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Simple Summary: Pancreatic cancer is the fourth leading cause of cancer-related death in Western
countries. Although several therapeutic strategies have been developed for pancreatic cancer, radia-
tion therapy has not yet yielded satisfactory results. Unraveling the mechanism of radioresistance in
pancreatic cancer and developing new therapeutic targets has become a major challenge. Therefore,
we applied kinome-wide CRISPR-Cas9 loss-of-function screening combined with the 3D cell culture
method and identified DYRK1A as a sensitive target for radiotherapy. Additionally, we confirmed
that DYRK1A-targeted inhibitors could enhance the efficacy of radiotherapy. Our results further
support the use of CRISPR-Cas9 screening to identify novel therapeutic targets and develop new
strategies to enhance radiotherapy efficacy in pancreatic cancer.

Abstract: Although radiation therapy has recently made great advances in cancer treatment, the
majority of patients diagnosed with pancreatic cancer (PC) cannot achieve satisfactory outcomes
due to intrinsic and acquired radioresistance. Identifying the molecular mechanisms that impair
the efficacy of radiotherapy and targeting these pathways are essential to improve the radiation
response of PC patients. Our goal is to identify sensitive targets for pancreatic cancer radiotherapy
(RT) using the kinome-wide CRISPR-Cas9 loss-of-function screen and enhance the therapeutic
effect through the development and application of targeted inhibitors combined with radiotherapy.
We transduced pancreatic cancer cells with a protein kinase library; 2D and 3D library cells were
irradiated daily with a single dose of up to 2 Gy for 4 weeks for a total of 40 Gy using an X-ray
generator. Sufficient DNA was collected for next-generation deep sequencing to identify candidate
genes. In this study, we identified several cell cycle checkpoint kinases and DNA damage related
kinases in 2D- and 3D-cultivated cells, including DYRK1A, whose loss of function sensitizes cells
to radiotherapy. Additionally, we demonstrated that the harmine-targeted suppression of DYRK1A
used in conjunction with radiotherapy increases DNA double-strand breaks (DSBs) and impairs
homologous repair (HR), resulting in more cancer cell death. Our results support the use of CRISPR-
Cas9 screening to identify new therapeutic targets, develop radiosensitizers, and provide novel
strategies for overcoming the tolerance of pancreatic cancer to radiotherapy.
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1. Introduction

The most frequent form of pancreatic cancer (PC), pancreatic ductal adenocarcinoma
(PDAC), is one of the most common causes of cancer death worldwide [1]. With few symp-
toms showing before the disease reaches its advanced stage and its extremely aggressive
nature, PDAC prognosis at the time of diagnosis is often dim. Despite the advancements
made in the detection and management of PDAC, the 5-year survival rate still stands at
only 9% [1,2]. Resection, the only curative therapeutic option for PDAC, is effective in
approximately 15–20% of cases and has a limited effect, with just 20% of resected patients
living more than five years [3]. To improve survival, chemotherapy (CT) and radiotherapy
(RT) are used in combination with resection or as the sole treatment for 80–85% of PC
patients with unresectable tumors [4]. Unfortunately, despite the development of Stereo-
tactic Body Radiation Therapy (SBRT) and other therapy approaches, RT does not play a
decisive role in the treatment of PDAC and is usually only mildly successful in a few cases
of both resectable and unresectable tumors [2,4–6]. Although preoperative (neoadjuvant)
chemoradiotherapy is the standard of care for many other cancers, preoperative (neoad-
juvant) chemoradiotherapy for patients with resectable or borderline resectable PDAC
has not been shown to have a significant overall survival benefit [7]. Recent studies have
shown that preoperative chemoradiotherapy increases the R0 resection rate, decreases the
lymph node positivity rate, and diminishes local and distant recurrence rates by inducing
the downstaging of the tumor [8,9].

Radiotherapy for pancreatic cancer often fails due to radiation toxicity and radiore-
sistance. Radioresistance in patients with PC, either inherent or acquired, is mediated by
DNA damage repair, cell cycle checkpoints, tumor stem cells, tumor microenvironment,
and other factors [10]. Radioresistance remains a significant barrier impeding the broad
adoption of radiotherapy for pancreatic cancer treatment, and the development of effective
sensitizers or strategies to reverse radioresistance represents a promising area of research.

In tumor cells, ataxia–telangiectasia mutated (ATM) and ATM- and Rad3 Related
(ATR) are major members of DNA damage checkpoints and are activated by different types
of DNA damage. Their downstream factors are checkpoint kinase 2 (CHK2) and checkpoint
kinase 1 (CHK1), respectively [11]. Both kinases are involved in the regulation of the DNA
damage response by initiating cell cycle checkpoint control and activating the appropri-
ate DNA repair pathways [12–14]. A variety of radiosensitization approaches targeting
DNA damage and DNA repair have been attempted in PC [15–17]. Although most of
these approaches have demonstrated promising outcomes in preclinical studies performed
in vitro and in vivo, the majority eventually failed to deliver meaningful radiosensitiza-
tion in clinical trials owing to their severe side effects and limited effectiveness [2,5]. As
a result, it is important to discover and understand the underlying processes causing
this treatment to fail in order to gain a better understanding of how to build effective
radiosensitization regimens.

