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ABSTRACT

The coronal magnetic configuration of an active region typically evolves quietly during few days
before becoming suddenly eruptive and launching a coronal mass ejection (CME). The precise origin
of the eruption is still debated. Among several mechanisms, it has been proposed that a loss of
equilibrium, or an ideal magneto-hydrodynamic (MHD) instability such as the torus instability, could
be responsible for the sudden eruptivity. Distinct approaches have also been formulated for limit
cases having circular or translation symmetry. We revisit the previous theoretical approaches, setting
them in the same analytical framework. The coronal field results from the contribution of a non-
neutralized current channel added to a background magnetic field, which in our model is the potential
field generated by two photospheric flux concentrations. The evolution on short Alfvénic time scale
is governed by ideal MHD. We show analytically first that the loss of equilibrium and the stability
analysis are two different views of the same physical mechanism. Second, we identify that the same
physics is involved in the instability of circular and straight current channels. Indeed, they are just
two particular limiting case of more general current paths. A global instability of the magnetic
configuration is present when the current channel is located at a coronal height, h, large enough so
that the decay index of the potential field, ∂ ln |Bp|/∂ lnh is larger than a critical value. At the limit
of very thin current channels, previous analysis found a critical decay index of 1.5 and 1 for circular
and straight current channels, respectively. However, with current channels being deformable and as
thick as expected in the corona, we show that this critical index has similar values for circular and
straight current channels, typically in the range [1.1,1.3].

Subject headings: Sun: corona — Sun: filaments — Sun: flares — Sun:magnetic fields — Sun: photo-
sphere

1. INTRODUCTION

A coronal mass ejections (CME) is the consequence of
the sudden destabilization of a part of the coronal mag-
netic field. The eruption is preceded by a long phase
(days to week) during which the magnetic field is pro-
gressively stressed and free magnetic energy builds up.
The configuration typically grows quasi-statically (with
velocities well below the Alfvén velocity). At a point of
the evolution, in a few minutes up to an hour, the sys-
tem becomes very dynamic, with a global upward mo-
tion, as traced by the evolution of the cold plasma in
the associated filament and of the hot plasma in coronal
loops. Later on, a significant release of magnetic energy
occurs, and a flare is typically observed. If the down-
ward magnetic tension of the covering magnetic arcade
is weak enough, the erupting plasma and magnetic field
is launched towards the interplanetary space as a CME.
In summary, the CME phenomena occurs in four main
phases: build-up, instability, acceleration, and propaga-
tion. They have been reviewed by Forbes et al. (2006)
and Vršnak (2008).

The two last phases are the most spectacular ones,
so they are better constrained by observations and they
are more deeply modeled, in particular with MHD sim-
ulations (e.g. Amari et al. 2003; Fan & Gibson 2007;
Török & Kliem 2007). The first phase is a slow evo-
lution and it is usually difficult to characterize in obser-
vations what are the generic key points which lead to
eruption. The main physics which emerges from obser-
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vations is the presence of new emerging magnetic flux,
progressive dispersion of the whole flux, the build up of
a very sheared field in the vicinity of the photospheric
inversion line (PIL), and the cancelation of flux at the
PIL (e.g. van Driel-Gesztelyi 1998; Green et al. 2002; van
Driel-Gesztelyi et al. 2003). At the least the three last are
physically related since flux dispersion lead to the con-
vergent flows towards the PIL, increasing the magnetic
shear and forcing flux cancelation. This also implies the
build-up of a flux rope with J-shaped coronal loops trans-
formed by reconnection into S-shaped loops (e.g. Moore
et al. 1995; Gibson et al. 2006; Green & Kliem 2009).

A still open issue is why does the magnetic configu-
ration erupt? There is usually no evidence of a large
amount of new magnetic flux (with a magnitude com-
parable to the pre-eruptive flux), so the eruption is
not driven by the sub-photospheric evolution but rather
the coronal magnetic configuration becomes unstable
at some point during the slow evolution. During this
phase, magnetic reconnection is probably involved as a
key mechanism for the progressive transformation of the
magnetic configuration. However, an ideal instability is
thought to initiate the CME since the upward accelera-
tion phase starts before the impulsive phase of the flare
in the majority of events (e.g. Kahler et al. 1988; Maričić
et al. 2007). Later on, magnetic reconnection plays a key
role in the eruption as the peak of the upward acceler-
ation is typically found correlated with the peak of the
hard X-rays and of the time derivative of soft X-rays flux
(e.g. Neupert et al. 2001; Zhang et al. 2001; Vršnak et al.
2004; Temmer et al. 2008).
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Fig. 1.— (a) Schema of a current channel in the corona and its
image current below the photosphere (located at z = 0). The cur-
rent channel has a radius a. (b,c) Particular cases with a circular
and straight current channels, respectively.

Magnetic reconnection also plays a key role during the
first phase as it permits the progressive transformation
of very sheared field lines into a twisted flux rope. How-
ever, the MHD simulations of Aulanier et al. (2010) have
shown that magnetic reconnection at the photospheric
level, or later on in the corona below the flux rope, is not
directly responsible for the onset of the eruption. The
configuration rather gets unstable when the flux rope
reaches a height where the potential field, associated to
the distribution of the photospheric magnetic flux, is de-
creasing fast enough with height. This relates the onset
of the eruption in MHD simulations to a series of analyt-
ical studies, as summarized below.

The equilibrium of a flux rope within a coronal field
was first considered by Kuperus & Raadu (1974) with
the following simplifications. In Cartesian coordinates,
they modeled a flux rope with the magnetic field cre-
ated by a straight line current of intensity I, located at
a height, z = h, above the photosphere located at z = 0
(Figure 1(c)). The flux rope field is added to a simple
background magnetic field: a potential field, Bp, asso-
ciated to a bipolar photospheric magnetic field. They
included the observed insignificant evolution of the ver-
tical component, Bz, at the photospheric level during the
instability phase of a CME by introducing an image cur-
rent of intensity −I, located at the height z = −h. The
physical result is that two oppositely directed Laplace
forces are acting on the coronal line current: one from
the potential field, Bp, and the other from the magnetic
field created from the image current (or the equivalent
surface current at z = 0). The equilibrium is then de-
scribed by a curve I(h).

van Tend & Kuperus (1978) showed that, I(h) is an in-
creasing function of h at low height and that it has a local
maximum if the horizontal component of Bp orthogonal
to the line current, |Bp,x|, decreases fast enough with
height. Then, supposing that the current I can be in-
creased progressively to larger values during the buildup
phase, a loss of equilibrium occurs at h = hcrit. defined
by the maximum of the function I(h). This occurs where
|Bp,x| decreases faster than 1/h. This model was later

developed within a circuit theory, introducing an elec-
tric potential and a resistance in the circuit to describe
the temporal evolution of I. The current sheet which
forms below the erupting flux rope was described by
another electric circuit. This provides a set of coupled
equations which describes the main phases of an eruptive
flare (Martens & Kuin 1989; van Ballegooijen & Martens
1989). Next, the background potential field, Bp, was re-
placed by a linear force-free field to include, as observed,
a sheared field (Amari & Aly 1989). A loss of of equi-
librium is also present if |Bp,x| is decreasing fast enough
with height (Démoulin & Priest 1988).

