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Cancer is a complex and multifaceted disease. Funda­
mentally, it is a disease of the genome, initiated by 
mutations in DNA that activate oncogenes and inac­
tivate tumour suppressors, as well as dysregulation of 
the epigenome, which coordinates normal gene expres­
sion. It is also a disease of the cell, feeding off changes 
in metabolism, cell structure and motility to enable 
growth in inhospitable environments. Ultimately, it is a 
disease of the organism, co-opting normal cell types and 
tissue functions, and circumventing defence systems of 
the host. Understanding how genomic changes, cellular 
adaptations and changes to the microenvironment drive 
the initiation, progression and therapeutic response of 
individual cancers is crucial for developing more effec­
tive treatment options and improving outcomes for the 
millions diagnosed with cancer each year1. Since its 
adaptation for mammalian cells, CRISPR has emerged 
as a powerful and flexible tool for interrogating nearly all 
aspects of cell function. It has had a major impact on our 
understanding of cancer biology and continues to drive 
new discoveries that promise to accelerate the diagnosis 
and treatment of this deadly disease.

CRISPR and CRISPR-associated (Cas) proteins 
are key components of an ancient bacterial adaptive 
immune system2–5. Over the past three decades, hun­
dreds of scientists have contributed to the understanding 
of CRISPR biology and development of CRISPR tech­
nologies, including landmark papers demonstrating pro­
grammable DNA editing in mammalian cells6–9. Since 
then, it has been realized as a tool for programmable 
genome modification in nearly all cell types.

CRISPR systems exist across a wide range of bac­
terial species, providing a rich source of functional 
diversity for genome editing in eukaryotic cells10–12. 
The first described, and most commonly used, is the 
type-II CRISPR–Cas9 system from Streptococcus pyo-
genes (SpCas9), a DNA endonuclease that is directed to 
induce double strand breaks (DSBs) at specific genomic 

loci via a programmable guide RNA (gRNA) molecule 
that mediates complementary DNA–RNA base pair­
ing. For SpCas9 to efficiently bind and cleave DNA, the 
target sequence must be flanked on the 3′ side by an 
‘NGG’ protospacer adjacent motif (PAM) sequence. The 
DSB created by Cas9 can be resolved by either precise 
homology-directed repair (HDR) or, more commonly, 
by error-prone non-homologous end joining (NHEJ) or 
microhomology-mediated end joining (MMEJ; also 
known as alternative NHEJ (Alt-NHEJ))13. HDR enables 
the introduction of specific changes, while insertions 
and deletions (indels) from NHEJ can be exploited to 
disrupt coding and noncoding sequences13.

Since the initial implementation of CRISPR sys­
tems in eukaryotic cells there has been a rapid expan­
sion of variant enzymes that broaden the capabilities of 
CRISPR-based platforms. One source of variants is the 
diverse set of Cas9 orthologues such as Staphylococcus 
aureus Cas9 (SaCas9), or other Cas enzymes (for exam­
ple, Cas12) present in a range of bacterial species11,12. 
Each has its own set of features and criteria for sequence 
recognition that provides added flexibility for adap­
tation as a research or therapeutic tool. For exam­
ple, SaCas9 recognizes a different PAM sequence from 
SpCas9, enabling the targeting of alternative genomic 
loci. Some enzymes (for example, SaCas9, Neisseria 
meningitidis Cas9 (NmeCas9)14 or Campylobacter 
jejuni Cas9 (CjCas9))15 are also smaller than SpCas9, 
allowing easier packaging into size-limited delivery 
vectors such as adeno-associated virus (AAV)16, while 
others, such as Cas12a (formerly referred to as Cpf1), can 
catalyse the maturation of their own gRNAs, simplifying 
the process of target multiplexing17. Yet another family of 
Cas enzymes named Cas13 (previously known as C2c2) 
target RNA instead of DNA, providing an alternative 
approach to manipulate gene expression18,19.

Where natural variants do not exist, there is no short­
age of lab-evolved mutants. Kleinstiver and others20–22 

Homology-directed repair
(HDR). An error-free DNA 
damage repair mechanism that 
uses an existing DNA template.

Non-homologous end 
joining
(NHEJ). An error-prone DNA 
repair system that directly 
ligates broken DNA strands 
without a homologous 
template.
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have demonstrated the potential for creating Cas9 
enzymes with alternative PAM recognition or increased 
specificity, and subsequent efforts using directed evolution 
or rational design have resulted in the creation of Cas 
variants, with broad PAM recognition23–26 or refined 
editing activity20,23,25,27–33.

CRISPR base editing (BE) facilitates the creation of 
single base edits in target DNA by tethering a nuclease- 
defective Cas9D10A nickase variant (Cas9n) to a deam­
inase (for example, apolipoprotein B mRNA-editing 
enzyme catalytic subunit (APOBEC) or tRNA adenine 
deaminase (TadA)) to achieve C∙G to T∙A and A∙T to 
G∙C transition base substitutions without double-stranded 
DNA cleavage34,35. Alternatively, the fusion of human 
RNA-modifying adenine deaminase domain of aden­
osine deaminase (ADARDD) to catalytically inactive 
(‘dead’) dCas13b can induce precise adenosine deami­
nation in RNA instead of DNA36. Providing further flexi­
bility to engineer changes beyond transition mutations, 
Liu and colleagues37,38 developed prime editing (PE), a 
fusion of Cas9H840A to a reverse transcriptase enzyme that 
promotes genome modification via a sequence template 
encoded within an extended PE gRNA (pegRNA). PE37 
overcomes the restrictions on the types of mutation 
that can be engineered, but current iterations require 
substantial optimization to achieve the same levels of 
editing as is possible with BE37,38. Engineered pegRNAs 
(epegRNAs) designed to stabilize their structure have 
improved the efficiency of PE39, and the evolution of new 
and improved BE and PE enzymes is a very active area 
in CRISPR technology development. We expect to see 
more active variants and adaptations appear in the com­
ing years. Until then, the use of BE and PE reporters40–43 
is an effective approach to enrich target editing and 
streamline the creation of engineered cells and animals 
for cancer gene discovery.

CRISPR has become a useful tool not only in gene- 
editing applications, but also for targeting transcriptional 
and epigenome machinery using dead Cas9D10A/H840A 
(dCas9), which cannot cleave DNA10,44. Combining the 
specific DNA recognition of dCas9 with the Krüppel- 
associated box (KRAB) repressor inhibits the transcrip­
tion of target genes — so-called CRISPR interference  
(CRISPRi)44,45. In a similar approach, dCas9 teth­
ered to transcriptional activators such as VP64 and 
VP64–p65–Rta (VPR) proteins achieves robust 
gene induction at the target site (CRISPR activation 
(CRISPRa))46–49. Finally, multiple groups have described  
direct epigenetic regulation of DNA and histones by 
fusing dCas9 to methyltransferases (for example, DNA  
methyltransferase 3A (DNMT3A) or PR domain-containing  
protein 9 (PRDM9)), demethylation enzymes (for 
example, tet methylcytosine dioxygenase 1 (TET1) or 
lysine-specific histone demethylase 1 (LSD1; also known 
as KDM1A)) or histone acetyltransferases (for example, 
p300)50–60. CRISPR can also be used to map subnuclear 
proteomes onto 3D genome landscapes by tethering 
engineered ascorbate peroxidase (APEX2) to dCas9 
guided to specific regions in the cell with a single guide 
RNA (sgRNA)61. Common to all CRISPR technologies 
is the need for potent and specific gRNAs. Many design 
algorithms have been developed for a wide variety of 

CRISPR-based platforms, including standard CRISPR 
nucleases, CRISPRi, BE and PE (Table 1).

The ongoing evolution of CRISPR tools has cre­
ated a diverse array of opportunities for dissecting cell 
function (Fig. 1). In this Review, we highlight how this 
once-in-a-generation technology has transformed our 
understanding, diagnosis and treatment of cancer. We 
discuss how CRISPR-based approaches have been a cat­
alyst to reveal new insights into aspects of cancer biol­
ogy that have otherwise been difficult to probe, such as 
defining coding and noncoding cancer drivers, under­
standing the dynamics of tumour heterogeneity and 
evolution, and improving the diagnosis and treatment 
of cancer.

Separating drivers from passengers
Tumour sequencing over the past two decades has 
produced an extensive catalogue of genetic alterations 
from nearly every cancer type. The success of burgeon­
ing precision medicine strategies depends on being 
able to identify driver mutations that promote cancer 
growth and to separate them from passenger mutations 
that do not contribute to tumour progression. Before 
CRISPR, this relied on comparison of large panels of 
cancer cell lines that harboured different genetic muta­
tions, small interfering RNA (siRNA) and short hairpin 
RNA (shRNA) gene silencing, and/or overexpression 
of mutant cDNAs. CRISPR has complemented and 
extended these approaches, enabling fast and efficient 
generation of ‘clean’ genetic knockout (KO), modulation 
of endogenous gene expression and direct engineering of 
cancer-associated genomic changes.

Revealing gene function with CRISPR knockouts. A central  
approach for understanding gene function in tumor­
igenesis is the generation of cancer models from the  
bottom up, recreating cancer-linked events to under­
stand their contribution to each stage of the process. 
In addition to streamlining the process of creating simple 
gene disruptions in established cancer cell lines, CRISPR 
enables rapid creation of complex organoid cultures and 
animal models. Owing to the simplicity and efficiency of 
CRISPR–Cas technology, the production of KO mice has 
become routine practice for institutional core facilities 
and commercial entities (Fig. 2a). Moreover, by eliminat­
ing the need for complex vector design and laborious 
screening of targeted embryonic stem cells (ESCs), it has 
become feasible to engineer multiple in vivo models in 
parallel or to derive combinations of genetic alterations 
in the same mice, in a single step62–64. Such efforts are 
enabled by improved zygote targeting strategies such as 
CRISPR ribonucleoprotein (RNP) electroporation of 
zygotes (CRISPR-EZ), CRISPR RNP electroporation and 
AAV donor infection (CRISPR-READI) and improved 
genome editing via oviductal delivery of nucleic acids 
(i-GONAD) that significantly increase throughput and 
editing efficiency over microinjection methods65–67. 
CRISPR tools have also accelerated the generation of 
tool strains essential for building mouse cancer models.  
One recent example described the generation of 70 new 
tissue-restricted DreER recombinase mice, most 
facilitated by CRISPR-enhanced HDR targeting68.

