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Abstract

Motivation: CRISPR/Cas9 system is a widely used genome editing tool. A prediction problem of great

interests for this system is: how to select optimal single guide RNAs (sgRNAs) such that its cleavage

efficiency is high meanwhile the off-target effect is low.

Results: This work proposed a two-step averaging method (TSAM) for the regression of cleavage effici-

encies of a set of sgRNAs by averaging the predicted efficiency scores of a boosting algorithm and those

by a support vector machine (SVM). We also proposed to use profiled Markov properties as novel features

to capture the global characteristics of sgRNAs. These new features are combined with the outstanding

features ranked by the boosting algorithm for the training of the SVM regressor. TSAM improved the mean

Spearman correlation coefficiencies comparing with the state-of-the-art performance on benchmark data-

sets containing thousands of human, mouse and zebrafish sgRNAs. Our method can be also converted to

make binary distinctions between efficient and inefficient sgRNAs with superior performance to the existing

methods. The analysis reveals that highly efficient sgRNAs have lower melting temperature at the middle

of the spacer, cut at 5’-end closer parts of the genome and contain more ‘A’ but less ‘G’ comparing with

inefficient ones. Comprehensive further analysis also demonstrates that our tool can predict an sgRNA’s

cutting efficiency with consistently good performance no matter it is expressed from an U6 promoter in

cells or from a T7 promoter in vitro.

Availability: Online tool is available at http://www.aai-bioinfo.com/CRISPR/. Python and Matlab source

codes are freely available at https://github.com/penn-hui/TSAM.

Contact: Jinyan.Li@uts.edu.au

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

CRISPR/Cas9 (the clustered, regularly interspaced, short palindromic

repeats/CRISPR-associated protein 9 system) is a widely used genome

editing tool. The system can be reprogrammed by changing the sequence

of its single-guide RNA (sgRNA) for site-specific cutting of the target

DNA strand (Mali et al., 2013; Shalem et al., 2014; Bolukbasi et al.,

2016), applicable for the investigation of gene functions (Swiech et al.,

2015), gene expressions (Konermann et al., 2015), and clinical trials (Yin

et al., 2017). CRISPR/Cas9 is mainly composed of a Cas9 protein and an

sgRNA as a complex. It is the 20nt-long spacer sequence in the sgRNA

that can induce the site-specific binding of the CRISPR/Cas9 complex to

its target genome locus located at the upstream of a protospacer adjacent

motif (PAM ‘NGG’, where ‘N’ can be ‘A’, ‘G’, ‘C’ or ‘T’). The key to

good design of sgRNAs is to determine the spacer sequence by selecting

a protospacer sequence complementary with the spacer’s target sequence

such that the cleavage (cleaving) efficiency is high.

© The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1
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There are two critical prediction problems in the selection of sgRNAs.

The first problem is the prediction of whether the sgRNA on-target cleaving

efficiency is high or not. The subsequent problem is whether the sgRNA’s

off-target effect is low (Fu et al., 2013; Shen et al., 2014; Kleinstiver

et al., 2016). The first question is fundamental. Our work here focuses

on machine learning algorithms for assessing the cleaving efficiencies of

candidate sgRNAs. The algorithms make regressions on the numerical

values of their cleavage efficiencies. The algorithms can be also turned

to make binary classifications between high-efficiency and low-efficiency

sgRNAs. The second question about the sgRNA off-target effects is closely

linked to the first one. As it involves genome-wide number of genes and

some experimental methods such as GUIDE-seq (Tsai et al., 2015) and

Digenome-seq (Kim et al., 2015), the off-target prediction problem will

be investigated separately.

Prediction algorithms have been recently proposed to identify efficient

sgRNAs through characterizing their spacer sequence preferences (Doench

et al., 2014; Xu et al., 2015; Wong et al., 2015; Kaur et al., 2016; Moreno-

Mateos et al., 2015), thermodynamics features (Doench et al., 2014; Wong

et al., 2015) and structure features (Wong et al., 2015). The sequence fea-

tures are widely adopted because many nucleotide preference phenomena

have been observed. For example, nucleotides distal to the PAM were

found to be dominated by the guanine enrichment, while the remaining

nucleotides are characterized by the cytosine enrichment (Moreno-Mateos

et al., 2015). These nucleotide preference properties have been exploited

to differentiate efficient sgRNAs from those inefficient ones by machine

learning methods such as support vector machine (SVM) (Doench et al.,

2014; Wong et al., 2015; Kaur et al., 2016; Rahman and Rahman, 2017).

In particular, a regression method (Doench et al., 2016) has been proposed

to predict the numerical values of the cleaving efficiencies for candidate

sgRNAs. Its novel idea is a Rule Set 2 (RS2) for predicting the on-target

activities of sgRNAs. Different from the previous classification methods,

this regression model also uses some new features such as cutting position

features and the two nucleotides in the N and N positions relative to the

PAM ‘NGGN’. Though RS2 achieved remarkable performance, there still

exists large space for improving the performance.

We introduce a two-step averaging method (TSAM) for the prediction

of sgRNA cleaving efficiencies. At the first step, a boosting regression

model is trained on the conventional feature space of sgRNAs to map

these sgRNAs to their cleaving efficiency scores. At the second step, we

use Markov sequence profiles of sgRNAs as new features together with

important features selected by the boosting algorithm to train a non-linear

SVM to make regression again on the cleaving efficiencies. The two scores

are then averaged as the predicted cleaving efficiencies of these sgRNAs.

