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Abstract

Background: CRISPR (clustered regularly interspaced short palindromic repeats) RNAs provide the specificity for

noncoding RNA-guided adaptive immune defence systems in prokaryotes. CRISPR arrays consist of repeat sequences

separated by specific spacer sequences. CRISPR arrays have previously been identified in a large proportion of prokaryotic

genomes. However, currently available detection algorithms do not utilise recently discovered features regarding

CRISPR loci.

Results: We have developed a new approach to automatically detect, predict and interactively refine CRISPR arrays.

It is available as a web program and command line from bioanalysis.otago.ac.nz/CRISPRDetect. CRISPRDetect discovers

putative arrays, extends the array by detecting additional variant repeats, corrects the direction of arrays, refines the

repeat/spacer boundaries, and annotates different types of sequence variations (e.g. insertion/deletion) in near identical

repeats. Due to these features, CRISPRDetect has significant advantages when compared to existing identification tools.

As well as further support for small medium and large repeats, CRISPRDetect identified a class of arrays with

‘extra-large’ repeats in bacteria (repeats 44–50 nt). The CRISPRDetect output is integrated with other analysis tools.

Notably, the predicted spacers can be directly utilised by CRISPRTarget to predict targets.

Conclusion: CRISPRDetect enables more accurate detection of arrays and spacers and its gff output is suitable for

inclusion in genome annotation pipelines and visualisation. It has been used to analyse all complete bacterial and

archaeal reference genomes.

Keywords: Phage resistance, Plasmids, Horizontal gene transfer, Cas, CRISPR, Small RNA targets, crRNA, Bioinformatics,

Repeat elements

Background

CRISPR-Cas (clustered regularly interspaced short palin-

dromic repeats-CRISPR associated) systems are adaptive

immune systems in prokaryotes that provide protection

from foreign genetic material, such as bacteriophages

and plasmids. Specificity is provided by short noncoding

RNAs (termed crRNAs; CRISPR RNAs) that recognise

the invading DNA or RNA. These noncoding RNAs are

derived from CRISPR arrays that possess near identical

direct repeats, typically 21–48 bases long, punctuated by

short non-identical ‘spacers’ that provide the immune

‘memory’ of these systems. [1–6]. CRISPR-Cas function

requires a suite of Cas proteins encoded by cas genes,

which are often located nearby the CRISPR loci (for re-

views see [4–11]).

Analysis of CRISPR-Cas systems requires the detection

of CRISPR arrays and their entire complement of spacer

sequences. The computational recognition of CRISPRs

has been approached in a number of different ways.

Initially, CRISPRs were predicted by genomic pattern

matching programs such as PatScan [12]. Then, to facilitate

CRISPR prediction and analysis, a number of tools were

developed, including both command-line executable pro-

grams (e.g. CRT [13], MINCED [14] and PILER-CR [15])

and web-applications (e.g. CRISPRFinder, CRISPI) [16, 17].

Recently, CRISPR prediction has been extended to metage-

nomic data [18–20].

The current prediction approaches have limitations, par-

ticularly in distinguishing CRISPRs from other types of

repeats. In addition, many arrays show some mutation

(substitutions or insertion and/or deletions), particularly at
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the 3’ end. Better approaches are needed to identify and

represent these events. A drawback of the existing methods

is that predictions do not fully utilise the available bio-

logical information. Current methods mainly rely on se-

quence similarities (and sometimes length distribution) in

the repeats and spacers with predefined parameters, and

do not search for key features of CRISPRs. For example, in-

sertion, deletion and multiple point mutations may occur,

then be propagated through subsequent repeats during du-

plication, or a portion or whole repeat and/or spacer could

be deleted through recombination [21–26]. Furthermore,

most of the existing programs fail to detect short or de-

generate CRISPR arrays. Setting the parameters with

high sensitivity may include these but will also lead to

the identification of many non-CRISPR genomic re-

peats. Finding the true positives from such a large list

of short CRISPR-like regions is laborious.

CRISPR arrays expand by duplication of the repeats

and acquisition of spacers from the invading DNA [27].

This repeat duplication and spacer integration typically

occurs at the leader end (AT-rich sequence containing

the promoter) of the array [28, 29], although internal

spacer acquisition can occur [30]. Repeats and spacers

can also be lost by mutation, through small and large in-

sertions or deletions, or recombination [21, 22, 26]. In

addition, modelling has indicated there is a dynamic flux

between acquisition and loss, driven by mutation and se-

lection [31].

Most commonly used prediction tools do not assign

strand or directionality to CRISPR arrays as part of the

automated prediction process, resulting in roughly half

of arrays being reported in the incorrect orientation. How-

ever, recent tools allow determination of CRISPR direction

as a post-prediction step on arrays (CRISPRDirection), or

repeat direction after array prediction (CRISPRstrand)

[32, 33]. These developments have shown that the re-

peats can indicate the direction of CRISPR transcrip-

tion [32–34]. For example, conserved sequence motifs

(notably ATTGAAA(N)) at the 3’ of some repeats, are

an indicator of the transcriptional direction [32, 33].

Therefore, it is important to accurately predict the repeat/

spacer boundaries while predicting CRISPRs to correctly

assign direction. In addition to sequence motifs, CRISPR-

Direction uses a range of predictive factors to determine

array direction [32]. Defining direction is important to ac-

curately identify spacers, since they are used to find their

cognate DNA or RNA targets (termed protospacers) [35].