Directed evolution
A method that uses the 
process of natural selection  
to steer enzymes towards  
a defined variant.

Transition base 
substitutions
Single base pair change from 
purine to purine or pyrimidine 
to pyrimidine.

Zygote targeting
A genetic engineering method 
to introduce knockout and 
knock-in mutations into  
mouse lines.
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Table 1 | Resources and tools for guide RNA design

Resource Web 
interface?

Supported 
genomes

Input CRISPRi or 
CRISPRa 
functionality

Enzymes On-target 
scoring

Off-target 
scoring

Website

Benchling Yes Many Gene 
symbol, 
gene ID, 
sequence, 
genomic 
coordinates

No SpCas9, 
SaCas9, 
NmeCas9, 
StCas9, 
TdCas9, 
Cas12a

Doench 2016 
(ref.311) (Cas9 NGG 
PAM), Doench 
2014 (ref.312) (Cas9)

Hsu 2013 
(ref.313) 
(Cas9)

https://www.
benchling.
com/crispr/

CHOPCHOP314 Yes Many Gene 
symbol, 
gene ID, 
genomic 
coordinates

Yes Cas9 with 
customizable 
PAM 
sequence, 
Cas12a, 
CasX, Cas13

Doench 2014 
(ref.312), 2016 
(ref.311), Xu 2015 
(ref.315), Chari 
2015 (ref.316), 
Moreno-Mateos 
2015 (ref.317) 
(Cas9 NGG 
PAM), Kim 2018 
(ref.318) (Cas12a), 
ViennaRNA319 
(Cas13)

Cong 2013 
(ref.9), 
Hsu 2013 
(ref.313)

http://
chopchop.
cbu.uib.no

CRISPick90,311,318,320 Yes Human, 
mouse, rat

Gene 
symbol, 
gene ID, 
sequence, 
genomic 
coordinates

Yes SpCas9, 
SaCas9, 
AsCas12a, 
enAsCas12a

Azimuth 2.0 
(refs311,321) 
(SpCas9, SaCas9), 
Seq-DeepCpf1 
(ref.318) (AsCas12a), 
enPAM + GB320 
(enAsCas12a)

Doench 
2016 
(ref.311)

https://
portals.
broadinstitute.
org/gppx/
crispick/
public

CRISPOR322 Yes Many Sequence No Cas9 with 
various 
PAMs, CasX, 
Cas12a

Doench 2016 
(ref.311) and 
Moreno-Mateo 
2015 (ref.317) 
(SpCas9), deepCpf1 
(ref.318) (Cas12a), 
Najm 2018 (ref.239) 
(SaCas9)

CFD311, Hsu 
2013 (ref.313) 
(SpCas9), 
Tycko 2018 
(ref.323) 
(SaCas9)

http://crispor.
tefor.net

E-CRISP324 Yes Many Gene 
symbol, 
sequence, 
genomic 
coordinates

Yes SpCas9 Doench 2014 
(ref.312), Xu 2015 
(ref.315)

Several 
off-target 
binding 
sites

http://
www.e-crisp.
org/E-CRISP/

FlashFry325 No Any reference 
genome

Genomic 
coordinates

No SpCas9, 
Cas12a

Doench 
2014 (ref.312), 
Moreno-Mateos 
2015 (ref.317)

Hsu 2013 
(ref.313), 
Doench 
2016 
(ref.311), Jost 
2020 (ref.326)

https://
github.com/
mckennalab/
FlashFry

GUIDES327 Yes Human, 
mouse

Gene 
symbol, 
gene ID

No SpCas9 Doench 
2014 (ref.312), 
2016 (ref.311), 
Azimuth311,321

Doench 
2014 
(ref.312), 
2016 (ref.311)

http://guides.
sanjanalab.
org

GuideScan304 Yes Human, 
mouse, 
Drosophila, 
yeast, 
zebrafish, 
Caenorhabditis 
elegans

Gene 
symbol, 
genomic 
coordinates

No SpCas9, 
AsCas12a

Doench 2016 
(ref.311)

Doench 
2016 
(ref.311), Hsu 
2013 (ref.313) 
(Cas9)

http://www.
guidescan.
com

RGEN 
Cas-Designer328

Yes Many Sequence No SpCas9 (and 
variants), 
SaCas9, 
Cas12a, 
Cas12b

Bae 2014 (ref.329) Mismatch 
count

http://www.
rgenome.net/
cas-designer/

Vienna 
Bioactivity 
CRISPR (VBC) 
score330

Yes Human, 
mouse, 
Drosophila, 
C. elegans, 
rat, Xenopus 
tropicalis

Gene 
symbol, 
sequence

No SpCas9 Michlits 2020 
(ref.330)

Michlits 
2020 
(ref.330)

https://www.
vbc-score.org
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An alternative strategy to create in vivo KO cancer 
models is the introduction of all CRISPR components 
to somatic tissues, either through ex vivo manipula­
tion and transplant of cultured cells or by direct in vivo 
targeting. For instance, editing of haematopoietic stem 
cells with a combination of sgRNAs targeting Tet2, 
Runx1, Dnmt3a, Nf1 (encoding neurofibromin) and 
structural maintenance of chromosomes 3 (Smc3) 
induces the development of acute myeloid leukaemia 
(AML) in engrafted recipients69, while direct in vivo 
delivery of CRISPR components in the liver, pancreas 
or lung is a rapid way to derive diverse cancer models 
with complex cancer genotypes70–76 (Fig. 2b). Inducible 
Cas9 mice provide a setting to engineer somatic muta­
tions in a tissue-restricted manner (Fig. 2b). Both Cre- 
and doxycycline-dependent approaches have been 
reported77,78, and these, notably, allow the induction 
of multiple mutations with minimal animal breeding, 
highlighting a path towards development of more com­
plex autochthonous cancer models with CRISPR. The 
Winslow lab79,80 has exploited such systems to great 
effect in lung cancer models, using Cre-controlled Cas9 
transgenic mice and lentivirus-delivered panels of cancer 
gene-focused sgRNAs to classify the impact of specific 
gene loss on the development of disease in different 
genetic backgrounds.

In addition to animal models, CRISPR, com­
bined with recent technological advances in 3D cul­
ture systems81, has fostered the genesis of tailored and 
genetically defined human cancer models to inter­
rogate gene function and test new therapies (Fig. 2c). 
Lo et al.82 recently showcased this experimental para­
digm, building early-stage human gastric cancer orga­
noid models with and without AT-rich interactive 
domain 1A (ARID1A) mutations. They used these 
engineered organotypic models to clearly define a 
context-dependent role for ARID1A in early transfor­
mation and identify genotype-dependent therapeutic 
vulnerabilities82. The groups of Sato and Clevers83,84 
established even more complex models in human colon 
organoids, recreating the classic ‘Vogelgram’ sequence 
with up to five different oncogenic mutations in ade­
nomatous polyposis coli (APC), KRAS, TP53, SMAD4 
and PI3K catalytic subunit-α (PIK3CA) (Fig. 2d). Similar 
studies in breast and lung cancer models have demon­
strated that KO mutations in known or suspected drivers 

can lead to tumours in vivo that can subsequently be 
used to study drug response85,86.

Screening for drivers. Perhaps where CRISPR has had 
the biggest impact in cancer research is in pooled genetic 
screens87–89. The ease of design, cloning, efficiency and 
ongoing development of improved sgRNA libraries89,90 
has made CRISPR KO screens the ‘go-to’ method for 
interrogating gene function in cancer. In cell lines, orga­
noids and animals, positive selection CRISPR screens 
continue to refine our understanding of how genes and 
pathways contribute to tumorigenesis (reviewed in91,92; 
Fig. 2e). There are hundreds of examples of effective 
screening studies in cell lines, although CRISPR has also 
enabled pooled genetic screens in more complex set­
tings. Michels et al.75 screened a focused array of tumour 
suppressors in human colon organoids treated with the 
transforming growth factor-β receptor (TGFβR) inhibitor 
A83-01 to pinpoint genes that restrict tumorigenic out­
growth. It is also possible to perform large-scale screens 
in vivo. Through ex vivo transduction of a genome-wide 
library and subsequent engraftment in recipient mice, we 
identified potential regulators of non-small-cell lung can­
cer (NSCLC) metastasis93 (Fig. 2e). Direct delivery of viral 
or plasmid-based vectors to organs in situ is challenging, 
but it is possible to maintain representation of complex 
libraries in vivo. In one example, Chow et al.94 delivered a 
genome-wide AAV sgRNA library to the brain of induc­
ible Cas9-expressing mice to reveal a subset of cancer 
drivers in resultant glioblastomas.

To date, most screens for cancer drivers have been 
proliferation based, but there are other strategies to iden­
tify key cancer regulators. Using cell surface proteins as 
markers for flow cytometry or magnetic-activated cell 
sorting (MACS)-based screens offers a direct avenue 
to isolate cells with specific changes in effector proteins 
that are not involved in proliferation or cell death. For 
instance, using functional markers such as programmed 
cell death protein 1 (PD1), PD1 ligand 1 (PDL1) or major 
histocompatibility complex (MHC) for cell enrichment 
in a screening context enables the identification of 
gene programmes that control antigen presentation or 
immune activation95–98. More recent and complex tech­
nologies enable ‘marker-free’ pooled CRISPR library 
screens by directly measuring the transcriptome of sin­
gle cells following CRISPR-mediated gene disruption99–101. 

Resource Web 
interface?

