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Abstract
Conceptual spaces are a frequently applied framework for representing concepts. One
of its central aims is to find criteria for what makes a concept natural. A promi-
nent demand is that natural concepts cover convex regions in conceptual spaces. The
first aim of this paper is to analyse the convexity thesis and the arguments that have
been advanced in its favour or against it. Based on this, I argue that most supporting
arguments focus on single-domain concepts (e.g., colours, smells, shapes). Unfortu-
nately, these concepts are not the primary examples of natural concepts. Building on
this observation, the second aim of the paper is to develop criteria for natural multi-
domain concepts. The representation of such concepts has two main aspects: features
that are associated with the concept and the probabilistic correlation pattern which
the concept captures. Conceptual spaces, together with probabilistic considerations,
provide a helpful framework to approach these aspects. With respect to feature repre-
sentation, the existence of characteristic features (i.e., that apples have a specific taste)
is essential. Moreover, natural concepts capture peaks of a probabilistic distribution
over complex spaces. They carve up nature at its joints, that is, at areas with no or low
probabilistic density. This last aspect is shown to be closely related to the convexity
demand.

Keywords Conceptual spaces · Convexity · Natural kinds · Development of
concepts · Probability distributions

1 Introduction

Humans and many other animals categorise things and events. They consider different
entities as members of one category, that is, as instances of the same concept. The
concepts that are involved in this cognitive process are not arbitrary but follow certain
guidelines. Rosch (1978) starts her seminal overview of the prototype theory (‘Princi-
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ples of categorisation’) by citing Borges’s fictional Chinese encyclopedia of animals,
which consists of categories such as ‘those that tremble as if they were mad’ or ‘those
that resemble flies from a distance’. She notes that such ‘types of categorisation [...]
are never found in the practical or linguistic classes of organisms’ (Rosch 1978, p.
28). They are unnatural. The same quote from Borges is also found in one of Peter
Gärdenfors’s first papers on conceptual spaces (Gärdenfors 1990, p. 90), where he
proposed a geometric framework of natural concepts.

Although it is difficult and probably even impossible to define the naturalness of a
concept, several characteristics are intuitively associated with such concepts. They are
often found in the core lexicon of natural languages—meaning that many languages
have words that (roughly) corresponds to such concepts—and are acquired without
much instruction during language acquisition. Moreover, a large part of the knowl-
edge about one instance of a natural concept is transferable to other yet unobserved
instances of it. Prime examples of natural concepts are animal species: rabbit, horse,
mole etc.1 They occur in most folk taxonomies. We can generalise our knowledge
about a species member to other members and children learn animal concepts quite
easily. Other natural concepts only satisfy some conditions. For example, theoretical
concepts such as electron are hard to learn without instruction but knowledge about
instances is applicable in many contexts, including future observations. Note that the
naturalness of the concept does not mean that the instances are natural rather than cul-
tural objects. For example, car is a natural concept even though it refers to artefacts.
In general, most concepts that play a role in our cognition are (more or less) natural
concepts. A potential exception are ad-hoc concepts such as things to carry out

of a burning house (Barsalou 1983). These can be arguably cognitively useful
in a specific context but they are not natural concepts in the above sense. Also note
that conceptual naturalness comes in degrees. According to Rosch (1978), basic level
concepts such as dog are more natural than subordinated ones (e.g., Dachshund) or
superordinated ones (e.g., animal).2 Nevertheless, the latter concepts are still natu-
ral, especially in comparison to clearly unnatural concepts such as animals that

resemble flies from a distance.
The philosophical debate about naturalness in concepts was very much influenced

byGoodman (1955) andhis example of the unnatural colour conceptsgrue and bleen.
Things are called ‘grue’ if they are green when observed before a future time point
t and blue afterwards. Bleen things, on the other hand, are blue before t and green
afterwards. Until t , the statement ‘Grass is grue’ is as true and justified as ‘Grass is
green’, but only the latter is a reasonable law onwhich one iswilling to base predictions
about the future. As Goodman states, green is projectible while grue is not. On the
symbolic level, it is difficult to distinguish natural concepts. Goodman has famously
shown that we cannot justify why to favour ‘green’ and ‘blue’ over ‘grue’ and ‘bleen’
without ending in a circular argument:

1 In this paper, concepts are written in lower caps. Attributes and dimensions are typed in uppercase letters.
Object language and quotations are put in single quotation marks.
2 Note that subordinated concepts are in many respects more natural than superordinate ones. In expert
language (for example, among dog breeders) subordinated concepts are often preferred. In addition, atypical
category members are often named by a subordinate term. The superordinated concepts, however, are only
rarely preferred and are learned quite late (cf. Taylor 2003, p. 280).
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True enough, if we start with ‘blue’ and ‘green’, then ‘grue’ and ‘bleen’ will be
explained in terms of ‘blue’ and ‘green’ and a temporal term. But equally truly,
if we start with ‘grue’ and ‘bleen’, then ‘blue’ and ‘green’ will be explained in
terms of ‘grue’ and ‘bleen’ and a temporal term. (Goodman 1955, p. 79)

Another example of a problematic concept mentioned in Goodman (1955) is non-
raven, known from Hempel’s raven paradox (Hempel 1945).3 Again, logical
reconstruction provides little help. The statements ‘Ravens are black’ and ‘Non-black
things are non-ravens’ are logically equivalent and there is no logical criterion why
to favour the first sentence. In response to the debate about arbitrary concepts, Quine
(1977) introduced the notion of natural kinds as categories that ‘carve nature at its
joints’.However, he did not give a final answer on how this carving is actually achieved.

The observation that not all important aspects of concepts are explainable on a
symbolic level is a main motivation for using conceptual spaces. Taking a geometric
viewpoint illuminates semantic aspects that remain concealed from a purely symbolic
perspective and that are important for judging conceptual naturalness. Gärdenfors
(1990, 2000, 2004) suggests capturing the naturalness of concepts by geometric and
topological criteria, especially the famous criterion of convexity. In its most general
form, the criterion of convexity states that natural concepts cover convex regions
in conceptual spaces (Gärdenfors 2004). However, this criterion is more difficult to
grasp than it appears at first sight. There are several non-equivalent formulations of the
criterion and, in addition, different ways to interpret them. The first aim of the paper is
thus to analyse this criterion and to note its advantages as well as its limitations. This
will be done in Sect. 2. The result of this analysis is that most evidence in favour of
convexity assumptions comes from the study of simple domains, such as the colour
space. A large class of natural concepts, among themmost noun concepts (e.g., raven,
dog), however, are more complex. They are representable in many domains. For these
concepts, the question becomes how convexity and other criteria contribute to their
naturalness. The second and central aim of this paper is to find criteria for naturalness
of multi-domain concepts and to relate them to the convexity assumption. Sect. 3 thus
consists of an in-depth discussion of conceptual spaces as applied to multi-domain
concepts.

2 Conceptual spaces and convexity

2.1 Conceptual spaces

Before delving deeper into the discussion of topological criteria for naturalness, I will
provide an outline of the theory of conceptual spaces and their application in this paper.
The most influential proponent of this theory is Peter Gärdenfors (1990, 2000, 2014).
However, an earlier version of conceptual spaces (so-called attribute spaces) is already
found in thework ofCarnap (1971, 1980),who developed themas a background theory

3 The first discussion of this type of paradox is found in Hosiasson-Lindenbaum (1940)
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of an inductive epistemology.4 Moreover, the theory of conceptual spaces draws on
psychological models of categorisation, such as Shepard (1987) or Nosofsky (1986).

The definition of a conceptual space, given by Gärdenfors (2000), is as follows:

A conceptual space consists of a class D1, . . . , Dn of quality dimensions. A
point in the space is represented by a vector v = 〈d1, . . . , dn〉, with one index
for each dimension. Each dimension is endowed with a certain geometrical or
topological structure. (Gärdenfors 2000, p. 67)

Typical examples of quality dimensions are YEAR OF BIRTH and AGE, which
can be measured quantitatively (on interval or ratio scales, respectively). In principle,
however, non-quantitative dimensions are not excluded. An example of a comparative
dimension is GENERATION (daughter, granddaughter, great-granddaughter etc.).
Even dimensions with merely classificatory values such as GENDER or SEX are not
excluded, though their topological structure is quite poor.

If several dimensions belong together, such as HUE, SATURATION and
BRIGHTNESS, they are called integral. Intuitively, this means that it is psycholog-
ically impossible to assign a value on one dimension but not on the other one. For
example, one cannot perceive the HUE of a shade of red without also perceiving its
SATURATION.Another example of integral dimensions are PITCHandLOUDNESS.
Dimensions that are not integral in this sense are separable. A complete set of integral
dimensions forms a domain. For example, HUE, SATURATION and BRIGHTNESS
form the COLOUR domain, in which specific colours are represented as regions, that
is, as subsets of the colour space. Domains can consist of only one dimension that is
separable from all other dimensions. For example, AGE is a one-dimensional domain
and as such a primitive conceptual space. Most research, however, is focused on con-
ceptual spaces that consist of several dimensions. Then the question becomes how
the distance between points in the whole space relates to their distance on the single
dimensions that form the space. Integral dimensions are usually associated with a
Euclidean distance:5

d (x, y) =
√∑n

i=1
wi (xi − yi )2.

If the conceptual spaces connects non-integral, that is, separable dimensions, one uses
the Manhattan distance:

d (x, y) =
n∑

i=1

wi |xi − yi | .

Both are special cases of the more general Minkowski distance:

d (x, y) =
(

n∑
i=1

wi |xi − yi |p
)1/p

,

4 The connection betweenCarnapian inductive logic and conceptual spaces has been spelled out by Sznajder
(2016, 2017).
5 This distinction between the geometry of integral and separable dimensions is already discussed by
Shepard (1987).
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where the Manhattan distance corresponds to p = 1 and the Euclidean distance to
p = 2.

The distance represents perceived dissimilarity. In a spacewithManhattan distance,
the dissimilarities on the dimensions are additive. That means that the overall dissimi-
larity is the sum of the dissimilarities in the single dimensions. In integral dimensions,
dissimilarity does not add up in this way. For example, in a Euclidean but not in a
Manhattan space, two points that have a medium distance in several dimensions are
perceived as closer to each other than two points that are very close in one dimension
but have a larger distance on the other (see also Fig. 1 on p. 7).