The development of CRISPR-Cas9 screening approaches in recent years has enabled
the focused discovery of tumor treatment resistance mechanisms, paving the way for the
creation of novel targeted therapies. In this study, we aimed to use a genome-wide CRISPR-
Cas9 loss-of-function screen to identify sensitive targets for radiotherapy in pancreatic
cancer and enhance the efficacy of radiotherapy by developing and applying targeted
inhibitors in combination with radiotherapy.
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2. Materials and Methods
2.1. Cell Culture and Reagents

In this study, the human pancreatic cancer cell line MIA PaCa-2 (ATCC, Cat# CRM-
CRL-1420, RRID: CVCL_0428) and the murine pancreatic cancer cell line TB32047 were
used. MIA PaCa-2 cells were purchased from American Type Culture Collection (ATCC,
Manassas, VA, USA). The primary murine pancreatic cancer cell line TB32047 was thank-
fully provided by David Tuveson (Cold Spring Harbor Laboratory, Cold Spring Harbor,
NY, USA). All cell lines were grown in monolayer culture in a humidified atmosphere con-
taining 5% CO2 at 37 ◦C. TB32047 cells were cultured in DMEM medium (Cat# 30966-021,
Gibco) supplemented with 10% FBS. MIA PaCa-2 cells cultured in DMEM medium with
10% FBS and 2% horse serum (Cat# 16050-130, Gibco). HEK293TN (Cat# LV900A-1-GVO-
SBI, RRID:CVCL_UL49, BioCat, Heidelberg, Germany) cells were obtained from BioCat
and cultured in DMEM supplemented with 10% heat-inactivated FBS. Murine pancreatic
ductal 3D/spheroid culture was described previously (15, 16). In brief, TB32047 cells were
digested and further mixed with Matrigel (BD Bioscience, San Jose, CA, USA) and cultured
in complete feeding medium (AdDMEM/F12 medium supplemented with HEPES (1×,
Invitrogen, Waltham, MA, USA), Glutamax (1×, Invitrogen), penicillin/streptomycin (1×,
Invitrogen), B27 (1×, Invitrogen), Primocin (1 mg/mL, InvivoGen, San Diego, CA, USA),
N-acetyl-L-cysteine (1 mM, Sigma, St. Louis, MO, USA), Wnt3a-conditioned medium
(50% v/v), RSPO1-conditioned medium (10% v/v, Calvin Kuo, Stanford, CA, USA), Noggin
conditioned medium (10% v/v) or recombinant protein (0.1 µg/mL, Peprotech, Rocky Hill,
NJ, USA), epidermal growth factor (EGF, 50 ng/mL, Peprotech), Gastrin (10 nM, Sigma),
fibroblast growth factor 10 (FGF10, 100 ng/mL, Prepotech), Nicotinamide (10 mM, Sigma)
and A83-01 (0.5 µM, Tocris, Bristol, UK). All cells were harvested by 0.25% Trypsin-EDTA
(Ethylenediaminetetraacetic acid) (Cat# 25200-072, Gibco). Cells were authenticated by
DNA fingerprinting using highly polymorphic short tandem repeat (STR) analysis, and
mycoplasma detection was regularly conducted to confirm the absence of contamination.

The DYRK1A targeted inhibitor Harmine (Cat# S3817) was purchased from Selleck
Chemicals GmbH (Houston, TX, USA).

2.2. The sgRNA Library and Lentivirus Production

The pooled-sgRNA library (Mouse Brie kinome pooled library) targeting murine
kinome was a gift from John Doench and David Root [18] (RRID: Addgene_75316, Addgene,
Cambridge, MA, USA) and modified for the inclusion of pancreatic cancer-related genes by
our lab (supplemental data). The resulting library contained 3548 sgRNAs for 924 murine
genes. The lentivirus was produced as described previously [19]. Briefly, three T175 flasks
of HEK293TN cells were plated at 70% confluence and incubated overnight. For each
flask, 13.8 µg of pooled-sgRNA library, 9.2 µg of pMDLg/pRRE (Cat# 12251, Addgene),
4.6 µg of pRSV-REV (Cat# 12253, Addgene), 4.6 µg of pMD2.G (Cat# 12259, Addgene),
64.4 µL P3000 Enhancer Reagent, and 129 µL of Lipofectamine™ 3000 diluted in OptiMEM
(Cat# 31985070, Gibco) were mixed and added to the HEK293TN cells. pMDLg/pRRE
(Addgene, RRID: Addgene_12251), pRSV-REV (Addgene, RRID: Addgene_12253), and
pMD2.G (Addgene, RRID: Addgene_12259) were gifts from Didier Trono [20]. The medium
was changed 6 h post transfection and the virus was collected by filtering through a 0.45 µm
strainer 24 h later.

