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To the editor:

The field of genome editing is advancing rapidly1, most recently exemplified by the advent 

of base editors that enable changing single nucleotides in a predictable manner2,3,4. For the 

validation and characterization of genome editing experiments, targeted amplicon 

sequencing has become the gold standard. Here, we present a substantially updated version 

of our CRISPResso tool8 to facilitate the analysis of data that would be difficult to handle 

with existing tools5,6,7,8.

CRISPResso2 introduces five key innovations: (1) Comprehensive analysis of sequencing 

data from base editors; (2) A batch mode for analyzing and comparing multiple editing 

experiments; (3) Allele-specific quantification of heterozygous or polymorphic references; 

(4) A biologically-informed alignment algorithm; and (5) Ultra-fast processing time.

CRISPResso2 allows users to readily quantify and visualize amplicon sequencing data from 

base editing experiments. It takes as input raw FASTQ sequencing files and outputs reports 

describing frequencies and efficiencies of base editing activity, plots showing base 

substitutions across the entire amplicon region (Fig. 1a), and nucleotide substitution 

frequencies for a region specified by the user (Fig. 1b). Additionally, users can specify the 

nucleotide substitution (e.g., C->T or A->G) that is relevant for the base editor used, and 

publication-quality plots are produced for nucleotides of interest with heatmaps showing 

conversion efficiency.

We also improved processing time and memory usage of CRISPResso2 to enable users to 

analyze, visualize and compare results from hundreds of genome editing experiments using 

batch functionality. This is particularly useful when many input FASTQ files must to be 

aligned to the same amplicon or have the same guides, and the genome editing efficiencies 

and outcomes can be visualized together. In addition, CRISPResso2 generates intuitive plots 

to show the nucleotide frequencies and indel rates at each position in each sample. This 

allows users to easily visualize the results and extent of editing in their experiments for 

different enzymes (Fig. 1c).

In cases where the genome editing target contains more than one allele (for example when 

heterozygous SNPs are present), genome editing on each allele must be quantified 

separately, although reads from both alleles are amplified and mixed in the same input 

FASTQ file. Current strategies are not capable of analyzing multiple reference alleles and 

may lead to incorrect quantification. CRISPResso2 enables allelic specific quantification by 

aligning individual reads to each allelic variant and assigning each read to the most closely-

aligned allele. Downstream processing is performed separately for each allele so that 

insertions, deletions, or substitutions that distinguish each allele are not confounded with 

genome editing. To demonstrate the utility of our approach, we reanalyzed amplicon 

sequencing data from a mouse with a heterozygous SNP at the Rho gene where an 

engineered SaCas9-KKH nuclease was directed to the P23H mutant allele10. CRISPResso2 

deconvoluted reads, quantified insertions and deletions from each allele, and produced 

intuitive visualizations of experimental outcomes (Fig. 1d).
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Existing amplicon sequencing analysis toolkits ignore the biological understanding of 

genome editing and instead optimize the alignment based only on sequence identity. 

However, this can lead to incorrect quantification of indel events, especially in sequences 

with short repetitive subsequences where the location of indels may be ambiguous due to 

multiple alignments with the same best score. In such cases, it is reasonable to assume that 

indels should overlap with the predicted nuclease cleavage site. Our improved alignment 

algorithm extends the Needleman-Wunsch algorithm with a mechanism to incentivize the 

assignment of insertions or deletions to specific indices in the reference amplicon sequence. 

These indices are chosen based on guide sequence, predicted cleavage site and nuclease 

properties (Supplementary note 1). This approach increases the accuracy of indel calling and 

produces alignments that reflect our current understanding of the editing mechanism. We 

compared our improved alignment algorithm to those used in other amplicon-based genome 

editing analysis software and found that our algorithm avoids the incorrect alignment to 

regions distal from the predicted cut site observed for other software tools (Supplementary 

note 2).

To study putative off-targets, it is often necessary to analyze large-scale pooled sequencing 

datasets that profile hundreds of sites to assess the potential safety of genome editing 

interventions9. These and other large datasets have created a need for faster, more accurate 

and efficient analysis tools. To accelerate performance and decrease processing time, we 

designed an efficient implementation of our biologically-informed alignment algorithm. 

Further optimization of other components of the processing pipeline has reduced processing 

time ten-fold for large datasets, so that an experiment analyzed using modern high-

throughput sequencing technologies can be processed in under a minute (Supplementary 

Fig. 1). We tested the accuracy of our improved alignment algorithm and other optimizations 

using an extensive set of simulations with various mutational profiles and in the presence of 

sequencing errors and found that CRISPResso2 accurately recovered editing events with a 

negligible false-positive rate (<0.01) limited only by current sequencing technologies 

(Supplementary note 3).

In summary, CRISPResso2 is a software tool for the comprehensive analysis, visualization 

and comparison of sequencing data from genome editing experiments. In addition to 

accurate indel analysis from nucleases such as Cas9, CRISPResso2 offers analysis tools for 

recent base editors, support for multiple alleles, increased computational speed, an improved 

alignment algorithm, and a batch functionality for analyzing and comparing genome editing 

experiments (Supplementary note 4).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Novel features of CRISPResso2.
a-c) CRISPResso2 analysis of base editing data. a) Locations of substitutions across the 

FANCF reference sequence for the BE3 base editor2. At each position, the number of 

substitutions from the reference base to each non-reference base are shown. The 

quantification window is outlined by the dashed gray box. b) Barplot showing the frequency 

of substitution from a reference base to a non-reference base including only bases in the 

quantification window from part a. c) Batch output mode comparing the editing efficiencies 

of three base editors and an untreated control at the FANCF locus2. C>T conversion rates are 

shown at each cytosine overlapping the guide. d) Allele-specific editing outcomes of 

SaCas9-KKH editing of the Rho gene in P23H heterozygous mice 10. Reads (left) can be 

assigned to each allele using CRISPResso2 (right) to achieve accurate quantification of 

genome editing at genomic loci with multiple alleles. The pie chart shows the assignment of 

each read to the wild-type (red and dark blue) allele or to the P23H allele (yellow and light 

blue). Ambiguous alignments that could not be attributed uniquely to one of the alleles (e.g., 

due to a deletion at the SNP location) are shown in purple.
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