Supported 
genomes

Input CRISPRi or 
CRISPRa 
functionality

Enzymes On-target 
scoring

Off-target 
scoring

Website

cas13design205 Yes Human, mouse, 
zebrafish, 
Drosophila, 
C. elegans, 
Arabidopsis, 
RNA viruses

Transcript 
symbol, 
transcript 
ID, 
sequence

NA RfxCas13d Wessels 2020 
(ref.205)

Mismatch 
count

https://
cas13design.
nygenome.org

BE-Hive331 Yes Any Sequence NA CBE, ABE 
base editors

Arbab 2020 (ref.331) NA https://www.
crisprbehive.
design/

ABE, adenine base editor; BE, base editing; Cas9, CRISPR-associated 9; CBE, cytosine base editor; enAsCas12a, enhanced AsCas12a variant; NA, not applicable; 
NmeCas9, Neisseria meningitidis Cas9; PAM, protospacer adjacent motif; SaCas9, Staphylococcus aureus Cas9; SpCas9, Streptococcus pyogenes Cas9; StCas9, 
Streptococcus thermophilus Cas9; TdCas9, Treponema denticola Cas9.

Table 1 (cont.) | Resources and tools for guide RNA design
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Methods such as expanded CRISPR-compatible cellular 
indexing of transcriptomes and epitopes by sequenc­
ing (ECCITE-seq) and Perturb-seq (also known as 
CROP-seq)99–101 integrate pooled gRNA libraries with 
single-cell RNA sequencing (scRNA-seq) read-outs to 
provide high-resolution transcriptional information 
on cellular response to CRISPR perturbations99,101–103. 
Additionally, CRISPR gRNAs paired with protein bar­
codes (Pro-Code) can be used to interpret the effect of 
a single genetic disruption on the function of multiple 
proteins. Pro-Code, paired with a CRISPR gRNA library, 
has been used to screen breast cancer cells for sensitivity 
or resistance to antigen-mediated T cell killing104. This 
kind of fine resolution mapping of cancer phenotypes 
may reveal subtle changes in cell function that do not alter 
cell proliferation alone but could suggest alternative treat­
ment strategies. Integrating such high-dimensional data 
to isolate important changes is a significant and evolv­
ing challenge, which includes limitations to scaling up, 
lentiviral template switching and computational hurdles105.

Making sense of missense mutations. The vast major­
ity of mutations in cancers are single nucleotide vari­
ants (SNVs) that may cause hypo, hyper or neomorphic  
changes in protein function106. CRISPR has had an 
impact on our ability to engineer and study SNVs in 
two major ways. First, through the ability to target DNA 
DSBs, it enhances HDR-based gene targeting, and sec­
ond, through Cas fusion enzymes, it enables direct DNA 
modification.

CRISPR-assisted HDR has been used effectively 
to interrogate the impact of distinct codon 12 and 13 
mutations in the Kras oncogene. We and others have 
used HDR-driven editing to generate an allelic series 
of Cre-dependent (Lox-stop-Lox (LSL)) Kras mutant 
mice, which revealed unexpected but profound dif­
ferences in tumour initiation and progression in the 
pancreas and colon107–109. Moreover, isogenic orga­
noid models derived from these animals highlighted 
genotype-dependent responses to targeted therapies, 
underscoring the need to engineer and study individual 

2013 20152014 2016 2017 2018 2019

CRISPR–Cas9 induces double 
strand breaks at targeted proto-
spacer with NGG PAM recognition 
sequence in mammalian cells that 
result in indel formation6–9

Engineered Cas9 
variants have increased 
specificity and 
broadened PAM 
recognition sequence20–22

The dCas9D10A/H840A variant was 
engineered to prevent 
cleavage of double strand 
DNA and is tethered to a trans 
effector to either repress or 
activate targeted genes45–49

Cas12a (Cpf1) induces 
double strand breaks 
and allows for multiplex 
editing as it can 
catalyse the maturation 
of its own gRNAs17

Cas9
sgRNA

Cas12a

dCas9

High-
fidelity
Cas9

Cas13

Me

Epigenetic
modifier

APEX2

CRISPR–Cas9 editing

Profiling of proteins 
by proximity labelling 
with dCas9 tethered 
to engineered 
peroxidase APEX261

Proteome profiling

Cas13 (C2c2) 
is guided by 
28–30 nt 
gRNA and 
cleaves target 
RNA18,19

RNA editingTranscriptional regulation

dCas9 combined with an 
epigenetic modifier can 
regulate gene expression by 
tethering methyltransferases 
and acetyltransferases50–60

Epigenetic regulation

Cas9D10A nickase coupled 
with an adenine or 
cytosine deaminase and 
UGI (cytosine BEs only) 
can result in targeted 
missense mutations34–35

Base editingCas12 editing

Cas9H840A fused to an engineered 
reverse transcriptase coupled 
with pegRNA enables insertions 
or deletions without inducing 
double strand breaks37

Prime editing

Variant engineering

Proteins

Trans.
effector

UGI

Deaminase

Cas9n

pegRNA

Reverse
transcriptase
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efficient combinatorial knockout (KO) and targeting of RNA, respectively17–19. 
Transcriptional (Trans.) effectors tethered to catalytically dead Cas9 (dCas9) 
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editing allows the introduction of specific transition mutations with a Cas9 
nickase (Cas9n) tethered to an adenine or cytosine deaminase and in the case 
of cytosine base editing enzymes (BEs), a uracil glycosylase inhibitor (UGI) to 
limit base excision repair and promote C>T transition mutations34,35. The 
development of prime editing, whereby a dCas9 is tethered to a reverse 
transcriptase, enables engineering of many types of mutation such as 
missense, insertions and deletions guided by a sequence template and 
extended prime editing guide RNA (pegRNA)37. Engineered ascorbate 
peroxidase (APEX2) tethered to dCas9 allows for targeted biotinylation at 
specific genomic loci for unbiased proteome mapping61. gRNA, guide RNA; 
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SNVs in cancer models107. Similar mutation-specific 
drug responses have been observed in patient-derived 
KRAS mutant colorectal cancer organoid models110. 
Winters et al.111 used a sophisticated AAV-based, somatic 
HDR approach to engineer a wide range of KRAS muta­
tions in a pooled fashion in the lungs and pancreas of 
otherwise KrasWT mice. Through quantitative analysis 
of individual barcoded tumours, they provided the first 
in vivo evidence that particular KRAS variants exhibit 

distinct oncogenicity, highlighting the importance of 
modelling the exact mutations seen in human cancers111. 
The same conceptual approach can be applied broadly in 
mouse or cell-based models as has been done to reveal 
the impact of SNVs in the most commonly mutated 
tumour suppressor gene, TP53. By engineering isogenic 
cell lines with a CRISPR–HDR approach, Boettcher 
et al.112 showed that p53 missense mutations (R175H, 
Y220C, M237I, R248Q, R273H and R282W) can exert 
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a dominant-negative effect on wild-type p53 function. 
Fraser and colleagues113 described an HDR-driven 
screening strategy to characterize more than 16,000 
defined mutants in yeast. This study took advantage of 
a strong bias toward HDR-driven DNA repair in yeast 
that is not seen in mammalian cells, making a similar 
approach in standard cancer models not yet possible.

CRISPR BE offers an exciting alternative to engineer 
SNVs without the need for exogenous DNA templates. 
BE enzymes catalyse C∙G to T∙A (cytosine base editor 
(CBE)) or A∙T to G∙C (adenine base editor (ABE)) 
transition mutations with high purity and efficiency 
and with low off-target effects35,114–117, while some 
recently developed enzyme variants also enable C∙G 
to G∙C transversion events118–121 (Fig. 2c). BE is becoming 
an increasingly popular tool for genome engineering, 
simultaneously enabling the creation of both missense 
and nonsense mutations122. BE is effective in a wide 
range of cell types and organisms123, and recent reports 
describing the first BE screens have demonstrated the 
unique utility of BE for identifying functional cancer 
variants that influence drug treatment response124,125. 
Our lab126 used optimized CBE enzymes to dissect the 
impact of specific APC disruptions on response to tar­
geted WNT inhibitors, showing that early nonsense 
mutations drive resistance to tankyrase (TNKS) inhibi­
tors, while late truncating events promote sensitivity127. 
Correction of mutations in the TERT promoter (seen 
in 89% of glioblastomas) using ABE is sufficient to 
inhibit brain tumour growth, defining these mutations 
as cancer drivers128. The latter example is a clear case in 
which CRISPR tools have enabled interrogation of direct  
genotype–phenotype relationships in noncoding genomic  
elements, which has traditionally been very difficult. We 
recently described cancer mutation-focused BE ‘sensor’ 
libraries that enable the simultaneous induction of mis­
sense mutations and measurement of BE efficiency in 
a pooled format129. BE is a powerful tool for engineer­
ing cancer-associated mutations but with the current 
enzymes, it cannot capture all alterations. In theory, PE 
could enable the creation of almost all known SNVs and 
small indel variants. Erwood et al.130 recently reported an 

approach that exploits pooled, saturating PE mutagen­
esis to interrogate disease variants in two genes. BE and 
PE libraries such as these provide a means to rapidly 
assess the impact of cancer-associated point mutations 
across various experimental settings.

Rearranging the genome. Chromosomal rearrangements 
are a clinically important subtype of cancer-driving 
mutations, and their identification has increased 
exponentially over the past decade131. Yet, the precise 
functional consequence of many gene rearrangements  
and fusions remains a mystery as they are often rare and  
notoriously difficult to recreate in model systems132. 
Through its ability to catalyse targeted DNA breaks, 
CRISPR is a powerful tool to engineer large-scale 
chromosome aberrations. Introduction of paired  
sgRNAs that target fusion breakpoints with Cas9, can 
result in multi-megabase deletions133, inversions134,135, 
duplications136 and translocations137,138 frequently 
found in patients with cancer. Initial studies showed 
the feasibility of modelling multiple chromosomal 
rearrangements in the lung, prostate and colon using 
cells, organoids and mice, building preclinical models 
to assess potential drug sensitivities. Still, challenges 
remain. For instance, two DSBs on the same chromo­
some can induce inversions, deletions and/or tandem 
duplications, and it is difficult to bias towards specific 
outcomes. Furthermore, for studies using mice, synteny 
is not always maintained, meaning some rearrange­
ments cannot be created. Finally, using CRISPR to 
engineer targeted gene amplification is theoretically 
possible, but has yet to be reported in the literature. 
As an alternative to engineering locus amplification, 
increased expression can be mimicked using CRISPRa. 
Dammert et al.139 used CRISPRa to drive expression 
of MYC paralogues, revealing gene-specific effects on 
apoptotic priming in small-cell lung cancer. Although 
driving elevated expression of already well-expressed 
genes can be a challenge with CRISPRa, it is a pow­
erful approach to drive transcription of endogenous 
elements, particularly those that contain complex reg­
ulatory structures that cannot be mimicked by cDNA 
approaches.