2.3. CRISPR/Cas9 Knockout Screening

The CRISPR screening was performed as described previously [21]. Briefly, 1.8 million
TB32047 cells were transduced in triplicate with the sgRNA lentivirus library (TBlib1,
TBlib2, TBlib3). Cells were then selected with puromycin (10 µg/mL) for 3 days. Ten
million transfected cells were harvested at the baseline (Day 0). The remaining surviving
cells were divided into two groups, 2D and 3D screening groups. In the experimental group,
2D and 3D library cells were irradiated daily with a single dose of up to 2 Gy for 4 weeks
for a total of 40 Gy using an X-ray generator (120 kV, 25 mA, GE Inspection Technologies,
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Ahrensburg, Germany), while unirradiated cells were consecutively cultured for 4 weeks
as a control group. In 2D functional screening, there was at least 300-fold coverage for
each sgRNA, and in 3D screening there was at least 80-fold coverage for all sgRNAs to
guarantee a sufficient number of sgRNAs. At least 10 million cells for each group were
collected for DNA sequencing at the end of the screening.

2.4. Genomic DNA Sequencing and Data Analysis

The isolation of genomic DNA (gDNA) was performed with a NucleoSpin Blood L kit
(Cat# 740954.20, Macherey-Nagel, Düren, Germany) and followed by PCR procedure to am-
plify sgRNAs. In order to obtain 300-fold coverage, 10 µg of DNA was utilized in the PCR
process. For each sample, the Q5 master mix (Cat# M0494S, Biolabs, Beverly, MA, USA) was
used to conduct two independent 100 µL reactions with 5 µg of genomic DNA in each reac-
tion and then the amplicons were concatenated. The following primers were used and syn-
thesized by Eurofins Genomics: P5, 5′-ACACTCTTTCCCTACACGACGCTCTTCCGATCTN
NNNNTCTTGTGGAAAGGACGAAACACCG-3′, and P7, 5′-TCTACTATTCTTTCCCCTGC
ACTGT-3′. PCR amplicons generated during the PCR reactions were purified and se-
quenced using a NovaSeq 6000. The number of reads for each sgRNA was measured
and normalized to the total number of reads for all sgRNAs using the MAGeCK-VISPR
program, as described previously [22].

2.5. CRISPR-Cas9 Gene Editing

DYRK1A was knocked out in TB32047 and MIA PaCa-2 cell lines with the CRISPR-
Cas9 gene editing system, as described before [23]. The following sgRNAs were used and
synthesized by Eurofins Genomics:

Mm_Dyrk1a_sg1-forward (5′-CACCGTAATAGGAGTACAAACCACC-3′), Mm_Dyrk1a
_sg1-reverse (5′-AAACGGTGGTTTGTACTCCTATTAC-3′), Mm_Dyrk1a_sg4-forward (5′-
CACCGTCATTGGCACCACTGAACAG-3′), Mm_Dyrk1a_sg4-reverse (5′-AAACCTGTTC
AGTGGTGCCAATGAC-3′), Mm_non-targeting control-forward (5′-CACCGACGCGAA
GTGTCGCAGAGTG-3′), Mm_non-targeting control-reverse (5′-AAACACGCGAAGTGTC
GCAGAGTG-3′), Hs_DYRK1A_sg1-forward (5′-CACCGTGAGAAACACCAATTTCCGA-
3′), Hs_DYRK1A_sg1-reverse (5′-AAACTCGGAAATTGGTGTTTCTCAC-3′), Hs_DYRK1A
_sg4-forward (5′-CACCGAACGGAAGGTTTACAATGA-3′), Hs_DYRK1A_sg4-reverse (5′-
AAACTCATTGTAAACCTTCCGTTC-3′), Hs_non-targeting control-forward (5′-CACCG
GAACTCAACCAGAGGGCCAA-3′), and Hs_non-targeting control-reverse (5′-AAACTTG
GCCCTCTGGTTGAGTTC-3′).

Knockout was performed using the pSpCas9(BB)-2A-Puro (PX459) V2.0 vector, which
was a gift from Feng Zhang (Addgene, RRID: Addgene_62988) [19]. The ligated vector was
inserted into Endura Electrocompetent Cells (Cat# 60242-1, Lucigen, Middleton, WI, USA).
Cells were transfected with the DYRK1A knock-out plasmid by lipofectamine transfection
reagent for 24 h and followed by puromycin selection for three days. Limited dilution
was performed by plating one single cell per well of knockdown cells in a 96-well plate to
select single clones. After growth, Western blotting was performed to verify the knockout.
The wild-type cells were named WT, and the single clone cells transfected with non-
targeting control sgRNAs and transfected with DYRK1A sgRNAs were named NC and KO
cells, respectively.

2.6. Clonogenic Assay

In brief, cells (1000–2000 cells/well) were plated in triplicate on a 6-well plate, incu-
bated for 24 h, irradiated with X-rays and cultured for further 7 to 12 days. Surviving
colonies were fixed with formalin and stained with 0.5% crystal violet. Colonies containing
more than 50 cells were counted. The relative colony-forming efficiency was determined
by normalizing the colony numbers to the untreated control.
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2.7. Alkaline Comet Assay

The alkaline comet assay was performed using the CometAssay HT Kit (Cat# 4252-
050-K, Trevigen, Gaithersburg, MD, USA ) according to the manufacturer’s instructions.
Briefly, cells were mixed with molten low-melt agarose (LMAgarose), then the mixture was
immediately evenly dispersed onto a CometSlide. The slides were then placed at 4 ◦C in
the dark for 30 min in a high-humidity environment. The cells were then lysed overnight
with lysis buffer. After lysis, the slides were rinsed in distilled water and immersed in
alkaline electrophoresis buffer for 30 min before electrophoresis. An electric field (1 V/cm)
was applied to the cells for 35 min at 4 ◦C, and the cells were stained with GelRed Nucleic
Acid Stain (Cat# 41003, LINARIS GmbH, Dossenheim, Germany) for 20 min in the dark
and photographed using a Evos FL Auto 2 imaging system (Invitrogen, AMAFD2000). The
results were analyzed using the CASP v1.2.3beta2 software (Wroclaw, Poland) [24].