Both the boosting algorithm and the Markov sequence profiling have

the same aim to exploit important characteristic features of sgRNAs to

improve the prediction performance but at different aspects. Literature

methods already proposed a large number of features to describe sgR-

NAs. However, not all of them are effective for the prediction of the

cleavage efficiencies. The newly introduced Markov sequence features can

capture the global sequence characteristics of sgRNAs which are different

from the conventional position-specific preferences (Doench et al., 2014;

Wong et al., 2015; Kaur et al., 2016; Doench et al., 2016). The boosting

algorithm, XGBoost (Chen and Guestrin, 2016), is a scalable end-to-end

tree boosting system that can rank the feature importance during the trai-

ning process. XGBoost is also a state-of-the-art regression algorithm with

better performance than the traditional gradient boosting trees (Doench

et al., 2016), having a wider range of applications (Zhang et al., 2017;

Torlay et al., 2017). Furthermore, our two-step averaging strategy under-

lines a complementary nature of the boosting regression approach and the

SVM regression approach. From our experiments, the regression results

of XGBoost and SVM are always different. It is good to integrate the two

regression results to improve the prediction performance on the sgRNA

cleaving efficiencies.

Markov sequence profiles of an sgRNA are extracted through a profile

Hidden Markov Model (pHMM). It works by converting a multiply seque-

nce alignment for sequences from a known family into a position-specific

scoring system (Eddy, 1998). This system can be used to evaluate whe-

ther a new sequence is a homologous sequence of this sequence family.

This method has been leveraged to address many other biological sequence

related bioinformatics problems (Karplus et al., 1998; Schliep et al., 2003;

Wheeler et al., 2013; Huo et al., 2017). In this work, sgRNA sequences are

first grouped into sub-families in accordance with their efficiency scores.

Then, probabilities of a given sgRNA being a homologous sequence for

each sub-families are formed as a multi-pHMM vector for characterizing

the global features of sgRNA sequences. An SVM regressor trained with

only pHMM properties can obtain similar mean Spearman correlations

comparing with the state-of-the-art methods. Hence, we decided to com-

bine pHMM features with the top-ranked features of XGBoost to train the

second-step SVM regressor for a better performance.

The performances of our TSAM is compared with the state-of-the-art

regression methods such as RS2 (Doench et al., 2016) and CRISPR-

scan (Moreno-Mateos et al., 2015). On Doench’s FC dataset (human and

mouse sgRNAs), TSAM obtained a mean Spearman correlation of 0.583,

better than RS2’s 0.522. On the RES dataset (human sgRNAs) and the

FC+RES dataset, TSAM achieved mean Spearman correlations 0.530 and

0.567 respectively, better than RS2’s 0.455 and 0.510. On the dataset which

was used by CRISPRscan containing 1020 zebrafish sgRNA sequences,

TSAM can achieve a competitive Pearson correlation of 0.49 (compa-

ring with CRISPRscan’s 0.45). Our two-step regression approach was

converted into a binary classification method to distinguish between high-

efficiency and low-efficiency sgRNAs. The classification performance on

the benchmark datasets also outperforms the state-of-the-art methods. For

instance, the mean AUC of the three-fold cross validation on Xu’s ribo-

somal dataset (Xu et al., 2015) is 0.896, much exceeding Xu’s 0.843. For

the cross-gene validation and cross-platform validation, our performance

are 0.813 and 0.840 respectively, better than Xu’s 0.778 and 0.757.

Haeussler et al. (2016) advised that the performance of an on-target

efficiency prediction model is strongly dependable on whether the guide

RNA is expressed from an U6 promoter or it is transcribed in vitro with

the T7 promoter. To compare the performance of TSAM with the state-of-

the-art methods on datasets of different expression systems, we collected

abundant datasets from Haeussler et al. (2016) to test two specified versions

of TSAM. One is named TSAM_U6, which was trained with the FC+RES

dataset as input, in which the guide RNAs are all transcribed from the

U6 promoter. The dataset CRISPRScan containing guides expressed from

the T7 promoter in vitro was used to build the second predictor named

TSAM_T7. The results confirmed that our TSAM can always achieve

better performances on both of the U6 and T7 promoter datasets.

Our case studies are related to the optimal sgRNAs selected for gene

therapies to cure the retinitis pigmentosa and X-linked chronic granuloma-

tous disease (Yu et al., 2017; De Ravin et al., 2017). The highly efficient

sgRNAs recommended by our method can well match with those sgRNAs

which had been validated by wet lab experiments and domain experts. This

partly proves the effectiveness of our prediction tool, and illustrates the

great potential of our method for practical use.
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2 Materials and methods

2.1 High throughput genome engineering datasets for

building the regression and classification models

We tested the algorithms on total 11 datasets. Three datasets from (Doench

et al., 2016) were downloaded to build our TSAM regression model. The

three datasets are named: the FC dataset which contains 1841 sgRNAs

with the flow cytometry (FC) method detecting the knockdowns; the RES

dataset which contains 2549 sgRNAs with their knockdown efficiencies

measured through drug resistance detection; and the combined dataset

(FC+RES). We removed 10 sgRNAs from the FC dataset because of their

ambiguous mapping to the reference genome (Fusi et al., 2015). Doench’s

paper reported that there are 1831 curated sgRNAs in the FC dataset,

however, there are only 1830 unique sgRNAs from their supplementary

materials. Furthermore, 1020 sgRNAs for cleaving zebrafish genome sequ-

ences were acquired from (Moreno-Mateos et al., 2015). Different from

FC and RES, where the guides are transcribed from U6 promoters in cells,

this zebrafish dataset contains the guides expressed from T7 promoters in

vitro. As the cutting efficiency measurement methods are distinct, separate

models are trained and evaluated on these different datasets. More details

of these four datasets are listed at the first 4 rows of Table 1.