The noncoding genome
Over the past decade, several mutations in noncoding 
regions of the human genome have been implicated in 
cancer risk140. This is unsurprising, as these noncoding 
regions contain diverse functional elements that regulate 
the expression of oncogenes, tumour suppressors and 
related genes140. Pan-cancer genetic association studies 
have pinpointed prevalent single nucleotide polymorphisms 
(SNPs) in noncoding regions141,142; however, it remains 
unclear what role they play in tumorigenesis (reviewed 
in141). Another factor that influences cancer risk is dys­
regulation of noncoding RNAs (ncRNAs), which have 
crucial roles in regulating cellular pathways143–145. Several 
ncRNA-targeting cancer drugs are currently in clinical 
trials, such as MRX34, a microRNA-34a (miR-34a) 
mimic, and cobomarsen, a miRNA-155 inhibitor146,147. 
However, most ncRNAs remain understudied and elu­
cidating their functions could yield novel therapeutic 

Fig. 2 | Application of CRISPR technology to build cancer models. a | Transfection  
of mouse embryonic stem cells with CRISPR-associated 9 (Cas9) and a single guide RNA 
(sgRNA) (and +/− donor template to promote homology-directed repair (HDR)) enable 
efficient knockout or knock-in and development of transgenic mouse models62–68,77,78.  
b | The development of Cas9 and the inducible Cas9 mouse have made somatic editing 
in vivo efficient, with various organs as possible targets using either adeno-associated 
virus (AAV), lentivirus or nanoparticle sgRNA delivery69–72,74,79,80. c | Genome engineering 
of cell lines and organoids can lead to a single knockout mutant, base edited mutant  
and chromosomal rearrangements73,82–86,107,113,115,123,127,128,133–139. d | Combinatorial knockout 
of cells and organoids can be achieved with Cas9 and multiple sgRNAs in a pooled or 
sequential format or with Cas12a and multiple sgRNAs69,83,84,182. e | CRISPR screens have 
become an impactful tool in many areas of cancer biology. Cas9 and a library of pooled 
sgRNAs can be infected into cells or organoids, and, after selective pressure is applied  
by proliferation over time or drug treatments, sgRNA enrichment and depletion are 
measured to determine targets of interest87–90,93,94. In addition, infection of a cytosine  
base editor or adenine base editor and a pooled sgRNA library and addition of drug  
has led to the identification of missense mutations that confer resistance or sensitivity  
to poly(ADP-ribose) polymerase (PARP) inhibitors, BH3 mimetics or response to DNA 
damaging agents124,125,129. BE, base editing; Cas9n, Cas9 nickase; LSL, lox-stop-lox;  
TRE, tetracycline-responsive.
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targets144. Recent additions to the CRISPR genome 
and transcriptome engineering toolbox have enabled 
a deeper understanding of how cancer phenotypes 
arise from perturbations to these regulatory elements 
and ncRNAs.

Targeting noncoding regions using Cas9 knockout. Several 
groups have used pooled saturation mutagenesis CRISPR 
nuclease screens to identify essential cis-regulatory ele­
ments surrounding a gene or genes148,149 (Fig. 3a,b). Using 
this approach, we found that cis-regulatory elements 

HSF1
p65

Cas9

DNA mutagenesis
(Cas nuclease)

Repression
(CRISPRi)

Activation (CRISPRa) RNA knock-down

Saturation mutagenesis: nuclease Noncoding genome-wide targeting: nuclease, CRISPRi and CRISPRa

DNA methylation and demethylation Histone acetylation and deacetylation

HDAC3

Noncoding RNA gene targeting: CRISPRi and CRISPRa

a

b

dCas9

Cas13

KRAB
MeCP2

VP64

DNMT3A

p65Rta

VP64

MS2

Me

TET1
Me

p300
Ac

Ac

gRNA

Fig. 3 | Functional domains of various CRISPR effectors and their applications in genome-scale screens. a | There are 
multiple CRISPR effectors that can be used to disrupt coding and noncoding regions of DNA, and, more recently, RNA. The 
CRISPR-associated 9 (Cas9) nuclease cleaves DNA at a target site specified by a guide RNA (gRNA)5–9. Noncoding regions 
can be repressed (CRISPR interference (CRISPRi)) by targeting promoters and enhancer regions with a catalytically dead 
Cas9 (dCas9) fused to repressor domains such as methyl-CpG-binding protein 2 (MeCP2) and Krüppel-associated box 
(KRAB)44–46,155. There are several methods to increase gene expression by targeting dCas9 fusion proteins to regions flanking 
transcription start sites (TSSs). One method is the fusion of dCas9 to the transcriptional activators VP64, p65 and Rta (VPR)152. 
Another method is the fusion of dCas9 to VP64 along with a modified single gRNA (sgRNA) that recruits the activator fusion 
complex MS2–p65–HSF1 (collectively known as synergistic activation modulator (SAM))153. The Cas13 nuclease cleaves RNA 
at a site specified by a gRNA18,19. The fusion of dCas9 to methyltransferases, such as DNA methyltransferase 3A (DNMT3A),  
or proteins involved with DNA demethylation, such as tet methylcytosine dioxygenase 1 (TET1), enables targeted DNA 
methylation or demethylation, respectively52,55,56. Furthermore, the fusion of dCas9 to acetyltransferases such as p300 or 
histone deacetylase proteins such as histone deacetylase 3 (HDAC3) enables targeted histone acetylation or deacetylation, 
respectively58. b | The design of gRNAs depends on both the CRISPR effector and the intended targets of the CRISPR screen. 
For screens to target protein-coding genes, gRNAs are designed to target either the exons (CRISPR nuclease) or near the TSS 
of the gene (CRISPRi or CRISPR activation (CRISPRa)) (gRNA target sites represented by downward arrows). For saturation 
mutagenesis using nucleases, gRNAs are designed to target many noncoding regions surrounding a gene of interest. For 
noncoding genome-wide screens using CRISPR nucleases, CRISPRi or CRISPRa, gRNAs are designed to target a specific 
genomic feature (for example, cis-regulatory elements). For silencing or amplification of noncoding RNAs using CRISPRi  
and CRISPRa, respectively, sgRNAs are targeted to regions flanking the TSS of a noncoding RNA gene. Ac, acetylation;  
Me, methylation.
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of previously established resistance genes of the BRAF 
inhibitor vemurafenib tend to be 5′ and in close prox­
imity to the gene, in regions of open chromatin148. This 
study demonstrated how CRISPR mutagenesis can be 
used to build a high-resolution map of cis-regulatory 
elements that control a key cancer phenotype (namely, 
drug resistance).

In addition to probing enhancers of genes that impart 
cancer drug resistance, Cas9 can be used to target tran­
scription factor binding sites genome-wide150. Agami 
and colleagues150 interrogated binding sites of two tran­
scription factors — p53 and oestrogen receptor-α (ERα) 
— with known roles in cancer. In two independent 
CRISPR–Cas9 screens, they found multiple enhancers 
required for p53-induced senescence and ERα-positive 
breast cancer cell growth. As these enhancer elements 
are typically active only in specific cancer types, they 
may make good therapeutic targets given their greater 
specificity than protein-coding genes, which may also be 
expressed in non-malignant cells.

Inhibition and activation of noncoding regions. As men­
tioned above, inhibition or activation of gene promot­
ers and enhancers is possible via dCas9 (refs44,45,151–154). 
Although targeting gene regions with dCas9 alone steri­
cally blocks the binding of transcription factors and RNA 
polymerase44, it is generally more efficient in mammalian 
cells to use fused transcriptional repressor modules such 
as KRAB155. Multiple KRAB variants have been devel­
oped (Fig. 3a), and a recent study showed that, of these 
variants, ZIM3 KRAB is the most potent155. Conversely, 
several gene activation constructs have been developed 
using similar rational design methods: dCas9–VPR, 
dCas9–VP64 co-delivered with MS2–p65–HSF1 (collec­
tively known as synergistic activation mediator (SAM)) 
and dCas9–SunTag–VP64 (refs152–154) (Fig. 3a). These new 
dCas9-based tools are often better suited for cancer biol­
ogy studies than nuclease-based CRISPR, because, first, 
CRISPRi overcomes the challenge of CRISPR-mediated 
apoptosis from accumulation of DSBs that can occur 
when targeting amplified genes, or the noncoding 
regions surrounding them156, and second, CRISPRa 
enables gain-of-function (increased gene expression) 
studies. Collectively, dCas9-coupled effectors permit 
more elaborate, bidirectional exploration of pathways 
that contribute to tumour growth or suppression.

Using CRISPRi and CRISPRa screens, several 
groups have identified cancer cell type-specific non­
coding mutations. Engreitz and colleagues157 targeted 
regions flanking two genes that encode transcription 
factors involved in cancer cell proliferation — GATA1 
and MYC — identifying nine enhancers that contribute 
to gene expression and cell proliferation in leukaemia 
cells. Gersbach and colleagues158 used both CRISPRi  
and CRISPRa to examine enhancers around β-globin and  
the oncogene human epidermal growth factor receptor 2  
(HER2) in various human cell lines. This strategy ena­
bled a functional distinction between necessary enhanc­
ers (CRISPRi) and sufficient enhancers (CRISPRa) for 
promoting oncogene expression and highlighted cell 
type-specific enhancer activity. Together, these stud­
ies demonstrate that dCas9-based tools can reveal 

tumour-specific enhancers, which could lead to new 
therapeutic strategies.