2.8. Western Blot

Western blot analysis was performed as described [23]. In brief, cells were lysed
in RIPA buffer (Cat# 89900, Thermo Fisher Scientific, Waltham, MA, USA) containing
protease and phosphatase Inhibitor (Cat# 78442, Thermo Fisher Scientific) and the protein
concentration was determined using the BCA Protein Assay Kit (Cat# 23250, Thermo Fisher
Scientific). Equal amounts of total protein were separated on 4–12% NUPAGE Bis-Tris
gels (Cat# NP0322BOX; Thermo Fisher Scientific) using the Mini Gel Tank chamber system
(Invitrogen) and proteins were transferred to a nitrocellulose membrane (Cat# GE10600003;
Sigma-aldrich, St. Louis, MO, USA). After blocking with 5% milk, the following primary
antibodies were used and incubated overnight at 4 ◦C: Chk1 (Cell Signaling Technology,
Danvers, MA, USA, Cat# 2360, RRID:AB_2080320), phospho-Chk1 (Ser345) (CST, Cat# 2341,
RRID:AB_330023), phospho-Chk1 (Ser296) (CST, Cat# 2349, RRID:AB_2080323), ATM (CST,
Cat# 2873, RRID:AB_2062659), phospho-ATM (Ser1981) (Santa Cruz Biotechnology, Santa
Cruz, CA, USA, Cat# sc-47739, RRID:AB_781524), Chk2 (CST, Cat# 2662, RRID:AB_2080793),
hosphor-Chk2 (Thr68) (Abcam, Cambridge, MA, USA, Cat# ab3501, RRID:AB_449196),
Ku70 (CST, Cat# 4588, RRID:AB_11179211), Rad51(CST, Cat# 8875, RRID:AB_2721109),
and phospho-Histone H2A.X (Ser139) (CST, Cat# 2577, RRID:AB_2118010). GAPDH (CST,
Cat# 5174, RRID:AB_10622025) and Vinculin (CST, Cat# 18799, RRID:AB_2714181) served
as the loading controls. HRP-linked anti-rabbit IgG (CST, Cat# 7074, RRID:AB_2099233)
and HRP-linked anti-mouse IgG (CST, Cat# 7076, RRID:AB_330924) were used as the
secondary antibody. The quantification of signals was performed by an Amersham Imager
600 (Pittsburgh, PA, USA) with the SignalFire™ ECL Reagent (Cat# 6883S, CST).

2.9. Immunofluorescence

For immunofluorescence, cells were seeded on poly-lysine-treated cover slides, fixed
with 4% formalin for 15 min at room temperature, and permeabilized with 0.1% Triton X-100
for 30 min. Fixed cells were then blocked with 10% goat normal serum and incubated with
phospho-Histone H2A.X (Ser139) overnight at 4 ◦C. The next day incubated with Alexa
Fluor 488 goat anti-Rabbit IgG (Thermo Fisher Scientific, Cat# A-11034, RRID:AB_2576217)
for 1 h at room temperature. Nuclei were stained with DAPI (Cat# 62248, Life Technologies,
Gaithersburg, MD, USA) for 10 min. Images were acquired on a Leica LSM microscope
TCS SP8 (Leica Microsystems CMS GmbH, Mannheim, Germany) and processed using the
Leica Application Suite X v2.0.1.14392 software.

2.10. Apoptosis Assay

An apoptosis assay was performed with the FITC Annexin V Apoptosis Detection
Kit I (Cat# 556547, BD Pharmingen, San Diego, CA, USA) according to the manufacturer’s
instructions. Briefly, cells in the supernatant and adherent to plates were collected, washed
with PBS, resuspended in binding buffer, and stained with annexin V-FITC and PI for
15 min at room temperature. Then, they were analyzed on a BD Biosciences LSRII flow
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cytometer. The flow cytometry results were analyzed using the FlowJo v10.8 Software (BD
Life Sciences, Ashland, OR, USA).

2.11. Statistical Analysis

Statistical analyses were performed using GraphPad Prism 8.0 (GraphPad Software
Inc., La Jolla, CA, USA). In all studies, data represent biological replicates (n) and are
depicted as means ± SDs, as indicated in the figure legends. Statistical significance was
determined by the 2-tailed unpaired Student’s t test. p-values are reported in the graphs. *,
p < 0.05; **, p < 0.01; ***, p < 0.001; and ****, p < 0.0001. ns. not significant. In all analyses,
p < 0.05 was considered statistically significant.