Since spacers are short (i.e. often ~30 nt), it is difficult to

identify true targets and every additional correctly anno-

tated nucleotide (nt) assists target detection. In Type I,

Type II and Type V systems, the bases at one end of the

spacer are usually part of a ‘seed’ sequence, that is critical

for base-pairing, target recognition and interference

[36–40]. Similarly, it is important to correctly identify the

precise ends of the spacers to enable accurate prediction

of important motifs flanking the protospacer, termed

protospacer adjacent motifs (PAMs) [41]. PAMs are es-

sential for target/non-target discrimination, so knowing

their precise location is critical for identifying biologic-

ally relevant targets.

Towards the leader-distal (3’) end of CRISPR arrays,

repeat mutations can accumulate. Furthermore, inser-

tions and deletions can occur, especially in the 3’ end of

CRISPR arrays [26, 42, 43]. These sequence deviations

(repeat degeneracy and the presence of partially deleted

repeats and/or spacers) mean that the 3’ ends of CRISPR

arrays are often incorrectly detected. PILER-CR is cur-

rently the only program that handles insertions and/or

deletions in repeats. The inability to detect these events

means that we still have limited knowledge about how

arrays degenerate to balance nascent spacer acquisitions

at the leader end. The directional incorporation of new

spacers implies a particular evolutionary history and can

be used successfully in strain typing and evolutionary

studies [44, 45]. Therefore, it would be informative if

CRISPR detection provided a potential extension with

lower repeat identity to test if degenerated, but still rec-

ognisable, repeats are present in the leader-distal end of

the array.

Here, we developed CRISPRDetect, a web-based and

command line tool, that enables accurate identification

of CRISPR arrays in genomes, their direction, repeat

spacer boundaries, substitutions, insertions or deletions

in repeats and spacers and lists cas genes that are anno-

tated in the genome. This data is combined into a search-

able database, CRISPRBank, currently version 1.0. Spacer

outputs from CRISPRDetect can then be directly used to

search for targets in viral and other sequence databases

using the linked tool, CRISPRTarget [35].

Implementation
Figure 1 shows a schematic overview of the CRISPR

identification and refinement process. Most existing

tools identify CRISPRs using a default word length (e.g. 11)

and minimum repetition (e.g. 3 or above). By default,

CRISPRDetect searches with >2 repeats and a word length

of ≥11 for a faster identification process, but it also allows

identification of CRISPR arrays with only two repeats

(i.e. 1 spacer) with a word size >5. CRISPRDetect uses

five main processes to analyse a putative CRISPR: 1. re-

peat detection to give putative CRISPRs, 2. removal of

CRISPR-like tandem repeats, 3. refinement, 4. deter-

mination of direction and similarity to characterised re-

peat families and 5. quality scoring.

Detection of putative CRISPRs

CRISPRs are initially identified as two short stretches

of identical sequences separated by a dissimilar short
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sequence. Since the shortest length of experimentally

verified CRISPR repeats are about 23 nt [46], by default,

we used a much shorter minimum word size of 11.

However, CRISPRDetect can be run with word sizes >5.

The minimum and maximum space (potential spacer

length) between words are calculated using the following

formulae.

Minimum space between repeating words

¼ 30 – repeating
�
word

�
length

Maximum space between repeating words

¼ 125 þ repeating
�
word

�
length

The idea of not using fixed minimum and maximum

lengths is to reduce user input as well as maintaining the

speed. As the shortest verified repeat length is longer than

20 nt, this approach will ensure that CRISPRDetect will

not miss any potential CRISPR. The default 11 nt word

size ensures that potential shorter repeat (e.g. ~ 23 nt)

with multiple base mismatches will be detected, while not

compromising on speed for a typical bacterial or archaeal

genome. This is done using regular expressions imple-

mented in PERL.

Removal of tandem repeats

The genomic regions containing the putative CRISPRs

were analysed to identify repeats. Using the repeating

word, the genomic regions are divided into sequence

segments with every segment beginning with the re-

peated word. These repeated words are then aligned

using ClustalW [47] and used to try and increase the ini-

tial repeat length of likely arrays as well as to eliminate

simple tandem repeats. For the “spacers” of the putative

CRISPRs that have <5 unaligned columns (i.e. are highly

Improve array 
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Is 
 -0.5>score<0 ? 

Yes 

Yes 

No 

No 

Is 
CRISPR

? 

Identify putative CRISPRs 

Max. gap between repeats Word size Min. word repeat Genomic sequence 

Is i=1? 

i=0 

Extend repeats 

Refine CRISPR 
and 

Representative 

Repeat 
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Shorten repeats 
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from both ends 
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No 

No 

STOP 

Is quality   
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No 

Fig. 1 The CRISPRDetect automated pipeline. The modules that make up the pipeline are shown. In some cases there is an iterative repeat of

processes, (iteration ‘0’ to i). See CRISPRDetect.pl for details. The interactive web implementation allows dynamic alteration of the parameters to

suit the particular CRISPR array and genome
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similar across the array), the putative CRISPR are

marked as clear tandem repeats and discarded.