In the above theory, it is supposed that the current in-
tensity, I, is the main driver of the evolution and that it
can be increased to arbitrary large values. However, the
coronal physics is not precisely described by any circuit
theory because the electric current is a consequence of
the force balance together with MHD constraints (e.g.
Parker 1996a). The effect of magnetic reconnection on
the system (through changing field line connectivity and
energy release) before the flare/CME acceleration phase
is minimal and therefore the stability of an equilibrium is
typically tested in ideal MHD. The conservation of the
coronal magnetic flux passing below the flux rope is typ-
ically used to set a constraint on the current evolution.
Anzer & Ballester (1990) claimed that there is no longer
a loss of equilibrium with this ideal MHD constraint, but
Démoulin et al. (1991) found that this constraint mostly
displaced the loss of equilibrium point to a larger height
(slightly after the maximum of the I(h) curve), in agree-
ment with the MHD simulation of Forbes (2000). The
following developments have shown that a loss of equi-
librium is typically present if the flux rope radius is thin
enough. It occurs, for example, when the photospheric
polarities are subject to converging motions toward the
PIL, or when their magnetic flux is decreased, even when
ideal MHD is assumed during the full build-up phase,
(Isenberg et al. 1993; Forbes & Isenberg 1991; Forbes &
Priest 1995).

When the current channel is curved, an extra force
is present, called the hoop force (e.g. Bateman 1978).
The electric current of a curved channel creates a mag-
netic field component orthogonal to the channel. This
implies an outward Laplace force (away from the curva-
ture center). In terms of the magnetic field, this force is
due to the over magnetic pressure of the azimuthal field
component present in the direction of the curvature cen-
ter. This force is at the heart of the magnetically driven
model of Chen (1989) and subsequent developments (e.g.
Garren & Chen 1994; Krall et al. 2000). This force is also
present in MHD models where the straight line current of
previous paragraph is replaced by a ring of current (Lin
et al. 1998, 2002; Titov & Démoulin 1999). As for the
above cartesian models, an ideal MHD evolution during
the build-up phase also typically, but not always, lead to
a loss of equilibrium. The differences will be discussed in
Sections 3 and 4. A non equilibrium point could also be
present when line-tied conditions are imposed at the pho-
tospheric footpoints of the flux rope (Isenberg & Forbes
2007).

From another point of view, Kliem & Török (2006)
studied the stability of a toroidal current ring immerged
in a background potential field, Bp. Extending the re-
sults summarized in Bateman (1978), they derive that an
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instability occur when the background field component
orthogonal to the torus (|Bp,x|) decreases faster than

1/h3/2 with a correction depending on the torus aspect
ratio (major over minor radius). Kliem & Török (2006)
called it the “torus instability”. They analyzed cases
where the electric current I was held constant or fixed
by the conservation of the total magnetic flux within the
torus hole.

The aims of present paper is to revisit the above studies
to analyze their relationships. Is this “torus instability”
different from the loss of equilibrium found in previous
studies with a toroidal current? Has it a different phys-
ical origin than the instability of van Tend & Kuperus
(1978) obtained with a straight current channel? The
Cartesian and axisymmetric models are first written with
the same formalism in Section 2. We compare the loss
of equilibrium and the instability approaches in both ge-
ometries in Section 3, before comparing the criteria of
instabilities taking into account a finite current-channel
width which evolves during the perturbation (Section 4).
Finally, in Section 5, we summarize our results and dis-
cuss the relationship between the Cartesian and axisym-
metric models, as well as between the loss of equilibrium
and the torus instability.

2. BASIC CONCEPTS

The coronal magnetic field B can always be is written
as the sum of a background magnetic field Bp and the
magnetic field BI, created by localized coronal currents
and their images below the photosphere (Section 2.2).
BI has a vanishing Bz component at z = 0 by construc-
tion. All the analytical models use this field decompo-
sition with various approximations for BI. Bp is most
frequently taken as the unique potential field associated
with the photospheric “normal magnetogram” Bz(x, y, 0)
and with vanishing strength at infinite distance. We con-
sider this case below, however, it is worth noting that,
in general, Bp can also incorporate distributed coronal
currents (e.g. Bp could be a linear force-free field, and
BI needs to be self consistently computed, Démoulin &
Priest 1988).

2.1. Modelization with Concentrated Currents

In order to have a set of equations solvable analyti-
cally, simplifications in the magnetic configuration need
to be made. A first one is to suppose that the elec-
tric current is restricted to a thin channel in the corona
(Figure 1 (a)). More precisely that its typical thickness,
2a, is small compared to the spatial scales of Bp and
to the local radius of curvature of the current channel
axis. In an active region, the magnetic shear is typically
concentrated around the PIL, while the surrounding ar-
cade is more potential, so electric current are stronger
around and above the PIL. With reconnection of sheared
loops at the PIL, an important fraction of the currents
are inside a twisted flux tube (Aulanier et al. 2010, and
references therein). Then, the introduction of a concen-
trated current channel is motivated by observations and
MHD simulations, however it is still an important sim-
plification (e.g., neglecting the effect of more distributed
currents as well a the presence of narrow current layers
and sheets).

The approximation of a thin current channel allows
to separate approximately the magnetic equilibrium in a

internal and external equilibrium (Chen 1989; Isenberg
et al. 1993). This splitting is better achieved as the cur-
rent channel is thinner. For the external equilibrium, the
Laplace force, integrated over the channel cross section,
vanishes, so that there is no average magnetic field com-
ponent orthogonal to the current channel. The internal
equilibrium is solved locally, in the channel cross section.
A twisted flux tube has generically both toroidal (axial)
and poloidal (azimuthal) magnetic field and electric cur-
rent components. The equilibrium is typically solved in
cylindrical coordinates with a balance between the to-
tal magnetic pressure gradient and the tension of the
poloidal magnetic field (force-free field solution). This
internal equilibrium is not the object of present paper,
and we refer to the work of Lin et al. (1998).

Another important simplification is the absence of a
neutralization, or return, current around the direct cur-
rent. Such return current, of opposite direction and with
the same magnitude as the direct current, is expected to
be present in a magnetic field formed by emergence or
induced by localized boundary (photospheric) motions
(Parker 1996b). In both cases the complete neutraliza-
tion is due to a vanishing circulation of B around a large
path enclosing the current channel. Return currents are
indeed present in MHD simulations, but when a signifi-
cant magnetic field component is present along the PIL,
the direct current has a larger magnitude than the return
current (Török & Kliem 2003; Aulanier et al. 2005). In-
deed, only a partial neutralization was typically reported
in sunspots (Wheatland 2000; Venkatakrishnan & Tiwari
2009). With partial neutralization, the current intensity,
I, is the non-vanishing sum of the two opposite currents.

We argue that the occurence of non fully neutralized
currents should be a common feature in solar active re-
gions. The contrary would imply that current-carrying
flux tubes should be fully surrounded by potential fields,
not only high up in the corona, but also low down around
PILs. It is worth noticing, however, that some MHD
models for solar eruptions clearly do not require a net
current (the magnetic breakout, tether cutting and flux
disappearance models, respectively addressed by Antio-
chos et al. 1999; Moore & Roumeliotis 1992; Amari et al.
2000), as they are based on a gradual diminishing of the
tension of the background field, irrespectively of the dis-
tribution of electric currents at lower altitudes. Many
other models exist (as reviewed e.g. in Forbes et al. 2006;
Aulanier et al. 2010), but it is conceivable that several
actually fall into the physical frame studied in the present
paper.