Table 1. 11 datasets for construction and evaluation of our classification

and regression models

Name validation type sample size literature

FC logoa 1830 (Doench et al., 2016)

RES logo 2549 (Doench et al., 2016)

FC+RES logo 4379 (Doench et al., 2016)

CRISPRScan ShuffleSplit 1020 (Moreno-Mateos et al., 2015)

Xu_ribo threefold 731H,438Lb (Xu et al., 2015)

Xu_non-ribo inter-genesetc 671H,237L (Xu et al., 2015)

Xu_mouse inter-platformd 830H,234L (Xu et al., 2015)

Xu_inde1 independente 52H,25L (Xu et al., 2015)

Xu_inde2 independent 110H,110L (Xu et al., 2015)

Chari_spCas9 tenfold 133H,146L (Chari et al., 2015)

Chari_stlCas9 tenfold 82H,69L (Chari et al., 2015)

a regression, leave-one-gene-out cross-validation

b classification, where H for efficient and L for inefficient

c trained on Xu_ribo and tested on Xu_non-ribo

d trained on Xu_ribo + Xu_non-ribo and tested on Xu_mouse

e trained on Xu_ribo + Xu_non-ribo + Xu_mouse and tested on

Xu_inde1

In the test of whether our TSAM can address the problem of classifying

sgRNAs into high-efficiency or low-efficiency ones, five datasets from

(Xu et al., 2015) were downloaded including three datasets for three-fold

cross validation, inter-geneset validation and inter-platform validation, and

two independent test sets (directly from the authors) for evaluation and

comparing the performances of different methods. The details are listed at

the 5th to 9th rows of Table 1.

To compare with Chari’s sgRNA Scorer (Chari et al., 2015), their

datasets were obtained from the supplementary files of the published paper

(shown at the last two rows of Table 1). Chari et al. tested their method on

two datasets: a 133 high-activity vs 146 low-activity sgRNA dataset for

the assessment of spCas9 system, and a 82 high vs 69 low sgRNA dataset

for the stlCas9 system (from Streptococcus thermophilus, where its PAM

is NNAGAAW).

2.2 Features for building the regression and classification

models

2.2.1 Conventional sequence features

Here, an sgRNA sequence is always referred to as the protospacer seque-

nce corresponding to the spacer and its upstream to the PAM. To extract

some similar features as used by RS2 (Doench et al., 2016), we similarly

extended the sequences to 30nt in length, namely N4N20NGGN3 (N

represents any nucleotide, the first 4nt and the last 3nt are also extracted

together with the original 20nt spacer and the PAM NGG). An sgRNA

sequence is denoted as S = s1s2s...si...s30, where si ∈ {A,G,C, T}.

Nucleotide composition features: The number of each single nucle-

otide (e.g., how many ‘A’) in S is counted, and each characterized as an

order 1 nucleotide composition (nc1) feature. Similarly, the number of

each dinucleotides or trinucleotides (e.g., how many ‘AA’ or ‘AAA’ in

S) is counted, and each characterized as an order 2 or order 3 nucleotide

composition feature (nc2, or nc3). The counts of the dinucleotides and the

trinucleotides were computed by a sliding window mechanism.

Position specific nucleotide binary features: An order 1 position

specific nucleotide binary feature (psnb1), at a given position, is initialized

as a vector (0, 0, 0, 0). The first element represents whether the nucleotide

at this position is ‘A’. If yes, change the 0 to be 1. The second element

represents the status of ‘G’, the third for ‘C’ and the forth for ‘T’. For

example, if at position 1, the nucleotide is ‘A’ then, this vector is (1, 0, 0,

0), or if the nucleotide is ‘C’, this vector is (0, 0, 1, 0). Similarly, an order

2 position specific nucleotide binary feature (psnb2) and order 3 position

specific nucleotide binary feature (psnb3) are established in the same way,

where every dinucleotide and trinucleotide are used as an element of the

16-dimensional vector and 64-dimensional vector at a given position.

GC features: Each of these features describes the counts of how many

‘G’ or ‘C’ in S (named GC counts features), or the percentage of ‘G’+‘C’

in S (named the GC percent feature).

2.2.2 Thermodynamic features

The melting temperatures of sgRNA sequences at different regions were

computed with the Biopython Tm_staluc function (Cock et al., 2009;

Le Novere, 2001). We considered the following regions as features: the

whole 20nt spacer (TMr1), the core region (12nt adjacent to PAM, TMr2),

the non-core region (the remaining 8nt of the 20nt spacer, TMr3), the whole

30nt extended sgRNA sequence (TMr4), the 5nt adjacent to PAM (TMr5),

the 8nt proximal to the previous 5nt (TMr6) and another 5nt next to the

middle 8nt (TMr7). The last four regions have been used by RS2 (Doench

et al., 2016).