Interrogating chromatin regulation as a cancer driver. 
Mutations in protein-coding chromatin remodellers are 
among the most common across all cancer types159,160; 
however, chromatin regulation may also be perturbed 
by noncoding mutations that disrupt CCCTC-binding 
factor (CTCF)-controlled topologically associating domain 
(TAD) boundaries, driving gene dysregulation linked to 
cancer161. CRISPR is ideally suited to interrogating such 
noncoding alterations in mediating tumour growth156,160.

A recent study of ~2,000 genomes across 21 cancer 
types identified several cancer drivers at insulator sites160. 
Creating synthetic mutations using CRISPR at the two 
most commonly mutated CTCF binding sites in cancer 
cells without these mutations phenocopied the increase 
in proliferation. In a separate example, disruption of 
the CTCF binding site near the platelet-derived growth 
factor receptor-α (PDGFRA) in cells of a gliomasphere 
also increased proliferation as well as gene expression162. 
Furthermore, perturbing the PDGFRA insulator using 
dCas9–DNMT3A and dCas9–KRAB increased methy­
lation and repressive heterochromatin, respectively, at 
the target site163 (Fig. 3a). Subsequent increased contact 
between the PDGFRA promoter and a nearby superen­
hancer element drove increased expression of PDGFRA 
and downstream platelet-derived growth factor (PDGF) 
pathway genes.

Although these studies implicate mutations in CTCF 
binding sites as potential mechanisms underlying 
gene-regulatory gain of function for nearby oncogenes, 
a recent study suggests that some effects are likely due 
to off-target activity164. When CTCF binding sites were 
perturbed, the authors indeed found a change in cell 
proliferation and CTCF binding, but expression of genes 
within the CTCF binding region, as determined by RNA 
sequencing (RNA-seq) and reverse transcription–quan­
titative real-time polymerase chain reaction (RT–qPCR), 
did not change nor did chromatin accessibility, as deter­
mined by assay for transposase-accessible chromatin 
with high-throughput sequencing (ATAC-seq). Thus, it 
is important to consider off-target activity for top hits 
and validate changes in gene expression and chromatin 
structure near the targeted binding site when targeting 
genome insulator elements such as CTCF164.

Modulating noncoding RNAs using Cas9 and Cas13. 
Several classes of noncoding RNA are associated with 
cancer development and progression144. miRNAs, 
long noncoding RNAs (lncRNAs), very long intergenic  
noncoding RNAs (vlincRNAs) and circular RNAs (circRNAs) 
have all been investigated and perturbed using  
CRISPR tools. Pooled screens using Cas9-based 
approaches, CRISPRi and CRISPRa have enabled 
researchers to probe the role that miRNAs and lncRNAs  
play in the proliferation and drug resistance of cancer 
cells. A genome-wide CRISPR nuclease screen of miRNA 
in leukaemia cells found that miR-150 and miR-155  
promote cell growth165. An in vivo genome-wide screen 
in mice revealed that loss of tumour suppressor miRNAs  
can act as strong drivers of metastasis93. Pooled nuclease 
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and CRISPRi screens of lncRNAs have identified more 
than 750 lncRNAs that contribute to cancer cell prolif­
eration, some of which are cancer type specific166–168. 
Lim and colleagues169 used CRISPRi to identify 33 
lncRNAs, which, after inhibition, sensitize glioma cells 
to fractionated radiation therapy. Another team used 
CRISPRa in melanoma cells to pinpoint 11 lncRNAs 
that lead to vemurafenib resistance170, while a simi­
lar screen of 15,000 lncRNA promoters in leukaemia 
cells found 10 lncRNAs that contribute to resistance to 
cytarabine (also known as cytosine arabinoside (ara-C)), 
a standard treatment for patients with leukaemias 
and lymphomas171. The latter study identified a novel 
lncRNA (GAS6-AS2) that hyperactivates the inflamma­
tory growth arrest-specific protein 6 (GAS6)–TYRO3, 
AXL and MERTK (TAM) resistance pathway.

In addition to blocking or activating transcrip­
tion with Cas9-based tools (CRISPRi and CRISPRa), 
Cas13 orthologues can be used to potently knock 
down RNA species in mammalian cells36,172,173 (Fig. 3a). 
The RNA-targeting Cas13 enzyme has two key advan­
tages over DNA-targeting (Cas9) methods: first, it 
directly targets noncoding RNAs without modifying 
the genome172,173 and second, it does not modulate 
expression of nearby protein-coding genes, which can 
be a potential confounder with CRISPRi or CRISPRa 
screens168,170. A pooled Cas13 screen of 22 vlincRNAs  
that are upregulated in response to anticancer drugs 
found that 64% of the vlincRNAs enhanced cell 
survival174. A Cas13 screen of highly expressed circRNAs 
in cervical and colon cancer cell lines revealed a family 
of circRNAs that cause cell type-specific proliferation175. 
When one oncogenic circRNA identified in this screen 
— circFAM120A — was knocked down, translation of its 
parent gene FAM120A, a known oncogene176, was sup­
pressed. Moving forward, Cas13 will be an important 
tool to complement Cas9-based approaches and uncover 
noncoding RNA function in tumorigenesis and tumour 
progression.

Mutational and clonal heterogeneity
Cancer is not a monogenic, monoclonal or static dis­
ease. Cancer cells continually acquire alterations that 
result in complex genetic and epigenetic profiles. Clonal 
derivatives branch and compete as cancer cell popula­
tions evolve into distinct and varied mutational entities, 
while the intercellular composition of a tumour (cancer 
cells, stroma and immune cells) is remarkably dynamic. 
Understanding intratumoural heterogeneity and the 
emergence and evolution of tumour subclones is impor­
tant for building a complete picture of tumorigenesis. 
CRISPR technologies are uniquely suited to tackle these 
difficult questions, enabling researchers to both engineer 
complex cancer-associated mutations across cell popu­
lations and trace clonal evolution via genetic scars from 
CRISPR-induced genome repair.

Modelling complex mutational profiles in cancer. The 
accumulation of diverse combinations of genetic alter­
ations is a hallmark of cancers. As highlighted above, 
CRISPR has been used to model the stepwise acquisi­
tion of cancer-driving changes83,84, but it can also be very 

effective for exploring the impact of different mutational 
combinations (Fig. 2). CRISPR editing makes it feasible 
to create large panels of cells, organoids or animal mod­
els each with different mutational patterns. We recently 
exploited this ability to easily ‘mix and match’ genetic 
events to reveal a genotype-specific context that leads 
to acquired drug resistance that is not observed with 
other combinations of mutations177. Where specific 
cancer-driving genetic combinations are not obvious, 
CRISPR approaches can be extensively multiplexed. 
Rad and colleagues178,179 showcased the potential of this 
approach, demonstrating that in vivo delivery of small 
collections of sgRNAs into the pancreas can reveal syn­
ergistic genetic interactions that drive tumorigenesis. 
Given the enormous mutational complexity seen in each 
human cancer, approaches such as this serve to refine 
our understanding of how specific mutation patterns 
influence disease progression and response to therapy. 
The development of focused combinatorial sgRNA 
libraries180,181 could provide a way to interrogate the large 
matrix of possible mutation combinations at a feasible 
scale182 (see Identifying gene interactions, below).

Clone wars: tracing evolution dynamics in tumours. 
Multiple CRISPR-based strategies have been devised 
to delineate distinct clones within a mixed population 
and enable monitoring of clonal dynamics over time. 
In addition to inclusion of unique molecular identifi­
ers on sgRNA libraries to tag CRISPR clones183, CRISPR 
machinery itself can be used to introduce static barcodes 
through HDR template integration containing unique 
identifiers184 (Fig. 4a,b), although it is also capable of 
more dynamic lineage marking (Fig. 4c). By exploit­
ing the heritable ‘semi-random’ indel patterns created 
by Cas nucleases, CRISPR can be used as a molecular 
recorder, creating unique and evolving barcodes within 
the genome185–187. As indels accrue over time, the tim­
ing, rate and specific combination of indels within a 
cell population can be deconvoluted to map rate and 
directionality of clonal evolution of metastatic cells  
and enable the assembly of lineage or phylogenetic 
trees188. Initially validated in vivo as a tool to trace cell 
lineages in the development of zebrafish and mice187,189, 
the method has been used to reveal metastatic poten­
tials and behaviour of different clones within lung can­
cer xenografts188. Combining Cas9 molecular recording 
with regulatable Cas9 expression in a transgenic mouse 
model known as the CRISPR array repair lineage tracing 
(CARLIN) mouse enables inducible, Cas9-dependent 
accumulation of indel barcodes that can be used to line­
age trace somatic single-cell events and gene expression 
profiles in vivo and over time190 (Fig. 4c).

Cas9 is not the only tool adaptable for molecular 
recording; BE offers similar barcoding advantages to Cas9 
but avoids DSBs that can result in deletion of previously 
barcoded events, reducing sequence complexity (Fig. 4c). 
Hwang et al.191 showed that BE can be used to create 
barcodes at endogenous repetitive elements instead 
of using exogenous barcode arrays. The predictable 
nature of BE outcomes can also be exploited to enable 
fluorescence in situ hybridization (FISH)-based detection 
of lineage-traced events192. In addition, Halperin et al.193 
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devised an alternative strategy of barcode mutagene­
sis (EvolvR) by tethering DNA polymerase variants to 
Cas9n, allowing the generation of random mutations 
within a sequence window that can serve as a lineage 
barcode (Fig. 4c).