Refinement of the putative CRISPR

CRISPRDetect supports eight independent refinement

subroutines. These methods are used by default and ap-

plied in the specified order. Figure 1 shows the sche-

matic diagram of the CRISPRDetect analysis pipeline,

which is detailed in the following sections. However,

each of these methods can be applied independently in

an interactive manner to one or all CRISPRs using the

CRISPRDetect web-server.

Extending the repeat end

Mutations at the ends of repeats may result in part of

the repeat being included in the adjacent spacer se-

quences (e.g. Fig. 2C). CRISPRDetect progressively ex-

tends the repeat on both sides, comparing the bases

from adjacent columns with minimum column identity

by default of 75 % (range 0–100 %). Therefore for two or

three repeats perfect identity is required, for four to

seven one mismatch allowed, for eight two, and so forth.

Short repeats predicted initially may be bounded by a

single column with low (e.g. 50 %) identity, but followed

by columns with high identity. CRISPRDetect uses an

adaptive method to extend the repeat if required, where

instead of using only the primary column identity as a

cutoff (default 75 %), it also uses an additional lower,

‘alternate column identity’ permitted for one column.

The ‘alternate column identity’ is by default 50 % for

arrays <7 repeats and 40 % for longer arrays. It is applied

when a column has greater than the ‘alternative column

identity’ but is followed by two or more columns with

identity higher than the primary column identity (e.g. a

column with only 4/10 identical bases, followed by two

or more columns of 9/10. This has the added effect of ex-

tending the repeats of non-CRISPR tandem repeats split

by low identity columns, this eliminates the ‘spacers' and

identifies them as tandem repeats.

Selecting representative repeats

For most arrays there is very little dissimilarity among

repeats and a representative repeat is easily selected. It is

more difficult to identify a single representative repeat

for shorter CRISPRs, those with frequent mutation in

the repeats, or when more than one repeat sequence is

found in longer arrays. The precise representative repeat

is an important component of an array, as it helps to

identify the family, direction, true spacer lengths, as well

as the degenerated repeats at the end of array. This se-

lection is repeated after every major operation on the

array. CRISPRDetect selects the most common repeat as

the ‘representative repeat’, with the next most common

being the ‘alternative’ repeat.

Extend the array

This method progressively checks the flanking regions

of the CRISPR arrays in windows within a distance

equal to the length of the representative repeat plus

1.33 times the median spacer length for typical median

spacer lengths (>15 and < 70, 2.5 × repeat length out-

side this range). The permitted minimum gap between

newly identified repeats and existing repeats is 0 nucleo-

tides to address total spacer loss, and the default upper

limit is 125 nucleotides. The flanking region is compared

with the Smith-Waterman algorithm (EMBOSS/water)

with an increasing gap-penalty (starting from 5.5 to 10 in

steps of 0.5) to identify the best non-gapped alignment.

Once such an aligned region is identified, the region is ex-

tended either side accordingly, to match the representative

repeat length. It is then further checked to ensure that the

minimum repeat identity (default ≥67 %) is met (gaps, in-

sertions and deletions are equally penalized with -1), and

for all valid matches, a new repeat-spacer set is added to

the array. This process is by default a dynamic one with

the comparison being made to the adjacent repeat.

Refine the repeats

Initial repeat prediction may consist of additional bases

at the ends that correctly belong to the spacers. This is

due to situations where the first or last base of multiple

spacers is nearly identical in an array. CRISPRDetect

utilises a set of methods (comparison with a library of

known repeats, known motifs (e.g. ATTGAAA(N))

found in the end of repeats, repeat end region degener-

acy (default ≥20 % base mismatch)) to predict the cor-

rect repeat/spacer boundary. In the interactive mode,

users can trim both sides of the repeats by any number

of bases, as long as the repeat retains the minimum

word length specified in the parameters for initial array

prediction.

Trim the array - remove repeats that match poorly the

representative repeat

Highly degenerated repeats can be falsely included after

dynamically extending the CRISPRs, for example, if 2

repeats were added successively with 67 % identity the

final repeat would have 45 % identity to the first. Repeats

can be removed by requiring a minimum percentage

identity between the representative repeat and terminal

repeats. Trimming stops when a repeat has an identity

above the cutoff (default >66 %) or the minimum number

of repeats (default 3) specified is reached. This enables the

user to have a simple means to remove sequences that are

incorrectly assigned as degenerate repeats.

Correct gaps at repeat ends

After the initial repeat and spacer prediction, the repeat

may contain terminal gaps or additional bases from the
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Fig. 2 (See legend on next page.)
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spacer, which can also make the spacer prediction incorrect.

To refine the ends of the repeat, CRISPRDetect uses

matching bases from the initially predicted spacer. For ter-

minal insertions, the bases are labelled as insertions.

Representation of insertions in a small number of repeats

of an array

During alignment of the repeats, insertion of base(s)

may have been identified. This results in introducing

gap(s) in the visualisation of other repeats, including the

representative repeat. To avoid these visual gaps in

columns, CRISPRDetect denotes inserted bases as

insertions in the array, which prevents the need to insert

a gap character in the representative repeat (e.g. Fig. 3).

