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Universitat de València, Duke University, Universitat Jaume I and Universidad
de Castilla-La Mancha

In objective Bayesian model selection, no single criterion has emerged as
dominant in defining objective prior distributions. Indeed, many criteria have
been separately proposed and utilized to propose differing prior choices. We
first formalize the most general and compelling of the various criteria that
have been suggested, together with a new criterion. We then illustrate the
potential of these criteria in determining objective model selection priors by
considering their application to the problem of variable selection in normal
linear models. This results in a new model selection objective prior with a
number of compelling properties.

1. Introduction.

1.1. Background. A key feature of Bayesian model selection, when the mod-
els have differing dimensions and noncommon parameters, is that results are typi-
cally highly sensitive to the choice of priors for the noncommon parameters, and,
unlike the scenario for estimation, this sensitivity does not vanish as the sample
size grows; see Kass and Raftery (1995), Berger and Pericchi (2001). Further-
more, improper priors cannot typically be used for noncommon parameters, nor
can “vague proper priors” (see the above references, e.g., and the brief discussion
in Section 2.2), ruling out use of the main tools developed in objective Bayesian
estimation theory.

Because of the difficulty in assessing subjective priors for numerous models,
there have been many efforts (over more than 30 years) to develop “conventional”
or “objective” priors for model selection; we will term these “objective model se-
lection priors,” the word objective simply meant to indicate that they are not sub-
jective priors, and are chosen conventionally based on the models being consid-
ered. A few of the many references most related to this paper are Jeffreys (1961),
Zellner and Siow (1980, 1984), Laud and Ibrahim (1995), Kass and Wasser-
man (1995), Berger and Pericchi (1996), Moreno, Bertolino and Racugno (1998),
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De Santis and Spezzaferri (1999), Pérez and Berger (2002), Bayarri and García-
Donato (2008), Liang et al. (2008), Cui and George (2008), Maruyama and George
(2008), Maruyama and Strawderman (2010).

For the most part, these efforts were started with a good idea which was used to
develop the priors, and then the behavior of the priors was studied. Yet, in spite of
the apparent success of many of these methods, there has been no agreement as to
which are most appealing or most successful.

This lack of progress in reaching a consensus on objective priors for model se-
lection resulted in our approaching the problem from a different direction, namely,
formally formulating the various criteria that have been deemed essential for model
selection priors (such as consistency of the resulting procedure), and seeing if these
criteria can essentially determine the priors.

The criteria are stated for general model selection problems in Section 2, which
also discusses their historical antecedents. To illustrate that application of the cri-
teria can largely determine model selection priors, we turn to a specific problem
in Section 3—variable selection in normal linear models. The resulting priors for
variable selection are new and result in closed form Bayes factors; for those pri-
marily interested in the methodology itself, the resulting priors and Bayes factors
are given in Section 4.

1.2. Notation. Let y be a data vector of size n from one of the models

M0 :f0(y | α), Mi :fi(y | α,βi ), i = 1,2, . . . ,N − 1,(1)

where α and the βi are unknown model parameters, the latter having dimension ki .
M0 will be called the null model and is nested in all of the considered models.

Under the null model, the prior is π0(α); under model Mi , and without loss of
generality, we express the model selection prior as

πi(α,βi ) = πi(α)πi(βi | α).

Note that the parameter α occurs in all of the models, so that α is usually referred
to as the common parameter; the βi are called model specific parameters.

Assuming that one of the entertained models is true, the posterior probability of
each of the models Mi can be written in the convenient form

Pr(Mi | y) = Bi0

1 + (
∑N−1

j=1 Bj0Pj0)
,(2)

where Pj0 is the prior odds Pj0 = Pr(Mj)/Pr(M0), with Pr(Mj) being the prior
probability of model Mj , and Bj0 is the Bayes factor of model Mj to M0 defined
by

Bj0 = mj(y)

m0(y)
with mj(y) =

∫
fj (y | α,βi)πj (α,βj ) dα dβj(3)
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and m0(y) = ∫
f0(y | α)π0(α) dα being the marginal likelihoods of model Mj and

M0 corresponding to the model prior densities πj (α,βj ) and π0(α). [Any model
could serve as the base model for computation of the Bayes factors in (2), but use
of the null model is common and convenient.] The focus in this paper is on choice
of model priors π0(α) and πj (α,βj ).

2. Criteria for objective model selection priors.

2.1. Introduction. The arguments concerning prior choice in testing and
model selection in Jeffreys (1961) are often called Jeffreys’s desiderata [see
Berger and Pericchi (2001)] and are the precursors to the criteria developed herein.
[Robert, Chopin and Rousseau (2009), is a comprehensive and modern review of
Jeffreys’s book.] These and related ideas have been repeatedly used to evaluate or
guide development of objective model priors; see, for example, Berger and Per-
icchi (2001), Bayarri and García-Donato (2008), Liang et al. (2008) and Forte
(2011). We group the criteria into four classes: basic, consistency criteria, predic-
tive matching criteria and invariance criteria.

2.2. Basic criteria. As mentioned in the Introduction priors for the noncom-
mon parameters βi should be proper, because they only occur in the numerator of
the Bayes factors Bi0, and hence, if using an improper prior, the arbitrary constant
for the improper prior would not cancel, making Bi0 ill defined. There have been
various efforts to use improper priors and define a meaningful scaling [Ghosh and
Samanta (2002), Spiegelhalter and Smith (1982)]; and other methods have been
proposed that can be interpreted as implicitly scaling the improper prior Bayes
factor [see details and references in Bayarri and García-Donato (2008)], but we
are restricting consideration here to real Bayesian procedures.

Similarly, vague proper priors cannot be used in determining the Bi0, since the
arbitrary scale of vagueness appears as a multiplicative term in the Bayes factor,
again rendering the Bayes factor arbitrary. Thus we have:

CRITERION 1 (Basic). Each conditional prior πi(βi | α) must be proper (in-
tegrating to one) and cannot be arbitrarily vague in the sense of almost all of its
mass being outside any believable compact set.

2.3. Consistency criteria. Following Liang et al. (2008), we consider two pri-
mary consistency criteria—model selection consistency and information consis-
tency:

CRITERION 2 (Model selection consistency). If data y have been generated
by Mi , then the posterior probability of Mi should converge to 1 as the sample size
n → ∞.
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Model selection consistency is not particularly controversial, although it can be
argued that the true model is never one of the entertained models, so that the crite-
rion is vacuous. Still, it would be philosophically troubling to be in a situation with
infinite data generated from one of the models being considered, and not choos-
ing the correct model. A number of recent references concerning this criterion
are Fernández, Ley and Steel (2001), Berger, Ghosh and Mukhopadhyay (2003),
Liang et al. (2008), Casella et al. (2009), Guo and Speckman (2009).

CRITERION 3 (Information consistency). For any model Mi , if {ym,m =
1, . . .} is a sequence of data vectors of fixed size such that, as m → ∞,

�i0(ym) = supα,βi
fi(ym | α,β i)

supα f0(ym | α)
→ ∞ then Bi0(ym) → ∞.(4)

In normal linear models, this is equivalent to saying that, if one considers a
sequence of data vectors for which the corresponding F (or t) statistic goes to in-
finity, then the Bayes factor should also do so for this sequence. Jeffreys (1961)
used this argument to justify a Cauchy prior in testing that a normal mean is zero,
and the argument has also been highlighted in Berger and Pericchi (2001), Bayarri
and García-Donato (2008), Liang et al. (2008). One can construct examples in
which a real Bayesian answer violates information consistency, but the examples
are based on very small sample sizes and priors with extremely flat tails. Further-
more, violation of information consistency would place frequentists and Bayesians
in a particularly troubling conflict, which many would view as unattractive.