3. Results
3.1. CRISPR-Cas9 Loss-of-Function Screen Identifies DYRK1A as Candidate for
Radiotherapy Resistance

In order to investigate the mechanism of pancreatic cancer radioresistance and to
discover novel therapeutic targets, we combined the latest CRISPR-Cas9 loss-of-function
screen and 3D culture technology to perform an extensive CRISPR-Cas9 screen in the
pancreatic cancer cell line TB32047 derived from the KPC mouse model (Figure 1A).

The concurrent prioritization of candidate genes based on commonality among sgR-
NAs resulted in a significant reduction in most of the sgRNAs targeting the same gene
(p < 0.05) to minimize off-target effects, and we ultimately identified 68 and 50 kinase hits
in the 2D and 3D screens, respectively (Figure 1B,C; Supplementary Table S1). Furthermore,
we used Gene Ontology (GO) term biological process analysis (DAVID Bioinformatics
Resources 6.8) to enrich the cellular processes for significant candidate genes in 2D and
3D screening results. The annotation of these genes indicated that they belong to several
functional categories, phosphorylation, protein phosphorylation and autophosphorylation,
DNA repair, cell cycle, apoptotic processes, etc. (Figure 1D,E). Interestingly, the same
cellular processes enriched in the 2D and 3D screens included phosphorylation, protein
phosphorylation, cellular response to DNA damage stimulus, DNA repair, and peptidyl-
serine phosphorylation, supporting the biological plausibility of our results. Only two
genes, Prkdc and Dyrk1a, were found among the 20 most significant candidates from
both the 2D and 3D screenings (Supplementary Table S1). Protein kinase, DNA-activated,
catalytic subunit (PRKDC), alternatively referred to as DNA-PKcs, functions as a molecular
sensor of DNA damage, which engaged in the non-homologous end joining (NHEJ) path-
way for a DNA double-strand break (DSB) repair process [25]. All four sgRNAs targeting
the second candidate, DYRK1A (dual-specificity tyrosine phosphorylation-regulated ki-
nase 1A), were significantly reduced in both 2D and 3D screens (Figure 1F,G). The TCGA
(PAAD) and GTEx (Pancreas) databases indicated that the DYRK1A expression level was
significantly higher in pancreatic cancer than in the corresponding normal pancreas tissue
(Figure 1H). Moreover, the role of DYRK1A in the radioresistance of pancreatic cancer has
not been reported. Therefore, we focused on the role of DYRK1A in the radiotherapy of
pancreatic cancer in the following experiments.

3.2. DYRK1A Knockout Enhances Radiotherapy Efficacy in Pancreatic Cancer Cells

To demonstrate that DYRK1A may be exploited as a target for improved radiation
therapy in pancreatic cancer, we used two separate sgRNAs to knock out the DYRK1A
gene in TB32047 and MIA PaCa-2 cells and generated totally knocked out single clone cells
(Figure 2A). Clonogenic assays showed a dramatic decrease in the colony number DYRK1A-
knock-out (KO) single clones after irradiation (IR) compared to cell clones transduced with
non-targeting control sgRNA (NC) or wild-type (WT) cells, indicating a higher sensitivity
to X-rays in the absence of DYRK1A (Figure 2B,C).
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Figure 1. CRISPR-Cas9 loss-of-function screen identifies DYRK1A as a candidate for radiother-
apy resistance. (A) Schematic diagram of the experimental procedure for CRISPR-Cas9 loss-of-
function screen. (B,C) Volcano plots show the -log normalized p-value and log2 fold change of 2D
(B) and 3D (C) radiation screening results compared to the 4-week control, with significant genes
in the negative selection highlighted in blue and positive selection highlighted in red, respectively.
(D,E) Gene Ontology (GO) terms analyzed the biological processes enriched by 2D (D) and 3D (E)
negative selection candidate genes. (F,G) Scatter plots show the log2-normalized counts changes of
each sgRNA of DYRK1A in 2D (F) and 3D (G) screening. (H) Box plots of DYRK1A expression in
pancreatic cancer and normal pancreatic tissues were analyzed using the TCGA (PAAD) and GTEx
(pancreas) databases. *, p < 0.05.
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Figure 2. DYRK1A knockout enhances radiotherapy efficacy in pancreatic cancer. (A) Western
blot of TB32047 and MIA PaCa-2 cells transfected with DYRK1A sgRANs or non-targeting control.
(B) A clonogenic assay of TB32047 (left) and MIA PaCa-2 (right) cells with DYRK1A KO and control
sgRNA cells was performed after irradiation with different doses of X-rays. The colony numbers
were counted and normalized. Data are presented as means of three independent experiments
(n = 3). *, p < 0.05; **, p < 0.01; *** and p < 0.001 by 2-tailed unpaired Student’s t test. (C) TB32047 (left)
and MIA PaCa-2 (right) single clones and control cells were treated with different doses of radiation
followed by clonogenic assays. Representative images of three independent experiments (n = 3) are
shown. (D,E) Flow cytometry-based apoptosis analysis of TB32047 (D) and MIA PaCa-2 (E) control
and DYRK1A KO single clones irradiated with 5 Gy X-rays after 24 h. Representative images of three
independent experiments (n = 3) and statistical analysis are shown. **, p < 0.01; ***, p < 0.001 and ****,
p < 0.0001 by 2-tailed unpaired Student’s t test. ns. not significant.
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In the absence of radiation treatment, flow cytometry analysis indicated that there was
no significant difference in early and late apoptosis in DYRK1A-deleted cells compared to
parental and NC cells. By contrast, when DYRK1A KO cells were irradiated with 5 Gy X-
rays for 24 h, both early and late apoptosis were considerably enhanced (Figure 2D,E). These
results indicated that deleting DYRK1A impairs colony formation ability and increases cell
death during radiation treatment.

