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CRITERIA FOR σ-AMPLENESS

DENNIS S. KEELER

1. Introduction

In the past ten years a study of “noncommutative projective geometry” has flour-
ished. By using and generalizing techniques of commutative projective geometry,
one can study certain noncommutative rings and obtain results for which no purely
algebraic proof is known.

The most basic building block of the theory is the twisted homogeneous coordi-
nate ring. Let X be a projective scheme over an algebraically closed field k with σ
a scheme automorphism, and let L be an invertible sheaf on X . In [ATV] a twisted
version of the homogeneous coordinate ring B = B(X,σ,L) of X was invented with
the grading B =

⊕
Bm for

Bm = H0(X,L ⊗ Lσ ⊗ · · · ⊗ Lσ
m−1

)

where Lσ = σ∗L is the pullback of L. Multiplication on sections is defined by
a · b = a⊗ bσm when a ∈ Bm and b ∈ Bn.

Soon after their seminal paper, Artin and Van den Bergh formalized much of the
theory of these twisted homogeneous coordinate rings in [AV]. In the commutative
case, the most useful homogeneous coordinate rings are associated with an ample
invertible sheaf. A generalization of ampleness was therefore needed and defined as
follows.

An invertible sheaf L is called right σ-ample if for any coherent sheaf F ,

Hq(X,F ⊗ L ⊗ Lσ ⊗ · · · ⊗ Lσm−1
) = 0

for q > 0 and m � 0. Similarly, L is called left σ-ample if for any coherent sheaf
F ,

Hq(X,L ⊗ Lσ ⊗ · · · ⊗ Lσm−1 ⊗Fσm) = 0

for q > 0 and m � 0. A divisor D is called right (resp. left) σ-ample if OX(D) is
right (resp. left) σ-ample. If σ is the identity automorphism, then these conditions
are the same as saying L is ample. Artin and Van den Bergh proved that if L is
right (resp. left) σ-ample, then B is a finitely generated right (resp. left) noetherian
k-algebra [AV].

Twisted homogeneous coordinate rings have been instrumental in the classifica-
tion of rings, such as the 3-dimensional Artin-Schelter regular algebras [ATV, St1,
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St2] and the 4-dimensional Sklyanin algebras [SS]. Artin and Stafford showed that
any connected (i.e. B0 = k) graded domain of GK-dimension 2 generated by B1 is
the twisted homogeneous coordinate ring (up to a finite dimensional vector space)
of some projective curve X , with automorphism σ and (left and right) σ-ample L
[AS]. Therefore any such ring is automatically noetherian!

While the concept of noncommutative schemes has grown to encompass more
than just twisted homogeneous coordinate rings (cf. [AZ]), they remain a guide for
how such a scheme ought to behave. However, fundamental open questions about
these coordinate rings and σ-ample divisors have persisted for the past decade. In
[AV], the authors derived a simple criterion for a divisor to be σ-ample in the case
X is a curve, a smooth surface, or certain other special cases. With this criterion,
they showed that B must have finite GK-dimension. In other words, they showed
that B has polynomial growth. They ask

Questions 1.1 ([AV, Question 5.19]). (1) What is the extension of our simple
criterion to higher dimensions?

(2) Does the existence of a σ-ample divisor imply that B has polynomial growth?

The second question was asked again after [AS, Theorem 4.1].
One would also like to know if the conditions of right and left σ-ampleness are

related and if B could be right noetherian, but not left noetherian. One might ask
for which (commutative) schemes and automorphisms a σ-ample divisor even exists
and if one can be easily found.

In this paper, all these questions will be settled very satisfactorily. We obtain

Theorem 1.2. The following are true for any projective scheme X over an alge-
braically closed field.

(1) Right and left σ-ampleness are equivalent. Thus every associated B is (right
and left) noetherian.