2.2.3 Cutting position related features

Cutting positions relative to protein sequences have been used to improve

the performance on the prediction of sgRNA cleaving efficiencies (Doench

et al., 2016). In this work, we considered the cutting position to the genome

sequence (cut_geno), to the transcript sequence (cut_trans) and to the pro-

tein sequence (cut_pro) as three features. Meanwhile, the percentage of

the cutting length was considered as a feature computed as the length from

the start of the sequence to the cut position divided by the whole sequence

length (denoted as cut_per_geno, cut_per_trans, and cut_per_pro respecti-

vely). The gene’s genome sequence, transcript sequence, protein sequence

and the detail exon, intron, 5’UTR and 3’ UTR sequences were downloa-

ded from the ensembl database (Hubbard et al., 2002) for the mapping of

these cutting positions. The gene’s start coordination was normalized to be

1 for calculating feature values of cut_geno, cut_trans, cut_per_geno and

cut_per_trans. Features cut_trans, cut_pro, cut_per_pro and cut_per_trans

were set to be a value of 0 if the sgRNA cut in an intron region. Features

cut_pro and cut_per_pro were also set to be a value of 0 if the sgRNA cut

at non-coding regions.
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2.2.4 Profile hidden Markov model (pHMM) features of sgRNA

sequences

It is the sgRNA sequence as a whole that can truly determine its cutting

efficiency. Here, the global features of an sgRNA sequence are extracted

through a profile hidden Markov model (Eddy, 1998). We hypothesized

that those sgRNAs with similar cutting efficiencies should contain more

sequence similarities, and vice versa. Thus, these sgRNAs can be grou-

ped into subfamilies where the efficiencies of the sgRNAs in each group

are similar. Then, if a new sequence belongs to a subfamily, its cutting

efficiency may also similar to its homologous sequences. The pHMM was

adopted to solve this homologous sequence searching problem, where the

pHMM properties were used to characterize the sgRNA sequences.

A pHMM is usually used for modeling multiple sequence align-

ments and it can provide a probabilistic model for comparing new

sequences to the multiple alignments (Durbin et al., 1998). Traditio-

nal pHMM can be described with an HMM composed of a state set

S = {Begin,Match, Insert,Delete, End} and an alphabet of sym-

bols ℧ = {e1, e2, . . . } that are emitted by the non-silent states (usually

are Match and Insert states). After training on a sequence family (a protein

family or a set of homologous gene sequences), a transition probability

matrix and an emission probability matrix can be constructed to depict

the transitions between the states and the emission status of the non-silent

states. For a given sequence, a log-sum-of-odds score describing the proba-

bility of the pHMM generating it can be computed by the Viterbi algorithm

(Forney, 1973). Please be referred to (Eddy, 1998; Durbin et al., 1998) for

more details about pHMM.

Most of the high throughput experiments fixed the spacer length as

20nt. Thus, the spacer sequences here were set to be well aligned with

the fixed length 20 (there is no Insert or Delete state but only Match

status), where the pHMM is a so-called BLOCK-style ungapped motif

(Eddy, 1998). Two sets of symbols were permitted to be emitted at the

Match state, i.e., a single nucleotide set ℧1 = {A,G,C, T} and a

dinucleotide set ℧2 = {AA,AG,AC,AT, . . . , TA, TG, TC, TT}.

To avoid the emission probability of zero, we add pseudocounts into the

observed counts. Therefore, the emission probability ei is calculated as

eM (ei) =
count(ei)+pu
count(all)+pd

, where, pu and pd are the pseudocounts for

the observed count of each emitted symbol and all the emissions.

Suppose there is a set of sgRNAsSg = {sg1, sg2, . . . , sgj , . . . , sgm}

with known efficiencies Ef = {ef1, ef2, . . . , efj , . . . , efm}, efj ∈

[0, 1]. For an sgRNA ℓ, its pHMM properties are extracted by the following

two steps:

• Step1: Grouping Sg into k sub-families and training their

pHMMs. SeparatingSg intok sub-familiesSf = {sf1, sf2, . . . , sfx,

. . . , sfk}, where each of them has an efficiency range, e.g.,

ef(sfx) ∈ [0.1, 0.2). For sfx ∈ Sf and a given emission sym-

bol type t, a pHMM can be trained with its sequences. These pHMMs

are denoted as Ht = {ht
1, h

t
2, . . . , h

t
x, . . . , h

t
k}.

• Step2: Extracting ℓ’s pHMM vector. For sgRNA ℓ, the probability

hf t
x generated by ht

x is computed by the Viterbi algorithm, and ℓ is

characterized by a vector Hf t
ℓ =< hf t

1, hf
t
2, . . . , hf

t
x, . . . , hf

t
k >,

where t = ℧1,℧1.

Here both of the two emission symbol sets ℧1 and ℧2 are used, which

can produce two vectors for sgRNA ℓ, i.e., Hf
℧1

ℓ (pHMMe1) and Hf
℧2

ℓ

(pHMMe2).

2.3 Procedures for training our TSAM

Our TSAM cleaving efficiency regression model is built by four main

steps. Firstly, all the features are created. Then, an XGBoost regressor

is trained with some selected primary features to estimate the first-step

scores. The features’ importance are evaluated simultaneously. Later, the

most important features are combined with the pHMM features to optimize

a RBF SVM regressor. Then the second-step scores are calculated. At last,

the first-step scores and the second-step scores are averaged as the final

scores for the regression. Figure 1 shows the flowchart to construct TSAM.

