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Criteria for Evaluating Dimension-Reducing Components for
Multivariate Data

Abstract

Principal components are the benchmark for linear dimension reduction, but they are not always easy to
interpret. For this reason, some alternatives have been proposed in recent years. These methods produce
components that, unlike principal components, are correlated and/or have nonorthogonal loadings. This
article shows that the criteria commonly used to evaluate principal components are not adequate for
evaluating such alternatives, and proposes two new criteria that are more suitable for this purpose.



Criteria for Evaluating Dimension-Reducing Components for

Multivariate Data
Daniel GERVINI and Valentin ROUSSON

Principal components are the benchmark for linear dimension

reduction, but they are not always easy to interpret. For this rea-

son, some alternativeshavebeenproposed in recent years. These

methodsproducecomponentsthat,unlikeprincipalcomponents,

are correlated and/or have nonorthogonal loadings. This arti-

cle shows that the criteria commonly used to evaluate principal

components are not adequate for evaluating such alternatives,

and proposes two new criteria that are more suitable for this

purpose.

KEY WORDS: Linearprediction;Principalcomponents;Ro-

tated components; Simple components.

1. INTRODUCTION

In multivariate datasets, it is often the case that the variables

are highly correlated and provide redundant information. The

number of variables is then unnecessarily large, and essentially

the same informationcan beconveyedby fewer dimensionsif the

variablesare wisely combined.In many cases, a lower dimension

also helps to visualize patterns in the data that would otherwise

go unnoticed.

For these reasons, dimension-reduction techniques have

played an important role in multivariate analysis. Many of these

techniques construct a system of q variables which are linear

combinations of the original p variables; the new variables are

called components. The most popular of these methods is prin-

cipal component analysis, which was originally proposed by

Hotelling (1933); a comprehensive and up-to-date reference is

Jolliffe (2002). The idea is to sequentially construct a system of

components that are uncorrelated and have maximal variance.

The component coef�cients (called loadings) obtained in this

way turn out to be orthogonal. For a given target dimension q,

the �rst q principal components are then the optimal dimension-

reducing system because they extract the maximal variability,

and they are both statistically nonredundant (uncorrelated) and

geometrically nonredundant (orthogonal loadings). For this rea-

son, they are considered the benchmark for linear dimension

reduction.Principal componentsare optimal under different cri-
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teria that evaluate uncorrelated or orthogonal components (Rao

1964; Okamoto 1969; McCabe 1984).

In most cases, however, the researcher not only wants to re-

duce the dimension of the dataset but also wants to obtain com-

ponents that are interpretable in the context of his research.

Unfortunately, principal component loadings sometimes show

complicated patterns and are not easy to interpret; see Cadima

and Jolliffe (1995) for interesting examples. To improve inter-

pretability, alternative methods that produce components with

simpler loadings’ patterns have been proposed over the years—

for example, Neuhaus and Wrigley (1954),Kaiser (1958), Haus-

mann (1982), Kiers (1991), Jolliffe and Uddin (2000), Vines

(2000), and Rousson and Gasser (2004); see also Jolliffe (2002,

chap. 11) for other proposals. These methods produce compo-

nents that are no longer uncorrelated and have nonorthogonal

loadings, so they are less ef�cient than principal components at

dimension reduction.But how can we quantifyprecisely the loss

of dimension-reducingef�ciency of such components?How can

we compare the performance of different methods? Remember

that most of the optimality criteria mentioned in the preceding

paragraph assume that the components are either uncorrelated

or have orthogonal loadings, which is no longer the case with

the alternative methods.

To illustrate the problem with a real dataset, let us consider

the audiometric example analyzed by Jackson (1991, chap. 5)

and reanalyzed by Vines (2000). The data consist of measure-

ments of lower hearing threshold on 100 men. Observations

were obtained, on each ear, at frequencies 500, 1,000, 2,000,

and 4,000 Hz, so that eight variables were recorded for each

individual. The sample variance of measurements at 4,000 Hz

turned out to be about nine times higher than those at 500 Hz,

so the variables were standardized before computing the princi-

pal components—that is, the principal components were com-

puted on the correlationmatrix rather than the covariancematrix.