2.2. Image Current

The lack of significant photospheric magnetic flux evo-
lution during the initiation of a CME can be modeled
with the introduction of image currents below the photo-
sphere. The straight channel case of Kuperus & Raadu
(1974) can be generalized to any channel shape as il-
lustrated in Figure 1(a). Let the current vector be
(Ix, Iy, Iz) at a generic point (x, y, z) of the corona, then
the introduction of the image current (−Ix,−Iy, Iz) at
the image position (x, y,−z) implies that the vertical
component of the magnetic field at the photosphere,
Bz(x, y, 0), is unaffected by the presence of the current
channel.

The introduction of this image current is a particu-
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lar case of the technique of images to impose a particu-
lar boundary condition in the setting of electrodynamic
problems (Jackson 1975, chap. 2 and 5). Physically, the
coronal current path is closing in a complex set of hori-
zontal photospheric currents, which create the same coro-
nal magnetic field than the image current.

2.3. Magnetic flux

We suppose that photospheric evolution and magnetic
reconnection are negligible during the instability phase,
then the total coronal magnetic flux passing below the
current channel is conserved. This flux is the sum of the
flux of Bp and of BI. By the symmetric construction of
the image current, the coronal flux of BI is half the flux
enclosed by the full current channel (coronal and image
current), so it is equal to LI/2, where L is the external
inductance of the full current channel (e.g. Jackson 1975).

The total inductance of a circular channel of main ra-
dius h and of small radius a (Figure 1(b)) is

Lc = µ0h

(

ln

(

8h

a

)

− 2 +
li
2

)

, (1)

where µ0 is the magnetic permeability, and li is the nor-
malized internal inductance, per unit length, of the cur-
rent channel (Grover 1946). li take the value of 0, 0.5 or
1 for a current concentrated at the border of the torus,
uniformly distributed within the cross section, or with a
linear force-free field equilibrium (Lin et al. 1998, and ref-
erences therein). Equation (1) is simple, but still a good
approximation of more complete expressions. For exam-
ple, it is close to the series expansion tabulated by Malm-
berg & Rosenbluth (1965) in the range 0.1 < a/h < 1
for li = 0. Moreover, the expression with elliptic inte-
grals given by Ramo et al. (1994, p. 193) is also close to
Equation (1) with li = 0 in the range 0.15 ≤ a/h < 1,
while for lower a/h values it is closer to the case li = 0.5.
Finally, for the coronal magnetic flux passing below the
current channel, the external inductance is required, so
the flux is LcI/2 with li = 0.

With the same notations (Figure 1(c)), the total induc-
tance of a straight channel and its image, for a length ∆y
along the channel, is

Ls =
µ0∆y

π

(

ln

(

2h

a

)

+
li
2

)

, (2)

where li has the same value than in the above circular
case. The main difference with the circular case, is that
Ls is only weakly dependent of h so that Ls is almost con-
stant during a global perturbation of the channel (modi-
fying the height h). As above, the coronal magnetic flux
passing below the current channel is LsI/2 with li = 0.

2.4. Magnetic Self Force

From the Biot and Savart law, a current channel gen-
erates a magnetic field at any point of the space, in par-
ticular in the current channel. The component of this
field orthogonal to the current channel induces a Laplace
force. The direct calculation of this force from the Biot
and Savart law is very cumbersome, even for a simple
torus geometry. In practice, this force is computed by
equaling the work of this force to the change of the mag-
netic energy (LI2/2) during an elementary displacement,
preserving the magnetic flux encircled by the current

channel, LI, so that there is no inductive effect (Shafra-
nov 1966; Garren & Chen 1994). For a circular current
channel, this implies an outward radial force fc, per unit
length along the channel, given by:

fc =
I2

2

∂Lc

∂h
= I2 µ0

4πh

(

ln

(

8h

a

)

− 1 +
li
2

)

. (3)

The force fc is the Laplace force between the toroidal
(axial) current and the poloidal magnetic field. There is
also the Laplace force between the poloidal current and
the toroidal magnetic field inside the twisted flux tube.
Taking into account the internal equilibrium, in the limit
a/h << 1, this second force only gives a small correction
to the previous force, as the total force is obtained from
Equation (3) by replacing li by lf = li − Sh with Sh ≈ 1
(Shafranov 1966). Then, we write the total force as rcI

2

with

rc =
µ0

4πh

(

ln

(

8h

a

)

− 1 +
lf
2

)

(4)

The local outward force rcI
2, called hoop force, has

its origin in the magnetic field created by each of the ele-
mentary part of the circular ring, with the largest contri-
bution coming from the closest currents. Indeed, it has
a logarithm divergence as the small radius, a, becomes
smaller. For a << h the logarithm term slightly domi-
nates in Equation (4). If the current channel is fully in
the corona (e.g. Lin et al. 1998), Equation (4) includes
only the self-force of the coronal current channel, whereas
if the current channel is only half in the corona (e.g. Lin
et al. 2002, Figure 1(b)) Equation (4) also includes the
force from the image current. Finally, Garren & Chen
(1994) have generalized these results to current channels
with arbitrary shapes.

For a straight current channel, located at the height h
above the photosphere, the magnetic force can be com-
puted as above (Equation (3)) with Lc replaced by Ls or
the magnetic field of the image current can be computed
first by the Biot and Savart law. The repulsion function
rs is

rs =
µ0

4πh
. (5)

rs has indeed a similar form as rc (Equation (4)) since
the logarithm term provides only a weak dependance on
h/a.

3. LOSS OF EQUILIBRIUM AND INSTABILITY

3.1. Magnetic Field Evolution

The MHD evolution of the coronal magnetic field of
an active region, outside flare times, has typically three
time-scales, as follows. The shortest time-scale, τA,
called the Alfvén time, is given by the typical time that
Alfvén waves require to cross the coronal field configura-
tion. Outside of the eruption period, the magnetic con-
figuration is not significantly changing on such time scale
and Alfvén waves transport the magnetic stresses (shear,
twist). On an intermediate time-scale, τB , the coro-
nal magnetic stress is significantly changing, for example
because of sub-photospheric torsional Alfvén waves are
bringing twist to the coronal field, or because of recon-
nection between sheared magnetic loops is forced by con-
verging flows at the PIL. On this intermediate time-scale,
coronal currents significantly change, but not the global
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photospheric distribution of the magnetic field compo-
nent normal to the photosphere (i.e. the “normal magne-
togram”). On the longest time-scale, τC , both the coro-
nal currents and the “normal magnetogram” are evolv-
ing.

For a mature AR, with a magnetic flux of ≈ 1022 Mx,
the above time-scales are typically of the order of τA ≈
few minutes, τB ≈ few days, and a τC ≈ week to months.
They are well separated, a useful property for an ana-
lytical study since it allows to isolate the main physics
involved for each time-scale. Thus, we can use different
approximations to analyze the magnetic field evolution
on these time-scales, as follows. The global stability of
the equilibrium can be tested with ideal MHD on the
shortest time-scale τA. On the intermediate time-scale
τB , the build up of coronal current can be studied within
a given potential Bp (computed uniquely from the “nor-
mal magnetogram”, using appropriate boundary condi-
tions on the sides of the domain). Finally the evolution
on the longest time-scale τC is mostly studied with MHD
simulations or with analytical studies imposing an ideal-
MHD evolution.