A third type of consistency has been proposed to address the fact that objective
model selection priors typically depend on specific features of the model, such as
the sample size or the particular covariates being considered.

CRITERION 4 (Intrinsic prior consistency). Let πi(βi | α, n) denote the prior
for the model specific parameters of model Mi with sample size n. Then, as n → ∞
and under suitable conditions on the evolution of the model with n, πi(β i | α, n)

should converge to a proper prior πi(βi | α).

The idea here is that, while features of the model and sample size (and possibly
even data) frequently affect model selection priors, such features should disappear
for large n. If there is such a limiting prior, it is called an intrinsic prior; see Berger
and Pericchi (2001) for extensive discussion and previous references. (Note that
some have used the phrase “intrinsic prior” to refer to specific priors arising from
a specific model selection method, but we use the term here generically.)

2.4. Predictive matching criteria. The most crucial aspect of objective model
selection priors is that they be appropriately “matched” across models of different
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dimensions. Having a prior scale factor “wrong” by a factor of 2 does not mat-
ter much in one dimension, but in 50 dimensions that becomes an error of 250

in the Bayes factor. There have been many efforts to achieve such matching in
model selection, including Spiegelhalter and Smith (1982), Suzuki (1983), Laud
and Ibrahim (1995), Ghosh and Samanta (2002).

The standard approach to predictive matching is modeled after Jeffreys (1961).
For example, Jeffreys defined a “minimal sample size” for which one would logi-
cally be unable to discriminate between two hypotheses, and argued that the prior
distributions should be chosen to then yield equal marginal likelihoods for the two
hypotheses. Here is an illustration of this type of argument, from Berger, Pericchi
and Varshavsky (1998).

EXAMPLE. Suppose one is comparing two location-scale models

M1 :y ∼ 1

σ
p1

(
y − μ

σ

)
and M2 :y ∼ 1

σ
p2

(
y − μ

σ

)
.

Intuitively, two independent observations (y1, y2) should not allow for discrimina-
tion between these models, since two observations only allow setting of the center
and scale of the distribution; there are no “degrees of freedom” left for model dis-
crimination. Now consider the choice of prior (for both models) π(μ,σ) = 1/σ .
It is shown in Berger, Pericchi and Varshavsky (1998) that

∫ 1

σ 2 p1

(
y1 − μ

σ

)
p1

(
y2 − μ

σ

)
π(μ,σ)dμdσ

=
∫ 1

σ 2 p2

(
y1 − μ

σ

)
p2

(
y2 − μ

σ

)
π(μ,σ)dμdσ = 1

2|y1 − y2|
for any pair of observations y1 �= y2, so that the models would be said to be predic-
tively matched for all minimal samples. The Bayes factor between the models is
then obviously 1, agreeing with the earlier intuition that a minimal sample should
not allow for model discrimination.

This argument was formalized by Berger and Pericchi (2001) as follows.

DEFINITION 1. The model/prior pairs {Mi,πi} and {Mj,πj } are predictive
matching at sample size n∗ if the predictive distributions mi(y∗) and mj(y∗)
are close in terms of some distance measure for data of that sample size. The
model/prior pairs {Mi,πi} and {Mj,πj } are exact predictive matching at sample
size n∗ if mi(y∗) = mj(y∗) for all y∗ of sample size n∗.

One only wants predictive matching for “minimal” sample sizes, since, for
larger sample sizes, the discrimination between models occurs through the
marginal densities; they must differ for discrimination.
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CRITERION 5 (Predictive matching). For appropriately defined “minimal
sample size” in comparing Mi with Mj , one should have model selection pri-
ors that are predictive matching. Optimal (though not always obtainable) is exact
predictive matching.

In Berger and Pericchi (2001), minimal sample size was defined as the smallest
sample size for which the models under consideration have finite marginal densi-
ties when objective estimation priors are used. Typically this minimal sample size
equals the number of parameters in the model or, more generally, is the number
of observations needed for all parameters to be identifiable. For model selection,
however, minimal sample size needs to be defined relative to the model selection
priors being utilized. Hence we have the following general definition.

DEFINITION 2 (Minimal training sample). A minimal training sample y∗
i for

{Mi,πi} is a sample of minimal size n∗
i ≥ 1 with a finite nonzero marginal density

mi(y∗
i ).

There are many possibilities for even exact predictive matching. We here high-
light two types of exact predictive matching, which are of particular relevance
to the development of objective model selection priors for the variable selection
problem discussed in Section 3.

DEFINITION 3 (Null predictive matching). The model selection priors are null
predictive matching if each of the model/prior pairs {Mi,πi} and {M0, π0} are
exact predictive matching for all minimal training samples y∗

i for {Mi,πi}.
Definition 3 reflects the common view—starting with Jeffreys (1961)—that data

of a minimal size should not allow one to distinguish between the null and alter-
native models. Null predictive matching arguments have also been used by Ghosh
and Samanta (2002) and Spiegelhalter and Smith (1982) among others.

DEFINITION 4 (Dimensional predictive matching). The model selection pri-
ors are dimensional predictive matching if each of the model/prior pairs {Mi,πi}
and {Mj,πj } of the same complexity/dimension (i.e., ki = kj ) are exact predictive
matching for all minimal training samples y∗

i for models of that dimension.

The next section gives the most prominent example of dimensional predictive
matching.

2.5. Invariance criteria. Invariance arguments have played a prominent role
in statistics [cf. Berger (1985)], especially in objective Bayesian estimation theory.
They are also extremely helpful in part of the specification of objective Bayesian
model selection priors.

A basic type of invariance that is almost always relevant for model selection is
invariance to the units of measurement being used:
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CRITERION 6 (Measurement invariance). The units of measurement used for
the observations or model parameters should not affect Bayesian answers.

A much more powerful, but special, type of invariance arises when the family
of models under consideration are such that the model structures are invariant to
group transformations. Following the notation in Berger (1985), we formally state:

DEFINITION 5. The family of densities for y ∈ R
n, F := {f (y | θ) : θ ∈ �} is

said to be invariant under the group of transformations G := {g : Rn → R
n} if,

for every g ∈ G and θ ∈ �, there exists a unique θ∗ ∈ � such that X = g(Y) has
density f (x | θ∗) ∈ F. In such a situation, θ∗ will be denoted ḡ(θ).

There are two consequences of applying invariance here. The first is a new cri-
terion:

CRITERION 7 (Group invariance). If all models are invariant under a group
of transformations G0, then the conditional distributions, πi(βi | α), should be
chosen in such a way that the conditional marginal distributions

fi(y | α) =
∫

fi(y | α,βi )πi(βi | α) dβi ,(5)

are also invariant under G0. [Here, (α,βi , i) would correspond to θ in the defini-
tion of invariance.]

Indeed, the πi(βi | α) could hardly be called objective model selection priors
if they eliminated an invariance structure that was possessed by all of the origi-
nal models. This can also be viewed as a formalization of the Jeffreys (1961) re-
quirement that the prior for a nonnull parameter should be “centered at the simple
model.”

The second use of invariance is in determining the objective prior for the com-
mon model parameters πi(α). Since all of the marginal models, fi(y | α), will
be invariant under G0 if the Group invariance criterion is applied, there are com-
pelling reasons to choose the prior

πi(α) = πH(α) for all i,(6)

where πH (·) is the right-Haar density corresponding to the group G0. The reason
is given in Berger, Pericchi and Varshavsky (1998), namely that under commonly
satisfied conditions (satisfied for the variable selection problem—see Result 2 in
Section 3), use of a common πH(α) for all marginal models then ensures exact
predictive matching among the models for the minimal training sample size, as in
the example given in Section 2.4.