Identify mutated repeats in sequences initially predicted to

be long spacers

When a substantial portion of a repeat and/or a repeat-

spacer junction is deleted, the repeats fail to retain the

minimum percentage identity and could be erroneously

added to the next spacer, making these spacers appear

unusually long. CRISPRDetect looks for such cases

where the spacers are longer than the median spacer

length with a user given minimum percentage identity

(See figure on previous page.)

Fig. 2 CRISPRDetect predictions for E. coli K-12- text output. CRISPRDetect identifies two CRISPR arrays in a K-12 genome, corresponding to the

well characterised CRISPR 2.1 and 2.3 loci. This genome is provided as one of the test sets at http://bioanalysis.otago.ac.nz/CRISPRDetect/.

CRISPRDetect output. E. coli arrays - both arrays are reverse-complemented in the CRISPRDetect prediction (based on matches to reference repeat

and other features by CRISPRDirection) a CRISPR 2.1 The array section of the CRISPRDetect output is shown, showing base differences e.g. a. TT

mutations in the repeat toward the predicted 3’ end. b. The full output is shown, and specific features are in bold. For CRISPR 2.3 the reference

repeat match also permitted inclusion of the experimentally verified last base (G) in the repeat, although it varies in two of six repeats (the first

and last, bold). The score is high (8.14) and the components are shown below. The Directional analysis gives a ‘HIGH’ confidence for the

reverse orientation as shown. The cas genes identified in the ‘.gbk’ file are listed as are the signature genes for any family present (only I-E in

this example). c. CRISPRFinder prediction for E. coli CRISPR 2.3 for comparison. Prediction obtained from CRISPRdb predicted by CRISPRFinder

Fig. 3 CRISPRDetect web output. An example of a predicted and automatically refined array from Cronobacter sakazakii ES15, which has 16 repeats, the

last of which has degenerated. Options A-I are available for further interactive application of the selected processes to the selected array (Array 2 from this

genome, array 1 is hidden). The array is shown in a standard format with substitutions in the repeat sequence shown. Insertions in one a repeat is

indicated at the right. The quality score is high 8.87 (>4.0; max 13) and the score would be detailed in the next lines (as in Fig. 2, not shown). A link to

CRISPRBank and initial analysis is shown in the top right and indicates that this exact repeat is found in five genomes (Cronobacter species). The annotation

file in GFF can be downloaded for visualisation or further analysis (e.g. Fig. 6)
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between the representative repeat and the whole spacer,

revealing not only partial repeat deletion, but also partial

and/or total spacer deletion. These insertions and dele-

tions are labeled in the output.

Predicting direction

The direction of a CRISPR is predicted using the

CRISPRDirection algorithm [32]. The arrays predicted

in the reverse direction are automatically reverse

complemented (i.e. they are displayed in the forward

orientation, with the leader at the 5’ end). In the

CRISPRDetect output, those that have been reversed

are labelled accordingly.

Predicting CRISPR-Cas Type

To give an indication of the CRISPR-Cas Type (e.g. Type

I-E), two independent methods are used. Firstly when

the representative repeat matches a known repeat that

has been associated with a particular Type of CRISPR-

Cas system (from a reference set [32]) the Type is indi-

cated in the output. The reference set of validated re-

peats is also utilised in correcting repeat boundaries,

scoring and validation of the arrays (later sections).

Second if genomic annotation information is available

(e.g. Genbank formatted files from Genbank/genomes),

CRISPRDetect utilises the presence of annotated signa-

ture Cas genes (and synonyms) in the genome. The out-

put lists all of the CRISPR-Cas Type(s) reported in the

Genbank file.

Scoring the quality of the predicted arrays

A scoring system gives each predicted array a score

based on known biological properties. Each parameter

has a positive or negative score and these are summed.

These scores are detailed in Additional file 1: S1 and in-

clude: 1. the presence of annotated cas1 or cas2 genes in

a gbk or gbff file (+1, or 0); 2. a close match to known or

confidently predicted repeats (+3); 3. specific sequence

motifs at the 3’ end (+3); 4. a metric for identity within the

repeats (+1); 5. a penalty for dissimilar repeats (-1.5); 6.

metrics for the representative repeat length (-3 to +1); 7.

metric for spacer length (0 to -3); 8. a penalty metric for

identity among the spacers (-3 to +1) and 9. a penalty

metric for dissimilarity among the repeats (-1 to +1). Each

of these scores is listed in the output. A final score for

each CRISPR array is determined by summing all the

scores from the individual methods. The CRISPRs with

negative scores are discarded, and the remaining CRISPRs

are listed in order of position on the genome. Arrays with

scores above 4.0 were classified as good quality based on

comparison to the scores of arrays from experimentally

validated species.

Results and Discussion
Overview

We aimed to develop a tool for improved detection of

CRISPRs. CRISPRDetect was constructed to facilitate

the identification and visualisation of the correct orien-

tation of CRISPRs, spacer-repeat boundaries, substitu-

tion, insertion and deletion mutations, repeat similarity

and the presence of cas genes in the genome. We define

‘true’ CRISPRs as experimentally determined arrays and

‘putative’ CRISPRs as those predicted computationally

by CRISPRDetect or other methods. Putative CRISPRs

are classified by CRISPRDetect as ‘good’, based on qual-

ity scoring criteria (≥4.0), or ‘Questionable’ (≥0 and <4.0)

(Additional file S1). The most common repeat for each

array is termed the representative repeat. The overall

CRISPRDetect process is shown in Fig. 1.