3.2. Loss of Equilibrium with a Circular Current
Channel

First, we revisit the model proposed by Titov &
Démoulin (1999), keeping it the simplest as possible. The
potential field Bp is created by two magnetic sources, of
equal flux φ but of opposite sign, located at x = ±D, y =
z = 0 and by a line current located at y = z = 0. The
magnetic field of this line current adds a contribution
to the coronal potential field, but it does not modify the
equilibrium, nor the equilibrium perturbation studied be-
low, so this field is not present in the following equations
(the aim of this magnetic field is only to have a finite
twist in the coronal field). A torus of electric current,
centered at x = y = z = 0, is introduced in the plane y-z
(Figure 1(b)). Since the photospheric boundary is set at
z = 0, the half part of the torus at z < 0 represents the
image current.

The magnetic configuration considered is axisymmet-
ric (around the x-axis), then the magnetic force on the
current channel is radial in the y-z plane with the same
value along the current channel:

f = rc I2 + Bp,x I , (6)

where rc is given by Equation (4). The x-component of
Bp at the current location is:

Bp,x = −4φD(h2 + D2)−3/2 . (7)

The equilibrium current, Ieq. is given by f = 0 in Equa-
tion (6):

Ieq.(h) =
16π

µ0

φDh(h2 + D2)−3/2

ln(8h/a) − 1 + lf/2
. (8)

Starting from a nearly potential configuration (small I
value), if the current value could be progressively in-
creased in function of time as in a classical electric cir-
cuit, then a loss of equilibrium would occur when I would
reach the maximum value of Ieq.(h). The circular cur-
rent channel behaves in the same way as a straight cur-
rent channel and its image current (Figure 1(c) and Sec-
tion 3.6) as proposed by van Tend & Kuperus (1978).

However, with an MHD evolution, the magnitude of the
coronal current is rather determined by the magnetic
field evolution, so its time evolution cannot be imposed a
priori. Indeed, during a typical MHD evolution with im-
posed photospheric velocities, the coronal current mag-
nitude first grows then later decreases (e.g. Aly 1985;
Klimchuk & Sturrock 1989; Aulanier et al. 2005).

In previous studies, the magnetic field evolution is typ-
ically assumed to be ideal (e.g. Isenberg & Forbes 2007,
and references therein). With no magnetic flux emerging
or canceling between the photospheric sources (located
at x = ±D), this implies the conservation of the mag-
netic flux, F , through the area, S, defined between z = 0
and the bottom of the current channel. F is given by

F =
LeI

2
+

∫∫

S

Bp,x dy dz (9)

=
LeI

2
− 4πφ

(

1 −
D

√

(h − a)2 + D2

)

, (10)

with Le = µ0h(ln 8h/a− 2) is the external inductance of
the current channel (see Equation (1)). The conservation
of F , together with the time evolution of one parameter
of the model (e.g. φ or D) provides an evolution con-
straint with the generic form Ievol.(h). Its intersection
with the equilibrium curve, Ieq.(h), determines the evo-
lution of I in function of the evolving parameter (e.g. φ
or D).

With a circular current channel, Lin et al. (2002) has
shown that evolving D, with F preserved, does not lead
to a loss of equilibrium, but rather to a self similar evolu-
tion of the configuration (which is just a rescale in size).
However, they also show that a decrease of φ does lead
to a loss of equilibrium. Figure 2(a) is a graphical repre-
sentation of this result. As in previous studies, the max-
imum of Ieq.(h) defines the reference state with fluxes
φ0 and F0. The evolution is parametrized by fφ defined
by φ = fφ φ0, where fφ is a decreasing function of time
as observed after the emerging phase of an active region
(e.g. van Driel-Gesztelyi et al. 2003) or before filament
eruption (e.g. Schmieder et al. 2008). In order to have
an equilibrium curve not evolving with φ (to simplify the
graphic), we draw Ieq./φ (normalized to its maximum
value), as well as Ievol./φ.

Starting the evolution with fφ > 1, the constraint
F = F0 has an intersection with the equilibrium curve
before its maximum (e.g. at the point “a” for fφ = 1.5
in Figure 2(a)). This equilibrium is stable since the per-
turbed equilibrium, with the constraint F = F0, has a
restoring force as shown with the arrows (see Section 4.1
for the analysis of the perturbed equilibrium).

As fφ decreases (due e.g. to magnetic flux cancelation
with some photospheric flux brought from |x| > D), the
equilibrium height h increases. Contrary to what is ob-
tained if the evolution of I is prescribed as in a circuit
model, the conservation of magnetic flux in ideal MHD
leads to the equilibrium to be still stable after the max-
imum of Ieq./φ (point “b”), up to the point “c”.

For larger h values, e.g. at point “a′ ”, the equilib-
rium is unstable to an ideal perturbation (i.e with F
preserved). However, this unstable region is not reach-
able during the pre-eruptive evolution: the quasi-static
evolution ends at point “c” with both an equilibrium be-
coming unstable (see arrows in Figure 2(a)) and without
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Fig. 2.— The coronal electric current, I, divided by the photo-
spheric magnetic flux φ, in function of the coronal height h, nor-
malized to half the x distance, D, of the photospheric magnetic
polarities. The equilibrium curve, Ieq./φ(h), is in black, while the
evolution constraint is shown in grey/dashed style for four values
of the evolution factor f . Both f and Ieq./φ are normalized to 1 at
the maximum of Ieq./φ. (a,b) Case of a circular current channel
(Figure 1(b)), (c) case of a straight current channel (Figure 1(c)).
(a,c) The photospheric flux, φ, is evolved with the factor f = fφ.
(b) The magnetic twist of the flux tube is evolved with the fac-
tor f = fT. Arrows represent the direction of the force when the
system is perturbed away from the equilibrium.

neighbor equilibrium, as fφ is slightly more increased, so
there is a loss of equilibrium. The evolution sequence
with decreasing fφ ends with a fast evolution driven by
an outward force, so an eruption. It could be confined if
a stable equilibrium would be present at greater height,
e.g. due to the formation of a long current sheet below
the flux rope (Forbes & Isenberg 1991), or if a too strong
magnetic tension of the overlying field would be present
(as for the kink-unstable eruption modeled by Török &
Kliem 2005).

3.3. Other Possible Evolutions on Intermediate Time
Scales

The analysis of the previous section supposes an ideal-
MHD evolution to progressively shift the equilibrium to a
point of the equilibrium curve where no neighbor equilib-
rium exists (with the magnetic flux conservation). This
is only one plausible scenario for solar eruptions (see Sec-
tion 1). Indeed, on the intermediate time-scale τB , mag-
netic reconnection can play a crucial role in transforming
the coronal field. For example, this is the case with a
progressive diffusion of photospheric magnetic polarities
leading to reconnection at the PIL and the transforma-
tion of sheared to twisted field lines, contributing to build
up the twisted flux tube and the associated current chan-
nel (as in the numerical simulations of Amari et al. 2003;
Fan & Gibson 2004; Mackay & van Ballegooijen 2006;
Aulanier et al. 2010). A progressive transformation of
the coronal magnetic configuration is also expected due
to reconnection of the current layers formed at separatri-
ces and Quasi-Separatrix Layers (QSLs, e.g. Titov et al.
2002) during the intermediate time-scale τB . We con-
clude that typically it is not obvious to justify an ideal-
MHD evolution during the long pre-eruptive build-phase
before an eruption, on time scales much longer than τA,
and in particular using the evolution constraint of a pre-
served flux below the flux rope (e.g. Equation (10)).

More generally, for a given observed configuration or
in a 3D MHD simulation, it is difficult to determine the
main evolutionary constraint, even with detailed anal-
ysis (e.g. Aulanier et al. 2010). This is not due to a
lack of available data; rather, the difficulty is due to the
complexities inherent in the 3D evolution of magnetic
fields. This is illustrated by the formidable complexity
of studying the loss of equilibrium even in a simplified
configuration (e.g. a small bipole emerging in a bipolar
field, Lin et al. 2001).