The most surprising feature of this result is that πH(α) is typically improper
(and hence could be multiplied by an arbitrary constant) and yet, if the same πH (α)
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is used for all marginal models, the prior is appropriately calibrated across mod-
els in the strong sense of exact predictive matching. (For any improper prior that
occurred in both the numerator and denominator of a Bayes factor, any arbitrary
multiplicative constant would obviously cancel, but this is not nearly as compelling
a justification as exact predictive matching.) The right-Haar prior is also the ob-
jective estimation prior for such models, and so has been extensively studied in
invariant situations.

Thus, for invariant models, the combination of the Group invariance criterion
and (exact) Predictive matching criterion allows complete specification of the prior
for α in all models. It is also surprising that this argument does not require orthogo-
nality of α and β i (i.e., cross-information of zero in the Fisher information matrix)
which, since Jeffreys (1961), has been viewed as a necessary condition to say that
one can use a common prior for α in different models [see, e.g., Hsiao (1997),
Kass and Vaidyanathan (1992)].

There might be concern here as to use of improper priors, even if they are ex-
act predictive matching, especially because of the discussion in Section 2.2. This
concern is obviated by the realization that use of any series of proper priors ap-
proximating πH (α) will, in the limit, yield Bayes factors equal to that obtained
directly from πH (α); see Lemma 1 in Appendix A.1.

3. Objective prior distributions for variable selection in normal linear
models.

3.1. Introduction. We now turn to a particular scenario—variable selection
in normal linear models—to illustrate application of the criterion in Section 2.
Consider a response variable Y known to be explained by k0 variables (e.g., an
intercept) and by some subset of p other possible explanatory variables. This can
formally be stated as a model selection problem with the following 2p competing
models for data y = (y1, . . . , yn):

M0 :f0(y | β0, σ ) = Nn

(
y | X0β0, σ

2I
)
,

(7)
Mi :fi(y | β i ,β0, σ ) = Nn

(
y | X0β0 + Xiβi , σ

2I
)
, i = 1, . . . ,2p − 1,

where β0, σ , and the βi are unknown. Here X0 is a n × k0 design matrix corre-
sponding to the k0 variables common to all models; often X0 = 1 so M0 contains
only the intercept. Finally, the Xi are n × ki design matrices corresponding to ki

of the p other possible explanatory variables. We make the usual assumption that
all design matrices are full rank (without loss of generality). Note that, if the co-
variance matrix is of the form σ 2� with � known, simply transform Y so that the
covariance matrix is proportional to the identity; note that this does not alter the
meaning of the β’s and hence the meaning of the models. Also, setting α = (β0, σ )

and N = 2p puts this in the general framework discussed earlier, with M0 being
the null model.
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The primary development is for the most common situation of σ unknown and
k0 ≥ 1, but the simpler cases where either σ is known or k0 = 0 (i.e., the null model
only contains the error term) are briefly treated in Section 3.5.

In this setting and following Jeffreys desiderata, Zellner and Siow (1980) rec-
ommended use of common objective estimation priors for α (after orthogonaliza-
tion) and multivariate Cauchy priors for πi(βi | α), centered at zero and with prior
scale matrix σ 2n(X′

iXi )
−1; a similar scale matrix was used in Zellner (1986) for

the g-prior.

3.2. Proposed prior (the “robust prior”). It is useful to first write down the
specific form of the prior that will result from applying the criteria. Indeed, under
model Mi , the prior is of the form

πR
i (β0,β i , σ ) = π(β0, σ ) × πR

i (βi | β0, σ )
(8)

= σ−1 ×
∫ ∞

0
Nki

(βi | 0, g�i )p
R
i (g) dg,

where �i = Cov(β̂i ) = σ 2(Vt
iVi)

−1 is the covariance of the maximum likelihood
estimator of βi , with

Vi = (
In − X0

(
Xt

0X0
)−1Xt

0
)
Xi(9)

and

pR
i (g) = a

[
ρi(b + n)

]a
(g + b)−(a+1)1{g>ρi(b+n)−b},(10)

with a > 0, b > 0 and ρi ≥ b

b + n
.(11)

Note that these conditions ensure that pR
i (g) is a proper density, and g is positive

[necessary in (8)], so that πR
i (βi | β0, σ ) is proper, satisfying the first part of the

Basic criterion of Section 2.2. The particular choices of hyperparameters that we
favor are discussed in Section 3.4.

The prior (8) has its origins in the robust prior introduced by Strawderman
(1971) and Berger (1980, 1985), for estimating a k-variate normal mean β in
the sampling scheme β̂ ∼ Nk(β,�). More precisely, the full conditional of
βi induced by (8) generalizes the above mentioned robust prior considering
the sampling distribution of the maximum likelihood estimator, namely β̂ i ∼
Nki

(β i , σ
2(Vt

iVi )
−1). The primary reasons for Strawderman (1971) and Berger

(1980, 1985) to consider such priors was that it results in closed form infer-
ences, including closed form Bayes factors, and results in estimates that are ro-
bust in various senses. For this reason, we continue the tradition of calling (8)
the robust prior and use a superindex R to denote it. Note also that priors of this
form have been previously considered. The priors proposed by Liang et al. (2008)
are particular cases with a = 1/2, b = 1, ρi = 1/(1 + n) (the hyper-g prior) and
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a = 1/2, b = n,ρi = 1/2 (the hyper-g/n prior). The prior in Cui and George (2008)
has a = 1, b = 1, ρi = 1/(1 + n). The original Berger prior for robust estimation
is the particular case with a = 1/2, b = 1, ρi = (ki + 1)/(ki + 3); closely related
priors are those of Maruyama and Strawderman (2010), Maruyama and George
(2008).

Finally, it is useful to note that πR
i (βi | β0, σ ) behaves in the tails as a multi-

variate Student distribution (already noticed for a particular case in Berger (1980),
and the reason for its robust estimation properties).

PROPOSITION 1. Writing ‖βi‖2 = β t
i (V

t
iVi)βi ,

lim
‖βi‖2→∞

πR
i (β | β0, σ )

S tki
(β | 0, (a	(a))1/aρiB∗(b, σ )/a,2a)

= 1,

where B∗(b, σ ) = σ 2(b + n)(Vt
iVi)

−1.

PROOF. See Appendix A.2. �

In the model selection scenario, the thickness of the prior tails is related to the
information consistency criteria, and is the reason Jeffreys (1961) used a Cauchy
as the prior for testing a normal mean. Also, using this result, we can see that
πR

i (βi | β0, σ ) has close connections with the Zellner–Siow priors; in fact, for
a = 1/2, b = n, ρi = 2/π and large n, πR

i (βi | β0, σ ), and the Zellner–Siow priors
have exactly the same tails.

3.3. Justification of model selection priors of the form (8). We will use the
Group invariance criterion and Predictive matching criterion (along with practi-
cal computational considerations) to justify use of model selection priors of the
form (8). We first justify the use of πR(β0, σ ) = 1/σ for the common parameters
and then justify the choice πR

i (β | β0, σ ) for the model specific parameters.

3.3.1. Justification of the prior for the common parameters. It is convenient,
in this section, to consider a more general class of conditional priors,

πi(βi | β0, σ ) = σ−ki hi

(
βi

σ

)
,(12)

where hi is any proper density with support Rki . The robust prior is the particular
case

hR
i (u) =

∫
Nki

(
u | 0, g

(
Vt

iVi

)−1)
pR

i (g) dg.(13)

It is shown, in Appendix A.3, that all models in (7) are invariant under the group
of transformations

G0 = {
g = (c,b) ∈ (0,∞) × Rk0 :g(y) → cy + X0b

}
.
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The following establishes a necessary and sufficient condition on the conditional
prior πi(βi | β0, σ ) for the Group invariance criterion to hold for this group.

RESULT 1. The conditional marginals

fi(y | β0, σ ) =
∫

Nn

(
y | X0β0 + Xiβi , σ

2I
)
πi(βi | β0, σ ) dβ i(14)

are invariant under G0 if and only if πi(βi | β0, σ ) has the form (12).