3.3. DYRK1A Knockout Increases DNA Damage and DNA Double-Strand Breaks in Pancreatic
Cancer Cells after Radiotherapy

To examine the potential mechanisms leading to increased apoptosis under radio-
therapy in DYRK1A-KO cells, we first investigated the levels of DNA damage using
phosphorylated histone H2A.X as a marker of stalled replication forks and DSB [26,27]. We
followed the kinetics of DSB formation and repair in TB32047 and MIA Paca-2 cells after a
single dose of X-rays (2-Gy). Cells were harvested after 1, 4, and 24 h before performing the
immunofluorescence staining of phosphorylated (γ) H2A.X and counting counted positive
γH2A.X foci. The number of γH2A.X foci increased dramatically in KO cells after radiation
exposure and peaked at 1 h post-irradiation before gradually decreasing, likely due to
the activation of DNA damage repair (DDR) mechanisms following radiation. Although
radiation also caused a short-term increase in γH2A.X foci in control cells, the magnitude
of the increase was significantly smaller than that of knockdown cells at the different time
points. Twenty-four hours after irradiation, the number of γH2A.X foci of wild-type cells
was reduced to baseline levels, while more DSBs remained unrepaired in KO cells in both
TB32047 and MIA PaCa-2 cells (Figure 3A,B). In the absence of radiation, DYRK1A single
clones did not exhibit an increase in γH2A.X-positive cells and γH2A.X foci compared to
the DYRK1A wild-type and NC cells (Figure 3A,B). This is also consistent with the results of
apoptosis in unirradiated cells (Figure 2D,E), demonstrating that the deletion of DYRK1A
does not induce H2A.X phosphorylation or apoptosis.

To determine whether the strong increase in γH2A.X foci in DYRK1A-KO cells after
irradiation was due to an increase in DNA DSBs, we used the alkaline comet assay, which
is a sensitive method for monitoring DSBs. We detected that the irradiation of X-rays with
5-Gy increased the comet tail moment significantly in DYRK1A KO cells (Figure 3C,D).
Together with the increased γH2A.X foci number, this suggested enhanced DSB formation
and/or replication fork collapse in these cells. Consistent with the presence of γH2A.X
in DYRK1A KO cells, we observed the activation of CHK1 and CHK2 phosphorylation
(Figure 3E), which were key molecules in transducing DNA damage signals. In contrast, the
radiation treatment of DYRK1A KO PC cells resulted in decreased levels of RAD51, a key
protein for HR repair [28], but not of Ku70, an essential protein for NHEJ [29] (Figure 3E).
These results indicate that DYRK1A deficiency enhances DNA damage and impairs DNA
damage homologous repair after radiotherapy.