In addition to tracing the forward evolution of cell 
lineages, retrospectively tracing the origin of some 
lineages offers key advantages (Fig. 4b), for instance, in 

defining the cell or clone of origin of drug resistance. 
Umkehrer et al.194 and Al’Khafaji et al.195 developed an 
elegant CRISPR-driven system to achieve this. Both 
approaches use a 20mer DNA barcode that doubles as 
a sgRNA binding site that can be used to activate GFP 
expression in the presence of CRISPRa constructs194,195. 
Identifying cells that contain specific barcodes (that 
is, those that develop drug resistance) is as simple as 
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Fig. 4 | Lineage tracing with CRISPR technologies to record tumour 
heterogeneity. a | Lineage tracing with static barcoding enables the capture 
of enriched clones over time and after selective pressures (bottlenecks). 
After initial delivery of a pooled guide RNA (gRNA) library with unique 
encoded barcodes, and a Cas enzyme, barcodes can be used to delineate 
clonal outgrowth. b | Retroactive lineage detection is made possible 
through static barcode lineage tracing as in part a, followed by CRISPR 
technologies such as CRISPR activation tracing of clones in heterogeneous 
cell populations (CaTCH)194 and control of lineages by barcode enabled 
recombinant transcription (COLBERT)195, which employ CRISPR activation 
(CRISPRa)-mediated activation of GFP in barcode-specific cells. This can be 
used to identify a clone of interest (for example, a drug-resistant clone) 

within the originating, naive pooled population retrospectively. c | Genetic 
scars left by CRISPR machinery can be harnessed as molecular recording 
events to gather information such as rate and directionality of 
subclonal events. These molecular barcodes can be deconvoluted into 
complex phylogenetic trees across tumour evolution and selective 
pressures185–189. CARLIN, CRISPR array repair lineage tracing; Cas9, 
CRISPR-associated 9; CROP-seq, CRISPR droplet sequencing; dCas9, dead 
Cas9; ECCITE-seq, expanded CRISPR-compatible cellular indexing of 
transcriptomes and epitopes by sequencing; FACS, fluorescence-activated 
cell sorting; GESTALT, genome editing of synthetic target arrays for lineage 
tracing; indel, insertion or deletion; MARC1, mouse for actively recording 
cells; sgRNA, single guide RNA; VPR, VP64–p65–Rta.
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introducing dCas9–VP64 with a sgRNA corresponding 
to the barcode of interest and identifying fluorescent 
green cells. Using this approach, Umkehrer et al.194 iden­
tified rare populations in untreated mouse melanoma 
YUMM 1.7 cells that have intrinsic resistance to com­
bined RAF and MEK inhibition. Integrating functional 
barcoding with single-cell transcriptomics provides 
another layer of detail to understand heterogeneity and 
cancer cell behaviour under different conditions, as 
recently showcased by Brock and colleagues196.

Defining vulnerabilities in cancer
Identifying true pan-cancer or cancer type-specific 
dependencies is a central goal of cancer research. 
Although conceptually simple, the complex regulatory 
networks that control cell function in different cell 
types and cancers makes identifying singular targets a 
major challenge197–200. Large-scale pooled genetic screens 
provide a means to tackle this complexity and allow 
unbiased classification of essential genes across differ­
ent cancer types. Both CRISPR and shRNA technolo­
gies offer similar targeted loss-of-function outcomes 
and can complement one another in gene discovery 
efforts201, although CRISPR is generally favoured owing 
to its high efficiency and reproducibility202. Moreover, 
CRISPR systems offer the flexibility of constitutive or 
inducible induction of either genomic203,204 or tran­
scriptomic (Cas13 (refs175,205), CRISPRi180,206–208) per­
turbations. Furthermore, Cas12 and Cas13 systems are 
easily adapted to multiplexing173,209, making it possible to 
investigate complex genetic interactions at scale.

Identifying essential genes. CRISPR–Cas9 screens allow 
for unbiased interrogation of large gene sets in various 
model systems and contexts, including in vivo models. 
In most cases, essential genes are identified in focused 
or genome-wide proliferation-based negative selection 
screens, where the level of sgRNA depletion is used as 
a surrogate for the essentiality of any given gene. The 
efficiency and success of CRISPR screens have fostered 
two independent large-scale efforts to probe pan-cancer 
dependencies across more than 300 cancer cell lines210,211. 
The Sanger Institute implemented a pipeline for prior­
itizing candidates for approved drugs, which culminated 
in identification of WRN helicase as a top priority can­
cer dependency in mismatch repair-deficient (dMMR) 
cancers210. WRN disruption was validated in several 
independent studies as a synthetic lethality in dMMR 
or microsatellite instability-high (MSI-H) cancers 
and has become a potential therapeutic target in this 
context210,212,213, even for those cancers that are resist­
ant to standard treatments214. Extensive work from the 
Broad Institute integrated copy number-specific effects 
in their screening analysis after observing that concur­
rent induction of multiple DSBs in amplified genomic 
regions can cause cell death unrelated to gene targeting. 
This approach removes cell line-specific false positives, 
thereby refining viable candidate targets resulting from 
cancer dependency screens211. Although conducted in 
different continents, the two screening efforts show 
remarkable agreement in identified cancer dependen­
cies and biomarkers215. The combined effort has led to 

the cancer dependency map, or DepMap, which serves 
as a powerful community resource for hypothesis gen­
eration or to quickly check how essential your gene of 
interest is across hundreds of different cancer cell lines 
and/or cancer types. DepMap can also be used to define 
genetic associations. For instance, three recent studies 
described a role for the E3 ligase activating molecule  
in BECN1-regulated autophagy protein 1 (AMBRA1) in 
controlling the stability of D-type cyclins216–218; in two 
cases, AMBRA1 was identified by biochemical and/or 
genetic screens217,218. Loss of AMBRA1 increases cyclin D 
levels, in part mimicking the downstream consequences 
of RB1 loss, including increased proliferation and 
tumorigenesis216–218. Remarkably, analysis of DepMap 
data shows that the top co-dependency for RB1 (that 
is, the gene with an essentiality profile that most closely 
matches RB1) is AMBRA1. There are undoubtedly many 
such discoveries yet to be unearthed in this rich data 
set. Recently, Stegmaier and colleagues219 described can­
cer dependencies from 82 paediatric cancer cell lines 
(PedDep), providing an important data set and high­
lighting that paediatric cancer dependencies are usually 
distinct from adult cancer essential genes.

Even with notable progress in identifying cancer 
dependencies, the vast majority of drug targets entering 
trials do not translate to clinical responses220,221. Efforts 
to enrich for meaningful clinical targets including those 
from CRISPR screens are necessary and will involve fine 
tuning of CRISPR screen design as well as improvements 
in the model systems in which they are performed. The 
Bassik group222 identified crucial differences between 
genome-wide CRISPR screens performed in cancer 
cell line monolayers and those performed in cancer cell 
spheroids, highlighting cancer dependencies specific 
to 3D growth with more relevance to human cancers. 
Although in vitro screens are a fast, cost-effective and 
high-throughput way of screening cancer growth vul­
nerabilities, in vivo screens provide tissue context and 
cell–cell interactions that cannot be mimicked outside 
the organism. Bajaj et al.223 used a genome-wide library 
in a syngeneic transplant leukaemia model to iden­
tify the RNA-binding protein STAU2 as a regulator of 
chromatin dynamics and a dependency in two different 
types of myeloid cancer. Lebrun and colleagues224 used a 
similar strategy with xenografted human triple negative 
breast cancer cells to reveal mTOR complex (mTORC) 
and Yes-associated protein 1 (YAP1) as potential ther­
apeutic targets. In vivo screens would be particularly 
effective in settings where tumours cells cannot be eas­
ily cultured ex vivo — for instance, in patient-derived 
xenograft (PDX) models. To enable efficient editing in 
PDX lines, Hulton et al.225 built antibody-based selection 
systems to quickly enrich Cas9-expressing cells from 
serially transplanted tumours, thereby minimizing the 
time required in cell culture.

In addition to identifying new gene and protein tar­
gets, sgRNA tiling across a gene can be used to probe pro­
tein domain function and essentiality226,227 as well as to 
identify novel protein–drug interactions or mechanisms 
of action228, or scan large noncoding regions for key reg­
ulatory loci149. In this vein, CRISPR can also be employed 
to test the target specificity of existing small-molecule 
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or biologic therapies229,230. For example, Sheltzer and 
colleagues231 used a CRISPR KO approach to show that 
in some cases, drugs entering clinical trials that are 
presumed to inhibit a single protein can engage more 
than one target, and this off-target activity is important 
for drug response. Mattsson et al.230 used an elegant 
screen-based strategy to define the cell-surface targets 
of dozens of antibodies. Such approaches streamline the 
validation of novel antibody-based therapeutics.

Identifying gene interactions. In addition to prob­
ing single gene perturbations, CRISPR can be used to 
identify essential genetic interactions232,233. Targeting 
multiple genes simultaneously in a single cell can reveal 
synthetic lethal interactions or potential drug combina­
tions, or define cancer dependencies that are buffered 
by related, redundant family members (for example, 
MEK1 and MEK2)234. Multiple large-scale combinato­
rial CRISPR screens have been described using both 
Cas9 and CRISPRi systems, revealing novel genetic 
interactions and identifying possible synergistic anti­
cancer therapeutic strategies180,206–208 (Fig. 2d). Owing to 
the increased complexity of combinatorial screens, most 
pairwise sgRNA libraries used to date have focused on 
small gene sets such as ‘cancer genes’235 or ‘druggable 
genes’180. However, Zhou et al.181 went one step further, 
and developed a system to clone and co-express three 
gRNAs simultaneously to identify higher-order genomic 
interactions and combinatorial targets.

Despite improved pipelines to generate multiplexed 
libraries208,236, cloning complex pools with multiple sgRNA 
promoters can be challenging owing to recombination of 
repetitive elements236,237. CRISPR–Cas12a systems over­
come these issues, enabling the production of complex 
multi-guide libraries with a single cassette, owing to the 
ability of Cas12a to process its own CRISPR RNA (cRNA) 
arrays17,182. Dede et al.238 used a pooled gRNA library tar­
geting pairs of gene paralogues and a modified Cas12a 
enzyme (Fig. 2d) to identify novel synthetic lethal gene 
interactions that were masked in individual KO stud­
ies because of functional buffering between gene para­
logues. The Doench group239 found an alternative method  
of combinatorial screening, exploiting unique features of 
Cas9 orthologues and creating libraries containing paired 
guides for SpCas9 and SaCas9. This approach eliminates 
gRNA competition for enzyme loading during multiplex­
ing by creating distinct gRNA-to-Cas9 orthologue pairs 
expressed within the same cell with unique targets. They 
found that this approach increased dual KO efficiencies 
for robust screening applications239.