Conceptual spaces aremostly used to represent similarity judgements about stimuli.
The aim is to translate degrees of dissimilarities into geometric distance. The number,
meaning, and relation between the resulting dimensions are a matter of empirical
research. The most commonly used method is multi-dimensional scaling by which
one optimises the model fit in as few dimensions as possible. Ideally, the resulting
dimensions are interpretable. That means, they should correspond to a certain aspect
(attribute) of the concept, such as the dimension of BRIGHTNESS does in the colour
space. When constructing spaces in this way, it is also empirically tested whether the
dimensions are integral, that is, whether the Euclidean metric is appropriate (see e.g.,
Johannesson 2001).

Within the literature on conceptual spaces, one also often encounters spaces that
are not drawn from similarity data but composed from pre-defined dimensions. For
instance,Bechberger andKühnberger (2019) treat a combination ofAGEandHEIGHT
as a conceptual space (see Fig. 4 on p. 14). Gärdenfors (1990) uses a space that
combines a colour disk with the time dimension (Fig. 5 on p. 22) in order to illustrate
the unnaturalness of the concept grue. Such product spaces are obviously not based on
similarity data. I nevertheless viewproduct spaces of intrinsically plausible dimensions
or domains as conceptual spaces, even if they are not based on similarity data. It makes
sense to demand that conceptual spaces are combinable into complex conceptual
spaces. Indeed, combined spaces are already used extensively. For example, they
play a role in the representation of part-whole relationships (Fiorini et al. 2014) or
models of compositionality (Lewis and Lawry 2016; Bolt et al. 2017). To emphasise
the difference to conceptual spaces that are directly drawn from similarity data, I will
call them ‘combined conceptual spaces’ or ‘complex conceptual spaces’.

The general ambition of conceptual spaces is to represent concepts geometrically.
The approach has some compelling advantages. Being amathematical theory, it can be
fruitfully implemented in artificial intelligence and machine learning. Moreover, it is
also a psychologically adequate and empirically informed theory of cognition because
it captures the important role of similarity for categorisation. However, there are also
some philosophical caveats. During the last century, an intense debate revolved around
the question what concepts are and whether they can be equated with definitions,
theories or prototypes.6 Some philosophers, most famously Jerry Fodor, have argued
against the idea that concepts should be equated with such kind of cognitive content.
This reservations also concern conceptual spaces representations. For example, Fodor

6 Laurence and Margolis (1999) provides a valuable overview over the debate.
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and Lepore (2002) explicitly criticised similarity-based models, including geometric
ones.7

There aremany roles that can be associatedwith concepts, such as referring, forming
propositions, categorising, or drawing inferences. I readily concede that geometric
representations cannot explain all these phenomena equally well. This article does not
argue that concepts should be equatedwith geometric representations. I also do not aim
to define concepts in terms of geometric structures. Rather I use these representations
to explicate conceptual naturalness. For this goal, it is not necessary to assume that
concepts are identical to regions in conceptual spaces. The more modest assumption
to which I commit myself is that important aspects of concepts can be represented in
conceptual spaces and that these representations are particularly helpful to understand
why some concepts are more natural than others. This possibility to distinguish natural
concepts opens a great philosophical potential of conceptual spaces.

2.2 Versions of convexity

The criterion of convexity is a core subject of conceptual spaces theory. Gärdenfors
(1990, p. 88) first proposed it, stating ‘a property, that is, a region of a conceptual
space, is natural only if the region is convex’.8 The criterion has been repeated in
many of his other works, often in slightly different variations.

The notion of convexity relies on a ternary betweenness relation Babc, which
states that b is between a and c. Note that the definition of the betweenness relation
does not require a metric space, but merely quality dimensions at an ordinal level
of measurement. From Babc, one can define convexity as follows: A region R in a
conceptual space CS is convex if and only if for any points x , y, and z of the space,
it holds that x is in the region if x is between two points y and z that are both in the
region; more formally: ∀xyz((y, z ∈ R∧Byxz) → x ∈ R). Convexity is thus closure
under betweenness. There are no gaps at any line one can draw in the region. In one-
dimensional spaces the convexity criterion collapses into the quite weak restriction
that regions should be connected. In higher dimensional spaces, convexity is obviously
stronger: e.g., a doughnut-like region is connected but not convex. An intermediate
restriction between convexity and connectedness is star-shapedness, which demands
that there is at least one point in the region such that all points between this central point
and another point of the region are part of the region; formally ∃y(y ∈ R ∧ ∀xz((z ∈
R ∧ Byxz) → x ∈ R)).

The particular form of the betweenness relation, and thus convexity, depends heav-
ily on the underlying metric of the space. Figures 1a, b give a graphical depiction
of connectedness and star-shapedness as well as several forms of convexity in a
two-dimensional space. The important observation is that convexity depends on the
structure of the space. For example, the polar convex shape in Fig. 1b is not convex
in a Euclidean space. In addition, Euclidean convex shapes are often not convex in a
Manhattan metric.

7 In particular, they criticise Churchland (1993).
8 Note that Gärdenfors’s explication refers to the cognitivist notion of ‘property’ rather than an ontological
one. To avoid misunderstanding, I will use the term ‘property concept’.
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space)
(a) Properties of regions (in a Euclidean (b) Betweeness and its influences on convexity

Fig. 1 Geometric criteria for conceptual spaces: a displays unconnected, connected, star-shaped and convex
regions in a Euclidean space. As demonstrated by b, the shape of convex regions also depends on the
underlying betweenness relation

Convexity plays a major role in conceptual spaces research. However, the specific
formulations and interpretations of this criterion vary considerably. Therefore, the
criterion raises many questions: What kind of concepts are representable by convex
regions? In which kind of spaces does the convexity criterion hold? Is it also found
in complex spaces? Why does convexity hold (if it holds)? How is it justified? Is it an
analytic truth or an empirical thesis?

In Gärdenfors (2000, p. 71), convexity appears in criterion P: ‘A natural property
is a convex region of a domain in a conceptual space’. This restricts the demand to
a specific kind of concepts, namely property concepts in domains. Natural concepts
in general—most notably, noun concepts—are not directly restricted by criterion P.
Rather with his criterion C, Gärdenfors claims that they consist of ‘a set of regions in a
number of domains togetherwith an assignment of salienceweights in the domains and
information about how the regions in different domains are correlated’ (Gärdenfors
2000, p. 105). Convexity is not mentioned in this criterion. Note, however, that several
later formulations of criterion C explicitly include a convexity requirement (e.g., Osta-
Vélez and Gärdenfors 2020, p. 5). Moreover, there are also very general formulations
of the convexity requirement. In Gärdenfors (2004, p. 18), criterion P is stated as
follows: ‘A natural concept is a convex region of a conceptual space’.

The most elaborated versions of the convexity principle are found in Gärdenfors
(2014), where the semantics of different word classes are investigated. In this book,
one finds a basic distinction between object categories, which largely coincide with
the semantics of nouns, and all other kinds of concepts. For the latter, Gärdenfors
proposes the so-called single-domain thesis: ‘Words in all content word classes, except
for nouns, refer to a single domain’ (Gärdenfors 2014, p. 239). For all of these single-
domain concepts, convexity criteria are proposed. The position in Gärdenfors (2014)
can thus be summarised as follows: Natural concepts, except for object categories,
are represented in one domain, namely by a convex region. An exception are object
categories, which are determined by:

(i) a set of relevant domains (may be expanded over time)
(ii) a set of convex regions in these domains (in some cases, the region may be

the entire domain)
(iii) prominence weights of the domains (dependent on context)
(iv) information about how the regions in different domains are correlated
(v) information about meronomic (part-whole) relations. Gärdenfors (2014, p.

124)
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This definition of object categories resembles the one for natural concepts in Gärden-
fors (2000, p. 105) but explicitly includes the demand that the contributing regions
have to be convex.

In view of its many versions, it seems quite misleading to discuss the convexity
thesis. There are many non-equivalent formulations of it. I suggest distinguishing the
following claims about natural concepts:9

1. Property convexity: Property concepts are represented as convex regions in a
domain.

2. Domain specific convexity: Concepts, except for object categories, are

(a) domain-specific, and
(b) represented by a convex region in their domain.

3. Feature convexity: Object categories are represented by sets of convex regions in
several domains.

4. General convexity: Concepts are represented by convex regions in conceptual
spaces.

5. Complex spaces convexity: Object categories refer to convex regions in complex
conceptual spaces.

Thesis 1 is the criterion P from Gärdenfors (2000). Thesis 2, which also includes
the proposal of domain specificity, generalises this assumption for other concepts.
Gärdenfors (2014) has argued for this thesis at length. The thesis of feature convexity
(3) is proposed there as well. The assumption of general convexity (4), found in
Gärdenfors (2004, p. 18), is perhaps the most general and famous formulation of the
criterion.10

I am not aware of any explicit formulation of thesis 5, which thus needs some further
explanation. It states that multi-domain concepts can be represented in a complex
space, i.e., a product space of the salient contributing domains, and that they cover
a convex region therein.11 If the convexity thesis is generally true for all kinds of
concepts, as suggested by thesis 4, then thesis 5 follows straightforwardly. It can even
be argued that the complex spaces convexity criterion of thesis 5 is an immediate
consequence of thesis 3. If C1 and C2 are convex regions in two domains CS1 and
CS2, then the Cartesian product C1 × C2 is a convex region in the complex space
CS1 ×CS2. However, using such an argument presupposes that a complex concept is
nothing more than the product of its features. Neither Gärdenfors nor other proponents
of conceptual spaces theory endorse this view. Quite to the contrary, Gärdenfors (2014,
p. 28) explicitly claims ‘that convex regions in product spaces are not just the products
of convex regions of the underlying dimensions’.

It is difficult to single out one particular assumption as the convexity thesis. This
obviously has implications for arguments in favour of or against convexity assumptions

9 Hereafter, the word ‘natural’ will be omitted.
10 This is how theWikipedia entry on conceptual spaces expresses the convexity thesis: https://en.wikipedia.
org/wiki/Conceptual_space, retrieved Dec 7 2020.
11 Rather than building a complex space from contributing domains, one can also construct spaces of object
categories by gathering similarity statements about multi-domain concepts (e.g., by asking how similar a
cat and a dog are) or by using data from distributional semantics (Derrac and Schockaert 2015).
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because they might only be relevant for one particular formulation while being irrel-
evant for another. Nevertheless, in the research on conceptual spaces, little attention
has been paid to these possible differentiations and most arguments were interpreted
in a general way. However, the interesting question is not so much whether convexity
holds but rather which formulation of convexity should be accepted.

To complicate matters further, there are different ways to access and justify the
convexity theses.Many analytic arguments have been advanced in favour of convexity.
This suggests that it is a formal theorem. However, convexity can also be understood
as psychological law that needs to be confirmed on empirical grounds (Gärdenfors
2019). Finally, many applications of conceptual spaces presuppose convexity in some
form because it is a useful assumption for many purposes. The following subsections
present and discuss the different forms of justifying convexity: analytic, empirical and
the last, which I call programmatic.