PROOF. See Appendix A.3. �

Based on the Group invariance criterion, Result 1 implies that, conditionally on
the common parameters β0 and σ , β i must be scaled by σ , centered at zero and not
depend on β0 [as was argued for simple normal testing in Jeffreys (1961)]. Note,
in particular, that the robust prior in (8) satisfies the Group invariance criterion
(although it is not the only prior that does so).

Next, since each marginal model fi(y | β0, σ ) resulting from a prior in (12) is
invariant with respect to G0, the suggestion from Berger, Pericchi and Varshavsky
(1998) is to use the right-Haar density for the common parameters (β0, σ ), namely

πi(β0, σ ) = πH (β0, σ ) = σ−1,

the right-Haar prior for the location-scale group. Using this, the overall model prior
would be of the form

πi(β0,βi , σ ) = σ−1−ki hi

(
βi

σ

)
.(15)

The justification for the right-Haar prior in Berger, Pericchi and Varshavsky (1998)
depends, however, on showing that it is predictive matching, in the sense described
in the following result.

RESULT 2. For Mi , let the prior πi(β0,βi , σ ) be of the form (15), where hi

is symmetric about zero. Then all model/prior pairs {Mi,πi} are exact predictive
matching for n∗ = k0 + 1.

PROOF. See Appendix A.4. �

The conclusion of the above development is that the Group invariance criterion
and Predictive matching criterion imply that model selection priors should be of
the form (15), with hi symmetric about zero. It would thus appear that the robust
prior satisfies these criteria, as (13) is clearly symmetric about zero. [Any scale
mixture of Normals would also satisfy these criteria, since the resulting h(·) would
be symmetric about 0.] Note, however, that hR

i has scale matrix proportional to
(Vt

iVi )
−1, and Vi in (9) requires both X0 and Xi , which would seem to indicate
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that a sample size of k0 + ki is required. Hence, Result 2 would seem to apply to
the robust prior only if ki = 1.

This is a situation, however, where the definition of a minimal sample size is
somewhat ambiguous. For instance, suppose one were presented X0 and Xi for
k0 + ki observations for each model Mi , but that only k0 + 1 of the yi was reported
for all models, with the rest being missing data. This is still a minimal sample size
in the sense that it is the smallest collection of yi for which all marginal densities
exist for the robust prior, and now Result 2 applies to say that the robust prior is
predictive matching for all models.

3.3.2. Justification of the prior for the model specific parameters. While the
robust prior is thus validated as satisfying the group invariance criterion and a
version of the predictive matching criterion, there are many other model selection
priors of form (15) which also satisfy these criteria. There are additional reasons,
however, to focus on the robust priors with hR

i (u) of form (13). The first is that only
scale mixtures of normals seem to have any possibility of yielding Bayes factors
that have closed form. While we have not focused on this as a necessary criterion,
it is an attractive enough property to justify the restriction. There are, however, two
other features of (13) that need justification: the use of the mixture density pR

i (g),
and the choice of the conditional scale matrix (Vt

iVi )
−1.

The mixture density pR
i (g) encompasses virtually all of the mixtures that have

been found which can lead to closed form expressions for Bayes factors; for exam-
ple, Zellner–Siow priors are scale mixtures of normals, but with a different mixing
density which does not lead to close-form expressions. [The choice of mixing den-
sity in Maruyama and George (2008) is a very interesting exception, in that it leads
to a closed form expression for a different reason than does pR

i (g).] So, while not
completely definitive, pR

i (g) is an attractive choice. The choice of (Vt
iVi)

−1 as
the conditional scale matrix seems much more arbitrary, but there is one standard
argument and one surprising argument in its favor.

The standard argument is the measurement invariance criterion; if the condi-
tional scale matrix is chosen to be (Vt

iVi )
−1, it is easy to see that Bayes factors

will be unaffected by changes in the units of measurement of either y or the model
parameters. But there are many other choices of the conditional scale matrix which
also have this property.

A quite surprising predictive matching result that supports use of (Vt
iVi )

−1 as
the conditional scale matrix is as follows.

RESULT 3. For Mi , let the prior be as in (15), where hi is the scale mixture of
normals in (13). The priors are then null predictive matching and dimensional pre-
dictive matching for samples of size k0 + ki , and no choice of the conditional scale
matrix other than (Vt

iVi )
−1 (or a multiple) can achieve this predictive matching.
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PROOF. See Appendix A.5. �

This is surprising, in that it is a predictive matching result for larger sample
sizes (k0 + ki ) than are encountered in typical predictive matching results, such as
Result 2. That it only holds for conditional scale matrices proportional to (Vt

iVi )
−1

is also surprising, but does strongly support choosing a prior of the form (8).

3.4. Choosing the hyperparameters for pR
i (g).

3.4.1. Introduction. The Bayes factor of Mi to M0 arising from the robust
prior πR

i in (8) can be compactly expressed as the following function of the hyper-
parameters a, b and ρi :

Bi0 = Q
−(n−k0)/2
i0

2a

ki + 2a

[
ρi(n + b)

]−ki/2 APi ,(16)

where APi is the hypergeometric function of two variables [see Weisstein (2009)],
or Apell hypergeometric function

APi = F1

[
a + ki

2
; ki + k0 − n

2
,
n − k0

2
;a + 1 + ki

2
; (b − 1)

ρi(b + n)
; b − Q−1

i0

ρi(b + n)

]
,

and Qi0 = SSEi /SSE0 is the ratio of the sum of squared errors of models Mi

and M0. The details of this computation are given in Appendix A.6.
Having a closed form expression for Bayes factors is not one of our formal

criteria for model selection priors, but it is certainly a desirable property, especially
when realizing that one is dealing with 2p models in variable selection.

The values for the hyperparameters that will be recommended are a = 1/2,
b = 1 and ρi = (ki +k0)

−1. The arguments justifying this specific recommendation
follow.

3.4.2. Implications of the consistency criteria. The consistency criteria of
Section 2.1 provide considerable guidance as to the choice of a, b and the ρi .
In particular, they lead to the following result.

RESULT 4. The three consistency criterion of Section 2.3 are satisfied by the
robust prior if a and ρi do not depend on n, limn→∞ b

n
= c ≥ 0, limn→∞ ρi(b +

n) = ∞ and n ≥ ki + k0 + 2a.

This result follows from (18), (20) and (22) below, which are presented as sepa-
rate results because they can be established in more generality than simply for the
robust prior.
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Use of model selection consistency. Suppose Mi is the true model, and con-
sider any other model Mj . A key assumption for model selection consistency
[Fernández, Ley and Steel (2001)] is that, asymptotically, the design matrices are
such that the models are differentiated, in the sense that

lim
n→∞

β t
iV

t
i (I − Pj )Viβi

n
= bj ∈ (0,∞),(17)

where Pj = Vj (Vt
j Vj )

−1Vt
j .

RESULT 5. Suppose (17) is satisfied and that the priors πi(β0,βi , σ ) are
of the form (15), with hi(u) = ∫

Nki
(u | 0, g(Vt

iVi)
−1)pi(g) dg. If the pi(g) are

proper densities such that

lim
n→∞

∫ ∞
0

(1 + g)−ki/2pi(g) dg = 0,

model selection consistency will result.

PROOF. The proof follows directly from the proof of Theorem 3 in Liang et al.
(2008) and is, hence, omitted. �

COROLLARY 1. The prior distributions in (8) are model selection consistent
if

lim
n→∞ρi(b + n) = ∞.(18)

PROOF. See Appendix A.7. �

Use of intrinsic prior consistency. Related to (17) is the condition that

lim
n→∞

1

n
Vt

lVl = �l(19)

for some positive definite matrix �l . This would trivially happen if either there is
a fixed design with replicates, or when the covariates arise randomly from a fixed
distribution having second moments.