The covariance–correlation matrix is given in Table 1. Jackson

(1991) argued that the �rst four principal components,which ex-

plain 87% of the total variability, provide a good approximation

to the data. The principal component loadings are given in Table

2. They can be interpreted as follows: the �rst component is an

indicator of average hearing loss, the second one is a contrast

between high- and low-frequency hearing loss, the third one is

a contrast between hearing loss at the two highest frequencies,

and the fourth one is a contrast between the two ears. Note that

some of the components (the third one in particular) are some-

what dif�cult to interpret at �rst glance, because some loadings

are relatively small but not really close to zero, so it is not clear

whether they are signi�cant or not. More clear-cut loadings are

obtained with the methods of Vines (2000) and Rousson and

Gasser (2004), which produce the same components for this

dataset; the loadings are given in Table 2. The simplicity of

the loadings’ patterns allows unequivocal interpretationof these

components,but before decidingto use this system instead of the
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Table 1. Covariance–Correlation Matrix of Hearing Loss Data

Left ear Right ear

500 1,000 2,000 4,000 500 1,000 2,000 4,000

L, 500 41.07 (0.78) (0.40) (0.26) (0.70) (0.64) (0.24) (0.20)
L, 1,000 37.73 57.32 (0.54) (0.27) (0.55) (0.71) (0.36) (0.22)

L, 2,000 28.13 44.44 119.70 (0.42) (0.24) (0.45) (0.70) (0.33)
L, 4,000 32.10 40.83 91.21 384.78 (0.18) (0.26) (0.32) (0.71)

R, 500 31.79 29.75 18.64 25.01 50.75 (0.66) (0.16) (0.13)

R, 1,000 26.30 34.24 31.21 33.03 30.23 40.92 (0.41) (0.22)
R, 2,000 14.12 25.30 71.26 57.67 10.52 24.62 86.30 (0.37)

R, 4,000 25.28 31.74 68.99 269.12 18.19 27.22 67.26 373.66

NOTE: Correlations are given in parenthesis.

principal components, the statistician should know how much is

lost in terms of dimension-reducing power. The simpler system

is no longer uncorrelated, so it does not make sense to simply

add up the variances and compare it with the total variance of

the original dataset, as it is done with the principal components.

Vines (2000) compared the variance of each simple component

with the variance of the corresponding principal component,

concluding that “little explanatory power (in terms of variance)

is lost by this radical simpli�cation. Furthermore the highestcor-

relation between the �rst four simple components is only 0.151”

(Vines 2000, p. 448). This is rather vague, however; it would be

nice to have a criterion that indicates unambiguously,with a sin-

gle number (ranging from 0 to 1, say, with 1 being optimal) the

dimension-reducing power of the system.

Some of the authors mentioned earlier (Neuhaus and Wrigley

1954; Kaiser 1958; Kiers 1991; Jolliffe and Uddin 2000) have

already proposed nonstandard criteria to evaluate components.

The problem is that these authors aimed at simplicity, so they

proposed criteria that measure some sort of simplicity of the

system rather than its dimension-reducing power. As a result, it

does not make much sense to use, for example, the quartimax

criterion of Neuhaus and Wrigley (1954) to evaluate varimax

components, which by de�nition maximize the different sim-

plicity criterion of Kaiser (1958). Consider, for example, the

varimax components for the hearing loss example, given in Ta-

ble 2. They are harder to interpret than either the principal or the

simple components, and are highly correlated. Varimax com-

ponents offer only disadvantages in this example, yet they are

considered optimal (by de�nition) under the criterion of Kaiser

(1958), while principal and simple components are considered

suboptimal.It is clear, then, thatwe needcriteria that evaluate the

dimension-reducingpower of components independentlyof the

notion of simplicity. In this article we are going to review some

of the existing criteria and propose two new ones, because we

found that none of the existing criteria is completely adequate

for this task.

2. NECESSARY AND DESIRABLE PROPERTIES OF

CRITERIA FOR EVALUATING COMPONENTS

From the discussion in Section 1, we conclude that criteria for

evaluating components should assign optimal value to the prin-

cipal components, since they are the most ef�cient dimension-

reducing system in terms of variability extraction and nonredun-

dancy of information. These criteria should also be applicable

to systems of components that may not be uncorrelated and may

not have orthogonal loadings, because most alternatives to prin-

cipal componentsdo not. For example, both simple and varimax

components for the hearing loss example are correlated, so we

cannotsimply add up the variancesof the componentsand divide

it by the sum of variances of the principal components; a more

elaborate criterion, that takes correlations into account, is nec-

essary. Speci�cally, correlationsbetween componentsshould be

penalized, because they imply redundancy of information.