2.3 Analytical support of convexity

Convexity theses can and have been supported on analytic grounds. In particular, two
related arguments have been provided in favour of convexity. First, convexity follows
from a Voronoi tessellation of a Euclidean space. Second, evolutionary models of
language predict that the space will be carved into convex regions.

The argument based on Voronoi tessellation rests on accepting a version of pro-
totype theory according to which there are salient cognitive prototypes (e.g., typical
colours, shapes) that guide categorisation in terms of similarity (Rosch 1973). Trans-
lated to a conceptual spaces approach, this means that the space has some prototypical
points and each point in the space is matched to its closest prototype.12 The resulting
regions (polygons) in a Euclidean space are convex (Okabe et al. 2000). Based on this
observation, Gärdenfors (2000, p. 88) argues that convexity follows from prototype
theory, at least for conceptual spaces with integral dimensions. As explicitly noted
in Gärdenfors (2000, p. 91), the same argument does not hold in Manhattan spaces.
Voronoi tessellations in such spaces yield star-shaped regions, but not necessarily con-
vex ones. Fig. 2 shows the difference between a Voronoi tessellation in a Euclidean
and a Manhattan space.

The relation between convexity and Voronoi tessellation is one important reason
to distinguish between the convexity assumption for concepts that are represented
in one domain (usually a Euclidean space) and concepts in non-domains (usually
Manhattan spaces). The argument from Voronoi tessellation only supports domain
convexity and, at least tendentiously, undermines it in other spaces. Additionally, the
argument rests on the assumption that categorisations are driven by prototypes and
similarity to them. However, the evidence for prior prototypes is largely limited to a
few perceptual domains, especially colour (see Berlin and Kay 1969; Rosch 1973).

A powerful and parsimoniousway to justify that human cognition favours aVoronoi
tessellation, even without the existence of primary prototypes, comes from evolution-
ary game theory, which is used by Jäger (2007) and Jäger and van Rooij (2006). The
linguists apply signaling game models to show that convexity is an expected conse-

12 The boundary points are part of two regions.
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space
(a) Voronoi tessellation in a Euclidean (b)Voronoi tessellation in a Manhattan

space

Fig. 2 Voronoi tessellations with a Euclidean and a Manhattan distance. Modified version of graphics from
Jahobr’s Voronoi gallery (https://commons.wikimedia.org/wiki/User:Jahobr/Voronoi)

quence of language evolution. Signaling games first appeared in Lewis (1969) who
developed them to solve the mystery of agreeing on semantics without any available
language that could be used to define or explain the first symbols. Meanwhile such
games have been further developed into an evolutionary model of language develop-
ment (Skyrms 2010).

The idea of a signaling game is simple. One assumes a matter of fact is known to
one player (the sender). Another player (the receiver), who is ignorant of this fact, has
to choose between several actions. The utility of the actions depends on the matter of
facts. If the receiver chooses the right action, both players will be rewarded. Depending
on the state of the world, the sender uses a signal, that is, some arbitrary behaviour that
can be perceived by the receiver. If the receiver associates the right kind of action with
the signal, both playerswill benefit. Assuming that the players replicate their behaviour
depending on their previous success, they will develop a meaningful communication.
This is an example: Two persons go hunting together and share the prey. One person
climbs up a tree and looks for animals. The other, who has a more limited vision
field, does the active hunting. Nature decides whether a prey or a dangerous predator
appears. The sender makes some noise (‘flee’ or ‘hunt’, for example) and the receiver
acts accordingly. Successful communication will be rewarded (because both player
end up with food) and finally stabilise. Unsuccessful interactions are unlikely to be
repeated.

Signaling games are highly parsimonious with respect to cognitive assumptions
about the players. The players can be human agents who intentionally enter a signaling
game but this is not a necessary assumption of the model. The only critical assumption
is that the reproduction of behavioural patterns depends on prior success. As Brian
Skyrms puts it, ‘monkeys, birds, bees, and even bacteria have signaling systems’
(Skyrms 2010, p. 6).

The argument for convexity, which Jäger (2007) has elaborated, relies on the
assumption that there are more states the sender perceives than available signals.
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For example, there are more perceivable colours, tastes or emotions than one could
possibly name. The second assumption is that success in communication comes in
degrees and that it depends on the similarity of the receiver’s interpretation and the
state the sender perceived. The receiver associates a signal with particular points in
the similarity space, for example, ‘red’ (primarily) with a highly saturated shade of
red with medium brightness and ‘black’ with a very dark shade. Since both, sender
and receiver, are rewarded if the receiver’s interpretation is similar to what the sender
perceives, the sender should use a signal that is close to the particular point that the
receiver (primarily) associates with the signal. For example, a slightly dark shade of
red is usually better signalled by ‘red’ than ‘black’. A very dark shade of red, however,
might be closer to the point that is associated with ‘black’.13 In any case, the sender
optimises outcomes if she uses terms that are close to the receivers interpretation.
Jäger (2007) shows that, in the long run, the receiver and sender will end up with a
Voronoi tessellation of the conceptual space. In a Euclidean space, this means that the
space is carved up into convex regions. The argument makes no assumptions about the
cognitive abilities of the sender and the receiver; no prototype is needed. The centroid
of the tessellation arises from the receiver’s interpretation of the signals. The matching
of points to the closest centroid occurs because it is the most rewarding response of
the sender.

Compelling as this argument is, it primarily supports Voronoi tessellation. It pro-
vides no support for convexity independently of Voronoi tessellation, for example, in
Manhattan spaces (see also Hernández-Conde 2016). Since the Euclidean metric is
usually associated with domains, the analytic arguments support first and foremost the
thesis of domain convexity.

2.4 Empirical support of convexity

The above arguments, which are based on quite formal considerations, suggest that
convexitymust be viewed as an analytic property of natural concepts.However, accord-
ing toGärdenfors (2019), convexity is an empirical prediction of the conceptual spaces
framework. This suggests that it has to be confirmed by the empirical study of concepts.

Currently, such empirical support is mostly found in the colour space. Jäger (2010)
has investigated the colour terms in the languages of the world and confirmed that
they are, with only negligible deviations, convex. This provides strong empirical con-
firmation of the convexity assumption in the field of colour semantics. However, it is
still slim evidence in favour of convexity for all natural property concepts, let alone
for other concepts.

Additional empirical support comes from Douven (2016), who constructed a con-
ceptual space of vessel shapes. His stimuli, shown in Fig. 3a, were inspired from
Labov (1973). Douven constructed a shape space (see Fig. 3b) and gathered classifi-
cation judgements. High and narrow vessels were typically viewed as vases, while low

13 In real life situations, the context of the conversation influences the utility of signals. For example, in
the above mentioned prey or predator game, the sender should put more emphasis on the avoidance of
predators, because the outcome of being killed is much more unfavourable than being hungry. In colour
signals, however, there is rarely such imbalance.
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(a) Items (Douven 2016, p. 85) (b)Space (Douven 2016, p. 89)

Fig. 3 The vessel shape study inDouven (2016): Similarity judgements of the items shown in a aremodelled
in a three-dimensionalManhattan space in b. The region in front (green) represent bowl shapes while purple
region represents the shape of vases. Graphics directly taken from Douven (2016, p. 85, 89). Copyright:
Wiley, reprinted with permission from the author and Wiley

and wide shapes were categorised as bowls. He tested whether these classifications
accorded with the convexity assumption by checking whether the smallest convex
regions of objects that were classified as bowls (or vases, depending) also contained
objects that were not classified as such.With only few exceptions, the individual classi-
fications of every participantwere consistentwith the convexity assumption.Moreover,
the majority vote satisfied it: the smallest convex region of objects that were classified
as bowls (or vases) by the majority of participants did not contain stimuli that were
not rated as such by most participants. His empirical data are thus consistent with
the convexity assumption. This finding is particularly important because the shape
space of Douven (2016) is not about property concepts but about object categories. In
particular, Douven provides some support for the assumption that features of object
categories (here: the shape of vessels) correspond to convex regions (Thesis 3 on p.
8).

Some support for convexity can also be derived fromDautriche and Chemla (2016).
They show that words are typically perceived as homophones (i.e., different concepts
that are labelled by the same form of symbol) when there are gaps between exemplars.
They call this the ‘convexity constraint’. However, they do not consider the alternative
criteria of connectedness and star-shapedness. While their experimental data indicate
a decisive role of topological criteria, it is thus not so clear whether they really support
convexity or a considerably weaker constraint, such as connectedness.

Though empirical evidence in favour of several versions of the convexity thesis has
been found—especially the evidence from colour studies is overwhelming—current
research findings are still insufficient to confirm all versions of the convexity assump-
tion. In view of the diversity of human concepts, it is difficult to say howmuch positive
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evidence would be needed for this. However, in critical rationalist terms, convexity
assumptions gain plausibility from the fact that they are easily falsifiable but not (yet)
falsified. Accordingly, Gärdenfors (2014, 269) concludes his semantic theory by say-
ing ‘following the Popperian methodology, I find it more rewarding to be fruitfully
wrong than to be boringly correct’. This leads to a final way to justify convexity
assumptions, namely in terms of their fruitfulness for research.

2.5 Programmatic justifications

Convexity can be viewed as a useful research assumption. Convex geometry is
a highly developed field of mathematics with many established results. Against
this background, it is reasonable to assume convexity—unless it is proven to be
inappropriate—and make use of the rich repertoire of tools this assumption offers.

A particularly important notion is that of a convex hull. In many cases, we lack
information about conceptual regions; we only have knowledge about some points that
belong to a conceptual region. By creating the convex hull, one generates a unique
subspace, namely the smallest convex region that includes all these points. Derrac
and Schockaert (2015), for example, used convex hulls to define different genres of
films in their conceptual space of movies. Creating convex hulls makes it prima facie
difficult to empirically test convexity, because one presupposes its validity. However,
if one also has data about points that are not perceived as part of the region, it is
possible to check whether the convex hull includes such non-members. This is exactly
how Douven (2016) has confirmed that the conceptual regions of vases and bowls are
consistent with the convexity thesis.

To summarise, convexity assumptions can be justified on analytic grounds and
on empirical ones. Furthermore, convex regions are well understood mathematical
objects. This makes the assumption that concepts correspond to convex regions a
fruitful default research hypothesis. Nevertheless, convexity criteria have been criti-
cised. The next subsection addresses arguments against convexity.