RESULT 6. If (19) holds,

a and ρi do not depend on n and
b

n
→ c,(20)

then the conditional robust prior πR
i (βi | β0, σ ) in (8) converges to the fixed in-

trinsic prior

πi(βi | β0, σ ) =
∫ ∞

0
Nki

(
βi | 0, g∗σ 2�−1)

pi

(
g∗)

dg∗,(21)

where pi(g
∗) = a[ρi(c + 1)]a(g∗ + c)−(a+1)1{g∗>ρi(c+1)−c}.
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PROOF. Changing variables to g∗ = g/n, the integral in (8) becomes
∫ ∞

0
Nki

(
βi

∣∣∣ 0, g∗σ 2
(

1

n
Vt

lVl

)−1)
a

[
ρi

(
b

n
+ 1

)]a

×
(
g∗ + b

n

)−(a+1)

1{g∗>ρi(b/n+1)−b/n} dg∗.

For large n and using (19) and (20), it is easy to find an integrable function dom-
inating the integrand, so the dominated convergence theorem can be applied to
interchange the integral and limit, yielding the result. �

Use of information consistency. For the variable selection problem, it is easy to
see that

sup
β l ,β0,σ

fl(y | β0,β l , σ ) = (2π SSEl /n)−n/2 exp(−n/2)

for model Ml . Hence, for any given data set y, the estimated likelihood ratio in (4)
is

�i0(y) = Qi0(y)−n/2,

where Qi0(y) is the ratio of the residual sum of squares of the two models for y.
Therefore, having a sequence of data vectors {ym} such that limm→∞ �i0(ym) =
∞ is equivalent to having a sequence of data vectors such that
limm→∞ Qi0(ym) → 0.

RESULT 7. If ρi ≥ b/(b + n), the prior in (8) results in an information con-
sistent Bayes factor for Mi versus M0, if and only if

n ≥ ki + k0 + 2a.(22)

PROOF. See Appendix A.8. �

3.4.3. Specific choices of hyperparameters.

The choice of a. Note that, with ki > kj and n ≥ ki + k0 +1, the Bayes factor Bij

between Mi and Mj exists. It is desirable to have information consistency for all
such sample sizes, in which case (22) would require a ≤ 1/2. The choice a = 1/2
is attractive, in that it coincides with the choice in Berger (1985) and, with this
choice, πR

l has Cauchy tails, as do the popular proposals of Jeffreys (1961) and
Zellner and Siow (1980, 1984).

Additional motivation for this choice can be found by studying the behavior
of Bi0 when the information favors M0, in the sense that Qi0 → 1. Indeed, Forte
(2011) shows that the limiting value of Bi0 is then bounded above by 2a/(2a + ki)

for any sample size, including a small sample size such as k0 + ki + 1. A small
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value of a would imply strong evidence in favor of M0, which does not seem
reasonable when the sample size is small. In contrast, the recommended choice
would yield a bound of 1/(1 + ki), which certainly favors M0, but in a sensibly
modest fashion when the sample size is small.

The choice of b. To understand the effect of b and the ρi on the robust prior, it is
useful to begin by considering the approximating intrinsic prior in Result 6, which
depends on the hyperparameters only through the mixing distribution pR

i (g∗),
which for a = 1/2 is given by (when b/n → c)

pR
i

(
g∗) = 1

2

[
ρi(c + 1)

]1/2(
g∗ + c

)−3/21{g∗>ρi(c+1)−c}.(23)

This is a very flat-tailed distribution with median 4ρi(1 + c) − c. Because it is so
flat tailed, the choice of c in (g∗ + c)−3/2 is not particularly influential, so that the
main issue is the choice of the median. For selecting a median, however, ρi and c

are confounded; that is, we do not need both. For simplicity, therefore, we will
choose c = 0 (i.e., b such that b/n → 0).

If b/n → c = 0, the intrinsic prior does not depend at all on b. Furthermore,
there is very little dependence on b, in this case, for the actual robust prior, as was
verified for moderate and small n in Forte (2011) through an extensive numerical
study.

Since any choice of b for which b/n → 0 makes little difference, it would be
reasonable to make such a choice based on pragmatic considerations. In this re-
gard, note that the choice b = 1 has a notable computational advantage, in that
the hypergeometric function of two variables, APi , then becomes the standard hy-
pergeometric function of one variable [Abramowitz and Stegun (1964)]. We thus
choose b = 1.

The choice of ρi . This is the most difficult choice to make, since there is only lim-
ited guidance from the various criteria. To review (and assuming b = 1), we have
that ρi ≥ 1/(1 + n) (so that g > 0); limn→∞ ρi(1 + n) = ∞ (for model selection
consistency); and ρi should not depend on n (for there to be a limiting intrinsic
prior). Also note that n is necessarily greater than or equal to k0 + ki for the robust
prior and marginal likelihood to exist; supposing we wish to choose ρi so that the
conditions are satisfied for all such n, these restrictions only imply that

ρi must be a constant (independent of n) and ρi ≥ 1/(1 + k0 + ki).

We present two arguments below for the specific choice ρi = 1/(k0 + ki).

ARGUMENT 1. Consider the Bayes factor Bi0 of Mi to M0. In Result 3, it was
established that Bi0 = 1 for a sample of size n = ki + k0, but a natural question
is—what should we expect for a sample of size n = ki + k0 + 1? Can a single
additional observation provide much information to discriminate between Mi and
M0? Intuition says no. To quantify the intuition, consider the situation in which
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Qi0 → 1, which corresponds to information being as supportive as possible of
M0. It is straightforward to show that, when n = ki + k0 + 1,

lim
Qi0→1

BR
i0 = 1

ki + 1

[
ρi(ki + k0 + 2)

]−ki/2
.(24)

As we should not expect a single extra observation to provide very strong evidence,
even in the case that Qi0 → 1, the implication is that we should choose ρi to be
as small as is reasonable. The choice ρi = 1/(k0 + ki + 1) is the minimum value
of ρi and is, hence, certainly a candidate.

ARGUMENT 2. Consider the intrinsic prior defined by (21) and (23). Note
that we have chosen c = 0 (through the choice of b = 1) and, after making the
transformation g̃ = g∗/ρi , the intrinsic prior can be written

πi(β0,βi , σ ) = σ−1 ×
∫ ∞

0
Nki

(
βi | 0, g̃ρi�

−1)
pi(g̃) dg̃,(25)

where pi(g̃) = (1/2)(g̃)−3/21{g̃>1}. Thus we see that, in the intrinsic prior approx-
imation to the robust prior, ρi can be interpreted as simply a scale factor to the
conditional covariance matrix. This helps, in that there have been previous sug-
gestions related to “unit information priors” [Kass and Wasserman (1995), Berger,
Bayarri and Pericchi (2012)]. For instance, Berger, Bayarri and Pericchi (2012)
consider the group means problem defined as follows: the observations are

yij = μi + εij , i = 1, . . . , k and j = 1, . . . , r,

with i.i.d. εij ∼ N(· | 0, σ 2). Thus there are k different means, μi , and r replicate
observations for each. Applying the robust prior to this example (considering the
full model with all μi) results in a conditional covariance matrix in (25) of ρkI,
which is much too diffuse if k is large and ρ is not small. Selecting ρ = 1/k,
on the other hand, restores a “unit information” prior. Here k0 = 0, so the choice
ρ = 1/k is equivalent to the overall choice ρi = 1/(k0 + ki). This overall choice is
obviously very close to earlier suggested 1/(k0 + ki + 1).

3.5. Two simpler cases. We conclude with discussion of the modifications of
the robust prior that are needed when β0 = 0 or when σ is known.