3.4. Instability with a Circular Current Channel

Let us illustrate another possible evolution than the
ideal-MHD evolution on the time scale τB . This follow-
ing case is selected mainly because of its simplicity to
illustrate other possible evolutions. The current channel
is associated with a twisted flux tube which has a finite
twist due to the presence an axial magnetic field. The
average coronal twist, T , is approximately related to the
current I and the toroidal flux, φt, in the flux rope by
(see Equation(9) in Titov & Démoulin 1999):

T = µ0Ih / (2φt) . (11)

Let us suppose that the flux rope twist T is increasing,
e.g. due to torsional Alfvén waves coming from the con-
vective zone, or as a consequence of reconnecting sheared
loops (increasing the flux rope flux). Equation (11) pro-
vides a new evolution constraint, replacing the conserva-
tion of F used in Section 3.2. As previously, the maxi-
mum of Ieq.(h) defines the reference state with the flux
φ0 and the twist T0. Here, we simply suppose that the
photospheric field sources are not evolving so φ = φ0, but
we still plot Ieq./φ for coherence with previous case. The
evolution is parametrized by fT defined by T = fT T0.

Starting the evolution with fT < 1, the evolution con-
straint, Equation (11), has an intersection with the equi-
librium curve before its maximum (e.g. at the point “a”
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for fT = 0.5 in Figure 2(b)). As in Section 3.2, this
equilibrium is stable. As fT increases, the equilibrium
height h increases, reaching point “b” then point “c”. If
we only consider the evolution constraint, the evolution
would reach point “d”, where no neighbor equilibrium is
present when fT is further increased. As in the previous
case (in Figure 2(a)) a loss of equilibrium is present, but
at larger height.

However, the true physical evolution of the system is
ending earlier, at point “c”, where the system is unstable
on the short time scale τA with an ideal-MHD perturba-
tion (preservation of the flux F in Equation (10), while
the evolution of T is negligible on the short time scale
τA).

3.5. Loss of Equilibrium or Instability?

In the two previous evolutions (Figures 2(a) and (b))
the eruption occurs at the same location along the equi-
librium curve, at the point “c”. However, they appear to
have a different theoretical origin. In the first case (Fig-
ure 2(a)) the progressive decrease of fφ brings the system
to point “c” where no neighbor equilibrium exits with a
further decrease of fφ. In the second case (Figure 2(b))
the increase of fT brings also the system to point “c”,
but a neighbor equilibrium is present with a further in-
crease of fT (up to point “d”). Simply, the equilibrium
after point “c” is unstable with an ideal perturbation (F
preserved), and as in the first case, an upward eruption
is present after the system reaches point “c”. Indeed, on
the time scale τA, the evolution of the two cases will be
the same after they reach point “c”, since the same un-
stable force (Equation (6)) is acting with the constraint
of an ideal-MHD evolution (so preserving F in Equa-
tion (10)). Then, we argue that there is no point to dis-
cuss whether there is a loss of equilibrium or a transition
from a stable to an unstable equilibrium.

More generally, for an observed coronal field evolu-
tion, and even for an MHD simulation (where all physical
quantities are available in the volume), we claim that, in
most cases, it will be at least difficult, if not impossible,
to define precisely the evolution constraint as in the pre-
vious two cases. Indeed, with a slow enough driving, the
system follows the equilibrium curve, and the extensions
away from this curve, along the evolution constraint, are
purely theoretical considerations which are available only
if an analytical analysis is achievable. In a magnetic con-
figuration which includes some separatrices or QSLs, so
with some reconnection, we claim that an evolution con-
straint cannot generically be constructed. However, a
generic approach is to test the ideal-MHD stability all
along the evolution (within the limit of numerical dissi-
pation for MHD simulations).

Because of the separation of the time scale of the coro-
nal evolution (τA) from the longer times scales of the pho-
tospheric evolution (τB , τC , see Section 3.1), the mag-
netic configuration cannot reach the equilibrium branch
at an altitude h larger than that of the point “c” by
a slow quasistatic evolution, which does correspond to
observed pre-eruptive evolutions. Reaching a region of
the equilibrium curve beyond “c” may be dynamically
possible, but only for fast (e.g. Alfvénic) evolutions of
magnetic configurations being out of equilibrium. This
is, however, not observed in the Sun’s atmosphere, even
during flux emergence. Nevertheless, considering an an-

alytical model of the equilibrium, one can always start
a numerical simulation from any point along the equi-
librium curve, stable or unstable (e.g. Török & Kliem
2007). The unstable branch is unaccessible for a coro-
nal field, except the vicinity of point “c” which can be
reached with a small but finite velocity due to the slow
evolution present in the pre-eruptive stage. Indeed, in-
cluding such small velocity implies an evolution curve,
h(t), which is in better agreement to observed h(t) in
prominence eruptions, than letting the instability grows
from an initial very small perturbation (Schrijver et al.
2008).

3.6. Loss of Equilibrium with a Straight Current
Channel

The evolution summarized Figures 2(a) and (b) is ex-
pected to be generic of magnetic configurations having at
least one current channel which is not fully neutralized
since the hoop force is generically present with a curved
current channel (Garren & Chen 1994). Indeed, this has
been shown in more complex configurations, even by in-
cluding a complete photospheric line tying, i.e. not only
fixing the “normal magnetogram” (with the inclusion of
image current, see Section 2.2), but also fixing the pho-
tospheric positions of the current channel (Isenberg &
Forbes 2007).

However, the above physical evolution is not limited
to the presence of the hoop force. It is indeed generic
of the Lorentz force created by any current channel. At
a given position of the circuit, the magnetic force can
be dominated either by the magnetic field created by
the current located in the vicinity of this position (hoop
force) or by the current at large distance (e.g. an image
current). Indeed, van Tend & Kuperus (1978) first pro-
posed a catastrophe model of a straight current channel
embedded in a potential field.

As in Section 3.2, a potential field Bp is introduced to
achieve an equilibrium. As previously, we select a bipolar
field Bp created by two magnetic sources of flux φ located
at x = ±D, z = 0, but now invariant by translation in
the y direction. The x-component of Bp at the current
location is:

Bp,x = −2φD(π(h2 + D2))−1 . (12)

The equilibrium current, Ieq. is given by f = 0 in Equa-
tion (6):

Ieq.(h) =
8π

µ0

φDh

h2 + D2
. (13)

The equilibrium curve is closely similar to the one found
for a circular current channel (compare panels a and c
of Figure 2). The main difference is that the maximum
of Ieq. is shifted to a larger height. This is mainly due
to the different dependance with h of Bp,x for a 2D and
3D bipole. Much closer equilibrium curves are obtained
when the 2D bipole is replaced by a 2D quadrupole (giv-
ing a potential-field dependance similar to Equation (7)).

The conservation of the magnetic flux below the cur-
rent channel, per unit length along its axis (Equa-
tion (9)), for the straight channel case is:

F =
µ0I

2π
ln

2h

a
−

2φ

π
tan−1 h − a

D
. (14)

A major difference with the circular case is that the
constraint of F conservation implies that I has a much
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weaker dependence on h (Figure 2(c)). It implies that the
ideal-MHD instability occurs just after the maximum of
Ieq./φ (where fφ = 1), when the photospheric polarities
have weaken by only 4% (fφ = 0.96). Indeed, the ideal-
MHD evolution leads to a non equilibrium at a location
nearby to the one found by van Tend & Kuperus (1978)
with an evolution simply driven by an increase of the
current I.