3.4. Targeted Inhibition of DYRK1A Promotes Radiosensitivity in Pancreatic Cancer

To corroborate the knockout results, we used Harmine, a targeted inhibitor of DYRK1A,
and investigated its potential as a radiation sensitizer. We initially constructed dose–
response curves in TB32047 and MIA PACA-2 cells, which revealed that Harmine inhibited
the ability of PC cells to form living colonies in a dose-dependent manner (Figure 4A,B,
left panels). Treatment with non-lethal concentrations of Harmine potentiated the anti-
clonogenic effects of radiation therapy in TB32047 and MIA PACA-2 cells (Figure 4A,B,
middle and right panels).
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Figure 3. DYRK1A knockout increases DNA damage and DNA double-strand breaks in pancre-
atic cancer cells after radiotherapy. (A,B) Immunofluorescence of TB32047 (A) and MIA PaCa-2
(B) control or DYRK1A KO single clones at different time points with 2Gy irradiation. Representative
images of three independent experiments (n = 3) and statistical analysis are shown. (Blue-DAPI,
Green-γH2A.X. Scale bar: white, 20 µm). *, p < 0.05; **, p < 0.01; ***, p < 0.001 and ****, p < 0.0001
by 2-tailed unpaired Student’s t test. ns. not significant. (C) Alkaline comet assay of TB32047 and
MIA PaCa-2 knockout single cells and control cells after irradiation with 5 Gy X-rays. Representative
images of three independent experiments (n = 3) are shown (scale bar: white, 125 µm). (D) CASP
software analysis of the percentage of DNA content in the comet tail of the alkaline comet experiment.
A minimum of 50 cells were statistically analyzed. **, p < 0.01 and ***, p < 0.001 by 2-tailed unpaired
Student’s t test. (E) Western blot of TB32047 and MIA PaCa-2 control or DYRK1A KO single clone
cells with 0 Gy or 5 Gy irradiation after 24 h.
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Figure 4. Targeted inhibition of DYRK1A promotes radiosensitivity in pancreatic cancer. (A,B) Dose–
response curves of TB32047 (A) and MIA PACA-2 (B) wild-type cells to Harmine (left). TB32047
and MIA PACA-2 wild-type cells were treated with the indicated concentrations of inhibitors along
with different doses of radiation and then subjected to clonogenic assays. Representative images
of three independent experiments (n = 3) are shown (middle). The colony numbers were counted,
normalized, and statistically analyzed (right). Data are presented as mean ± SD. *, p < 0.05; **,
p < 0.01 and ***, p < 0.001 by 2-tailed unpaired Student’s t test. (C) Immunofluorescence of TB32047
wild-type cells was treated with the indicated concentrations of inhibitors at different time points
with 2 Gy irradiation. Representative images of three independent experiments (n = 3) are shown.
(Blue-DAPI, Green-γH2A.X. Scale bar: white, 20 µm). (D) Statistical analysis of γH2A.X foci per cell.
Number of foci was counted and normalized, and a minimum of 200 cells were analyzed. *, p < 0.05;
**, p < 0.01; and ****, p < 0.0001 by 2-tailed unpaired Student’s t test. ns. not significant. (E) Western
blot of TB32047 and MIA PACA-2 treated with inhibitor alone, X-rays alone, or their combination.
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To explore the role of Harmine in DNA damage and repair, we assessed the formation
of γH2A.X foci by immunofluorescence staining. Interestingly, we observed that, even in the
absence of radiation therapy, TB32047 cells exhibited more γH2A.X foci than untreated cells
when pre-treated with sublethal doses of Harmine for 24 h (Figure 4C,D). After radiation
treatment, Harmine-treated cells had significantly more DSBs than the untreated group
1 h and 4 h post-irradiation, while a significant number of DSBs remained incompletely
repaired 24 h after irradiation (Figure 4C,D). Again, the targeted suppression of DYRK1A
has been shown to synergize with radiation, increasing DNA double-strand breaks and
impairing DNA repair.

To further elucidate the mechanism of Harmine as a radiosensitizer, we first examined
the relevant DNA damage repair pathways mediated by ATM and ATR in the presence of
Harmine by Western blot. We found that irradiation induced ATM activation, as shown
by phosphorylation at residue 1981, which was enhanced in the presence of Harmine
(Figure 4E). We further indicated that the level of phosphorylation at the CHK1 ser345
site and the CHK2 Thr68 site was significantly increased upon combination therapy, while
phosphorylation at ser296 was decreased (Figure 4E). In addition, RAD51 but not Ku70
expression was reduced after the combination treatment, indicating that Harmine mediates
the repression of DNA DSB repair by HR (Figure 4E).

4. Discussion

Over the past few decades, radiotherapy has undergone significant development.
It has significantly improved the prognosis of patients with lung cancer [30], head and
neck squamous cell carcinoma [31], and esophageal cancers [32]. However, due to the
existence of inherent and acquired radioresistance, its utility in pancreatic cancer is severely
restricted. As such, we sought to use the cutting-edge CRISPR-Cas9 screening approach
to unravel the enigma of radioresistance, identify novel target candidates, and provide
sufficient preclinical evidence for clinical application in pancreatic cancer. Our results also
simultaneously exemplify the possibility of performing CRISPR-Cas9 screens in an in vitro
model such as 3D cell culture. In particular, we demonstrated that the sensitivity of 3D cells
to radiation is no different from that of 2D cells, despite their growth in matrigel and special
culture media [17,33,34]. As a result, we irradiated cells with two distinct growth patterns
using a standard radiographic screening approach. The cellular processes they enriched
after screening both corroborated the radiation damage response, confirming the reliability
of our screening using the 3D model. Interestingly, although more common pathways were
investigated in 2D and 3D screens, there were only a few common genes after screening,
and the 3D screen was also enriched for cellular response to growth factor stimulus, MAPK
cascade, and the activation of MAPK. This may explain the variability between 2D and 3D
screens; however, further data are required to substantiate the dependability of 3D screens
and explain the variability between different model screens. Here, by implementing a
systematic approach of negative selection of CRISPR-Cas9 screening, we identified several
kinases, in particular DYRK1A, whose loss of function enhances the radiotherapy effect
of PC. We demonstrated that DYRK1A inactivation sensitized PC cells to X-rays, and
targeted DYRK1A inhibitor Harmine strongly synergized with radiotherapy, leading to
increased cell death and anti-tumor effect. We further revealed that the anti-tumor effect
of the combination therapy is associated with an increase in DNA damage and impaired
DNA damage homologous repair after radiotherapy, leading to cell death. Overall, our
results provide strong mechanistic evidence for combining DYRK1A inhibitors with RT
and support the use of CRISPR-Cas9 screening to identify the target of radiotherapy in
preclinical models.

Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is a dual
kinase that plays a versatile role in tumorigenesis [35]. An increasing number of studies
have revealed that the DYRK protein kinases are critical regulators of cell proliferation and
apoptosis [36]. In several human cancer cell lines, DYRK1A has been shown to act as a
caspase-9 Thr125 kinase, inhibiting intrinsic apoptotic pathways [37]. The expression and
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activity of DYRK1A were shown to be elevated in response to toxic stimuli, indicating a pu-
tative involvement for DYRK1A in cellular stress response pathways [37,38]. SIRT1, which
is a nicotinamide adenosine dinucleotide (NAD)-dependent class 3 histone deacetylase,
was found to play a major role in cellular stress [39]. DYRK1A acts as a kinase for SIRT1,
activates its deacetylation activity, and further promotes the inhibition of P53, thereby main-
taining cancer cell survival under stressful conditions [39]. A comprehensive interaction
screening based on proteomics linked DYRK1A to RNF169 and DNA damage response [40].
The results demonstrated that RNF169 is a DYRK1A substrate, and that DYRK1A binding
to RNF169 is necessary for the recruitment of DYRK1A to DSB-induced foci [40]. Our
results demonstrated that knockout DYRK1A in PC cell lines might result in increased
DNA damage and impaired HRR after DSBs, hence decreasing radioresistance in pancreatic
cancer. In irradiated cells, γH2A.X foci increased instantaneously and decreased in subse-
quent DNA repair. We revealed that in knockout cells, both ATM and ATR-mediated DNA
damage response mechanisms were considerably active. The phosphorylation of Chk1
(S345), phosphorylation of CHK2 (T68), and sustained increased expression of γH2A.X are
evidence of more severe DNA damage in KO cells [30,41].

Currently, the targeted inhibition of DNA damage, DNA DSB repair pathways, cell
cycle checkpoints, etc., has become an attractive strategy for reversing resistance to radio-
therapy in PC. A large deep whole-genome sequencing redefined the mutational landscape
of pancreatic cancer and showed that variation in chromosomal structure was an important
mechanism in pancreatic carcinogenesis [12]. Mutations in many other genes involved in
DDR, such as ATM, FANCM, XRCC4, and XRCC6 (Ku70), were detected in tumors with
an unstable genome or the BRCA mutational signature. Platinum-based treatment, such
as FOLFIRINOX, has improved survival in patients with BRCA1 and BRCA2 mutations,
according to the available research [13]. Numerous inhibitors have been developed to
target DDR and genomic instability mechanisms, such as PARP inhibitors mainly based
on mutations in BRCA1 and BRCA2 [15]. Olaparib was the first PARP inhibitor approved
by the FDA [42] (December 2014) for cancer therapy, and PARP-1 inhibitors have been
identified and tested after clinical trials and their function in enhancing the response of
cancers to radiation has been documented [15,43]. Although Harmine has been classified
as an antitumor drug for a long period of time, its unknown mechanism of HR regulation
and moderate antitumor activity have precluded its further clinical application [44,45]. We
demonstrated that inhibiting DYRK1A with Harmine significantly decreased HRR activity,
maintained the activation of the DDR pathway, significantly delayed DSB recovery, and
resulted in a significant accumulation of DNA damage. Interestingly, previous studies
have shown that Harmine alone could also induce DNA damage [44], including DNA
DSBs, which is consistent with our findings. Harmine treatments also induced a certain
number of γH2A.X foci at low doses, making Harmine a dual-target drug candidate inte-
grating DNA damage and DNA damage homologous repair. Notably, the combination
of targeted inhibition of DYRK1A with radiotherapy provided a synergistic therapeutic
effect compared to a single treatment modality. Thus, we report a possible new therapeutic
option to overcome PDAC radioresistance and further confirm the feasibility of using a
combination of CRISPR-Cas9 screening and 3D cell culture to explore new drug targets.
Several radiosensitizers have been clinically studied in a variety of malignancies, including
CHK1/CHK2 inhibitors, ATM/ATR inhibitors, and PARP inhibitors, but clinical trials
of pancreatic cancer-related radiosensitizers are still relatively scarce and most are in the
preclinical stage. Our results are also limited to in vitro cellular experiments confirming
that the knockout or targeted inhibition of DYRK1A has an efficient radiosensitizing effect.
Despite the widespread use of Harmine as a targeted inhibitor of DYRK1A, its further
clinical application is limited by its poor specificity and potential side effects, and further
in vivo experiments are still needed to further elucidate the specific mechanisms by which
Harmine directly induces DNA damage and participates in DDR inhibition [46]. Our
results highlight the need for additional clinical trials to evaluate this newly discovered
therapeutic combination in the treatment of patients with PDAC and other malignancies.
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5. Conclusions

In conclusion, we identified DYRK1A as a novel therapeutic target to overcome PC
radioresistance by CRISPR-Cas9 loss-of-function with 2D and 3D screens. The depletion
of DYRK1A results in an increase in radiation-induced apoptosis and DNA damage in
PC cells. DYRK1A contributes significantly to radioresistance via its regulation of the
ATM- and ATR-mediated DNA damage response pathways, as well as by its participation
in the HRR process. We further investigated Harmine as a promising radiosensitizer for
pancreatic cancer. Our findings illuminate the way forward for further clinical translational
research into the most effective methods for developing targeted drugs.
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cells with 0 Gy or 5 Gy irradiation after 24 h; Figure S3. Western blot of TB32047 and MIA PACA-2
treated with inhibitor alone, X-rays alone, or their combination.
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