Identifying anticancer immune targets. Tumour 
cell-extrinsic factors such as immune regulation play 
an essential part in cancer cell behaviour240. In par­
ticular, interactions that enable immune evasion or 
immunotherapy resistance are exciting therapeu­
tic opportunities. CRISPR screens using immune 
cell–tumour cell co-cultures and in vivo transplants 
in immune-competent hosts have been used to iden­
tify tumour-intrinsic factors that govern tumour–
immune interactions (reviewed in241). In one example, 
a genome-wide screen using cancer cells co-cultured 

with cytotoxic T cells revealed cancer cell-intrinsic 
regulators of T cell killing242. The study identified 
receptor-interacting serine/threonine-protein kinase 1 
(RIPK1) as a potential druggable target that upon inhi­
bition sensitizes tumours to antitumour T cell cytotoxic­
ity. Consistent with the genetic screen, pharmacological 
RIPK1 inhibition sensitized tumours to immunotherapy 
in a preclinical transplant model242. As a result of this 
study, a RIPK1 inhibitor proceeded into clinical trials, 
although ultimately did not achieve its predefined end 
point243. Towards understanding immune evasion, we and  
others have examined tumour mutations that drive 
escape from adoptive T cell therapies244 and immune 
checkpoint blockade245,246. Using a genome-wide 
CRISPR KO library with recombinant T cell receptor 
(TCR)-engineered T cells244, we identified well-known 
mediators of immune resistance (such as human leuko­
cyte antigen (HLA-A) and β2-microglobulin (β2m), 
which form the major histocompatibility complex class I  
(MHC-I)) and previously unknown mechanisms of 
immune escape, such as loss of the gene encoding the 
apelin receptor (APLNR), which hinders release of key 
cytokines such as interferon-γ (IFNγ). Co-culturing 
during CRISPR screening has now been demonstrated 
in many immune cell contexts including T cells247–249, 
natural killer (NK) cells249–254 and macrophages255, 
revealing a variety of regulators of immune sup­
pression and tumour evasion. In vivo screening of 
CRISPR-manipulated cancer cell lines has also identi­
fied numerous tumour immune modulators (reviewed 
in256, and257,258). In a focused screen targeting epigenetic 
regulators, Li et al.258 identified the histone chaperone 
ASF1A as a tumour-intrinsic regulator of macrophage 
differentiation; ASF1A disruption sensitizes tumours to 
immune checkpoint blockade. Studies such as this iden­
tify promising targets to enhance activity of or sensitize 
resistant tumours to known immunotherapies.

Conversely, modulation of the immune component 
of the tumour microenvironment can have an equally 
important impact on tumour progression. Defining new 
therapeutic targets in immune regulators is an active yet 
challenging area of research. Although primary immune 
cells are classically difficult to genetically manipulate, 
CRISPR has facilitated efficient editing in immune cells  
and enabled screens for tumour cell-extrinsic regu­
lators of tumour progression and immune evasion. 
Arrayed CRISPR screening in T cells was demonstrated 
by Gurusamy et al.259 using electroporated RNP com­
plexes with gRNAs that target 25 kinases known to 
sustain activation after TCR stimulation. They showed 
that p38 kinase is linked to immune suppression and 
its inhibition improves anticancer immunity in mouse 
models259. A major challenge in engineering primary 
cells is the efficient delivery of the large Cas enzymes. 
Electroporation or ‘nucleofection’ of RNP complexes 
into immune cells including myeloid cells260 has proved 
a highly efficient method of Cas9 delivery for gene KO 
(reviewed in261). Schumann et al.262 delivered RNPs in 
a pooled format to human regulatory T (Treg) cells to 
perturb 40 transcription factors predicted to regulate 
Treg cell identity. Validation of a select group of tran­
scription factors using arrayed RNP delivery paired 
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with scRNA-seq read-out produced a comprehen­
sive map of signalling networks governed by proteins 
encoded by essential regulatory genes in Treg cells (for 
example, forkhead box protein P3 (FOXP3))262. Studies 
such as this provide a resource for initiating functional 
studies in immune populations and identifying poten­
tial therapeutic targets to promote antitumour immu­
nity. Effective pooled screening in primary T cells is 
also possible by combining sgRNA lentiviral trans­
duction with Cas9 protein electroporation (SLICE)263 
or through the isolation and interrogation of immune 
populations from Cas9-expressing transgenic mice264–267. 
The use of transgenic mice also offers an opportunity 
to incorporate other established mouse alleles. For 
instance, OT-1;Cas9 double transgenic mice, which 
produce MHC-I-restricted, ovalbumin-specific, CD8+ 
T cells, have also been used to screen for regulators 
of T cell infiltration and killing activity265.

CRISPR can also be used to identify the regulatory 
mechanisms that govern the efficacy of cellular immuno­
therapies. Legut et al.268 showed that CRISPR KO of the 
endogenous TCR in primary human T cells enhances 
the activation of a transgenic TCR and increases cyto­
toxicity against B cell acute lymphoblastic leukaemia 
(B-ALL) blasts in co-culture. Guo et al.269 provided pre­
clinical evidence of improved chimeric antigen receptor 
(CAR) T cell tumour killing after CRISPR–Cas9 deletion 
of PD1 in those CAR T cells; this strategy is now being 
evaluated in clinical trials (see section Ex vivo CRISPR 
therapies below). In addition to modifying known fac­
tors that promote immune evasion, a CRISPR screen in 
CAR T cells identified novel dependencies that upon 
deletion improve efficacy of T cell killing of glioblastoma 
stem cells270. In the same study, a reciprocal screen in 
glioblastoma stem cells identified genes that confer sus­
ceptibility to T cell killing and found overlapping gene 
dependencies between the two screens that inform ways 
to potentiate CAR T cell efficacy270.

CRISPR has catalysed the identification of cancer vul­
nerabilities at a rapid rate. Cumulatively, CRISPR tools 
have defined hundreds of potential tumour cell-intrinsic 
and tumour cell-extrinsic therapeutic targets. However, 
the path from putative target to clinical translation is 
notoriously challenging. It remains to be seen how many 
CRISPR-validated hits will ultimately become clinically 
actionable targets. Time (and money) will tell.

CRISPR for clinical cancer care
CRISPR technologies have exciting clinical opportuni­
ties in a range of monogenic disorders271,272 but have not 
been a dominant player in the development of cancer 
therapeutics. That said, there are tangible applications 
for CRISPR in clinical cancer management, and it is 
poised to make an impact in both cancer diagnostics 
and therapies in the coming years.

CRISPR-driven cancer diagnostics. Targeted enzymatic 
digestion mediated by CRISPR machinery can be har­
nessed as a diagnostic tool to identify cancer-specific 
sequence changes. Microsatell ites , a diagnostic 
marker in cancers273, can be sensitively detected 
using CRISPR-mediated digestion targeted to short 

tandem repeats (STRs), which make up microsatellites. 
Sequencing the resulting DNA fragments (STR-seq) 
showed greater accuracy and sensitivity for microsatellite 
detection in a high-throughput manner than fragmen­
tation by sonication274. Bennet-Baker et al.54 demon­
strated the targeted release of megabase-sized fragments 
from genomic DNA through Cas9-mediated digestion. 
When paired with duplex sequencing that incorporates 
double-stranded DNA barcodes to prevent errors in 
sequencing, Cas9-mediated fragmentation allows for 
targeted sequencing of genomic regions even with very 
little DNA input (termed CRISPR-DS)275. CRISPR-DS 
is currently being evaluated in a clinical trial for detec­
tion of p53 mutations in ovarian tumours276. In addition, 
Cas12 and Cas13-mediated detection of nucleic acids via 
specific high-sensitivity enzymatic reporter unlocking 
(SHERLOCK) and DNA endonuclease-targeted CRISPR 
trans reporter (DETECTR)277,278 has been used to iden­
tify cancer-associated mutations in tumour biopsy sam­
ples from patients279,280. These same platforms have been 
used to develop affordable, point-of-care diagnostics for 
SARS-CoV-2 infection281,282. Thus, it is foreseeable that 
CRISPR technologies could serve as a personalized, 
sensitive detection and monitoring system for patients 
with cancer.

Ex vivo CRISPR-based therapies. For a biotechnology 
that emerged only 8 years ago, it is impressive that the 
first direct clinical applications of CRISPR are already 
being realized (Table 2). Multiple groups have shown 
that ex vivo CRISPR-based targeting of PD1 on T cells 
can enhance antitumour activity following adoptive 
transfer269,283,284. This therapeutic pipeline is already in 
clinical trials285,286. In a pilot clinical study, engineered 
T cells showed low off-target editing and minimal adverse 
events285,286. In an independent clinical study, patient 
T cells were similarly engineered using CRISPR–Cas9 
gRNA-mediated KO; however, PD1 was targeted alone 
or in combination with the endogenous TCR (T cell 
receptor α-chain constant (TRAC) and T cell receptor-β 
constant (TRBC)) genes287,288 (Fig. 5). Eyquem et al.289 
used Cas9 to enrich the targeting of a CD19 CAR to  
the TRAC locus in T cells, resulting in uniform CAR 
expression and increased CAR T cell potency com­
pared with those integrated randomly in the genome 
(Fig. 5). CRISPR editing in human cells is not without 
concern. Cas9 induces off-target cutting, and chromo­
somal rearrangements have been identified in edited 
T cell populations287 (see section Limitations below). 
Although, in this particular study, cells with chromo­
somal rearrangements decreased after transplantation, 
suggesting some selection against them, there is still 
potential for alternative CRISPR technologies to address 
this issue. For instance, Gaudelli and colleagues290 pro­
vided a proof-of-concept study that BE can be used to 
target multiple potential checkpoint regulators in T cells 
without inducing DSBs. To date, there are several ongo­
ing phase I clinical trials employing ex vivo CRISPR 
engineering of allogeneic or autologous T cells for the 
treatment of cancer (Table 2). The strategies designed in 
these trials involve either gene disruption by CRISPR 
KO to inactivate immunosuppressive factors and/or 

Microsatellites
Short tandem repeats in 
noncoding DNA often used  
as a genetic marker.
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integration of a CAR element into the TRAC locus for 
CAR T cell engineering; both strategies serve to pro­
mote the antitumour efficacy of tumour-specific cyto­
toxic T cells as an immunotherapeutic approach to the 
treatment of cancer (Fig. 5).