As for the circular current channel, a loss of equilibrium
at point “c” is only present if the magnetic evolution is
fully ideal. More generally, whatever is the driver of the
evolution on the time scale τB , the system is becoming
unstable as it reaches point “c”, and it is ideally driven
away from the equilibrium curve by the same force in the
short time scale τA.

3.7. Comparison to Previous Studies

Based on our analysis above, we can now answer to
the following question: is there a major difference in the
following approaches: “loss of equilibrium” studies with
straight or circular current channel (e.g. van Tend & Ku-
perus 1978; Lin et al. 2002), and the “torus instability”
(Kliem & Török 2006) previously studied in the tokamak
laboratory experiment (e.g. Bateman 1978)?

First, the straight or circular current channels have
very similar repulsion forces, r(h)I2, implying the same
kind of equilibrium curve. Indeed, for a circular current
channel, rc(h) has a contribution from both the coro-
nal part (z > 0) and from the image current (z < 0).
Simply, both contributions can be combined in a single
term, Equation (4), masking the contribution of the im-
age current. More generally, Garren & Chen (1994) have
derived a general expression for r(h) for arbitrary current
shapes. rc and rs (Equations (4) and (5)), are simply two
limits of the same r(h), for circular and straight current
channels.

Next, Kliem & Török (2006) studied the “torus insta-
bility” of a circular current channel imposing a constant
current I or a constant flux F . The first case is directly
comparable to the work of van Tend & Kuperus (1978)
and the second case to the work of Lin et al. (2002). The
only significant difference is that Kliem & Török (2006)
study the stability of the equilibrium curve (Figure 2(a)),
but do not follow the evolution of the magnetic config-
uration on intermediate time scale τB (so they cannot
detect the presence or not of a loss of equilibrium).

The main difference between the loss of equilibrium
and the stability analysis is that, for the first case, a
precise way how the system can evolve to instability is
proposed, while, in the second case, one only tests the
stability of a given equilibrium (which could be physi-
cally inaccessible). However, with both type of analyses,
an ideal instability is present at the same location of the
equilibrium curve if the same equilibrium is analyzed.
This last condition is not trivial if one allows the forma-
tion of current sheets during the long-term evolution (on
the time scale τB).

4. EQUILIBRIUM STABILITY

We study below the stability of the magnetic config-
uration around an equilibrium position. The main as-
sumption is that the magnetic force balance is the same
at any position along the current channel, so that the
magnetic force can written as in Equation (6). This in-

cludes both circular and straight current channels in the
same formalism. The stability of the configuration is first
derived in this general framework in Section 4.1, with the
constraint of magnetic flux conservation derived in Sec-
tion 4.2. These results are used for the particular cases
studied in previous section. Finally a parametric study
of the stability is presented.

4.1. Force Perturbation

The magnetic force, f(a, h, I), on the current channel
is described by Equation (6). A perturbation (da,dh, dI)
around the equilibrium, f(a, h, I) = 0, creates the force
df as

df =
∂f

∂a
da +

∂f

∂h
dh +

∂f

∂I
dI . (15)

During a perturbation the radius a is evolving as given
by the internal force balance. With a linear force-free
field inside the flux rope and ideal MHD, Lin et al. (1998)
found that a evolves as 1/I. Here we include a more
general variation, supposing a(I), and we introduce the
index of variation of a with I

na ≡ −
∂ ln a

∂ ln |I|
, (16)

so na = 1 for the internal evolution included in Lin et al.
(1998). Then, Equation (15) is rewritten as

df =

(

∂f

∂h
+

(

−na
a

I

∂f

∂a
+

∂f

∂I

)

dI

dh

∣

∣

∣

∣

pert.

)

dh , (17)

where dI/dh|pert. express how the current intensity is
modified during the perturbation.

If the perturbation is realized along the equilibrium
curve, the force df has the same expression except that
dI/dh|eq., computed along the equilibrium curve, re-
places dI/dh|pert. in Equation (17). Also in this case,
df = 0 so

∂f

∂h
+

(

−na
a

I

∂f

∂a
+

∂f

∂I

)

dI

dh

∣

∣

∣

∣

eq.

= 0 , (18)

where we suppose that the internal equilibrium has the
same na index. Using the equilibrium condition, f =
r I2 + Bp,xI = 0, and Equation (18), Equation (17) is
rewritten as

df = r I

(

1 − na
∂ ln r

∂ ln a

)

(

dI

dh

∣

∣

∣

∣

pert.

−
dI

dh

∣

∣

∣

∣

eq.

)

dh . (19)

The equilibrium is unstable when df and dh have the
same sign. Then, an instability is present when the ab-
solute value of the current in the perturbation decreases
less rapidly with height than along the equilibrium curve.
This is illustrated in Figure 2.

On the short time-scale τA, the perturbation is de-
scribed by ideal MHD, with a preservation of the flux
distribution at the boundary z = 0 (so φ =constant in
the examples of Section 3.2 and 3.6). Then, a pertur-
bation corresponds to a small excursion away from the
equilibrium curve with the constraint of magnetic flux
conservation in Figures 2(a) and (c). The tangent point
“c” between the equilibrium curve and the constraint of
flux conservation define both the limit of the stable re-
gion and the non equilibrium point (in an ideal evolution
on the time-scale τB).
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Using the equilibrium condition to specify dI/dh|eq.,
the force perturbation, Equation (17), is rewritten as

df

dh
= r I

(

1 − na
∂ ln r

∂ ln a

)

dI

dh

∣

∣

∣

∣

pert.

+ I
∂Bp,x

∂h
+ I2 ∂r

∂h
.

(20)
We define the decay index of the potential field as

nBp ≡ −
∂ ln |Bp,x|

∂ lnh
. (21)

This decay index is introduced in Equation (20) by di-
viding df by Bp,xI, or equivalently by −r I2, and by
multiplying by h. Finally, the equilibrium is unstable
(i.e. df/dh > 0) if

nBp > nBp,crit. ≡nr + nI

≡−
∂ ln r

∂ lnh
−

(

1 − na
∂ ln r

∂ ln a

)

d ln |I|

d lnh

∣

∣

∣

∣

pert.

(22)

so if the potential field decreases fast enough with height.
The instability threshold depends on how fast the repul-
sion decreases with height (given by the decay index nr)
and on how much the current is allowed to decrease dur-
ing the perturbation (given by the decay index nI).

4.2. Constraint of Flux Conservation

The decay index nI is computed from an ideal MHD
constraint, as follows. On the short time-scale τA, the
perturbation is described by ideal MHD, with the preser-
vation of the coronal magnetic flux F present below the
flux rope. With a small perturbation dh, Equation (9)
implies

dF =

(

dLe

dh
I + Le

dI

dh

∣

∣

∣

∣

pert.

+ P Bp,x

)

dh

2
= 0 , (23)

where P is the perimeter (or length) of the full current
channel, including its image.

The external inductance Le (computed with li = 0) de-
pends generically on the spatial extension of the current
channel (described here only by h) and on the thickness
of the current channel (its radius a). Then, the variation
of the external inductance with height is

dLe

dh
=

∂Le

∂h
+

∂Le

∂a

∂a

∂I

dI

dh

∣

∣

∣

∣

pert.

