 98 °C for 2 min (initial denaturation), 25 cycles of 98 °C
for 30 s, 56 °C for 30 s, 72 °C for 30 s (denaturation, annealing, extension), and final
70 °C for 5 min (final extension). Gel electrophoresis in a 1.5% agarose gel was
performed and the PCR products were purified from the gel using QIA Quick PCR
Purification Kit (Qiagen) and cloned into pCR-TOPO plasmid using TOPO TA
cloning kit for Subcloning (ThermoFisher Scientific). pCR-TOPO plasmids con-
taining genomic DNA sequences were transformed into TOP10 competent cells
and individual colonies were selected and sequenced.

RNA extraction and analysis. RNA extraction was performed using RNeasy Mini
Kit (Qiagen) according to the manufacturer’s instructions. cDNA synthesis was
performed on 1 μg of RNA using the ProtoScript First Strand cDNA Synthesis Kit
(Promega). Primers recognizing exons flanking the CRISPR-targeted exon (Supple-
mental Table 3) were used to amplify the cDNA sequences isolated from the CRISPR-
edited cells. PCR products were electrophoresed in a 1% agarose gel and the gel bands
were isolated using QIA Quick PCR Purification Kit (Qiagen). Isolated DNA was
cloned into pCR-TOPO plasmids using the TOPO TA cloning kit (ThermoFisher
Scientific), and clones were sequenced at the UTSW Sequencing Core.

RNA secondary structure modeling. Conserved secondary structures were
modeled using TurboFold II30. The full-length sequences of the five clones without
ATI (HAP1 clones H1, H6, H7, H8 and 3 bp substitution) and eight clones with
ATI (HAP1 clones H2, H3, H4, H5 and MIA clones M2.1, M2.2, M3.1, M4.1) were
modeled separately. Default parameters were used with TurboFold II. The resulting
secondary structures of each CRISPR clone were mapped to the manual alignment
of all clones in dot-bracket format.

Nuclear and cytoplasmic fractionation. WT and TOP1 ΔE6 cells were washed
with PBS. Nuclear and cytoplasmic extract were prepared using NE-PER Nuclear
and Cytoplasmic Extraction Reagents according to the manufacturer’s protocol
(ThermoFisher).

ESE selection and design of CRISPinatoR. ESE sequences were collected from Ke
et al.31 (top 200 hexamers based on ESEseq score) and Rescue-ESE32 (238 hex-
amers). Forty-three sequence motifs for RNA-binding proteins associated with
splice regulation were also included8. Redundant hexamers and motifs were
removed and finally 440 motifs were used to generate a reference collection of ESE
sequences. We scored the frequency of ESE sequences that were potentially
impacted by guides found in commonly used CRISPR libraries (GeckoV2, Avana,
TKO V3 and Sanger). The target exon for each sgRNA and the symmetry of the
target exon was identified using genomic annotation from Ensembl33. The number
of ESEs within a given 20 bp sgRNA sequence was annotated. To score the off-
target potential for each sgRNA candidate, we modified the bwa source code34. The
total 23 bp sequence (20 bp sgRNA+ 3 bp PAM) was aligned to the hg19 reference
genome allowing up to three mismatches. The variable bp in the 5′most position of
the PAM sequence was not considered for mismatch scoring. An off-target score
(0–100) for the sgRNA was calculated by a method used in Hsu et al.35 and a cutoff
of 80 was considered acceptable.

Reporting summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability
The data supporting the findings of this study are available from the corresponding

author upon request. The source data containing images of uncropped blots used in this

paper are provided as a Source Data file.
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