2.6 Critics of convexity

The most explicit and extensive critique of convexity assumptions is found in
Hernández-Conde (2016). The central point of his argument is that the analytic argu-
ment from above, namely the linkage between convexity and Voronoi tessellation,
only holds for spaces with integral dimensions. This fact was already noted by Gär-
denfors (2000, p. 91), but Hernández-Conde (2016) used it for a general attack against
convexity. In a reply, Gärdenfors (2019) claims that convexity was never intended
to be an analytic truth about concepts. He accepts that it might be false. Contrary to
Hernández-Conde (2016), he claims that a lack of analytical support is not a problem.
Rather, the convexity assumptions gain empirical content from being falsifiable.

Hernández-Conde (2016) also explicitly denies that the features of object categories
are represented by convex regions (Thesis 3 on p. 8). He uses the example of swans,
whose colour could be either black or white. Note that his example not only speaks
against convexity but even against the weak constraint of connectedness. Gärdenfors
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(2019) answers that the concept of swan is not represented by the attribute COLOUR
but rather by SHAPE. However, there are currently no criteria for what it means that a
multi-domain concept is represented in a particular domain. This questionwill become
the central issue in Sect. 3.3.

A critical position towards convexity is also found in the work of Bechberger and
Kühnberger (2017, 2019). They note that a geometric representation of correlations
in conceptual spaces becomes possible only if the convexity requirement is given
up. As an example, they consider a representation of child in a product space of
AGE and HEIGHT with a Manhattan metric. The choice of this metric is justified by
the intuitive assumption that these dimensions are perceived separately and are thus
not integral. Furthermore, Bechberger and Kühnberger (2019) emphasise that only
cuboids are convex in Manhattan spaces. As a consequence, the correlation between
younger age and smaller size is not captured in a convex representation. According
to Bechberger and Kühnberger (2019), one should give up convexity requirements in
favour of representing this correlation. They prefer the non-convex representation in
Fig. 4b to the convex one in Fig. 4a.

An objection that could be raised against the representation in Fig. 4b is that it
misrepresents the concept of child. For example, an extraordinarily tall 13-year-old
kid is still a child. Many other important features of children, cognitive ones as well
as physical ones, are ignored. Nevertheless, even if Fig. 4b is not a good representa-
tion of child, Bechberger and Kühnberger (2019) certainly raise an important point.
They show that a critical aspect of concepts, namely correlation, might come into con-
flict with convexity. Many researchers, including Gärdenfors himself, emphasise the
importance of correlations in natural concepts. The tension between representing cor-
relations and convexity is thus worrying. An extensive discussion of this problem and
its solution will follow in Sect. 3.4. For now let us note that the tension between rep-
resenting correlation and convexity undermines the thesis that multi-domain concepts
occupy convex regions in complex spaces, that is, thesis 5 on p. 8.

(a) Convex representation of ‘child’ (b)Non-convex representation of ‘child’

Fig. 4 Representation a is convex but does not represent the correlation of age and height in children. The
non-convex representation in b indicates a relation between the dimensions
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2.7 Beyond convexity

Some criticism against convexity assumptions does not concern their validity but their
salience in a theory of concepts. Within conceptual spaces theory, they take a very
central place. But is this justified? Are there different and perhaps even more salient
principles of natural concepts?

Gärdenfors (1990) himself notes an important limitation: even if convexity is a
necessary condition of conceptual naturalness, it is not a sufficient one. For example,
it says nothing about the preferred level of specificity: non- black and non- white

are as convex as red or blue, but the former concepts are extremely broad and thus
uninformative in many contexts. As Rosch et al. (1976) have convincingly argued, the
right level of informativeness is central to how easily a concept is learned and how
cognitively salient it is.

Another limitation concerns the role of the convexity thesis. In the analytic argu-
ments outlined above, convexity was justified by its relation to Voronoi tessellation
as a basic mechanism of conceptual learning. In the argument, convexity is not an
intrinsically plausible cognitive principle, but rather a derived criterion that is based
on more basic rules of classification. This does not mean that convexity is uninterest-
ing. The point is rather that the convexity theses, if true, are not an explanation but
rather call for one, such as, for example, the evolutionary argument offered by Jäger
(2007).

Recent work by Douven and Gärdenfors (2020) acknowledges the fact that con-
vexity is insufficient for a characterisation of natural concepts. Instead of convexity or
other topological criteria, they suggest that natural concepts occupy optimally designed
partitions of a conceptual space. Their arguments proceed from a number of criteria
that have intrinsic cognitive plausibility:

PARSIMONY:The conceptual structure should not overload the system’smemory.
INFORMATIVENESS: The concepts should be informative, meaning that they
should jointly offer good and roughly equal coverage of the domain of classification
cases.
REPRESENTATION: The conceptual structure should be such that it allows the
system to choose for each concept a prototype that is a good representative of all
items falling under the concept.
CONTRAST: The conceptual structure should be such that prototypes of different
concepts can be so chosen that they are easy to tell apart.
LEARNABILITY: The conceptual structure should be learnable, ideally from a
small number of instances. (Douven and Gärdenfors 2020, p. 318)

Note that parsimony and informativeness pull the conceptual system in different direc-
tions. On the one hand, we need as many and as informative concepts as possible. On
the other hand, a system with few concepts is more parsimonious.

As a general criterion of naturalness, Douven and Gärdenfors (2020) suggest well-
formedness: A concept is well-formed if and only if its instances are as similar to
each other as possible while being dissimilar to instances of other concepts. Natural-
ness is thus a property of a whole conceptual system in which internal similarity and
external dissimilarity are optimised. The criterion of well-formedness is reminiscent
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of the above-mentioned basic level categories (Rosch et al. 1976; Rosch 1978). Super-
ordinated concepts, such as entity or animal, refer to entities with a low internal
similarity. Instances of subordinated concepts such as dachshund and collie, on the
other hand, have little external dissimilarity, or their dissimilarities are unimportant
for many contexts. A basic level concept such as dog does reasonably well on both
criteria.

The criterion of optimising external dissimilarity and internal similarity has several
advantages over convexity. It is cognitively intrinsically plausible, more restrictive
than convexity, and related to findings about the basic level of categorisation. Douven
and Gärdenfors (2020) discuss their criterion mainly by referring to the colour space,
specifically the CIELAB space. This is already the best understood domain in human
perception. By using the colour example, Douven and Gärdenfors (2020) can rely on
this existing research. However, conceptual spaces aim to be a universal framework of
concept formation. Research that explicitly focuses on the colour space tendentiously
undermines the ambition of providing a more general theory of concepts. Douven
and Gärdenfors (2020) explicitly mention this restriction and note that research for
different types of conceptual spaces is needed.

2.8 Convexity: advantages and limitations

Let me conclude this section with an interim conclusion. Convexity is the most promi-
nent geometric constraint of natural concepts. The criterion is well supported in spaces
with integral dimensions. However, it should not be seen as a separate cognitive
principle; rather itmust beunderstood in relation to basic cognitive or evolutionary con-
straints such as prototype-based categorisation or the optimisation of internal similarity
and external dissimilarity. In the simple perceptual domains and in particular in colour
concepts, convexity is expected to arise from such simple cognitive and evolutionary
constraints. Difficulties with convexity arise if one considers concepts that cover dif-
ferent domains. For these multi-domain concepts, correlations between dimensions
become more salient. However, as noted by Bechberger and Kühnberger (2019), the
representation of correlations can prima facie conflict with convexity requirements.

For a general theory of conceptual naturalness, this result is unsatisfying because
the multi-domain concepts, for which convexity criteria are less plausible, are prime
examples of natural concepts. Admittedly, among possible colour concepts, some are
more natural than others. For example, red ismore natural than the concept blue- or-
yellow. However, compared to object category concepts such as car and dog, colour
properties and other simple perceptual properties are not the prime examples of natural
concepts. They are not the first concepts that are acquired in childhood. The seemingly
more complex noun concepts are learnedmuch faster (Werning 2010; Poth andBrössel
2019). Such multi-domain concepts have an advantage in learnability. Moreover, they
are more informative; compare ‘It is white’ and ‘It is snow’. The latter sentence is
clearly themore informative one as it includes information about temperature,material,
texture, and colour. If a concept is restricted to one domain, then it is almost trivially
the case that it is not very informative. To conclude, a property concept such as red is
natural within the colour domain, but it still lacks features of naturalness we typically
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associate with multi-domain concepts, that is, most noun concepts. This makes the
study of such concepts particularly important for understanding the naturalness of
concepts. Within the rest of this paper, I investigate how conceptual spaces can be
used to determine criteria for naturalness of these multi-domain concepts.

3 Multi-domain concepts

3.1 The boundaries of domain-specific concepts

According to Gärdenfors, ‘words in all content word classes, except for nouns, refer to
a single domain’ (Gärdenfors 2014, p. 239). Generally, we lackwords that characterise
things as solid and cold or as red and sweet. However, there are exceptions if properties
are related, as shown in the concepts frozen or ripe. These two property concepts
are informative in several domains. Domain-specificness can be violated, even by
property concepts, if there are correlations between domains.14 My notion of a multi-
domain concept is thus not limited to noun concepts but they are without doubt the
best examples of multi-domain concepts.

The central thesis of the paper is that natural multi-domain concepts capture corre-
lations, that is, probabilistic dependencies in the world we perceive. For example, if
we see an animal with a dog-shape, then it is likely that we will perceive the specific
sound pattern of barking rather than chirping or meowing. The category of dog con-
sists of entities that (mostly) share the correlated properties. This literally captures the
correlation because it no longer persists in a separate consideration of instances and
non-instances. For example, redness and sweetness of strawberries are correlated: red-
der fruits are sweeter. But if you consider only ripe fruits, then this correlation (almost)
vanishes because of a lack of variation in these respects. Likewise, within the category
of dogs, there is no strong correlation between dog-shape and barking. A concept thus
captures correlations if and only if its instances have common features that distinguish
them from non-instances. These features are often sufficient to identify an instance
of the concept (you identify the dog by its shape) and many further properties (the
behaviour of the dog) can be inferred with a reasonable degree of certainty.

The view of concepts as means to capture correlation and to facilitate inferences
is very influential. It is not only advocated by psychologists such as Rosch (1978)
but spread to other disciplines. For example, the computer scientist John Holland,
philosopher Paul Thagard and the psychologists Keith Holyoak and Richard Nisbett
jointly developed a theory of cognition that is based on the ability to learn and apply
rules: ‘categories are best defined as clusters of interrelated rules’ (Holland et al.
1986, 179). They also rightfully point out the analogy between the way philosophers
understand natural kinds (Quine 1977) and the way proponents of prototype theory,
especially Rosch (1978), characterise basic-level concepts. While Gärdenfors (2000)
refers to Holland et al. (1986) and largely agrees with them, conceptual spaces theory

14 Such adjectives can also be viewed as creating new domains or dimensions, such as RIPENESS (Gär-
denfors 2014, p. 30). Since Gärdenfors defends the single-domain thesis, he endorses this option. However,
that does not change the fact that ripe can also be analysed as a multi-domain concept.
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has not been used to explicitly flesh out the role of correlations as a foundation of
concepts.