A criterion for evaluating dimension-reducing components,

then, should satisfy at least two conditions:

1. Generality. The criterion has to be applicable to a broad

range of components, with the only restriction of unit-norm and

linearly independentloadings—the least restrictive assumptions

that rule out arti�cial cases. Under these general conditions, and

for a given target dimension q, the criterion must be maximized

by the �rst q principal components.

Table 2. Component Loadings for Hearing Loss Data

Principal components Simple components Varimax components

Variable 1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th

L, 500 0.40 ¡0.32 0.16 ¡0.33 0.35 ¡0.35 0.00 ¡0.35 0.60 0.03 ¡0.09 0.15

L, 1,000 0.42 ¡0.23 ¡0.05 ¡0.48 0.35 ¡0.35 0.00 ¡0.35 0.67 ¡0.03 0.11 ¡0.03
L, 2,000 0.37 0.24 ¡0.47 ¡0.28 0.35 0.35 ¡0.50 ¡0.35 0.29 0.02 0.61 ¡0.19
L, 4,000 0.28 0.47 0.43 ¡0.16 0.35 0.35 0.50 ¡0.35 0.13 0.70 ¡0.01 ¡0.10

R, 500 0.34 ¡0.39 0.26 0.49 0.35 ¡0.35 0.00 0.35 0.03 0.02 ¡0.16 0.74
R, 1,000 0.41 ¡0.23 ¡0.03 0.37 0.35 ¡0.35 0.00 0.35 0.07 ¡0.02 0.15 0.58

R, 2,000 0.31 0.32 ¡0.56 0.39 0.35 0.35 ¡0.50 0.35 ¡0.26 ¡0.01 0.75 0.21
R, 4,000 0.25 0.51 0.43 0.16 0.35 0.35 0.50 0.35 ¡0.13 0.71 0.02 0.09
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2. Uniqueness. The criterion must be maximized only by the

principal components under the conditions mentioned above.

The Uniqueness condition might seem too strong, but it guar-

antees that correlations between components and deviations

from orthogonality are penalized.

Other properties may be useful, even desirable, but we do not

think that they are strictly necessary. For instance:

° Additivity. Many criteria can be naturally expressed as a

sum of q terms, indicating the contribution of each component

towards the overall dimensionreduction.This is a good thing,but

we are mainly interested in evaluatingsystems of componentsas

a whole, rather than individualcontributionsof the components.

° Invariance under permutationof components. Because we

are evaluating systems as a whole, a criterion that assigns dif-

ferent values to two systems of components which are just a

permutation of one another is not very appealing; therefore,

permutation invariance is desirable. In practice, however, the

components are computed in a sequential way, so that a natu-

ral ordering is given by construction and alternatives consisting

merely on permutations are normally not contemplated.

The next section reviews some existing criteria, focusing on

those that satisfy the property of Generality. It turns out that none

of them satis�es the property of Uniqueness. This motivates our

introduction in Section 4 of two new criteria that satisfy both

properties.

3. EXISTING CRITERIA

Before we start reviewing the existing criteria, let us intro-

duce some notation. Consider a random vector x 2 R
p, that

without loss of generality will be assumed to have zero mean.

A linear dimension reduction technique will produce a system

of components y = A>x, where A 2 R
p£q is called the load-

ing matrix and q µ p. The principal components are de�ned

as follows. Let §§§ = cov(x) and §§§ = ¡¡¡¤¤¤¡¡¡>
be the eigen-

value decomposition of §§§, where ¤¤¤ = diag(¶1; : : : ; ¶p) with

¶1 ¶ ¢ ¢ ¢ ¶ ¶p > 0 and ¡¡¡ 2 O(p), where O(p) denotes the

family of p £ p orthogonal matrices (O(p; q) will denote the

family of p £ q orthogonalmatrices). The elements of z = ¡¡¡>
x

are called the principal components of x. Note that cov(z) = ¤¤¤,

so that the principal components are uncorrelated. ¡¡¡q will indi-

cate the loading matrix consisting of the �rst q columns of ¡¡¡,

and ¤¤¤q = diag(¶1; : : : ; ¶q). Note that the loadingmatrix ¡¡¡, and

consequently¡¡¡q, is only determined up to column sign reversal

and exchange of columns with identical eigenvalues, so it is not

unique. But to avoid unnecessary complicationsin phraseology,

we will refer to ¡¡¡q as “the unique” loading matrix.