To get the best training performance on the dataset FC, the XGBoost

and SVM regression methods were both optimized by the leave-one-gene-

out cross-validation for the best parameters. The best parameters were fixed

when these two regression methods were used to generate leave-one-gene-

out cross-validation performance on the RES dataset or on the FC+RES

dataset. To have a fair performance comparison with Moreno-Mateos et al.

(2015) on the CRISPRScan dataset, our regression methods were also

optimized by the same Shuffle-Split cross-validation as Moreno-Mateos

et al. (2015) did.

We also note that there is a pre-evaluation process to select important

features from the initial feature set for optimizing the XGBoost regressor.

This process is implemented by the backward elimination strategy (Mao,

2004) with default parameters for XGBoost. During each fold of the cross-

validation, the selected features are assigned with feature importance to

weight their contributions for optimizing the regressor.

The features that work well for SVM (e.g., the pHMMe1 and pHMMe2

according to our results) are combined with the boosting selected top-

K important features to train a RBF kernel SVM regressor (libSVM

v3.22 (Chang and Lin, 2011)). As the features’ importance are evalua-

ted during each cross-validation fold, the final selected important features

are the union of the top-K ones from all the folds. This SVM regressor

predicts the second-step scores for the sgRNAs. The details of deter-

mining the parameters for regressors and features are described in the

Supplementary file 1.

3 Results

We first report the cleavage preferences of sgRNAs as revealed by XGBoost

and explain how these preferences are different from literature obse-

rvations. Then, we report excellent regression performance achieved by

integrating XGBoost and SVM. These results and analysis are mainly focu-

sed on the dataset FC. After that, we present comparison results between

our method and the state-of-the-art methods to demonstrate the superior

performance on the sgRNA cleavage efficiency regression by our method.

At last, two case studies are presented to illustrate the effectiveness of our

method for practical use in gene therapies.

3.1 Nucleotide and cleavage preferences of highly efficient

sgRNAs as revealed by the boosting algorithm

Some interesting nucleotide preferences of the highly efficient sgRNAs

are revealed by the XGBoost algorithm on the FC dataset (see Figure 2).

A highly efficient sgRNA is always a sequence of relatively lower mel-

ting temperature at the middle of the spacer, in comparison with those of

low efficiencies (a mean value 8.84 for the highly efficient sgRNAs that

are ranked at the top 20% of the 1830 sgRNAs according to their actual

efficiencies vs 13.11 for the low efficient sgRNAs ranked at the bottom

20%, p-value=1.04E-09 under the two-sample Kolmogorov-Smirnov test

(Lilliefors, 1967)). Also, the highly efficient sgRNAs prefer to cut at the

5’-end closer part of a gene (a mean value of cut_per_geno is 41.56%

for the highly efficient sgRNAs vs 46.61% for the low efficient sgRNAs,

p-value=1.51E-04). In addition, the nucleotide composition of the highly

efficient sgRNAs and the low efficient sgRNAs exhibits a distinct diver-

gence: the highly efficient sgRNAs have more ‘A’ (on average 6 for the

highly efficient sgRNAs vs. 5 for the low efficient ones, p-value=2.83E-

09), but less ‘G’ (on average 10 for the highly efficient vs. 11 for the low

efficient, p-value=5.06E-03), ‘GG’ (on average 4 for the highly efficient

vs. 5 for the low efficient, p-value=3.23E-08) and ‘GGG’ (on average 1

for the highly efficient vs. 2 for the low efficient, p-value=6.51E-07).
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Fig. 1. The flowchart to construct TSAM for predicting sgRNA cleavage efficiencies. This flowchart contains four main steps: at first 6 types of initial features are created; in the second

step, primary features are selected from the initial feature set to optimize an XGBoost regressor and output the first-step scores (fss) and the importance scores of the features; then, the

important features are combined with the pHMM features to train a RBF kernel SVM and compute the second-step score (sss); lastly, the first-step score and the second-step score of an

sgRNA is averaged as the final predicted score ((fss + sss)/2).

TM at region 6 TM at region 7 TM at region 5 Cut percent of genome

TM at region 4 Cut percent of protein Cut position of protein Number of ‘A’

Number of ‘G’ Number of ‘GG’ Number of ‘C’ Number of ‘GT’

TMr6 TMr7 TMr5 cut_per_geno

cut_per_pro cut_proTMr4 nc1A

nc1G nc2GG
nc1C nc2GT

P=8.65E-10 P=2.90E-02 P=2.32E-02 P=1.24E-04

P=3.27E-03 P=1.16E-02 P=8.00E-02 P=3.67E-09

P=4.27E-03 P=2.33E-08 P=3.49E-01 P=1.38E-01

Fig. 2. Top 12 important features and analysis on the nucleotide and cleavage preferences. Y-axis shows the feature values. The feature names are placed under the x-axis and their symbols

are placed at the top right panel of the subplots. These features are ranked by their importance. Type “high” means that the sgRNAs are ranked at top-20% while the “low” represents that

the sgRNAs are ranked at bottom-20%. The p-value shown in each sub-figure is computed via the two-sample Kolmogorov-Smirnov test.
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Doench et al. (2016) have reported that the three types of features