The remainder of Sect. 3 has three parts. It starts with a broader philosophical
discussion of why multi-domain concepts are of primary importance when focusing
on conceptual naturalness in Sect. 3.2. After that, the topology of conceptual spaces
together with probabilistic considerations will be used to characterise naturalness in
multi-domain concept. In Sect. 3.3, I consider how to model features, that is, prop-
erties that are closely associated with multi-domain concepts. The second important
aspect is the representation of correlations in complex spaces. This is the focus of
Sect. 3.4. Finally, Sect. 3.5 discusses how the shape of the probability distribution
over conceptual spaces influences the development of natural concepts.

3.2 The naturalness of multi-domain concepts

Two philosophically important aspects distinguish natural multi-domain concepts
from domain-specific concepts. First they relate different features that are strongly
associated. Therefore, they have the potential of carving nature at its joints and are
thus candidates for natural kinds in the sense of Quine (1977). Second, multi-domain
concepts are ostensively learnable without depending on a specific kind of perceptual
input. While the domain-specific concept red is not (directly) learnable by a person
who lacks the ability to view colours, concepts such as car or cat are usually more
open with respect to the sensory input that is needed to acquire them (e.g., by vision
or hearing). They are learnable by perception but independent of a specific perceptual
content. These two aspects are at the core of the following pages. I first consider the
relation to natural kinds, followed by a discussion of ostensive learnability.

3.2.1 Natural kinds, realism and correlations

Natural multi-domain concepts capture highly stable correlations within the world.
The shape of apples, their taste, and specific nutritious profile occur together, namely
in the instances of the concept apple. What seems to be natural about such object cate-
gories is that they capture something beyond our human cognition: amind-independent
reality. In contrast, conceptual spaces theory emphasises that concepts are a cognitive
achievement of humans (or, in principle, other animals). For example, the criteria for
naturalness presented in Douven and Gärdenfors (2020)—parsimony, informative-
ness, learnability, etc.—appeal to our cognition, that is, to our cognitive nature rather
than a mind-independent nature.

The question of what makes categories natural, our categorisation or a mind-
independent structure of the world, is reminiscent of the philosophical debate about
natural kinds (for an overview, see Bird and Tobin 2018). Natural kinds are said to
carve nature at its joints. This metaphor is as old as the whole question of how to cate-
gorise things. It is first found in Plato’sPhaedrus 265d-e, where Socrates discusses two
principles, ‘that of perceiving and bringing together in one idea the scattered particu-
lars’ and ‘that of dividing things again by classes, where the natural joints are’ (Platon
1914, pp. 533–35, transl. by Fowler). In the 20th century, the natural kind debate
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focused on distinguishing categories that allow inductive inferences from concepts
such as non- raven or grue things (Quine 1977). The theory of conceptual spaces
and its convexity criteria address the same problem and can be viewed as contribution
to the natural kinds debate.

A central question in the discussion of natural kind concepts is a metaphysical
one. Do these natural concepts refer to an ontic distinction, independent of our own
cognitive needs? While the conventionalist position denies this, realists claim that the
categories towhichmany of our concepts refer, especially those that allow for inductive
inference, represent metaphysically real groups. Among the realist positions, there is
a large spectrum from weak to strong versions.

In its strong version, realism has a tendency to externalise categories from the
human mind to the mind-independent reality. That is, the categorisation of natural
kinds is not due to us but fixed by the nature of the things to which we refer. As such,
metaphysical realism on natural kinds has a tendency of rejecting cognitivism, that is,
the thesis that concepts are (primarily) determined by cognitive content. The position
is known via Putnam (1975), who famously claimed that ‘meanings ain’t in the head’.
For instance, not our cognition about water but its chemical details are crucial for
what the word ‘water’ means. Conceptual spaces are obviously a cognitivist theory
of meaning and it is hardly surprising that Gärdenfors explicitly rejects an externalist
semantics that is based on natural kind realism as ‘putting the cart before the horse’
(Gärdenfors 2000, p. 201).15

There are indeed good reasons to reject a theory that replaces conceptual content by
an appeal to natural kinds, especially from the viewpoint of cognitive science. First,
the realist position comes with a strong ontological commitment. If it is not the human
mind that builds categories, then theymust exist independently of our cognition. Some
philosophers find this intuitively plausible while others reject it. In any case, it would
be problematic if cognitive science committed itself to a controversial metaphysical
position. A cognitivist theory of natural concepts, on the other hand, allows one to
postulate psychological principles of natural categorisation that can be empirically
tested. The only criterion an externalist position has to offer is a deference to the
metaphysical reality of natural kinds. In addition, externalism is hardly compatible
with the existence of conceptual change in natural languages as well as in scientific
theories.16 Finally, we often form categories that do not refer to something external.
Intentionally (hobbit) or unintentionally (phlogiston), humanminds create concepts
that cannot be accounted for by externalist semantics. Even if natural kind realism
is true and offers a semantic background for some concepts, we would still need a
cognitivist theory for non-referring concepts. In this sense, externalist positions entail

15 Note, however, that Gärdenfors agrees that meanings are not in the head of a single person but rather
depend on the social community (Gärdenfors 1993), that is, ‘meanings are in the heads of the users’
(Gärdenfors 2014, p. 18)
16 Take the example of mammal. Aristotle, who intensively researched whales and dolphins, had separate
categories of cetaceans (whales and dolphins) and viviparous quadrupeds (most other mammals). Linnaeus
with the same or even less background knowledge about cetaceans, but another taxonomical system, grouped
them together (Romero 2012). While this was appropriate from a modern viewpoint, we would not say that
Aristotle wrongly believed that cetaceans are not mammals. It is more plausible to say that he had a different
conceptual system (Strößner 2020; Strößßner 2021). The externalist understanding leaves no room for such
a conceptual change.
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a strong ontological commitment, yet have limited explanatory power regarding our
categorisation.

In opposition to strong realism and externalism, there are also positions that view
natural kinds as real while accepting a decisive role of cognition. A pluralistic version
of realism is found in Dupré (1993), who calls his position ‘promiscuous realism’.
He claims that categorisation is driven by several aspects (cognition, pragmatics etc.)
rather than being pre-defined by the nature or essence of individuals that belong to
the kind (cf. Dupré 1993, p. 57). Nevertheless, there is a real natural aspect about
them. The clusterings and discontinuities that are captured by natural concepts, even
if they are not sharp and lack essential properties, are real, and this allows us to say
that they correspond to natural kinds. Though Dupré (1993) is mostly concerned with
the scientific taxonomies in biology, his view can be applied to folk taxonomies and
concepts in natural languages, as well.

In contrast to externalist realist views, a pluralist account of natural kinds leaves
room for cognitive agents to shape the boundaries of categories according to their
needs.Moreover,weak realismprovides a very attractive background position inwhich
cognitive principles of categorisation canbe investigated.Concepts and categorisations
develop in the context of an external world. It is hard to explain how categorisations
evolved and promoted the survival of their cognitive hosts if they are not themselves
adapted to the external world. This becomes apparent when we look at food sources. A
folk taxonomy that distinguishes plants and mushrooms solely by similar appearance
but is uninformative about toxicity has a tendency to harm its cognitive hosts and
is thus unlikely to spread. It is important for categories to fix the right correlations
between appearance, toxicity and, ideally, taste.17 Even if semantic externalism is
rejected (for good reasons), the naturalness of some categorisations does depend on
external facts, namely on covariances in the world. This is especially true for the
multi-domain concepts of folk taxonomies.

To summarise, weak realist positions are attractive for cognitive science. They
leave the categorisation task to the human mind but assume a natural structure that
makes categorisation worthwhile. There are important covariances in our world, but
it is up to us to carve nature at its joints. There are certainly some merely cognitive
requirements of how this should be done but also extrinsic limitations of what a natural
characterisation can be and especially of what it cannot be.

What does this mean for the theory of conceptual spaces? Weak realism fits the
cognitivist approach of conceptual spaces theory. However, in many cases, a purely
topological characterisation will not suffice. One has to consider the structure of the
outside world from which perceptual input comes. In particular, because dimensions
are correlated, some regions in conceptual spaces are more inhabited than others.
Zenker (2014) suggests including knowledge about such correlations in terms of pop-
ulation patterns: ‘Tomimic this in conceptual spaces, [...] onemay speak of sub-regions
of a conceptual space being empty (or comparatively unpopulated)’ (Zenker 2014, p.
82f). For example, certain combinations of colour and flavour are very common in
berries: red and dark colours indicate sweetness. In a combined colour-taste space,

17 Such an evolutionary argument on the development of categorisation is also found in Schurz (2012),
who claims that selection favours prototype concepts.
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the corresponding regions are more inhabited while others (sweet, green berries) are
almost empty. The question of how inhabitation patterns contribute to conceptual nat-
uralness will be the main topic of Sect. 3.4. For now it suffices to note that such
consideration of inhabitation patterns fits to a weakly realist position on natural kinds:
nature provides us with a pattern of correlations but the carving is up to our cognition.

3.2.2 Ostensive learnability and the multitude of domains

A second aspect of naturalness that is only found for multi-domain concepts is a
relatively low dependence on specific sensory input. Many people (at least in western
societies) associate typical situations of conceptual learning with visual experiences.
For example, the concept dog can be taught by a caregiver who directs a child’s gaze
to a dog and says ‘This is a dog’ or even by showing a representative picture of a dog.
In a similar way, one can present monochrome red cards and give the information:
‘This is red’. These are idealised examples of ostensive learning. However, there is an
important difference between the two concepts involved. The concept red can only be
learned by vision. The acquisition of an object category concept such as dog, however,
does not depend on any particular visual experience. A blind person may learn the
concept (perceptually) without having any visual experience of dogs at all.