CRISPRDetect was run on 2806 complete bacterial

and archaeal genomes from GenBank/genomes (5262 se-

quences). This set of genomes was chosen to be compar-

able to that available for CRISPRFinder/CRISPRdb

online (Feb 2016). Using the default settings, a total of

3901 CRISPRs were found, of these 3870 (97 %) were

classified as ‘good’ arrays with a score of ≥4.0, repeats ≥3

and minimum repeat length ≥23. These arrays are fur-

ther analysed here. There were 16,607 arrays flagged

‘Questionable’ with scores ≥ 0 and <4.0. Of these, 160

were further flagged as ‘Potential tandem repeats’.

CRISPRDetect modules performed iterative refinements

on the arrays (see Implementation and specific examples

below). Of the repeats in 3870 arrays, 12 % were not iden-

tical to the representative repeat, with 50 below 70 %, and

399 below 80 % identity. About half (as expected) were

corrected in direction by CRISPRDetect and 1300 of these

were corrected with high confidence (32). One hundred

and sixty arrays were flagged as likely direct repeats (not

having a repeat-dissimilar spacer structure) and are all

‘questionable’ arrays.

We compared these 3870 ‘good’ arrays to those pre-

dicted by three existing programs using their default pa-

rameters. A table of features in CRISPRDetect compared

with CRT, PILER-CR and CRISPRFinder is presented in

Additional file 1: Table S2. CRISPI was not tested as it

is available online in an interactive mode only. CRT pre-

dicted 3681, PILER-CR 3743 and CRISPRFinder 2750

good CRISPR arrays (Fig. 4).

All programs predicted 1782 common arrays (Fig. 4).

CRISPRDetect showed the highest concordance with

PILER-CR and CRT (an additional 1407 arrays in

common). Compared with the other methods CRISPR-

Detect predicted an additional 345 arrays. All arrays with

scores >0 could be further analysed if desired (http://

bioanalysis.otago.ac.nz/CRISPRBank/). Arrays can be se-

lected for analysis by using a user selected cutoff score

(e.g. 0.25, 3.0, or 5.0).
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Arrays predicted using CRISPRDetect with similar set-

tings to those used by CRISPRdb (CRISPRDetect score

≥4.0, repeat ≥3, min repeat length ≥23) were found in

75 % of archaeal genomes (124 of 165) and 45 % bacterial

genomes (1179 of 2641). For CRISPRFinder/CRISPRdb

the percentages of archaeal and bacterial genomes with

predicted ‘convincing’ CRISPR structures are currently

83 % and 45 %.

Each of the other programs reported arrays that were

not predicted when using the default settings for CRISPR-

Detect (Fig. 4). There were only 10 arrays predicted by the

other three tools and not by CRISPRDetect. These arrays

had between 3 to 5 repeats and all were predicted by

CRISPRDetect, but had lower confidence scores. These ar-

rays had scored lower, typically due to high similarity in

spacers, or high numbers of mismatches in the repeats.

We used CRISPRDetect to determine the range of

sizes of repeat and spacers (Fig. 5a-b). To minimize po-

tential skew from overrepresented strains belonging to

the same species in the databases, one strain from each

species was analysed, and the length of the representa-

tive repeat and average spacer length determined. When

compared with the same analysis performed on all ar-

rays, there is no significant difference in the distribution

(Additional file 1: Figure S3). The length of most repeats

(96 %) are 24-37 nt and they can be classified into three

major size ranges (small 24–25 nt, medium 28–30 nt,

and large 36–37 nt) [46]. In contrast, there was a wide

variation in spacer length across all genomes, but 97 %

of the spacers are 29–43 nt (Fig. 5b). The most common

spacer lengths are 32–37 nt in bacteria and 35–40 nt in

archaea. These repeat classes are differently represented

in archaea and bacteria. Small repeat (24–25 nt) are

common in archaea (39.7 % of repeat) but not in bac-

teria (1.7 % of repeat). In bacteria, the large class is more

common (25.8 % vs 11.5 %). Each range contains some

repeat similar to experimentally determined CRISPR re-

peats. A new class including forty-four ‘extra large’ bacter-

ial repeats (44–50 nt) is well supported by our predictions

(Fig. 5a). This class was previously noted as associated with

Type II-C proteins [48, 46]. Most are in the order Flavo-

bacteriaceae within the Phylum Bacteroidetes and include

Capnocytophaga canimorsus (NC_015846) 47 nt, 113 re-

peat; Riemerella anatipestifer species (e.g. NC_018609)

47 nt, 11–13 repeats; Weeksella virosa (NC_015144) 50 nt,

21 repeats. These arrays typically are adjacent to annotated

cas1, cas2 and cas9 genes, and approximately half of these

repeat have similar sequences at the 3’ end (UYACAAC).

To see if prior analyses had omitted short repeats of genu-

ine CRISPRs, we lowered the length restriction during

detection. CRISPRDetect predicted 29 short repeats in

bacteria and archaea with sizes <23 (the lower limit in

CRISPRdb [46]). However, all but one are short arrays with

typically less than 5 repeats, further experimental evidence

would be required to determine if these are functional.