that contribute substantially to the efficiency prediction are: position-

independent counts of single and dinucleotides, location of the sgRNA

within the protein, and melting temperatures at different regions (having

Gini importance of 16%, 13% and 11% respectively). By our boosting

algorithm, these three types of features constitute the top 25 sub-features

whose importance are higher than 100. Different conclusions are drawn

as follows. First, the melting temperatures at different regions are the

best features (with a mean importance 542.64), then the cutting posi-

tion related features are (with a mean importance 424.41), followed by

the nucleotide composition related features (with an average importance

136.59). Meanwhile, the cutting percent relative to genome DNA seque-

nce (cut_per_geno, not applied by RS2) is better than the cutting percent

relative to protein (cut_per_pro) and the cutting position at the protein

(cut_pro) (importance are 503.89, 399.44 and 369.89 respectively). The

divergences of the values for cut_per_pro and cut_pro between the high

and low efficient sgRNAs are not as significant as that of the cut_per_geno

(p-value=1.39E-02, 8.41E-02 and 1.51E-04 respectively).

The regression performance on the cleaving efficiencies by our XGBo-

ost is better than Doench et al.’s RS2. We obtained a mean Spearman

correlation 0.562, but RS2 obtained only 0.522 on the FC dataset. This

is why conclusions on the nucleotide preferences of highly efficient sgR-

NAs are different between these two methods. We note that our XGBoost

regressor did not use all the features but only important features such

as TMr4-TMr7, nc1, nc2, nc3, psnb1, psnb2, GC counts, GC percent,

cut_per_geno, cut_pro and cut_per_pro (form 677 dimensions in total).

More details about the XGBoost regression parameter settings and the

features can be found at our Supplementary file 1.

3.2 Further performance improvement by integrating

pHMM properties

The pHMM properties (combining the pHMMe1 and pHMMe2) can be

used to build an SVM regressor to achieve fairly good performance, where

a mean Spearman correlation 0.519 was obtained. Adding the top ranked

important features evaluated by the former boosting can further improve

the SVM regressor’s mean Spearman correlation to 0.559 which is superior

to Doench’s methods (RS2’s mean Spearman correlation=0.522 and L1-

Regression’s mean Spearman correlation=0.513). If the pHMM properties

were removed from this strong SVM regressor, the performance dropped

about 0.01. This implies that the pHMM properties are indispensable to

construct our excellent SVM regressor.

The proposed TSAM obtained a mean Spearman correlation 0.583

which is much better than Doench’s methods. It also improves the mean

Spearman correlation of our XGBoost regressor by 0.021, benefited from

its integration with the SVM regressor trained on the pHMM properties and

other significant features. The SVM regressor alone also achieved better

performance than Doench’s methods but worked not as well as TSAM. This

proves that the XGBoost regressor and the SVM regressor can predict the

sgRNA’s cutting efficiencies cooperatively. The parameter optimization

process is described in Supplementary file 1.

3.3 Results on 11 benchmark datasets comparing with the

state-of-the-art methods

Four benchmark datasets were used to evaluate the performance of our

proposed TSAM. The performance was compared with the following

stat-of-the-art methods: Doench et al’s RS2, L1-Regression methods

(implemented by this work) (Doench et al., 2016), and the CRISPR-

scan method (Moreno-Mateos et al., 2015). Our TSAM improves the

mean Spearman correlation by more than 0.05 comparing with RS2 and

L1-Regression on the FC, RES and the FC+RES datasets (under the leave-

one-gene-out evaluation framework), and improves the mean Pearson

correlation by about 0.04 comparing with CRISPRscan (under the same

Shuffle-Split evaluation framework) on the sgRNAs dataset for cutting

zebrafish genome sequences. The detailed results are presented at the first

four rows of Table 2.

Table 2. Regression performance of different methods on

four benchmark datasets

Methods
regression performance on

FC RES FC+RES CRISPRscan

RS2 0.522 0.455 0.510 -

L1-Regression 0.513 0.468 0.505 -

CRISPRscan - - - 0.45

TSAM 0.583 0.530 0.567 0.488

TSAM-MT1 0.565 0.441 0.531 0.475

TSAM-MT2 0.575 0.493 0.555 0.477

In the further evaluation of TSAM, we have conducted cross-dataset

test. We trained TSAM on the FC dataset, and then the sgRNAs belonging

to the 8 genes in the RES dataset were adopted as 8 independent test

sets. The mean Spearman correlation by our regression is 0.431, which is

much better than the performance by Doench’s methods (0.397 by RS2

and 0.383 by the L1 regression). On the 8 genes, we obtained higher

Spearman correlations on 6 of them than Doench’s RS2 and L1 regression

methods. When TSAM was trained with the 2549 sgRNAs from the RES

dataset, and tested on the 9 genes from the FC dataset, the mean Spearman

correlation was 0.551 for TSAM, while Doench’s RS2 and L1 regression

obtained only 0.508 and 0.493 respectively. As expected, we obtained

better Spearman correlations than Doench’s methods on 7 of the 9 genes.

We have conducted a stricter performance evaluation for TSAM to

satisfy practical use conditions especially assuming the cutting position

features are not accessible. For this performance test, we modified TSAM

as two Mutation Types (MT): TSAM-MT1 and TSAM-MT2. TSAM-

MT1 was trained without cutting position features (674-d, deleting the

cut_per_geno, cut_pro and cut_per_pro), and TSAM-MT2 was trained

without the cutting position related to the protein features (675-d, without

cut_pro and cut_per_pro). The performances of these two variant meth-

ods are shown in the last two rows of Table 2. It is understood that the

cutting position features can significantly affect the performance of our

TSAM on the RES dataset. Except for one case testing on the RES dataset,

our methods obtained much better performance than the state-of-the-art

methods.