The ostensive learnability of concepts plays an important role in philosophical
debates. For example, Schurz (2015) suggests it as a criterion of theory-independence.
According to him, there is an empirical way to distinguish theory-neutral observation
concepts. One introduces an artificial word X for a concept and presents a subject with
instances. After that, it is possible to test whether the person has learned the concept
by asking her whether some novel stimuli is X or is not X . A concept is theory-
neutral if and only if it is teachable in such a way. Schurz (2015, p. 152) assumes
that concepts such as red, square, or bird are teachable ostensively, while typical
theoretical concepts such as atom, electric force, or oxidation are not learnable
ostensively because they require an understanding of related background theories.
He notes that the ostensive learnability experiments should include persons of very
different cultural background but emphasises normal observation conditions such as
that ‘the person does not have any empirically detectable deficiencies of the sensory
organs or the nervous system’ (Schurz 2015, p. 151). Formanymulti-domain concepts,
this condition can be relaxed. They are not only independent of theories, but they do
also not depend on a specific perception. A person with hearing impairment and a
blind person may both learn the concept bird without sharing the same perceptual
experiences. Colour concepts, on the other hand, are more like theoretical concepts for
people with impaired colour vision. They can learn the colour concept by acquiring
background knowledge but not by perception.

The last pages argued that some aspects of conceptual naturalness are specifically
found inmulti-domain concepts. The following subsections delve deeper into the issue
of how these aspects can be explicated as criteria for naturalness in conceptual spaces.
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3.3 Features of multi-domain concepts

With hisCriterion C, Gärdenfors proposes representing natural concepts, in particular
object categories, by their features:

A natural concept is represented as a set of regions in a number of domains
together with an assignment of salience weights to the domains and information
about how the regions in different domains are correlated. (Gärdenfors 2000, p.
105)

As noted above, newer literature (Gärdenfors 2014; Osta-Vélez and Gärdenfors
2020) extends this criterion with a convexity assumption, stating that the concept
is determined by convex regions in domains. According to this extension, features of
multi-domain concepts must be natural properties as defined by Criterion P. This
demand seems prima facie reasonable. The colour of emeralds should rather be
described by natural property concepts, that is, by green rather than by grue. While
this is of course correct, I argue for a different view on features of object categories
by emphasising their differences from property concepts.

Within the next pages I develop and justify an altered version of criterion C:

A natural multi-domain concept is represented as a set of non-locational and
characteristic regions in several independent conceptual spaces.

The demand of non-locationality excludes grue-like properties as well as features that
lack stability, such as date of birth for the concept newborn. The characteristicness
criterion is about the specificness and reliability of the feature: How strongly is a
certain region in the conceptual space associated with a specific concept (e.g., a region
of the taste space to salt)? I now explore these two points in more detail.

3.3.1 Non-locational features and problems of projectability

An essential motivation of working with conceptual spaces is to avoid problems of
non-projectability as they arise with such concepts as bleen and grue. As Gärdenfors
(1990) has shown, the convexity criterion can solve this problem. In order to illustrate
this, he combines a colour disk with a time dimension (see Fig. 5): the concept grue
picks out a non-convex region. Note, however, that a distinction between green and
grue does not depend on convexity. The simple fact that the representation of grue,
contrary toblue and green, is only possible by taking into account the time dimension
distinguishes these kinds of concepts.

As laid out in the introduction, Goodman (1955) argued that the green-blue distinc-
tion is not more basic than the grue-bleen distinction because both can be defined in
terms of each other. On the symbolic level, this is correct. On the level of conceptual
spaces, however, it is very clear that only the latter distinction requires the addition of
the time dimension.

Carnap (1971, 1980) already discussed the potential problem of temporal and spa-
tial attributes when he introduced attribute spaces. He notes that there are requirements
of permissibility for attributes. In particular, he distinguishes locational and descrip-
tional attributes (Carnap 1971, 70–76). The main purpose of locational attributes is
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Fig. 5 The colour cylinder from Gärdenfors (1990, p. 89), demonstrating the non-convexity of grue.
Copyright:University ofChicagoPress, reprintedwith permission from the author andUniversity ofChicago
Press

to indicate the position of some entity in space-time. Descriptional attributes, on the
contrary, can be used to describe entities. Locational attributes depend on temporal
or spatial dimensions. However, Carnap accepts some temporal dimensions as admis-
sible for descriptions. Durations of events, for example, are temporal but admissible
because they are not absolute but relative, and this makes them non-locational. By the
criterion of non-locationality, Carnap (1971, p. 73) explicitly excludes grue, which
combines a locational dimension (time point of observation) and a non-locational
one. Gärdenfors (1990) acknowledges that Carnap’s solution can handle the problem
of grue. Nevertheless, he prefers the convexity criterion because it also excludes con-
cepts like red- or- green, which are non-locational and definable in a normal colour
space (just like green) but still intuitively unnatural.

Even though the convexity requirement solves the grue-problem, Carnap’s solution,
which emphasises the role of temporal and spatial dimensions, is still worth consid-
ering as an approach to projectability. Convexity is a plausible restriction of property
concepts but not necessary for ensuring projectability. It is not only a stronger assump-
tion than one would need for this purpose but also more controversial. Gärdenfors
(2019) emphasises that convexity is an empirical law. A concept like grue, on the
other hand, is unnatural on analytic grounds. In this sense, a Carnapian criterion of
non-locational features remains useful when convexity turns out to be too strong.

A reason to be sceptical about the thesis that features of multi-domain concepts
are convex is that they are not necessarily like natural properties in domains. What
we associate with multi-domain concepts is different from what is associated with a
property concept. For example, there is some intuitive appeal to the idea that we partly
represent the concept blossom (of a plant) by colour, where they cover light tones and
highly saturated areas of the colour space, excluding shades of green. Conceived as a
property of being colourful, this concept is quite unnatural. However, conceived as a
feature of flowers, this does not seem problematic. In particular, there is no problem
of projectability in a statement such as ‘Blossoms are colourful’. This is a reasonable
regularity that distinguishes the blossom from the rest of the plant. Natural property
concepts, as they are expressed by many adjectives, need to be informative and useful
independent of the context. Features of multi-domain concepts, on the other hand, are
restricted by a specific context, namely an object category. Hence, it should not be
surprising if features differ from natural properties. However, projectability is always
an issue.
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(a) Age of children and adults (b)Age of generations

Fig. 6 The age of children and adults (in a) is representable in a time-independent way and thus non-
locational. For generations (in b), on the other hand, AGE is locational (i.e., depending on the time of
observation)

How can non-locational features be identified in a conceptual space? The represen-
tation of a concept’s features in a certain conceptual space should be independent of
any kind of locational dimension. This non-locationality can be defined as follows:

LetCS be a conceptual space, consistingofn quality dimensions X1, X2, . . . , Xn

and let L be an absolute locational dimension (e.g., time or place of observation)
such that CS × L is the combined conceptual space. A region C ⊆ CS × L is
independent from L if and only if, for all l, l ′ ∈ L and all x1 ∈ X1, . . . , xn ∈ Xn

it holds that 〈x1, . . . , xn, l ′〉 ∈ C iff 〈x1, . . . , xn, l〉 ∈ C .
A concept has a non-locational feature C in the space CS if and only if, for each
locational dimension L , its representation C ⊆ CS × L is independent from L .

Like Carnap, I do not exclude all temporal or spatial attributes. However, in contrast to
his general distinction of relative and absolute locational dimensions, my criterion of
non-locationality is focused on the context of the multi-domain concept. For example,
historical entities such as languages, cultures and species can be described in terms of
when and where they occurred. There is nothing problematic about the statement ‘The
Spanish flu lasted from 1918 to 1920’ or ‘Penguins live in the southern hemisphere’.
Even though the statements include an absolute temporal or locational attribute, they
are independent from the point of utterance, evaluation or observation. On contrast,
AGE-related features are commonly found for concepts that refer to developmental
stages. For example, even though the concept one- year- old human changes its
extension from year to year, general and inductively successful statements have been
made about one-year-old humans in developmental psychology. Whether a concep-
tual region is non-locational in the required way thus depends on the concept. AGE
contributes to the concept of children but not to the concept of generations, such as
millennials or baby boomers. This is illustrated in Fig. 6. In order to characterise
millennials non-locationally, one has to consider YEAROFBIRTH instead of AGE.

3.3.2 Characteristic features

Non-locationality is a minimal requirement for features of multi-domain concepts,
but it is not a very strong one and barely sufficient. Natural multi-domain concepts
need to be recognisable in terms of their features. There should be several domains (or
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combination of them) alongwhich categorymembers are easily detected. For example,
the colour of a ripe strawberry is a certain shade of red, but this is not very specific to
these fruits. The shape of the fruit, however, is sufficient to recognise a strawberry. It
is to be expected that a conceptual space of shapes has a region such that almost all
strawberries will be represented in this region and that (almost) the whole region is
associated with strawberries and nothing else than strawberries. This is what I call a
characteristic feature.

This notion of characteristicness resembles the idea of typicality. Schurz (2012)
proposes to define a typical property (in thewide sense) as a property P that is probable
for a category member of C . The probability of P given C , Pr(P|C), has to be high.
The diagnosticity, also called cue validity, of a property P is the reverse conditional
probability Pr(C |P). A property is typical in the narrow sense if C indicates P and
P indicates C . In other words, the probability of the exclusive disjunction of category
and property (i.e., C or P but not both) Pr(C � P) is small.

These probabilistic considerations can be related to conceptual spaces if one intro-
duces a probabilistic conceptual space, that is, an n-dimensional conceptual space
with an n-variate probability distribution over it. These distributions are either proba-
bility masses (pX1,...,Xn) in the discrete case or densities ( fX1,...,Xn) in the continuous
one. The probabilities of C and P follow by additivity from pX1,...,Xn for discrete
distributions. In the continuous case, C and P are regions the probability of which is
determined by the integral of fX1,...,Xn over these regions. Here we need to assume
that C and P are measurable subsets of the space. This is an extremely mild con-
straint, even weaker than connectedness. The question of how probabilistic densities
influence the development of concepts is further addressed in Sects. 3.4 and 3.5. For
now, I just use probabilistic conceptual spaces to translate the probability-based view
of typicality into the topology-based approach of conceptual spaces.

The probabilistic demand that Pr(C � P) must be small is related to the demand
that the symmetric difference between the regions C and P , (C ∪ P) \ (C ∩ P)

(short: CP), is small. If the probability distribution over the space is uniform,
then the relation between μ(CP) (i.e., the size of CP), and Pr(C � P) is clear:
Pr(C�P) = μ(CP)

μ(CS)
.18 If the probability distribution is not uniform, then the connec-

tion is less straight forward.Nevertheless, the following holds: IfC ′P ′ ⊆ CP , then
P(C ′ � P ′) ≤ P(C � P). In other words, the probability of the exclusive disjunction
increases only if the size of the symmetric difference increases as well.