Across all CRISPRs, the array with the greatest number of

repeats is from the marine bacterium Haliangium ochra-

ceum with 588 repeats of 36 bp (and two arrays nearby of

190 and 37 repeats with identical repeats).

It is possible for CRISPR arrays with only 1 ‘repeat’

and a portion of the leader to function for adaptation

[27, 49, 50]. For common putative CRISPRs with only 2

repeats, they are flagged as ‘questionable’ by CRISPRFinder,

and are not predicted by default by CRT or PILER-CR, as

they would introduce many false positives. CRISPRDe-

tect is able to discriminate between false positive and

genuine CRISPR arrays by characterising the repeat

and other scores. CRISPRDetect predicted an additional

770 arrays with just two repeats with score ≥1.5. Al-

though none of these putative CRISPRs had a known

reference repeat, 168 had the signature ATTGAA(N)

sequence at the 3’ end so are likely new or divergent re-

peat sequences.

Algorithms to refine the structures of arrays

The abovementioned benefits of using CRISPRDetect

over other currently available software are nicely illustrated

by analysis of Escherichia coli (NC_010473, 4.6 Mb).

CRISPRDetect predicts two ‘good’ CRISPRs near 2.9 Mb

on the genome (scores 7.90 and 8.14; maximum possible

score of 13) (Fig. 2a–b). These arrays are well characterised

experimentally [51, 52]. All previous programs made array

predictions in the incorrect (reverse) orientation and

inaccurately predict the repeat boundary for CRISPR2.3

(aka CRISPR II) by missing an incompletely conserved

repeat base G on the 3’ end (Fig. 2c). This G has been

experimentally shown to be an incompletely conserved

part of the repeat [51]. CRISPRDetect automatically

corrected the direction (using CRISPRDirection [32])

and the repeat boundaries (Fig. 2b). The boundaries

were automatically corrected in the step where the rep-

resentative repeats are compared to the library of known

repeats (CRISPRBank, see Implementation section). The

Fig. 4 Comparison of the number of CRISPR arrays predicted by three

existing methods compared with CRISPRDetect. Arrays with three or

more repeats, and for CRISPRDetect a good quality score (>4.0) and ≥23

base repeat were counted
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orientation and boundary corrections result in the precise

spacer length and sequence identification, facilitating ac-

curate subsequent analyses of protospacers, their target

strand and their PAMs. Finally, identification of the likely

CRISPR-Cas types (Type I-E in this case) was made by

the presence of signature cas genes [7] in the annotated

genome (Fig. 2b).

Insertion/deletion in repeats and spacers

Insertions, deletions and substitutions can occur in re-

peats and may be copied into new repeats during spacer

acquisition [50]. CRISPRDetect detects repeat mutations,

including insertions, deletions and substitutions. Of the

existing tools, only PILER-CR represents substitutions in

the repeat. In the cases of deletion (shorter repeats), the

other tools usually incorrectly assign part of the spacer

as part of the repeat in order to maintain the consensus

repeat length. PILER-CR does not consistently predict

the cases where the repeat-spacer junction has muta-

tions within a few bases (<6) of the end of repeat. Fur-

thermore, in PILER-CR, insertions are represented in

one repeat, which creates a gap in all other repeats and

the representative repeat. In CRISPRDetect, this is re-

solved with a new output notation (Fig. 2, and Fig. 3

CRISPRDetect online help). Insertions/deletions are

listed to the right of the repeat-spacer unit, with their lo-

cation denoted (e.g. C [3167138] means an insertion of

the nucleotide C at position 3167138, Fig. 3; likely dele-

tion of spacers is also denoted Additional file 1: Figure

S4 and Figure S5). The deletion notation eliminates the

need to artificially introduce gaps into multiple repeats,

especially the representative repeat. In other cases, inser-

tion of multiple bases towards the centre of a repeat

may cause splitting the entire CRISPR into two or more

short CRISPRs, which results in the inability to detect

internal spacers. For example, in Carboxydothermus

hydrogenoformans, a CRISPR array is split in two by

PILER-CR (of 12 and 68 spacers), which CRISPRDetect

corrects, leading to the identification of three extra

spacers (83 spacers total, NC_007503-1949573-

1944006). These CRISPR splitting events also complicate

the analysis of leader regions, and the accurate assess-

ment of the evolutionary history of acquisition events,

since they would be analysed as two arrays rather than

one. Partial deletions in spacers were detected by previ-

ous programs. However, these programs do not support

the identification and visualization of complete spacer

loss.

Identification of degenerated repeats in the spacer

sequence

If repeats degenerate, they may not be recognised and

can be included in subsequent spacers, resulting in er-

roneously long spacers. CRISPRDetect addresses this by

searching for variant repeats with a lower identity

threshold in all spacers with length 1.2-fold greater than

the median spacer length in that array. If degenerate re-

peats are found, these are represented as repeats. For ex-

ample in an atypical 8 repeat array from Salmonella

enterica (Additional file 1: Figure S5), PILER-CR detects

six repeats, with degenerated repeats being included as an

unusually long 5th spacer (CRT and CRISPRFinder also

make incorrect assignments, Additional file 1: Figure S5).