Our TSAM regression method can be easily converted for a binary clas-

sification approach to the distinction between highly efficient sgRNAs and

low efficient ones. The steps are as follows. First, XGBoost was optimized

to output feature importance scores (classification with the binary logistic

function). Then, the important features were combined with the pHMM

properties to train an SVM classifier with a RBF kernel (the pHMM group

is set as 2, such as positive sample group and the negative sample group,

probabilities as output). Then the classifier was tested on 7 datasets inclu-

ding 5 datasets for cross-validation and 2 independent test sets. The other

classifiers (Doench et al., 2014; Xu et al., 2015; Chari et al., 2015) were

also optimized with the corresponding validation types in Table 1. The

cross-validations were repeated 10 times and the performances were ave-

raged as the final performance. Then the classification performances were

weighted by Matthews correlation coefficient (MCC) (Matthews, 1975),

F1, AUC and Accuracy which are all shown in Table 3.
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Table 3. Performance comparison between our method and the

state-of-the-art methods for the binary classification of sgRNAs

Method dataset MCC F1 AUC Accuracy

TSAM Xu_ribo 0.640 0.871 0.896 0.834

Xu et al.’s Xu_ribo - - 0.843 -

TSAM Xu_non-ribo 0.505 0.884 0.813 0.822

Xu et al.’s Xu_non-ribo - - 0.778 -

TSAM Xu_mouse 0.508 0.891 0.840 0.830

Xu et al.’s Xu_mouse - - 0.757 -

TSAM Xu_inde1 0.311 0.800 0.798 0.714

Xu et al.’s Xu_inde1 - - 0.729 -

Doench et al. Xu_inde1 - - 0.648 -

TSAM Xu_inde2 0.433 0.748 0.779 0.700

Xu et al.’s Xu_inde2 - - 0.711 -

Doench et al.’s Xu_inde2 - - 0.583 -

TSAM Chari_spCas9 0.551 0.758 0.859 0.772

Chari et al.’s Chari_spCas9 - - - 0.732

TSAM-MT1 Chari_stlCas9 0.718 0.865 0.930 0.855

Chari et al.’s Chari_stlCas9 - - - 0.815

The variant method TSAM-MT1, instead of TSAM itself, was applied

to test the performance on the Chari_stlCas9 dataset. The reason is that

the PAM of the sgRNAs was defined as ‘NNAGAAW’ but not the ‘NGG’

motif. Thus the cutting position features could not be defined. We can see

that TSAM-MT1 can outperform the state-of-the-art methods as well for

the binary classification of sgRNAs. More comparison results are provided

at Supplementary file 1.

3.4 Performance of TSAM on more datasets related to the

U6 and T7 expression system

We used the datasets from Haeussler et al. (2016) to confirm that the propo-

sed TSAM can work better than RS2 when the guide RNAs are expressed

from U6 and better than CRISPRscan when the expression system is T7.

3.4.1 Comparison on datasets from the U6 expression system

We compared the prediction performance of TSAM_U6 and RS2 on 7 big

datasets containing sgRNAs for cutting human or mouse genomes. Both

TSAM_U6 and RS2 are trained on the FC+RES dataset, where the sgRNAs

are expressed from U6 promoters in cells. The Spearman correlation are

shown in Table 4.

We can see that for all the seven datasets each containing more than

1000 sgRNAs, our TSAM_U6 achieved about 3% more the Spearman

correlation than RS2.

3.4.2 Comparison on datasets from T7 expression system

Another 5 datasets whose sgRNAs are expressed from T7 promoters were

used to compare the performances between TSAM_T7 and CRISPRscan.

Both of these two predictors were trained with the CRISPRScan dataset

and the sgRNAs in this dataset are expressed from a T7 promoter in vitro.

The Spearman correlations are listed in Table 4. Again, the proposed

TSAM_T7 achieved 10% more the Spearman correlation on 3 out of 5

datasets and about 5% more on the remaining two datasets than the best

existing predictor CRISPRscan for this type of expression system. See our

Supplementary file 1 and Supplementary file 3 for detailed results and

the applied datasets.

3.5 Case study: designing sgRNAs for gene therapy

Crispr/Cas9 system is a very promising genome engineering tool for curing

genetic diseases (Men et al., 2017). In the understanding of whether TSAM

can recommend reasonable sgRNAs for practical use, we conducted case

studies for recommending sgRNAs to treat retinitis pigmentosa and X-

linked chronic granulomatous disease. Gene editing investigations on these

two diseases have been successfully undertaken by domain experts recently

(Yu et al., 2017; De Ravin et al., 2017).

Yu et al. (2017) attempted to knockdown gene Nrl to prevent retinal

degeneration in a mouse model and suggested adopting CRISPR/Cas9-

mediated NRL disruption in rods as a promising treatment option for

patients with retinitis pigmentosa. For our prediction, the genome sequ-

ences of mouse Nrl gene was downloaded from Ensembl database under

the transcript id ENSMUST00000062232.13. Total 138 potential spacer

sequences were found with the PAM ‘NGG’. Among these 138 can-

didate sgRNAs, the cleavage efficiencies of those sgRNAs cutting at

the coding region were predicted by our TSAM method. If considering

just the cutting efficiency, the 3 top-ranked sgRNAs’ spacer sequences

are 5’-ATGCCTGGCTCACTGAAGGT-3’ (s1, cut efficiency=0.850),

5’-GTATGGTGTGGAGCCCAACG-3’ (s2, cut efficiency=0.801) and

5’-CACAGACATCGAGACCAGCG-3’ (s3, cut efficiency=0.762). Yu’s

work proposed to use 5 candidate sgRNAs (denoted NT1 to NT5). They

finally selected NT2 as an optimal sgRNA because it contains relative

higher ability to generate indels and lower predicted off-target potential.