There are essentially three approaches to dimension reduc-

tion: prediction (�nd y = A>x that provides the best linear

predictionof x), variabilitymaximization(�nd y with the largest

possible variance among linearly independent combinations of

x), and correlation (�nd y that is maximally correlated with x).

The review that follows is organized in three subsections corre-

sponding to these approaches.

3.1 Prediction Approach

The best linear predictor of x based on y = A>x, in

the sense of minimizing E(kx ¡ Byk2), is bBy with bB =
§§§A(A>§§§A)¡1. Therefore, the matrix A producing the optimal

predictor is bA that minimizes

E(kx ¡ §§§A(A>§§§A)¡1A>xk2)

= tr(§§§) ¡ tr(§§§A(A>§§§A)¡1A>§§§);

or equivalently, bA that maximizes tr(§§§A(A>§§§A)¡1A>§§§):

Rao (1964) showed that bA = ¡¡¡q is the maximizer in O(p; q),
and the maximum is tr(¤¤¤q) =

Pq

k = 1 ¶k . Then our �rst criterion

is

BLP(A) =
tr(§§§A(A>§§§A)¡1A>§§§)Pq

k = 1 ¶k

; (1)

where BLP stands for “best linear prediction”(all criteria in this

article are standardized so that the optimum is 1). This can be

rewritten as an additive criterion if one so wishes.

The value of BLP depends only on the subspace spanned by

the columns of A, rather than on the actual matrix A. Conse-

quently, any full-rank transformation of A is equivalent for this

criterion. Gervini and Rousson (2003) proved that any matrix

of the form bA = ¡¡¡qC with nonsingular C 2 R
q£q maximizes

(1). Therefore BLP satis�es the property of Generality, but not

Uniqueness; it fails to discriminate between systems of compo-

nents that are obviously not equivalent from a practical point of

view. Therefore, this criterion is not adequate for our purposes.

3.2 Variability Maximization Approach

Finding a system of uncorrelated components with largest

variance is probably the most familiar approach to dimension

reduction. The q components with largest variance are the ones

that carry most of the information of the original data, while the

others vary little about zero. In fact, if x lies on a q-dimensional

subspace of R
p with probability 1, then the variance of the last

p ¡ q components is exactly zero. The total variance of the sys-

tem can be de�ned as either the trace or the determinant of the

covariance matrix (the latter is usually known as generalized

variance). Using tr(cov(y)) = tr(A>§§§A) is more common,

and if the components are assumed to be uncorrelated, the max-

imization can be carried out in a sequential way, by maximizing

var(yj) = a>
j §§§aj subject to the restrictions kajk = 1 and

cov(yj; yk) = a>

j §§§ak = 0 for all k < j. The optimal y turns

out to be the vector of the �rst q principal components. It is

interesting to note that the optimal loading matrix comes out

orthogonal, although this was not an explicit restriction. If one

imposes the restriction A 2 O(p; q) instead of uncorrelation,

then the maximizers of tr(A>§§§A) turn out to be the matrices

of the form ¡¡¡qR with R 2 O(q), that is, the rotations of the

�rst q principal components. It is clear, however, that maximiz-

ing the trace only makes sense when either one of the restrictions

of uncorrelation or orthogonality is imposed, which violates the

property of Generality.

On the other hand, the generalized variance det(cov(y)) is

maximized by ¡¡¡q under the unique restriction of unit-norm

loadings, without assuming orthogonality or uncorrelation (see
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Okamoto 1969). Then the criterion

GV(A) =

µ
det(A>§§§A)Qq

k = 1 ¶k

¶ 1

q

satis�es the property of Generality, in contrast with the trace cri-

terion. But unfortunately GV is invariant under rotation of the

components and then it does not satisfy the property of Unique-

ness. This implies, for example, that GV cannot discriminatebe-

tween principal components and the varimax rotation.Although

GV is more informative than BLP, it is still not good enough for

our purposes.