CRISPRDetect predicts this array including 8 repeats (3 of

the 8 repeats have small deletions at the repeat-spacer

junction) with 5 typical spacers and 2 missing spacers at

the 5’ end.

Improving arrays by adjusting the repeat ends

CRISPRDetect uses a library of reference repeats (part of

CRISPRBank) to automatically refine predicted repeat

(Fig. 2a–b). This can be used in both an automatic and

interactive way. If the new representative repeat matches

a known reference repeat, then the repeat is extended or

trimmed to have the reference length as described

above for E. coli (Fig. 2a–b). In addition, if the repre-

sentative repeat contains a known repeat boundary motif

(e.g. ATTGAAA(N) 3’), then the 3’ end of the repeat is ad-

justed. This motif was found in 1070 arrays. Additionally,

the web interface has the option to interactively increase

or decrease the repeat length in an interactive array based

on expert knowledge of the user.

Identification of degenerated repeats and/or spacers

beyond the end of an array

Repeats beyond the end of the array may degenerate by

mutation and not be recognised. CRISPRDetect applies a

lower match threshold to extend arrays. At the default

settings this is set stringently, and arrays in the reference

databank are predicted with this stringency (CRISPRBank).

However, this is user-tuneable in both the automatic and

interactive versions of the program. This allows users to in-

vestigate the decay of CRISPRs. Array extension is useful

for analysing closely spaced arrays, separated by deleted or

degenerate repeats or insertions. CRISPRDetect supports

an extension, permitting repeat detection with identity as

low as 35 % (Additional file 1: Figure S6, and Figure S7a, b).

(See figure on previous page.)

Fig. 5 Sizes of CRISPR array repeats and spacers. a Distribution of sizes of the representative repeats for each array, the percentage of each length is

shown separately for bacteria (blue) and archaea (yellow). Four size ranges- small, medium, large, and extra large are indicated. b Distribution of the

median spacer size for each array. In (a) and (b) CRISPR arrays with ‘good’ scores (≥4.0) and three or more repeats from one strain for each species

from Genbank/genomes were counted. For the same analysis including all strains, see Additional file 1: Figure S3
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It also supports a ‘dynamic adaption’method, where instead

of using the global representative repeat, the nearest neigh-

bouring repeat is used as a reference. One advantage of this

method is that it allows dynamic adaptation where a repeat

mutation has been propagated at one end of the array

(Additional file 1: Figure S7c).

False positive predictions from tandem repeats

Other types of tandem repeats may be mis-identified as

CRISPR arrays. No arrays with scores above 4 are flagged,

there are 160 arrays with scores below 4 flagged as tandem

repeats, (mean score 0.7). Additional file 1: Figure S8a pro-

vides an example of a predicted five repeat CRISPR (by

CRT) with degenerated repeats being denoted as four

spacers, CRISPRDetect does not predict this as an array.

However, some likely arrays have a number of exactly iden-

tical spacers, followed by few non-identical spacers. For ex-

ample, seven identical spacers are present in a 24 repeat

array in Methanocaldococcus jannaschii, which is identified

by CRISPRDetect (Additional file 1: Figure S8b and Figure

S9).

Array orientation

Previous tools did not predict array orientation, until we

developed CRISPRDirection, which corrects CRISPR orien-

tation with ~94 % accuracy [32]. CRISPRDirection has a

separate confidence score in the CRISPRDetect output

(e.g. in E. coli, Additional file 1: Figure S4). An alterna-

tive would be to use CRISPRstrand [33], which predicts

orientation using repeat but is not currently available as

a command line program.

Internal database of CRISPRs (CRISPRBank)

As yet, there are no dynamically interactive CRISPR

prediction tools to enable users to refine arrays. Al-

though, CRISPRFinder and CRISPI are supported by

some post-processing tools and a database (CRISPRdb),

interaction between the prediction program and the

database is not available. CRISPRDetect addresses this

by incorporating a database of pre-computed CRISPRs

(CRISPRBank) generated from all complete bacterial

and archaeal genomes. Users can test newly predicted

CRISPRs with a minimum score (default 4.0) during

initial prediction, or once the output is generated. The

representative repeat of each array can be directly

searched in the CRISPRBank database, showing occur-

rences in other genomes. CRISPRBank currently contains

24,717 possible CRISPRs (score >0) with detailed informa-

tion including family, direction and scores (the range of

scores are shown in Additional file 1: Figure S10).

CRISPR-Cas Type indication

In CRISPRDetect and CRISPRBank predicted Types are

indicated. This is based on the presence of signature cas

genes (when annotated in the input Genbank format file)

[7] and by similarity to repeat from known Types. In the

output, CRISPRDetect lists the cas genes annotated, to-

gether with the sets of signature cas genes that were iden-

tified (Fig. 3). However, the lack of annotated cas genes in

an output does not mean they are absent and further user

analyses are advised. Analyses to find missing cas genes

could include more sensitive searches for the cas genes, or

use of the recently published compilation of cas genes [53]

or CRISPRmap/CRISPRstrand analysis [33]. Proposed up-

dates of the classification of CRISPR-Cas systems would be

able to be incorporated into CRISPRDetect [48, 54, 55].