=
∂Le

∂h
− naLe

∂ lnLe

∂ ln a

d ln |I|

dh

∣

∣

∣

∣

pert.

. (24)

The conservation of the magnetic flux, Equation (23),
together with Equation (24) imply the following decay
index

nI =
1 − na

∂ ln r
∂ ln a

1 − na
∂ ln Le

∂ ln a

(

∂ lnLe

∂ lnh
−

P h r

Le

)

. (25)

The last factor in the previous equation is due to the con-
servation of the magnetic flux from the current I minus
the flux from the potential field passing below the current
channel. The fraction includes the effect of the channel
expansion on the repulsion function at the numerator and
on the conservation of flux at the denominator. They are
both larger than 1 for na > 0, and they are a growing
function of na. Then, the dependance of r and Le on a
have opposite effects on the stability.

4.3. Example of a Circular Current Channel

We apply in this subsection the above results to a cir-
cular current channel (Figure 1(b)). The external induc-
tance Le is given by Equation (1), without the contribu-
tion of the internal inductance (li = 0). The repulsion
r is given by Equation (4) and P = 2πh. The contribu-
tion from the potential field to the decay index nI is (for
na = 0, i.e. for a constant during the evolution):

−
P h r

Le
= −

1

2

(

1 +
1 + lf/2

ln(8h/a) − 2

)

. (26)

The contribution from the field created by the current
channel to the decay index nI is (for na = 0)

∂ lnLe

∂ lnh
= 1 +

1

ln(8h/a) − 2
, (27)

so exactly twice the negative contribution from the po-
tential field for lf = 0. For a ≪ h, i.e. a very thin
current channel, the denominator, ln(8h/a) − 2, is rela-
tively large so that the above contributions are close to
−1/2 and +1, respectively. Including Equations (26,27)
in Equation (25), and using Equation (1), the decay in-
dex nI for the circular current channel is

nI =
(u + lf/2 + na)(u − lf/2)

2(u − 1 + na)(u + lf/2)
, (28)

with the notation

u = ln(8h/a) − 1 . (29)

Using Equation (4), the decay index of the repulsion r
is:

nr = −
∂ ln r

∂ lnh
= 1 −

1

u + lf/2
. (30)

From Equation (22), nr is the critical decay index of Bp

for instability if the current I would be preserved during
the perturbation. nr is always lower than 1, especially
for flux rope with large radius a.

Combining the results of Equations (28,30), the insta-
bility condition for a circular current channel is

nBp >
3

2
−

(1 + lf/2)(u − 2 + 2na + lf/2)

2(u + lf/2)(u − 1 + na)
. (31)

In the limit of a very thin current channel (a ≪ h), the
instability threshold is close to 3/2, as found in tokamak
studies (e.g. Bateman 1978). This corresponds to the
“torus instability” for solar eruptions (Kliem & Török
2006), but with a different correction term to 3/2, as we
have not supposed a self similar expansion of the current
channel, but rather a dependance a(I).

4.4. Example of a Straight Current Channel

We follow the same derivation than in previous sub-
section but for a current channel formed by two parallel
lines (Figure 1(c)). In this geometry, the external induc-
tance Le is given by Equation (2), again with li = 0. The
repulsion r is given by Equation (5) and P = 2∆y (with
∆y ≫ h, D). For na = 0, the contribution from the field
created by the current channel to the decay index nI,
Equation (25), is exactly twice the contribution from the
potential field, but with opposite sign (as above for the
circular channel, with lf = 0)

∂ lnLe

∂ lnh
= 2

P h r

Le
=

1

ln(2h/a)
. (32)
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Fig. 3.— Dependence of the decay indexes nr = −∂ ln r/∂ ln h,
nI = −∂ ln |I|/∂ ln h and nBp = −∂ ln |Bp,x|/∂ ln h for a straight
(resp. circular) current channel in the left (resp. right) column.
The critical index nBp,crit. = nr + nI for instability is shown
with a black continuous line. The decay indexes of 2D and 3D
potential bipoles are shown in both columns for reference. The
dotted vertical line indicates the critical height (point “c” in Fig-
ure 2). All panels are drawn with the normalized equilibrium ra-
dius a/D = 0.1 and for h > a. The top (resp. bottom) panels have
na = −∂ ln a/∂ ln |I| = 0 (resp. na = 1).

Fig. 4.— The critical index nBp,crit. = nr + nI for instability
with various equilibrium radius a normalized by D (half distance
between photospheric field concentrations). The results are for a
straight (resp. circular) current channel in the left (resp. right) col-
umn. The flux rope expands more during the perturbation (larger
na value) from top (na = 0) to bottom (na = 1). The nBp,crit.

curves are drawn for h > a. The decay indexes, nBp of 2D and 3D
potential bipoles are shown in both columns for reference.

With Equation (5), the decay index of the repulsion r
is simply nr = 1. Combining the above results, the in-
stability condition, Equation (22), for a straight current

channel is

nBp > 1 +
1

2(ln(2h/a) + na)
. (33)

In the limit of a very thin current channel (a ≪ h), the
instability threshold is close to 1, as found by van Tend
& Kuperus (1978).

4.5. Comparaison of Circular and Straight Current
Channels

From Equation (22), the critical decay index of the po-
tential field for instability, nBp,crit. has two contributions:
the decay indices of the repulsion, nr, and the decay in-
dex of the current during the ideal perturbation, nI. The
main difference of stability between the above two cur-
rent channels is a much lower index nI for a straight
channel (Figure 3). This is due to the low dependance
of Le on the height h (compare Equation (2) to Equa-
tion (1)). In the limit a ≪ h, this is the origin of a more
stable circular current channel (nBp,crit. ≈ 3/2) than a
straight current channel (nBp,crit. ≈ 1). However, this
limit is not applicable to the eruptive coronal configura-
tions since it requires extremely thin current channels:
for example, even with a/D = 10−3, this limit is only
weakly approached (Figure 4). This is due to the ln(h/a)
dependance in both Equations (31) and (33).

Moreover, the above difference is partly compensated
by a lower decay index of the repulsion, nr, for a circular
channel (as the repulsion, r(h), is decreasing slower with
height, especially for large values of a). The net result
is that the critical decay index, nBp,crit., for circular and
straight channels, with finite radius a, are much closer
than in the limit a ≪ h. This is illustrated in Figure 3
with a/D = 0.1, which still corresponds to a relatively
narrow channel. This effect is amplified with a flux rope
having a larger expansion during the perturbation, so a
larger na value, because the contribution of nI to nBp,crit.

is reduced. Indeed, even with a relatively thin flux rope,
a/D = 0.1, and an internal expansion rate na = 1, as in
Lin et al. (1998), nBp,crit. values are close for circular and
straight current channels: ≈ 1.3 and ≈ 1.1, respectively
(Figure 3(c) and (d)). They correspond to a comparable
critical height (h/D ≈ 1) for straight and circular chan-
nels with a 2D and 3D bipole (Equations (7) and (12),
respectively).