Our s2 exactly matches with their NT2 (in comparison, RS2 ranks this

optimal sgRNA at the sub-optimal 3rd position, while CRISPRscan ranks

it at the 28th position among all the potential sgRNAs for cutting Nrl).

This suggests that our TSAM cleavage efficiency regression method is

quite accurate for recommending good sgRNAs for disease gene editing.

Our method is indeed useful to suggest only several top-ranked sgRNAs

(e.g., top 3) for narrowing down the search scope in the subsequent filte-

ring such as the off-target prediction and in vivo experimental test. Such a

recommendation approach can save time and costs, meanwhile achieving

satisfactory accuracy.

De Ravin et al. (2017) investigated a gene repair problem with Cri-

spr/Cas9 to cure patients with X-linked chronic granulomatous disease

that arises from mutations in CYBB (C676T substitution in exon 7 of

CYBB gene). Different from the above case study, to correct the point

mutation, the cutting site should be close to the mutation site. Four

potential sgRNAs (gRNA1, gRNA2, gRNA3 and gRNA8) whose cut-

ting sites are near the mutation site were tested. They found that gRNA2

(5’-CACCCAGATGAATTGTACGT-3’) had the maximal cutting efficie-

ncy. By our TSAM (exactly, TSAM-MT1 is used, because these sgRNAs

cut at non-coding regions), the predicted scores of the four sgRNAs are:

0.310 for gRNA1, 0.693 for gRNA2, 0.534 for gRNA3 and 0.243 for

gRNA8. For comparison, the predicted scores by RS2 are quite differently

as 0.364, 0.704, 0.555 and 0.351 respectively. On the other hand, CRISPR-

scan could detect just gRNA3 (score=28) and gRNA8(score=35), but not

gRNA1 or gRNA2 (gRNA1 and gRNA2 start with ‘TT’ and ‘CA’ respecti-

vely, thus they cannot be expressed from the T7 promoter and predicted by

CRISPRscan (Moreno-Mateos et al., 2015)). Thus, TSAM can accurately

recommend the optimal sgRNA for the mutation correction case as well.

4 Conclusion

We proposed a two-step averaging method (named TSAM) to conduct

regressions on the cleavage efficiencies of sgRNAs. The first-step clea-

vage efficiency scores are predicted by an optimized XGBoost regressor.

This step also ranks the features’ importance for feature selection. At the

second step, an SVM regression model is constructed using the pHMM

features combined with the top-ranked features selected by the first step.
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Table 4. Spearman correlation of TSAM, RS2 and CRISPRscan tested on datasets from U6

or T7 expression systems

U6 expression system

dataset size genome literature TSAM_U6 RS2

Wang/Xu HL60 2076 Mouse Wang et al. (2014) 0.517a 0.485

Chari 293T 1234 Human Chari et al. (2015) 0.382 0.381

Hart Rpe 4214 Mouse Hart et al. (2015) 0.309 0.281

Hart Hct116-2 Lib 1 4239 Mouse Hart et al. (2015) 0.416 0.384

HartHelalib1 4256 Mouse Hart et al. (2015) 0.388 0.353

HartHelalib2 3845 Mouse Hart et al. (2015) 0.394 0.359

XuKBM 2076 Mouse Xu et al. (2015) 0.540 0.512

T7 expression system

dataset size genome literature TSAM_T7 CRISPRscan

Eschstruth Zebrafish 17 Zebrafish Haeussler et al. (2016) 0.224 -0.0043

Varshney Zebrafish 102 Zebrafish Varshney et al. (2015) 0.363 0.262

Gagnon Zebrafish 111 Zebrafish Gagnon et al. (2014) 0.410 0.357

Shkumatava Zebrafish 162 Zebrafish Haeussler et al. (2016) 0.292 0.258

Teboul Mouse In Vivo 30 Mouse Haeussler et al. (2016) 0.565 0.426

a For each dataset, the highest Spearman correlation is in bold

The first score and the second score are averaged as the cleavage efficie-

ncy of each sgRNA in the prediction. Our regression method can be easily

converted into a binary classification method for the distinction between

high-efficiency sgRNAs and low-efficiency sgRNAs. TSAM was evaluated

on 11 benchmark datasets containing thousands of sgRNAs editing human,

mouse and zebrafish genome sequences and on additional 12 datasets of

different expression system. The performance of TSAM was compared

with the state-of-the-art methods to prove its superior performance. Two

case studies have also demonstrated the effectiveness of TSAM. Our future

work will focus on the integration of off-target prediction methods with the

current on-target efficiency prediction algorithm to build a more compre-

hensive tool for sgRNA design where higher efficiency and specificity can

be achieved simultaneously. In addition, more definitions of ‘PAM’ will be

considered for TSAM. The cross-species cross-expression system perfor-

mance evaluation will be investigated in near future when the supporting

datasets are publicly available.
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