3.3 Correlation Approach

The third approach to dimension reduction consists in �nd-

ing components that are maximally correlated with the data,

using measures of matrix correlation based on the sample data

matrix. Given a sample x1; : : : ; xn, let X be the n £ p data

matrix and Y = XA be the n £ q matrix of components.

Robert and Escou�er (1976) measured the closeness between

“data con�gurations” XX> and YY> as corr(XX>; YY>),
where corr(A; B) is the inner-product matrix correlation

hA; Bi=(hA; Ai
1

2 hB; Bi
1

2 ) with hA; Bi = tr(A>B). If S =
X>X=n denotes the sample covariancematrix, it is not dif�cult

to see that

corr(XX>; YY>) =
tr(SAA>S)

ftr(S2) tr((A>SA)2)g
1

2

: (2)

This is known as the RV-coef�cient of Robert and Escou�er

(1976), who showed that (2) is uniquely maximized by the �rst

q sample principal components among all uncorrelated compo-

nents. It is possible to relax the restriction of uncorrelationat the

price of losing uniqueness (this trade-off is unavoidable, since

corr(XX>; YY>) is invariant under rotation of components).

Assuming only that the loadingshavenormone, all the maximiz-

ers of corr(XX>; YY>) are the rotationsof the �rst q principal

components(the proofwas givenby Gervini and Rousson2003).

Therefore, replacing the sample covariance matrix by the pop-

ulation covariance matrix, from (2) we deduce a criterion that

satis�es the property of Generality, but not Uniqueness:

RV(A) =
tr(A>§§§2

A)

f
Pq

j = 1 ¶2
j g

1

2 ftr((A>§§§A)2)g
1

2

:

Other measures of matrix correlation were used by Cadima

and Jolliffe (2001) in the context of variable selection based on

principal components, but none of them can be turned into a

criterion better than RV, so we do not elaborate on this. The

interested reader is referred to Gervini and Rousson (2003) for

more details.

4. NEW CRITERIA

We saw in the previous section that the existing criteria do

not satisfy the condition of Uniqueness. None of them can dis-

criminate between rotations of principal components, and BLP

does not even discriminate between arbitrary full-rank transfor-

mations. This section proposes two new criteria that satisfy the

Uniqueness property.

Our �rst proposal is, essentially, a sum of variances corrected

for correlations. The idea is that if a new component yk = a>

k x

is added to a system of k ¡ 1 components, an indicator of the

real contribution of yk to the total variance of the system is the

residual variance of the linear prediction of yk given the �rst

k ¡ 1 components. Adding all these residual variances together

gives

qX

k = 1

(a>

k §§§ak ¡ a>

k §§§A(k¡1)

£(A>

(k¡1)§§§A(k¡1))
¡1A>

(k¡1)§§§ak); (3)

where A(k) = (a1; : : : ; ak). Note that (3) is just the sum of

variances of the components if they are uncorrelated (because

A>

(k¡1)§§§ak = 0), otherwise it is strictly smaller. Therefore (3)

penalizescorrelations,as we wanted.Moreover, the uniquemax-

imizer of (3) among full-rank matrices with unit-norm columns

is ¡¡¡q (see Gervini and Rousson 2003 for a proof, which is not

trivial). Then the criterion

CSV(A) =

Pq

k = 1(a>

k §§§ak ¡ a>

k §§§A(k¡1)(A
>

(k¡1)§§§A(k¡1))
¡1A>

(k¡1)§§§ak)
Pq

k = 1 ¶k

;

where CSV stands for “corrected sum of variances,” satis�es

both the Generality and the Uniqueness properties (and is also

additive).

However, CSV is not invariant under permutation of compo-

nents. In practice this is not very problematic,but it is not hard to

construct an invariant criterion if one wishes to. One possibility

is to simply take the maximum of CSV among all permutations

of the components. Another possibility is to de�ne a “symmet-

rically corrected sum of variances”

SCSV(A)