3.5.1. When β0 = 0 and σ is unknown. When β0 = 0, the robust prior distri-
bution is

πR
i (βi , σ ) = π(σ) × πR

i (βi | σ) = σ−1 ×
∫ ∞

0
Nki

(βi | 0, g�i )p
R
i (g) dg,

where �i = Cov(β̂ i ) = σ 2(Xt
iXi)

−1, the covariance of the maximum likelihood
estimator of βi and, as before,

pR
i (g) = a

[
ρi(b + n)

]a
(g + b)−(a+1), g > ρi(b + n) − b.
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The corresponding Bayes factor is as in (16) with k0 = 0; when we choose a = 1/2,
b = 1 and ρi = 1/(ki + k0), it assumes the simpler form in (26), again with k0 = 0.

In regards to the group invariance criterion, when β0 = 0 the models are invari-
ant under the scale group of transformations, G0 = {y → cy, c > 0}, and it is easy
to show that π(β i | β0, σ ) still needs to be a scale prior, as in (12), to preserve the
invariance structure; also, the use of π(σ) = 1/σ is again justified by predictive
matching, as it is the Haar prior for the group. Null and dimensional predictive
matching also hold as well as the various consistency criteria.

3.5.2. When σ is known and β0 �= 0. When σ is known, the robust prior be-
comes

πR
i (βi ,β0, σ ) = π(β0) × πR

i (βi | β0) ∝
∫ ∞

0
Nki

(βi | 0, g�i )p
R
i (g) dg,

where �i = Cov(β̂i ) = σ 2(Vt
iVi)

−1, and pR
i (g) is as before.

The models are now invariant under the location group G0 = {y → y+X0b,b ∈
Rk0}, and it is easy to show that π(β i | β0) just needs to be independent of β0 to
preserve the invariance structure; the use of the Haar prior π(β0) = 1 is again
justified through predictive matching arguments.

The Bayes factor can be expressed as

Bi0 =
∫ ∞

0
(g + 1)−ki/2�

(1/(g+1)−1)
0i pi(g) dg,

where �0i = exp(−[SSE0 −SSEi]/(2σ 2)). This is curiously difficult to express in
closed-form in general but, for our preferred choice b = 1, change of variables to
h = 1/(1 + g) yields

Bi0 =
∫ ∞

0
(g + 1)−ki/2�

(1/(g+1)−1)
0i a

(
ρi(1 + n)

)a
(g + 1)−(a+1)1{g>ρi(1+n)−1} dg

= a
(
ρi(1 + n)

)a
�−1

0i

∫ 1/[ρi(1+n)]
0

h(a−1+ki/2)e−h[SSE0 −SSEi ]/(2σ 2) dh

= a
(
ρi(1 + n)

)a
�−1

0i

( [SSE0 −SSEi]
2σ 2

)−(a−2+ki/2)

×
(
	

[
a + ki

2

]
− 	

[
a + ki

2
,
[SSE0 −SSEi]
2σ 2ρi(1 + n)

])
,

where 	(ν1, ν2) is the incomplete gamma function,

	(ν1, ν2) =
∫ ∞
ν2

tν1−1e−t dt.

All of the properties of the procedures for the σ unknown case also hold here,
except for null predictive matching.
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4. Methodological summary for variable selection. Although the primary
purpose of the paper was to develop the criteria for choice of model selection priors
and study their implementation in an example, the methodological results obtained
for the problem of variable selection in the normal linear model, as outlined in
Section 3.1, are of interest in their own right. For ease of use, we summarize these
developments here.

Using the notation of Section 3.1, the prior distribution recommended for the
parameters under model Mi is

πR
i (β0,β i , σ ) = σ−1 ×

∫ ∞
0

Nki
(βi | 0, g�i )p

R
i (g) dg,

where �i = σ 2(Vt
iVi)

−1, Vi = (In − X0(Xt
0X0)

−1Xt
0)Xi , and

pR
i (g) = 1

2

[
(1 + n)

(ki + k0)

]1/2

(g + 1)−3/21{g>(ki+k0)
−1(1+n)−1}.

The resulting Bayes factors have closed form expressions in terms of the the
hypergeometric function, namely

Bi0 =
[

n + 1

ki + k0

]−ki/2

(26)

× Q
−(n−k0)/2
i0

ki + 1
2F1

[
ki + 1

2
; n − k0

2
; ki + 3

2
; (1 − Q−1

i0 )(ki + k0)

(1 + n)

]
,

where 2F1 is the standard hypergeometric function [see Abramowitz and Stegun
(1964)], and Qi0 = SSEi /SSE0 is the ratio of the sum of squared errors of models
Mi and M0.

To implement Bayesian model selection through (2), one also needs the prior
odds ratios Pj0. A recommended objective Bayesian choice of these odds ratios for
the variable selection problem is Pj0 = kj !(p − kj )!/p!. For extensive discussion
and earlier references, see Scott and Berger (2010).

APPENDIX

A.1. Approximations to improper priors.

LEMMA 1. Consider πi(α) = ciψi(α), where ψi(α) increases monotonically
in i to π(α) and ci = 1/

∫
ψi(α) dα < ∞. Then, if

∫
fl(y | α)π(α) dα < ∞ for all

densities fl(y | α),

lim
i→∞

∫
fl(y | α)πi(α) dα∫
fl′(y | α)πi(α) dα

=
∫

fl(y | α)π(α) dα∫
fl′(y | α)π(α) dα

.
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PROOF.∫
fl(y | α)πi(α) dα∫
fl′(y | α)πi(α) dα

=
∫

fl(y | α)ψi(α) dα∫
fl′(y | α)ψi(α) dα

−→
∫

fl(y | α)π(α) dα∫
fl′(y | α)π(α) dα

by the monotone convergence theorem. �

Thus common proper priors can be used to approximate common improper pri-
ors and, as the approximation improves, the Bayes factors for the proper priors
converge to the Bayes factor for the improper prior; this is why Bayesians have
always said that it is not illogical to use an improper prior for a common parame-
ter α in computing a Bayes factor. It is interesting that no conditions are needed in
the lemma, except that the marginal likelihoods exist for the improper prior, which
is clearly needed for the Bayes factor to even be defined for the improper prior.

A.2. Proof of Proposition 1. This proof requires the following lemma:

LEMMA 2. If m > 1, p > 0, a > 0 and k ≥ 1, then

lim
z→∞ za+k

∫ 1

0
λa−1

(
λ

m − λ

)k

e−(λ/(m−λ))·p·z dλ = ma	(a + k)p−(a+k).

PROOF. For 0 < ε < 1, write

lim
z→∞

∫ 1

0
za+kλa−1

(
λ

m − λ

)k

e−(λ/(m−λ))·p·z dλ

= lim
z→∞

∫ ε

0
za+kλa−1

(
λ

m − λ

)k

e−(λ/(m−λ))·p·z dλ(27)

+ lim
z→∞

∫ 1

ε
za+kλa−1

(
λ

m − λ

)k

e−(λ/(m−λ))·p·z dλ.

Note that

lim
z→∞ za+kλa−1

(
λ

m − λ

)k

e−(λ/(m−λ))·p·z = 0,

and the integrand in the last integral in (28) is uniformly bounded over λ and z. It
follows from the dominated convergence theorem that the last term is zero, so that

lim
z→∞

∫ 1

0
za+kλa−1

(
λ

m − λ

)k

e−(λ/(m−λ))·p·z dλ

(28)

= lim
z→∞

∫ ε

0
za+kλa−1

(
λ

m − λ

)k

e−(λ/(m−λ))·p·z dλ.