Scoring the quality of the arrays

The ‘quality’ of the final prediction is scored by a set of

rules in CRISPRDetect. It scores each array with nine dif-

ferent CRISPR properties that includes both positive (e.g.

length of repeat) and negative scores (e.g. a small penalty

for the dissimilarity of the repeats) (Materials and Methods

and Additional file 1). Arrays that score below a user given

cutoff score are flagged as ‘questionable’. Arrays with

scores <0 are not reported. These parameters are adjust-

able in both the automatic and interactive version. The

presence of a known repeat gives an additional score (+3),

therefore such repeats often have scores >6 (Additional

file 1: Figure S10). However, many arrays score as good

arrays (≥4) without a previously predicted repeat. The

scores for all the predictions >0 from CRISPRDetect,

and the scores for the arrays with experimentally con-

firmed repeats are shown in Additional file 1: Figure S10.

CRISPRDetect defaults to a conservative score of 4.0, but

lower values e.g. 3.0 could also be used for greater sensi-

tivity (Additional file 1: Figure S10).

Direct link to CRISPRTarget for spacer analysis

From the CRISPRDetect output webpage, spacers can be

sent directly to CRISPRTarget for target prediction in

foreign DNA (e.g. the bacteriophage division of Gen-

Bank) [35]. CRISPRTarget uses a flexible algorithm that

takes the formatted and predicted spacer sequences from

CRISPRDetect (will also accept other formats) and uses

these to search databases for targets.

Repeat analysis

CRISPRDetect shows any repeats that have an exact

match in CRISPRBank. If desired, these repeat could be

further analysed by CRISPRmap [33, 34]. CRISPRmap

can classify the repeats based on sequence and structural

similarity into one of 40 families or 33 structured motifs.

This can then be used to predict the phylogenetic distri-

bution of the family that the repeat matches.
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Use in prokaryotic genome annotation pipelines

CRISPRDetect produces a gff output, which can be used

for genome annotation or visualisation. Currently,

CRISPR arrays may be annotated using a combination of

modified CRT and PILER-CR (e.g. DOE-JGI Metagenome

Annotation Pipeline v.4 [56, 57] and NCBI [58]).

PROKKA also uses a modified version of CRT (MINCED)

[14], whereas RAST uses Perl regular expressions to find

repeat >24 [59]. Typically ncRNA predictions (e.g.

CRISPR) are made then excluded from subsequent CDS

prediction. CRISPRDetect could be incorporated into

these pipelines in place of existing software using a high

stringency (e.g. score >4) to avoid false positives and sub-

sequent missing CDS predictions. For semi-automated

finishing of genomes the gff output can be read into edi-

tors/viewers for example Artemis [60] or the Integrative

Genomics Viewer (IGV) [61]. An array from the green-

house gas producing archaea Methanobrevibacter rumi-

nantium is shown in Fig. 6. The gff output is displayed

alongside the RefSeq annotation of this genome. The fine

structure of the array is shown in the likely orientation.

The RefSeq pipeline annotation [58] broadly described as

a ‘repeat-region’ is shown in light blue above.

Conclusions

CRISPRDetect was designed to address limitations in current

CRISPR prediction tools, and to include additional informa-

tion that is now available. We focused on the prediction of

CRISPR arrays by analysing both the CRISPR properties and

distinguishing these from ‘CRISPR like’ repeats which can

easily be predicted incorrectly as a CRISPR. CRISPRDetect,

in combination with CRISPRBank and CRISPRTarget, now

provides an integrated resource for the detection and analysis

of CRISPRs (CRISPRSuite). We expect this suite will replace

most existing CRISPR prediction tools.

The enhanced annotation of arrays reveals orientation,

precise repeat-spacer boundaries, small and large mutations

(substitution, deletion and insertions) in spacers and re-

peats, and additional features. This can be interrogated

using a web interface, or be incorporated into genome an-

notation pipelines for improved gene annotation, where it

would be included along with protein and other noncoding

RNA predictions. We are now investigating these new fea-

tures revealed by CRISPRDetect to generate further bio-

logical insight into CRISPR-Cas evolution and function.

Availability of data and materials

Project name: CRISPRDetect

Project home page: http://bioanalysis.otago.ac.nz/

CRISPRDetect/

Operating system(s): Platform independent

Programming language: PERL

Other requirements: Local installation- EMBOSS-water

and seqret, RNAfold, clustalw, blastn, cd-hit-est

License: GNU GPL

Any restrictions to use by non-academics: no

Additional file

Additional file 1: CRISPRDetect Additional files 1–10. (PDF 1633 kb)

Abbreviations

CRISPR: clustered regularly interspaced short palindromic repeats; Cas: CRISPR

associated; crRNA: CRISPR RNA; DR: direct repeat; PAM: protospacer adjacent

motif.

Fig. 6 CRISPRDetect results on a genome browser. Genome feature format (gff) visualised in a genome browser (Artemis) [60]. This region has an

array followed by an operon that includes some CRISPR associated genes. The figure shows a section of the RefSeq annotated version of

Methanobrevibacter ruminantium genome [62]. The top line shows the annotation from the RefSeq file in GenBank (gbff) format. In the NCBI

annotation pipeline the arrays are predicted by a combination of CRT and Piler-CR. These are annotated as a ‘repeat_region’s on the genome

(light blue). The CRISPRDetect gff output file has been added to this annotation. Each repeat and spacer is shown in the indicated orientation
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