Conceptual spaces improve the ability to represent typical features considerably. In
feature lists (Rosch and Mervis 1975) or frames (Minsky 1975; Barsalou 1983) one
has to use symbols to describe typical features. For example, ‘having a beak’ or ‘being
feathered’ are used to describe features associated with bird. This approach works
reasonably well in this and many other examples. However, we often lack words to
describe typical features. Conceptual spaces overcome the limitations that are set by
our language. For example, it is almost impossible to accurately describe the typical
shape of birds in few words (without just calling it ‘bird shape’). In comparison, a

18 The sizes of CP and CS are given by the Lebesgue measure. It is determined by reference to the
indicator function of C , namely χC : CS → {1, 0} such that χS(〈x1, x2, . . . , xn〉) = 1 if and only if
〈x1, x2, . . . , xn〉 ∈ C . The Lebesgue measure of C is defined as the integral of this indicator function:
μ(C) := ∫

CS χS(〈x1, x2, . . . , xn〉)dx1dx2 . . . dxn .
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representation in terms of a subregion in a shape space (e.g., Bechberger and Scheibel
2020) is impressively accurate and nevertheless parsimonious. While it is often hard
to name characteristic features, the ability to represent them in conceptual spaces is
not affected by this limitation.

To give another example, there is a specific odour of coffee. Most people, I assume,
are able to represent and imagine this sensation. It is a characteristic feature of coffee
to produce this sensation. Of course, the sentence ‘Coffee typically smells like coffee’
is trivial and uninformative. In particular, one would not use it to teach the concept
coffee. However, a representation in a conceptual space is not aword or a sentence but
can be viewed as a representation of a perception one might experience even without
having acquired the concept.

What about geometric constraints on features? I do not postulate convexity for
characteristic features (e.g., thesis 3 above). Many general arguments in favour of
convexity rely on the fact that convexity is expected to arise if one aims to partition
a space in an efficient way. However, as noted above, representations of features like
the taste of a strawberry or the colour of a chestnut are not like property concepts
(sweet or brown), even if they are represented in the same spaces. One reason to
think of features as (natural) property concepts is that, on a symbolic level, they are
usually expressed in terms of property concepts, but conceptual spaces provideways to
represent characteristic features without needing to rely on other concepts. Moreover,
its seems that violations of convexity are a widespread phenomenon. For example,
most animal species have a distinct female and a male subtype. If there is a strong
sexual dimorphism, these might lead to representations (e.g., in the shape space) that
are not even connected, let alone convex. Nevertheless, this unconnected subspace
seems to represent a characteristic feature of species members.

By that, I do not deny that topological constraints of features are important. In order
to be cognitively processed as a characteristic feature, the regions in the space must be
restricted in some way. Otherwise, any arbitrary collection of points that correspond
to category members would count as characteristic feature. A minimal requirement
is that only few disconnected subregions may be involved and that these subregions
need to be convex or at least star-shaped. Also note that such disconnected regions
are probably processed as alternative features rather than as one characteristic feature
(e.g., female shape and male shape of animal X rather than as the shape of animal X).
Moreover, a multi-domain concept with an unconnected feature is only acceptable if it
also has many connected (and even convex) characteristic features in other conceptual
spaces. I will not postulate a specific constraint, but leave their specification as an open
question for future research.19

Let me illustrate the criterion of characteristicness by referring to the example of
apple, as discussed by Gärdenfors (2000). Table 1 displays his suggestion for how
to represent the concept and a contrasting representation in terms of characteristic
features. Gärdenfors (2000) suggests representing the concept, inter alia, along the
attributes COLOUR, SHAPE, TEXTURE, and TASTE. Apples have a red, yellow or
green colour; a cycloid shape; smooth texture; and so on. In my approach, the cen-

19 The vessel space study by Douven (2016), which is actually a study on characteristic shape-features,
provides an example of the kind of research that would be required to (further) confirm the appropriateness
of the convexity constraint.
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Table 1 Comparison: representation of apple from Gärdenfors (2000, p. 103) (excerpt) and in terms of
characteristic features

Attribute Region
Gärdenfors (2000) Characteristic feature

Colour Red–yellow–green –

Shape Roundish (cycloid) Apple shape

Texture Smooth –

Taste Regions of the sweet and sour dimensions Apple taste

tral question becomes whether a certain conceptual space has a characteristic region
associated with apples. The colour domain is obviously unspecific. It is impossible
to characterise an object as an apple only by knowing its colour. For this reason, the
concept apple has no characteristic feature in the colour domain. In contrast, the
shape of apples is quite characteristic. This association is so strong that we would, at
least metaphorically, apply the term ‘apple’ to all apple-shaped things, such as golden
apples. Texture is not distinctive. Another specific representation can be expected in
the taste space. Especially if the domain does not merely include taste in the narrow
sense (sweet, sour, bitter, saline, umami) but flavour, it is likely that there exists a
characteristic apple taste.

My discussion of characteristic features focussed on perceptual attributes. These are
indeed particularly interesting because they provide the basic bridge from perception
to concepts (see also Brössel 2017). Note, however, that the notion of characteristic
features is not limited to perceptual spaces. They can also be based on attributes that
only become known through scientific inquiry, such as MOLECULAR GEOMETRY,
MASS, or GENETICCODE. For example, the particular nutritious profile of apples or
the phylogenetic diagram of apple trees are likely to represent characteristic features
of apples, as well.

The specification ofmulti-domain concepts in terms of characteristic features leaves
aside some properties that are connected to the concept. In the left column of Table 1,
for instance, the attributes COLOUR and TEXTURE drop out. Apples have varied
colours andmanyother things have similar colours as apples have.The texture of apples
is close to that of other fruits and vegetables. InGärdenfors’s depiction such regions are
part of a natural concept. He claims that ‘in some cases, the region may be the entire
domain’ (Gärdenfors 2014, p. 124). Such features are obviously not characteristic.
Nevertheless, the inclusion of such regions informs one that a concept is related to
the domain. For example, each car has a colour but there is no restriction on which
colour this is. As a consequence, it is hardly possible to represent car by COLOUR.
Nevertheless, we know that cars—contrary to viruses, music, and thoughts—have
colours. In order to do justice to the fact that such attributes are largely unable to
contribute to categorisation but are applicable to the concept, I suggest to say that they
are related to the concept. In this sense, the regions of red, yellow, and green in the
colour space are related to the concept of apple, even if they are not characteristic.
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Combining all of this, I conclude with the following revision of Criterion C:20

Revised Criterion C: A natural multi-domain concept is represented by non-
locational characteristic features in a set of independent conceptual spaces. They
are related to further conceptual spaces and (non-locational) regions in them.

The central demand of this criterion, namely that a concept has several character-
istic features, implies a strong correlation between these features. Apple shapes are
correlated with apple taste. This brings me to the next aspect discussed in this paper:
correlations and multi-domain concepts.

3.4 Correlations in combined conceptual spaces

When discussing how concepts capture correlation, a combination of probabilistic
arguments and conceptual spaces is needed. Such a connection was already alluded to
in Sect. 3.3.2, when linking probabilistic typicality and characteristic features. Quite
early in their development, geometric models of concepts were linked to probabilities.
Carnap (1971, 1980) originally introduced his attribute spaces as a background of
inductive logic (see Sznajder 2016). He used them to formulate a principle of indiffer-
ence according to which all possible hypotheses should be treated as equally probable
as long as no evidence supports one of it.21 Moreover, he applied attribute spaces to
account for similarity effects. An observation of a black raven, for instance, arguably
raises not only the expectation of seeing another black raven. It also makes it more
likely to find grey ravens than yellow ones. Carnap (1980) called this the η-rule.

After inductive epistemology and geometric representation of concepts developed
separately for a long time, more recent research is devoted to the connection between
probability and conceptual spaces. For example, Brössel (2017) combines probability
theory and conceptual spaces in order to provide a link between perceptual experience
(perceiving X as green) and credences (believing that X is green). Decock et al. (2016)
extended Carnap’s principle of indifference for properties with vague boundaries such
as colour terms. The η-rule was further elaborated by Sznajder (2017), whose work
I turn to in Sect. 3.5. First, I will use probabilistic approaches to address correla-
tions between values of different dimensions. Note that, contrary to the mentioned
approaches, probabilities do not represent credences but perceived frequencies, that
is, inhabitation patterns (see p. 20).

As noted in Sect. 2.6, Bechberger and Kühnberger (2017, 2019) explicitly sug-
gest using conceptual spaces to represent correlations geometrically. Their motivating

20 The formulation does not include a weighting of domains because salience is already captured by the
fact that only some spaces are characteristic. In comparison to Gärdenfors (2014), I also did not include
information on part-whole relationships, not because they are unimportant, but because a consideration of
this aspect would go beyond the scope of this already quite comprehensive article. A study on part-whole
relations in conceptual spaces is found in Fiorini et al. (2014).
21 Carnap (1980, pp. 33–34) suggested that the prior probability of a proposition depends on the size of
the property it ascribes. If the concept C is a subset of the conceptual space CS with the size μ(C) and a
is an arbitrary unknown object, then the probability of the statement Ca (Object a is C) is determined as

Pr(Ca) = μ(C)
μ(CS)

. Here, μ(S) is again a Lebesgue measure (see footnote 18).
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examplewas already illustrated in Fig. 4 (see p. 14). Let us nowconsider their argumen-
tation more closely. The dimensions HEIGHT and AGE covary within the category
of children. Bechberger and Kühnberger (2019) convincingly argue that only a non-
convex representation of the concept child can capture this correlation. Moreover,
they also claim that the non-convex representation is closer to an intuitive understand-
ing of child.

The reason behind the apparent intuitiveness of a non-convex representation is that
it excludes uninstantiated or at least very unlikely combinations such as persons who
are one year old and 1.40 m high. Surely, a one-year-old is a child and most 1.40
m tall people are also children. However, this particular combination of properties is
unlikely. The preferred representation of Bechberger and Kühnberger (2019) avoids
the inclusion of empty or barely inhabited regions of the conceptual space. While they
do not explicitly refer to population patterns, the criterion behind their preference for
the non-convex representation is eventually concerned with them. A natural concept
in a multi-domain space should not cover uninhabited or barely inhabited regions. In
probabilistic terms, a narrow concept is preferred over a wide one if the latter does not
include additional populated regions and is thus not more likely:

Principle of Inhabitedness:
Let S and P be regions in a conceptual spaceCS. If S ⊂ P and Pr(S) = Pr(P),
then S is preferred over P .

As the example of Bechberger and Kühnberger (2019) illustrates, there is a tension
between this principle and topological restrictions such as convexity. For example, S
could be a non-convex region, and P its convex hull. According to the topological
criterion, P is the preferable choice, but the principle of inhabitedness demands that
non-inhabited parts of P should not belong to the conceptual representation.