Next, make the change of variables t = λ/(m − λ) to get
∫ ε

0
λa−1

(
λ

m − λ

)k

e−(λ/(m−λ))·p·z dλ = ma
∫ ε/(m−ε)

0

tk+a−1

(1 + t)a+1 e−t ·p·z dt.
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To bound the integral of interest notice that, for t ∈ (0, ε/(m − ε)),

1

(1 + ε/(m − ε))a+1 ≤ 1

(1 + t)a+1 ≤ 1.(29)

By integrating t out from (29) and multiplying the result by z(a+k), we get both an
upper and a lower bound for the integral of interest, namely

map−(a+k)(	(a + k) − 	(a + k, (ε/(m − ε))pz))

(1 + ε/(m − ε))a+1

≤ lim
z→∞ma

∫ ε/(m−ε)

0
za+k tk+a−1

(1 + t)a+1 e−t ·p·z dt(30)

≤ map−(a+k)

(
	(a + k) − 	

(
a + k,

ε

m − ε
pz

))
,

where 	(ν1, ν2) is the incomplete gamma function,

	(ν1, ν2) =
∫ ∞
ν2

tν1−1e−t dt,

which goes to zero as ν2 goes to infinity.
Taking limits in 30 as z → ∞ gives

map−(a+k)	(a + k)

(1 + ε/(m − ε))a+1 ≤ lim
z→∞ma

∫ ε/(m−ε)

0
za+k tk+a−1

(1 + t)a+1 e−t ·p·z dt

≤ map−(a+k)	(a + k).

The result follows from (28) and the fact that the upper and lower bound are equal
as ε goes to 0. �

Continuing with the proof of Proposition 1, we remove the subindex i for sim-
plicity in notation. Since the multivariate Student density can be written as

Stk
(
β | 0,C∗,2a

) = 	(a + k/2)

	(a)
(2π)−k/2((

a	(a)
)1/a

σ 2ρ(b + n)
)−k/2

× ∣∣VtV
∣∣1/2(

1 + (
2
(
a	(a)

)1/a
ρσ 2(b + n)

)−1‖β‖2)−(a+k/2)
,

it can be easily shown that

lim
‖β‖2→∞

Stk(β | 0,C∗,2a)

	(a + k/2)(2π)−k/2a(σ 2ρ(b + n))a|VtV|1/22a+k/2(‖β‖2)−(a+k/2)

=
(

2
(
a	(a)

)1/a
ρσ 2(b + n)

× lim
‖β‖2→∞

1 + (2(a	(a))1/aρσ 2(b + n))−1‖β‖2

‖β‖2

)−(a+k/2)

= 1.
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It then follows that

lim
‖β‖2→∞

πR(β | β0, σ )

Stk(β | 0,C∗,2a)

= (2σ 2)−(a+k/2)b−k/2

	(a + k/2)(ρ(b + n))a

× lim
‖β‖2→∞

(‖β‖2)a+k/2
∫ 1

0
λa−1

(
λ

m − λ

)k/2

e−λ/(m−λ)p‖β‖2
dλ,

where m = (ρ(b + n))/b and p = 1/(2σ 2b). Since ρ > b/(b + n) and m > 1, we
can apply Lemma 2, and the result follows.

A.3. Proof of Result 1. To apply invariance, let θ = (β0, σ,βi , i) denote the
parameter indexing all the models, and consider the location-scale group defined
by g = (c,b) ∈ G0 = (0,∞) × Rk0 acting on y through the transformation ỹ =
cy + X0b. It can be easily seen that ỹ ∼ f (· | θ∗), where θ∗ = (β∗

0, σ
∗,β∗

i , i
∗)

with β∗
0 = b + cβ0, σ ∗ = cσ , β∗

i = cβi and i∗ = i, so that the transformed model
has exactly the same structure as the original model. The Invariance-criterion thus
says that the prior πi(βi | β0, σ ) must be such that the marginal models in (5) are
invariant with respect to the group action, so that (keeping to the notation above)

f
(
ỹ | β∗

0, σ
∗, i∗

) =
∫

Nn

(
ỹ | X0β

∗
0 + Xβ∗,

(
σ ∗)2I

)
πi

(
β∗ | β∗

0, σ
∗)

dβ∗,

the fact that πi(· | ·, ·) must have the same functional form as in the original param-
eterization following from the completeness of Nn(ỹ | X0β

∗
0 +Xβ∗, (σ ∗)2I), given

that the design matrix is of full rank. But one can also compute f (ỹ | β∗
0, σ

∗, i∗)
by change of variables from the original density, yielding

f
(
ỹ | β∗

0, σ
∗, i∗

)

=
∫

Nn

(
ỹ | X0β

∗
0 + Xβ∗,

(
σ ∗)2I

)
πi

(
β∗/c | (

β∗
0 − b

)
/c, σ ∗/c

)
c−k0 dβ∗.

Again using the completeness of the normal density, these two expressions can be
equal only if

πi

(
β∗ | β∗

0, σ
∗) = πi

(
β∗/c | (

β∗
0 − b

)
/c, σ ∗/c

)
c−k0 .

This condition is satisfied by the conditional prior in (12).
With respect to the only “if” part of the proof, note that for the particular trans-

formation in G0 given by b = β0 and c = σ ∗, the above condition becomes

πi

(
β∗ | β∗

0, σ
∗) = σ−k0π

(
β∗/σ ∗ | 0,1

)
,

proving that being of the form in (12) is also a necessary condition.
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A.4. Proof of Result 2. With the use of the full conditional for βi associated
with this prior, the integrated models can be alternatively expressed as

MI
i : Y∗ = X0β0 + σε,

where ε ∼ f I
i (u), given by

f I
i (u) =

∫
Nn(u | Xit, I)hi(t) dt (i > 0) and f I

0 (u) = Nn(u | 0, I).

This model selection problem was explicitly studied in Berger, Pericchi and Var-
shavsky (1998), where it was shown that the minimal sample size associated with
the right-Haar prior for (β0, σ ) is n∗

i = k0 + 1, and that it is sufficient for exact
predictive matching for f I

i (·) [or, equivalently, hi(·)] to be symmetric about the
origin.

A.5. Proof of Result 3. It is convenient to work in terms of orthogonal pa-
rameters, so, for each model Mi , define γ = β0 + (Xt

0X0)
−1Xt

0Xiβi ; this will be
“common” to all models and orthogonal to βi in each model Mi , which can be
written in the new parameterization as y ∼ Nn(y | X0γ + Viβi , σ

2In). Consider a
scale mixture of normals prior of the form

π(βi | γ , σ ) = π(βi | σ) =
∫ ∞

0
Nki

(
βi | 0, gσ 2Ai

)
h(g)dg.

Noting that the right-Haar prior for (α, σ ) transforms into the same prior (1/σ ) for
(γ , σ ), it follows that the marginal likelihood under model Mi is

mi(y) =
∫

Nn

(
y | X0γ + Viβi , σ

2In

)
σ−1πi(βi | γ , σ ) d(β i ,γ , σ )

=
∫ ∞

0

∫
Nn

(
y | X0γ + Viβi , σ

2In

)
σ−1

× Nki

(
βi | 0, gσ 2Ai

)
h(g)d(βi ,γ , σ ) dg.

Using the fact that ytVi (Vt
iVi )

−1Vt
iy = SSE0 for any sample of size n = ki + k0

and integrating out γ , βi and σ yields

mi(y) =
∫ ∞

0

∣∣Xt
0X0

∣∣−1/2 π−ki/2|(Vt
iVi)

−1|1/2

2|(Vt
iVi)−1 + gAi |1/2

× (
β̂ t

i

[(
Vt

iVi

)−1 + gAi

]−1
β̂i

)−ki/2
	

(
ki

2

)
h(g)d(g).