=

Pq

k = 1(a>

k §§§ak ¡ a>

k §§§A¡k(A>

¡k§§§A¡k)¡1A>

¡k§§§ak)Pq

k = 1 ¶k

; (4)

where A¡k is the p £ (q ¡ 1) matrix obtained after deleting the

kth column of A. The numerator of (4) is the sum of the residual

variances of the linear predictorsof yk given the other q¡1 com-

ponents. Note that SCSV(A) = CSV(A) if the system is un-

correlated and SCSV(A) < CSV(A) otherwise. Then, SCSV

is also uniquelymaximizedby ¡¡¡q among full-rankmatrices with

unit-norm columns. This criterion also satis�es the properties of

Generality and Uniqueness, plus additivity and invariance un-

der permutation of components. But it penalizes correlations

more strongly than CSV and then it can be overly pessimistic

in some situations. Besides, it is not a sequential criterion: it

“looks into the future,” subtracting from var(yk) correlations

with components yj with j > k. It must be noted, however, that

the properties of invariance under permutation of components

The American Statistician, February 2004, Vol. 58, No. 1 75



Table 3. Covariance–Correlation Matrices for Components of Hearing Loss Data

Principal components Simple components Varimax components

3.93 0 0 0 3.86 (¡0.12) (¡0.09) (¡0.14) 1.85 (0.27) (0.42) (0.73)

0 1.62 0 0 ¡0.30 1.59 (0.15) (0.05) 0.49 1.71 (0.41) (0.24)
0 0 0.98 0 ¡0.18 0.19 0.99 (0.03) 0.75 0.71 1.74 (0.35)

0 0 0 0.46 ¡0.18 0.04 0.02 0.45 1.30 0.40 0.60 1.68

NOTE: Correlations are given in parenthesis.

and sequentiality are at odds with each other (except, of course,

in the case of uncorrelated components,where one just takes the

sum of variances). At this point we cannot envisage a criterion

that is simultaneouslypermutation invariant, sequential, and pe-

nalizes correlations so as to satisfy the Uniqueness property. But

in practice sequentialityseems to be preferable overpermutation

invariance, so that we tend to favor the CSV criterion.

5. EXAMPLE

Let us apply the criteria reviewed in Section 3 and the new

criteria proposed in Section 4 to the hearing loss data presented

in the Introduction. Remember that we have three alternative

systems of components, shown in Table 2: the optimal princi-

pal components, the less optimal but better interpretable simple

components, and the highly correlated and not very meaningful

varimax components.

For this dataset, the varimax rotation evenly redistributes the

total variance among componentsand reintroduceshigh correla-

tions, as shown in Table 3. The varimax components are clearly

unattractive in this example. Yet BLP, GV, and RV criteria as-

sign maximum optimality to those components (remember that

this is always so, because these criteria are invariant under rota-

tions). On the other hand, the proposed CSV and SCSV criteria

assign values 0.79 and 0.61 to these components, which is far

from optimal and a more realistic evaluation of the system’s

performance.

That the simple components are better at dimension reduc-

tion than the varimax components is evident from Table 3. The

variances are closer to the principal component variances and

the correlations are relatively small. BLP, GV, and RV values

are high for this system (0.99, 0.97, and 0.99, respectively), but

this is hardly surprising, since these criteria tend to err on the

optimistic side, assigning high values to any reasonable system

of components. What is more interesting, the more demanding

CSV and SCSV criteria also assign high values to this system:

0.98 and 0.95, respectively.We conclude that the correlated sys-

tem of simple components incurs only a 2% (respectively 5%)

loss of dimension-reducing power compared to principal com-

ponents. This indicates that simple components are a good al-

ternative for this dataset.

6. CONCLUSION

A number of alternatives to principal components have been

proposed recently, that sacri�ce some of the dimension-reducing

power of the principal components in exchange for simplicity

of the loadings and better interpretability. This calls for criteria

that are able to evaluate the performance of correlated and/or

nonorthogonal systems of components. We have shown in this

article that the existing criteria are not appropriate for this, be-

cause they do not handle correlations and lack of orthogonality

in adequate ways. The example in Section 5 and other examples

analyzed by Gervini and Rousson (2003) reveal that these cri-

teria often assign full or almost full optimality to systems that

are too far from the principal components. In contrast, the new

criteria proposed in Section 4 can discriminate well between

“good” and “bad” suboptimal systems. Of these two criteria we

tend to favor CSV, but the examples in Gervini and Rousson

(2003) show that both criteria are consistent in their evaluations

if the systems are not too far from optimal. For these reasons,

we think that our proposals are a signi�cant improvement over

existing criteria.

[Received May 2003. Revised September 2003.]
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