(a) child in Bechberger
)9102(regrebnhüKdna

(b) Finer distinctions of persons in the age/height space allow
to reconcile convexity and the principle of inhabitedness

Fig. 7 a Represents the correlation of age and height in children. In the fine-grained representation in b,
concepts capture the correlations
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The conflict between inhabitedness and convexity can be resolved if additional con-
cepts are introduced that capture the correlation. For example, the concepts infant
or toddler capture a correlation between very young age, small body size and
many other physical and mental attributes. As is seen in Fig. 7b, the finer distinc-
tion within minors allows for the reconciliation of the principle that only inhabited
areas are included in the conceptual region and the principle of convexity. Indeed,
natural language has a much richer vocabulary to distinguish minors: ‘infants’, ‘tod-
dlers’, ‘teenagers’, etc. In comparison, we have few concepts to distinguish adults with
respect to their age.

The finer graduations lead to a capturing of correlations by the concepts. The rep-
resentations of the more specific concepts are both convex and do not cover largely
empty regions. However, the resulting partitioning is unbalanced with respect to cat-
egory size. It has been hypothesised that finer graduations, that is, more concepts in a
region of a conceptual space, are expected to be found in densely populated regions of
the space (Sznajder 2021). However, this is not exactly what happens here. The con-
cept of minors occupies only a comparatively small fraction of the space and is barely
more densely populated than the adult’s region. The finer categories of younger per-
sons arises from correlations. These finer subcategories allow us to have concepts with
convex and narrow representations in conceptual spaces. This characterises concepts
that capture a correlation.

3.5 The topology of probabilistic densities

Having a probabilistic conceptual space allows one to specify the naturalness of con-
cepts not only in terms of the topology of conceptual regions, but also in terms of the
form the probability distribution takes. At this point, I focus explicitly on the shape of
probability densities fX1,...,Xn over n-dimensional conceptual spaces. As I said above,
these probabilities represent perceived frequencies, that is, observations. How do we
come from such observations, which are inherently discrete, to continuous probability
densities? A detailed account of this process is presented by Sznajder (2017, 2021).
Her work builds up on Carnap’s account of analogical reasoning according to which an

Fig. 8 Sznajder’s presentation of how a probabilistic density is derived from several observation. Directly
taken from Sznajder (2017, p. 88), reprinted with permission of the author
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observation not only influences one predicate but also semantically similar predicates.
She extends his work in two aspects. First, her confirmation function works on the
points of the space and is thus independent from pre-existing predicates. Second, she
accounts for the role of multiple observed entities. As a result, Sznajder (2017, ch.4)
presents a model of how observations shape a probabilistic density (see Fig. 8).

While Sznajder’s work is concerned with inductive reasoning and thus with cre-
dences of a rational agent, it is quite plausible that perceived frequencies of human
agents follow the same pattern. Neither our perception nor our memory are precise
enough to represent themultitude of our observations in a discreteway, that is, as points
in a conceptual space. Sznajder (2017) also suggests that the formation of concepts
is influenced by the resulting probability: ‘Only later on [...] can the space be divided
into predicates, following the shape of the posterior’ (Sznajder 2017, p. 113). This
leads me to a final constraint. How does the shape of a probability density influence
the development of (natural) concepts?

A well-known formal constraint of univariate (i.e., one-dimensional) probability
distributions, also part of Sznajder’s (2017) framework, is unimodality.22 A unimodal
probability distribution has only one local maximum, that is, one peak. Examples are
the normal distribution, the uniform distribution, as well as many of the distributions
that are used in statistical testing (e.g., chi-quared and student’s t distribution)
Humancognition is biased towards unimodality. Fried andHolyoak (1984) showed that
agents can easily learn categories by developing a representation of the distribution
of exemplars in a space if it follows a normal distribution. Flannagan et al. (1986)
compared the results with those of a U-shaped distribution, where mean values are
unlikely and extreme values aremore likely. This distribution is not unimodal: there are
two distinct peaks in the probability distribution. Subjects had difficulties in learning
such a category. Moreover, even if they learned the category, their answers indicated
that they misrepresented the probability distribution. They categorised instances with
mediate values as members and were more sceptical about the extreme values, while
the U-distribution actually indicates that the extreme values are more likely to come
from category members than the mean values. Based on these findings, Holland et al.
(1986, p. 196) argued that the assumption of unimodality is a strong bias of human
category learning.

Assumptions of unimodality also had a profound influence in science. The famous
historical example to mention here is that of Karl Pearson who proposed a method to
detect subpopulations from biometric data. Pearson’s friend Walter Weldon and his
wife had measured shore crabs and found that the frequency curve of their front width
was not unimodal but ‘double-humped’. ThismadeWeldon suspect that therewere two
different subpopulations underlying this pattern of data. He consulted Pearson about
this (see Magnello 2001, p. 262). Pearson (1894) used the data to develop his method
of analysing probability distributions as mixtures of underlying normal distributions.
The deviation from the normal distribution was interpreted as result of a mixture
of several distributions rather than as a counterexample to the normal distribution.
This is a historic example of how formal constraints of naturalness guide category
development.

22 Sznajder (2017) includes this as a restriction on admissible research hypotheses.

123



78 Page 32 of 36 Synthese (2022) 200 :78

The generalisation of unimodality from one-dimensional to n-dimensional spaces
(i.e., multivariate distributions) is highly researched within mathematical literature
(cf. Dharmadhikari and Joag-Dev 1988; Bertin et al. 1997). One basic generalisation
of unimodality is quasi-concavity. This is the demand that points with a probabil-
ity density above any threshold t form convex regions. That is, for each t > 0,
{〈x1, . . . , xn〉| fX1,...,Xn(x1, . . . , xn) ≥ t} is convex. In addition to being related to
unimodality, quasi-concavity has also been discussed as a generalisation of convexity
to fuzzy concepts (Tull 2021): for any two objects that are members of a category to
some degree, there is no object between them that is member to a lesser degree.

Quasi-concavity mathematically relates convexity and unimodality. This relation is
indeed very intuitive from a cognitive viewpoint. For the same reason humans perceive
a point that lies between two points of a category as belonging to the same category
(the convexity criterion), they judge that the point between two points with a certain
probability is at least as probable (the principle of unimodality). Hence, the principle
of unimodality from Holland et al. (1986) and the convexity criterion by Gärdenfors
seem to refer to one and the same cognitive bias.

If we assume an n-dimensional conceptual space CS and fX1,...,Xn , a probability
density overCS that represents perceived inhabitation patterns, thenwe are cognitively
biased to partition the space into concepts that are represented by regions over which
fX1,...,Xn is quasi-concave. In other words, if less inhabited regions of the concept are
eliminated, the conceptual regions will still be convex. Building on quasi-concavity
as a generalisation of unimodality, I propose the following criterion of conceptual
naturalness in probabilistic conceptual spaces.

Criterion of Quasi-Concavity:
A natural concept, represented in an n-dimensional conceptual space CS with
a probability density fX1,...,Xn , is a subregion C ⊆ CS such that fX1,...,Xn
is quasi-concave within C , meaning that for every t > 0, {〈x1, . . . , xn〉 ∈
C | fX1,...,Xn(x1, . . . , xn) ≥ t} is a convex set.

The criterion formally captures the metaphor that natural concepts carve nature
at its joints if we interpret joints as areas with low probability density. On the other
hand, it builds upon the convexity assumption from conceptual spaces. It thus connects
different traditions of thinking about natural concepts, namely the convexity criterion
of conceptual spaces and the idea that concepts capture peaks of natural covariation,
known from prototype theory as well as from the natural kinds debate.

4 Conclusion

This paper discussed the notion of natural concepts. Symbolic representations are
usually unable to formulate criteria for whether a symbol refers to a natural concept.
This main motivation for the development of geometric representations is already
found in Carnap (1971, 1980) and was further elaborated by Gärdenfors (1990, 2000,
2014). The most prominent criterion of naturalness is convexity. The discussion in
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Sect. 2 analysed different versions of it and outlined its main supporting arguments.
The criterion is extremely plausible for single-domain concepts such as colour terms.
There it can be derived from principles of optimal design (Douven and Gärdenfors
2020) or the evolution of signaling systems (Jäger 2007).

Serious objections against convexity are raised in regard to complex spaces, cor-
relations between domains, and multi-domain concepts. However, central concepts in
human cognition are multi-domain concepts, which capture a correlational structure
between different domains. This is why the second part of this paper examined these
multi-domain concepts. I proposed three criteria for naturalness: 1) the existence of
characteristic representations in several independent conceptual spaces (Revised Cri-
terion C), 2) a narrow representation in a complex space that avoids the inclusion
of unpopulated regions (Principle of Inhabitedness), and 3) a quasi-concave proba-
bility density over natural concepts in a probabilistic conceptual space (Criterion of
quasi-concavity). These three criteria should be viewed as complementary. The first
criterion states how the features of a complex concept are represented. It implies that
there are correlations between features. These correlations can be represented by prob-
ability distributions over complex conceptual spaces (product spaces of the domains).
The second criterion demands that natural multi-domain concepts cover the popu-
lated regions of such complex conceptual spaces while the third gives a more specific
constraint on how the probability distribution influences concept development. While
none of these criteria explicitly demands convexity, it is implicitly assumed in the cri-
terion of quasi-concavity that generalises the bias for unimodal probability densities
from univariate distributions to n-dimensional spaces.

This paper began with the question of what makes concepts natural. Some notable
examples of non-natural concepts were grue and bleen. As argued in Sect. 3.3.1, the
weirdness of these colour concepts can be explicated as a lack of convexity (Gärdenfors
1990). Their usage as features of complex concepts is also excluded by the criterion
of non-locationality dating back to Carnap (1971). Another example of a non-natural
concept was non- raven, as used in the sentence ‘Non-black things are non-ravens’.
The classical argument from conceptual spaces is that the concept fails to be repre-
sentable as a convex region. However, the discussion in the last section gave further
reasons why we do not rely on such a concept. As argued in the second part of the
paper, natural multi-domain concepts should have characteristic regions. The features
of non-raven are arguably too unspecific, and they overlap with many other concepts.
Moreover, in a complex probabilistic conceptual space, the concept includes many
empty regions and does not occupy a region with a quasi-concave probability distri-
bution. The restrictions developed throughout this paper give the intuitively expected
results about non-natural concepts. The fact that humans, especially in philosophical
debates or in arts, are able to develop, understand, and use strange concepts such as
grue, non-raven or animals that tremble as if they were mad demon-
strates the considerable flexibility of human cognition in violating its own conceptual
biases.
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