For the robust prior, Ai = (Vt
iVi)

−1, and it follows that

mi(y) = 1

2

∣∣Xt
0X0

∣∣−1/2
π−ki/2	

(
ki

2

)
(SSE0)

−ki/2,
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which is the same for all models of dimension ki , establishing that the robust prior
is dimension predictive matching for sample sizes k0 + ki . Furthermore, this last
expression equals m0(y) (see Appendix A.6), establishing that the robust prior is
null predictive matching for samples of size k0 + ki . [Note that this result would
hold for any proper choice of h(g), not just that for the robust prior.]

To see that null predictive matching does not occur if Ai is not a multiple of
(Vt

iVi)
−1, note that the expression to be established for null predictive matching

is (eliminating multiplicative constants)

0 =
∫ ∞

0

( |(Vt
iVi )

−1|1/2(β̂ t
i[(Vt

iVi )
−1 + gAi]−1β̂i )

−ki/2

|(Vt
iVi)−1 + gAi |1/2

− (
β̂ t

iV
t
iVi β̂i

)−ki/2
)
h(g)d(g).

Since (Vt
iVi)

−1 and Ai are positive definite, there is a matrix B such that
Bt (Vt

iVi)
−1B = I and BtAiB = D, with D being a diagonal matrix with diago-

nal elements di . Also defining W = Bt β̂i , it follows that the above expression can
be written

0 =
∫ ∞

0

(
(W t [I + gD]−1W)−ki/2

|I + gD|1/2 − (|W |2)−ki/2
)
h(g)d(g).

Let dj be the largest diagonal element, and choose W to be the unit vector in
coordinate j . Then the above expression becomes

0 =
∫ ∞

0

(
(1 + gdj )

ki/2

∏ki

l=1(1 + gdi)1/2
− 1

)
h(g)d(g).

But the integrand is clearly greater than 0, unless all di are equal which is equiva-
lent to the statement that Ai is a multiple of (Vt

iVi)
−1.

A.6. Computation of the Bayes factor in (16).

PROPOSITION 2. For any (a, b, ρi) satisfying (11) and n ≥ ki + k0, the prior
predictive distribution for y under Mi using the robust prior is

mR
i (y) = mR

0 (y)Q
−(n−k0)/2
i0

2a

ki + 2a

[
ρi(n + b)

]−ki/2 APi0,

where

mR
0 (y) = 1

2
π−(n−k0)/2∣∣Xt

0X0
∣∣−1/2

	

[
n − k0

2

]
SSE−(n−k0)/2

0

and APi defined in (3.4.1). Hence the Bayes factor obtained with prior πR
i in (8)

can be compactly expressed as in (16).
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PROOF. It is convenient to carry out the proof in the orthogonal transformation
of the parameters as in Appendix A.5. Using standard normal computations, the
prior predictive distribution under M0 is

mR
0 (y) =

∫
R

k0

∫ ∞
0

Nn

(
y | X0γ , σ 2In

) 1

σ
dγ dσ

= 1

2
π−(n−k0)/2∣∣Xt

0X0
∣∣−1/2

	

[
n − k0

2

]
SSE−(n−k0)/2

0 .

Integrating out β i , γ and σ , the prior predictive distribution under Mi is

mR
i (y) =

∫
Nn

(
y | X0γ + Viβi , σ

2In

)
Nki

(
βi | 0,B(λ)

)
aλa−1σ−1 d(γ ,βi , σ, λ)

= 1

2
π−(n−k0)/2∣∣Xt

0X0
∣∣−1/2

	

[
n − k0

2

]

×
∫ 1

0
aλa+(ki/2)−1(

ρi(b + n) − (b − 1)λ
)(n−ki−k0)/2

× (
SSEi

(
ρi(b + n) − bλ

) + λSSE0
)−(n−k0)/2

dλ,

with B(λ) = (λ−1ρi(b + n) − b)σ 2(Vt
iVi )

−1. This expression can be rewritten as

mR
i (y) = aQ

−(n−k0)/2
i0

(
ρi(n + b)

)−ki/2
mR

0 (y)

×
∫ 1

0
λa+(ki/2)−1

(
1 − b − 1

ρi(b + n)
λ

)(n−ki−k0)/2

×
(

1 − b − Q−1
i0

ρi(b + n)
λ

)−(n−k0)/2

dλ,

and the result follows by noting that

APi = 2a + ki

2

∫ 1

0
λa+(ki/2)−1

(
1 − b − 1

ρi(b + n)
λ

)(n−ki−k0)/2

×
(

1 − b − Q−1
i0

ρi(b + n)
λ

)−(n−k0)/2

dλ. �

A.7. Proof of Corollary 1. For the prior in (8),∫ ∞
0

(1 + g)−ki/2pR
i (g) dg =

∫ ∞
ρi(b+n)−b

(1 + g)−ki/2 a[ρi(b + n)]a
(g + b)(a+1)

dg.

The change of variables z = g − [ρi(b + n) − b] results in∫ ∞
0

(1 + g)−ki/2pR
i (g) dg

=
∫ ∞

0

a[ρi(b + n)]a
[z + ρi(b + n)](a+1)[1 + z + ρi(b + n) − b]ki/2 dz.
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It is now easy to see that if ρi(b + n) goes to ∞ with n, this integral vanishes as
n → ∞, satisfying the condition of Result 5.

A.8. Proof of Result 7. For simplicity, the explicit dependence of Qi0 on ym

will not be shown in this proof, and limm→∞ Qi0(ym) = 0 will be denoted by
Qi0 → 0. The robust Bayes factor can be written as

BR
i0 = a

(
ρi(n + b)

)−ki/2
(Qi0)

−(n−k0)/2

×
∫ 1

0
λa+(ki/2)−1

[
1 − b − 1

ρi(b + n)
λ

](n−ki−k0)/2

×
[
1 − b − Q−1

i0

ρi(b + n)
λ

]−(n−k0)/2

dλ

= a
(
ρi(n + b)

)−ki/2
∫ 1

0
λa+(ki/2)−1

[
1 − b − 1

ρi(b + n)
λ

](n−ki−k0)/2

×
[
Qi0

(
1 − bλ

ρi(b + n)

)
+ λ

ρi(b + n)

]−(n−k0)/2

dλ.

Note that, since b > 0, ρi ≥ b/(b + n) and 0 < λ < 1,

min
{

1,
1

b

}
≤

[
1 − b − 1

ρi(b + n)
λ

]
≤ max

{
1,

1

b

}

and[
λ

ρi(b + n)

]
≤

[
Qi0

(
1 − bλ

ρi(b + n)

)
+ λ

ρi(b + n)

]
≤

[
Qi0 + λ

ρi(b + n)

]
.

Applying these bounds, it is immediate that

c1

∫ 1

0
λa+(ki/2)−1[c2Qi0 + λ]−(n−k0)/2 dλ

(31)

≤ BR
i0 ≤ c3

∫ 1

0
λa+(ki/2)−1[λ]−(n−k0)/2 dλ

for positive constants c1, c2 and c3.
To prove the “only if” part of the proposition, note that the last integral in (31)

is finite if n < ki + k0 + 2a. Hence Bi0 is bounded by a constant as Qi0 → 0, and
information consistency does not hold.

To prove the “if” part of the proposition, make the change of variables λ∗ =
λ/Qi0 in the lower bound in (31), resulting in the expression

Q
(2a+k0+ki−n)/2
i0 c1

∫ Q−1
i0

0

(
λ∗)a+(ki/2)−1[

c2 + λ∗]−(n−k0)/2
dλ∗.
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If n > ki +k0 +2a, it is clear that this expression goes to infinity as Qi0 → 0 (since
the integral itself cannot go to 0). If n = ki + k0 + 2a, the expression becomes

c1

∫ Q−1
i0

0

(
λ∗

c2 + λ∗
)a+(ki/2)(

λ∗)−1
dλ∗,

which clearly goes to infinity as as Qi0 → 0, completing the proof.
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