Preclinical potential of in vivo CRISPR therapies. As 
described above, although manipulation of primary 
patient-derived cells for transplant is a challenging 
clinical goal, targeting tumours directly with CRISPR 
is a much harder task. It will require multiple hurdles 
to be overcome, including achieving efficient and pos­
sible tumour-selective delivery, as well as target editing 
efficiency in a setting where there is strong selection 
against editing. Martinez-Lage et al.291 describe one 
clever preclinical example that targets oncogenic 
gene fusions, providing both tumour cell selectiv­
ity owing to the unique fusion and disruption of a 
tumour-promoting genetic lesion. In another preclin­
ical example, Gao et al.292 exploited nuclear factor-κB 
(NF-κB) — selectively activated in cancer cells — to 
drive transcription of CRISPR–Cas13a components 
and induce cancer cell-restricted oncogene silencing. 
Delivery of nucleic acids via lipid nanoparticles (LNPs) 
is an exciting concept that has had enormous success in 
the delivery of mRNA as a SARS-CoV-2 vaccine293–296. 
LNPs encapsulating Cas9 mRNA and gRNAs showed 
efficacy in a proof-of-concept study targeting the essen­
tial gene polo-like kinase 1 (PLK1), achieving efficient 
gene editing at the target locus in a mouse model of 
glioblastoma297. Together, these preclinical efforts show 
promise, but much work needs to be done to make 
CRISPR itself a viable clinical therapy for cancer.

Limitations
Despite the broad utility of CRISPR in cancer biology, 
there are still several limitations and concerns for its 
use that it will be important to address moving forward, 
particularly in therapeutic settings. The induction of 
DSBs in nuclease approaches can lead to unintended 
large deletions298 and in some cases, drive chromothrip­
sis, which could lead to the loss of tumour suppressors 
and impair otherwise normal cell function299. The down­
stream effect of DNA damage can also lead to induction 
of the p53 pathway, resulting in cell death or selection 
for cells with reduced p53 function300. Although this has 
raised concerns about CRISPR therapeutics possibly 
enriching for cancer-prone cells, it is important to note 
that there are no clinical data suggesting that CRISPR 
drives or supports cancer growth. In addition to poten­
tial issues with on-target activity, CRISPR does show 
sequence-dependent off-target effects20,301–303, which can 
result in unwanted gene disruption or large-scale chromo­
some aberrations304. In a research setting, such concerns 
can be minimized with appropriate controls and multi­
ple sgRNAs. The use of high-fidelity Cas enzymes (HF1, 
HiFi and HypaCas9 (refs20,29,305)) and improved sgRNA 
design tools (Table 1) can further reduce the prevalence 
of off-target events, although we should remain mindful 
that any genome manipulation may have functional con­
sequences that impact our use and/or interpretation of 
CRISPR-based strategies. CRISPR therapies that require 
ongoing Cas9 expression must overcome pre-existing 
immunity, which is widespread in the population306–308. 
Engineered Cas9 variants to avoid common immuno­
genic epitopes309 or removal of antigenic regions of 
CRISPR machinery after editing310 may offer a solution.

Table 2 | Ongoing clinical trials using CRISPR technologies to engineer immunotherapies for the treatment 
of human cancers

Target and method Cell type Phase Clinical trial identifier

PD1 KO Autologous TILs I NCT03081715 (ref.332)

PD1 KO Autologous TILs I NCT02793856 (ref.286)

PD1 KO Autologous EBV CTLs I/II NCT03044743 (ref.333)

PD1 KO Autologous TILs I NCT04417764 (ref.334)

PD1 and TCR KO Allogeneic mesothelin-targeting CAR 
T cells

I NCT03545815 (ref.335)

Edited endogenous HPK1 Autologous CD19-targeting CAR T cells I NCT04037566 (ref.336)

Endogenous CD5 KO Allogeneic CD5-targeting CAR T cells Early phase I NCT04767308 (ref.337)

Endogenous TCR and β2m KO Allogeneic CD19-targeting CAR T cells I NCT03166878 (ref.338)

Insert CAR, endogenous TCR 
and MHC-I KO

Allogeneic CD70-targeting CAR T cells 1 NCT04502446 (ref.339)

Insert CAR, endogenous TCR 
and MHC-I KO

Allogeneic BCMA-targeting CAR T cells I NCT04244656 (ref.340)

Insert CAR, PD1 and 
endogenous TCR KO

Allogeneic CD19-targeting CAR T cells I NCT04637763 (ref.341)

Insert CAR, endogenous TCR 
and MHC-I KO

Allogeneic CD70-targeting CAR T cells I NCT04438083 (ref.342)

Insert CAR, CD52 KO Allogeneic CD19-targeting CAR T cells I NCT04557436 (ref.343)

CISH KO Autologous CD19-targeting CAR T cells I/II NCT04426669 (ref.344)

β2m, β2-microglobulin; BCMA, B cell maturation protein (also known as TNFRSF17); CAR, chimeric antigen receptor; CISH, cytokine- 
inducible SH2-containing protein; CTL, cytotoxic T lymphocyte; EBV, Epstein–Barr virus; HPK1, haematopoietic progenitor kinase 1; 
KO, knockout; MHC-I, major histocompatibility complex class I; PD1, programmed cell death protein 1; TCR, T cell receptor;  
TIL, tumour-infiltrating lymphocyte.
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Conclusions
As Yogi Berra, an American professional baseball 
catcher, famously said, “It’s tough to make predic­
tions, especially about the future”. In which case, we 
will start by mentioning the easy one: CRISPR is here 
to stay. Although still a relatively young technology, 
CRISPR has affected nearly all aspects of cancer biol­
ogy, catalysed the generation of vast amounts of func­
tional data and revealed countless new insights into 
an already well-studied disease. Yet, there is still more 
to learn. The integration of CRISPR-based tools with 
single-cell multiomics approaches offers an enormous 
array of possible applications for exploring gene func­
tion and tumour heterogeneity. Incorporating spatial 
transcriptomics with pooled CRISPR libraries will be a 
powerful strategy to interrogate the impact of gene dis­
ruptions on tumour microenvironment interactions. 
We expect that following the recent expansion of BE 
and PE technologies, our ability to engineer and study 
disease-specific mutational variants will provide new 
understanding of how mutational signatures and gene 
variants drive cancer and hone our collective efforts to 
develop effective precision medicine-based approaches 
to treat individual tumours. Over the next 5–10 years, 

CRISPR will take its first real steps into clinical med­
icine. How prominently cancer-focused treatments 
will feature in the CRISPR arsenal is an unanswered 
question, but promising early work in CAR T cell 
therapies and other engineered immune cells signals 
that it will have a part to play. Although the poten­
tial for genome damage and off-target editing loom as 
hurdles for CRISPR, tools to diagnose and minimize 
such events are already in hand and ultimately they 
will likely not significantly curtail its use in a clinical  
setting.

The rapid progress and advances in CRISPR tech­
nologies have already begun to address many of the 
fundamental and puzzling questions we have about 
cancer. By delineating the role of individual genes 
in cancer cell behaviour, enabling the creation of 
next-generation immunotherapies, ascribing the func­
tional effect of recurrent coding variants, and revealing 
the role of elusive noncoding and regulatory elements 
in tumorigenesis, CRISPR has been, and will continue 
to be, a key element in our quest to understand and treat 
human cancers.

Published online 22 February 2022
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Fig. 5 | Ex vivo CRISPR engineering of human T cells for adoptive T cell 
therapy. Ongoing clinical trials to evaluate the efficiency and safety of 
CRISPR engineered T cells through ex vivo manipulation and adoptive 
transfer aim to improve antitumour activity of healthy donor or 
patient-derived T cells. Both allogeneic and autologous T cells are being 
tested as strategies to explore the efficacy of CRISPR engineering in 
tumour-infiltrating lymphocytes (TILs) and chimeric antigen receptor (CAR) 
T cells. Deletion of immunosuppressive factors such as the programmed cell 
death protein 1 (PD1) ligand in human primary T cells has been shown using 
CRISPR–CRISPR-associated 9 (Cas9) and is being tested therapeutically for 
adoptive T cell therapy employing both TILs and CAR T cells284–288,332–336,341,344. 
CRISPR–Cas9 ribonucleoproteins (RNPs) deliver guide RNA (gRNA) and 
Cas9 to targeted immunosuppressive factors (for example, PD1). Deletion 
of the endogenous T cell receptor (TCR) is also being explored using 
CRISPR–Cas9 to prevent TCR priming or immune rejection in the case of 

allogeneic T cells335,338–342. Replacement of the endogenous TCR with a 
cancer antigen-specific TCR either with a TCR transgene or with a CAR 
element has also been shown to improve cancer cell-specific T cell killing. 
CAR elements delivered using CRISPR–Cas9 homology-directed repair 
(HDR)-mediated knock-in to the T cell receptor α-chain constant (TRAC) 
locus are currently being tested in clinical trials339–343. In the same cells 
CRISPR can be used to delete the endogenous T cell receptor-β constant 
(TRBC) locus, endogenous major histocompatibility complex class I (MHC-I) 
to prevent immune rejection after transplant, and immunosuppressive 
factors with the aim of improving T cell activity, all of which are being tested 
in ongoing clinical trials using CAR T cells338–340,342. Engineered T cells are 
validated by next-generation sequencing (NGS) to ensure on-target editing 
with minimal off-target effects and subsequently expanded for transplant 
into the patient with cancer. Disease progression is monitored to assess the 
safety and efficacy of the engineered T cells (see Table 2 for details).
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