In previous studies, the instability threshold nBp,crit.

was typically taken in the limit of very thin current chan-
nels (e.g. van Tend & Kuperus 1978; Kliem & Török
2006). The above analytical theory is indeed done in the
limit of thin current channels (typically a/D ≤ 0.1). In
fact, relatively broad current channels are expected in
the coronal with magnetic extrapolations (e.g. Schrijver
et al. 2008; Savcheva & van Ballegooijen 2009) and are
present in MHD simulations (e.g. Fan & Gibson 2004;
Török & Kliem 2007; Aulanier et al. 2010). So, we also
show the approximative results for a broad channel case,
a/D = 0.5. For a straight current channel, the flux con-
servation provides an increasing stabilizing effect as the
channel radius, a, is increasing (Figure 4). Indeed, for a
broad straight channel (a/D ≥ 0.1), nBp,crit. can reach a
value comparable, or even larger in some casesthan the
one obtained for the corresponding circular channel with
the same parameter values (Figure 4(e) and (f)). We
conclude that the circular and straight current channels
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have typically comparable instability threshold values for
the range of parameters expected in the corona.

The internal evolution of the current channel during
the perturbation (i.e. the effect of na), has a common ef-
fect on the stability of a circular and of a straight current
channel because the stabilizing term provided by the flux
conservation is generally decreased with an increase of na

(Figures 3,4). However, changing the channel thickness
(a/D) has an opposite effect on the instability threshold
for a circular and for a straight current channel (compare
the panels in Figure 4 where the a/D curved are ordered
oppositely in the two columns). For a straight channel,
nr = 1, so nBp,crit. = nr + nI is affected only by the de-
pendance of nI on a/D. But, for a circular channel, the
nr dependance on a/D is important, and dominates the
contribution of nI, as soon as na is slightly positive. It
implies a dependance of nBp,crit. on a/D for a circular
channel that is opposite to that for a straight channel.

5. CONCLUSION

How to destabilize a coronal magnetic configuration is
a key-issue of CME research. Among several possibilities,
two candidates are a loss of equilibrium and a torus insta-
bility occuring during the evolution of the magnetic con-
figuration. Both have been initially developed with the
approximation that the coronal currents are restricted to
a non-neutralized current channel, and both theory were
further analyzed with MHD simulations, relaxing part
of the initial approximations of the analytical develop-
ments, but at the expense of not covering the parameter
space.

In this study, we revisit both analytical theories and
compare their approaches for the two simple configura-
tions where their results apparently differ: a straight
and a circular current channel. A loss of equilibrium
is typically, but not always, present in both configura-
tions when an ideal-MHD evolution is imposed during
the long-term evolution of the magnetic configuration.
However, when a loss of equilibrium occurs, the magnetic
configuration is also ideally unstable. From the results of
Sections 3 and 4, we conclude that both approaches are in
fact both compatible and complementary. In particular
they agree on the position of instability, if no significant
current sheets are formed during the long-term evolution
of the magnetic configuration. Moreover, slow resistive
processes, e.g. tether cutting, are probably occurring all
the way before an eruption occurs. Therefore, we con-
clude that the analytical theory is most useful in deriving
an instability threshold with the constraint of ideal MHD
evolution on a short time scale (coronal Alfvén time) for
a given magnetic equilibrium.

We also compare the physical origin of the instability of
straight and circular current channels. In order to model
the negligible evolution of the magnetic flux crossing the
photosphere on the coronal Alfvén time scale, a theoret-
ical image current is introduced below the photosphere
(Figure 1). For a straight current channel, the repulsion
of the image is balancing the Laplace force between the
coronal current and the potential field (associated to the
photospheric field distribution). For a circular current
channel, the repulsion of the nearby coronal current is
also present (called hoop force). However, since the re-
pulsion force depends only on the global curvature radius
and on the thickness of the current channel for a circu-

lar channel, it could lead the false conclusion that the
repulsion force has a different origin for the straight and
circular current channels. In fact, as shown by Garren
& Chen (1994), both the coronal and the image currents
generically contribute to the repulsion force of a current
channel. Both terms actually combine in a single expres-
sion for a circular channel, while there is no contribu-
tion of the coronal current for a strictly straight current
channel. The circular and straight current channels are
simply two limits of the general case with specific prop-
erties.

The instability occurs when the potential magnetic
field decreases fast enough with height, more precisely
when its decay index, nBp as defined by Equation (21),
is larger than a critical value nBp,crit.. At the limit of
extremely thin current channels nBp,crit. = 1 and 1.5 for
a straight and circular current channel, respectively. In
fact, we show that this difference is not due to the differ-
ence in the repulsion force, but that it is due to the con-
straint of ideal MHD (conservation of the coronal mag-
netic flux below the current channel). Moreover, with
the sole contribution of repulsion force to the instability
threshold (i.e. nI = 0 in Equation (22)), first nBp,crit. < 1
for a circular current channel while nBp,crit. = 1 for a
straight channel, and second nBp,crit. approaches 1 for
both circular and straight channel as the channel be-
comes very thin. This further indicates that there is no
real difference in the origin of the repulsion force for a
straight and circular current channels.

We conclude that the same physics is involved in the
instability of circular and straight current channels, and
that they are just two particular limiting cases of more
general current paths. For the typical range of current-
channel thickness expected in the coronal, and present in
MHD simulations, and for a current channel expanding
during an upward perturbation, nBp,crit. has close values
for both circular and straight current channels (in the
range [1.1,1.3], Figure 4(e) and (f)). If the current chan-
nel would not expand, the decay index nBp,crit. would
be higher, typically in the range [1.2,1.5], but still not
so different in both cases (Figure 4(a) and (b)). Simi-
lar critical indexes have been found in MHD simulations
starting from a initial equilibrium having a coronal cur-
rent channel close to half torus (Török & Kliem 2007;
Schrijver et al. 2008). Otherwise, from the measurement
of the height of a set of quiescent prominences, com-
bined with potential field extrapolations, Filippov & Den
(2001) found nBp,crit. ≈ 1. This threshold is closer to
nBp,crit. of the straight current channel as expected since
quiescent prominences are horizontally extended struc-
tures.

In an MHD simulation, where a flux rope and its asso-
ciate current channel is progressively formed due to pho-
tospheric motions, flux cancelation, and magnetic recon-
nection, Aulanier et al. (2010) found an unstable config-
uration when nBp,crit. ≈ 1.5. There, the flux rope height
satisfied h/D ≈ 1. This was in favor of the “torus insta-
bility”. However, with the above results, this threshold
would require that the current channel is almost rigid
during the perturbation (i.e. na = 0 as in Figure 4(b)).
It is not obvious that this condition is met in a low-β
magnetic field. More relevant is probably the role of the
anchorage of the current channel at fixed photospheric
positions during the stability analysis, a constraint not
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present for both the straight and circular models studied
above, but included in the non-equilibrium study of Isen-
berg & Forbes (2007). The present analytical theory is
also over simplifying the coronal current distribution to
only one current channel, while at least partial current
neutralization as well as other current layers are typi-
cally present in MHD simulations. This may also raise
the critical index, nBp,crit., to larger values (e.g. nBp,crit.

as high as 1.9 was found in the MHD simulations of flux
emergence by Fan & Gibson 2007). The precise under-
standing of the instability threshold is important for de-
termining when a CME would occur. This will be the
object of further developments of the analytical theory.

It would also be desirable to derive the critical index
from observations of eruptive prominences and sigmoids,
the pre-eruptive altitudes of which can either be mea-
sured using two vantage points (e.g. using the pair of
STEREO imagers) or when they cross the solar limb.

At first approximation, the background coronal magnetic
field would then have to be extrapolated in the potential
field approximation, using photospheric magnetograms
either taken on the same day of the eruption if possible,
or a few days before if no magnetogram is available. Such
a survey of various eruptive solar features would extend
the work carried out by Filippov & Den (2001), who fo-
cused on long and high altitude quiescent prominences,
that mostly concern the straight channel model.
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