(2) A projective scheme X has a σ-ample divisor if and only if the action of
σ on numerical equivalence classes of divisors is quasi-unipotent (cf. §3 for
definitions). In this case, every ample divisor is σ-ample.

(3) GKdimB is an integer if B = B(X,σ,L) and L is σ-ample. Here GKdimB
is the Gel’fand-Kirillov dimension of B in the sense of [KL].

The first two results are handled in §5, while the third is covered in §6.
These facts are all consequences of

Theorem 1.3 (see Remark 5.2). Let X be a projective scheme with automorphism
σ. Let D be a Cartier divisor. D is (right) σ-ample if and only if σ is quasi-
unipotent and

D + σD + · · ·+ σm−1D

is ample for some m > 0.

This is the “simple criterion” which was already known if X is a smooth surface
[AV, Theorem 1.7]. We obtain the result mainly by use of Kleiman’s numerical
theory of ampleness [K].

Besides the results above, we derive other corollaries in §5 and find bounds for the
GK-dimension in §6 via Riemann-Roch theorems. We also examine what happens
in the non-quasi-unipotent case and obtain the following theorem.
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Theorem 1.4 (see Remark 6.2). Let X be a projective scheme with automorphism
σ. Then the following are equivalent:

(1) The automorphism σ is quasi-unipotent.
(2) For all ample divisors D, B(X,σ,OX(D)) has finite GK-dimension.
(3) For all ample divisors D, B(X,σ,OX(D)) is noetherian.

This paper is part of the author’s Ph.D. thesis at the University of Michigan,
under the direction of J.T. Stafford.

2. Reductions

Throughout this paper, we will work in the case of a projective scheme X over
an algebraically closed base field of arbitrary characteristic. A variety will mean
a reduced, irreducible scheme. All divisors will be Cartier divisors unless other-
wise stated. For a projective scheme, the group of Cartier divisors, modulo linear
equivalence, is naturally isomorphic to the Picard group of invertible sheaves. Since
much of our work will entail intersection theory, we will work from the divisor point
of view. Several times we use the facts that the ample divisors form a cone, that
ampleness depends only on the numerical equivalence class of a divisor, and that
ampleness is preserved under an automorphism. Hence the cone of ample divisors
and its closure, the cone of numerically effective divisors, are invariant under an
automorphism. As a reference for these and related facts we suggest [K].

Remark 2.1. The main results of this paper will be proved in terms of divisors
rather than line bundles. However, the reader should note that, unravelling the
definitions, one has OX(σD) ∼= OX(D)σ

−1
. It is therefore notationally more conve-

nient to work with a right σ−1-ample line bundle L = OX(D), since then D is right
σ−1-ample if and only if Hq(X,F ⊗OX(D+ σD+ · · ·+ σm−1D)) = 0 for all q > 0
and m� 0. Obviously, this will have no effect on the final theorems. Throughout
this paper, we will use the notation ∆m = D + σD + · · ·+ σm−1D.

Before deriving our main criterion for σ-ampleness, we must first prove other
equivalent criteria. We will need

Lemma 2.2 ([Fj, p. 520, Theorem 1]). Let F be a coherent sheaf on a projective
scheme X and let H be an ample divisor on X. Then there exists an integer c0
such that for all c ≥ c0,

Hq(X,F ⊗OX(cH +N)) = 0

for q > 0 and any ample divisor N .

Proposition 2.3. Let X be a projective scheme with σ an automorphism. Let D
be a divisor on X and ∆m = D + σD + · · · + σm−1D. Then the following are
equivalent:

(1) For any coherent sheaf F , there exists an m0 such that Hq(X,F ⊗OX(∆m))
= 0 for q > 0 and m ≥ m0.

(2) For any coherent sheaf F , there exists an m0 such that F ⊗ OX(∆m) is
generated by global sections for m ≥ m0.

(3) For any divisor H, there exists an m0 such that ∆m −H is very ample for
m ≥ m0.

(4) For any divisor H, there exists an m0 such that ∆m−H is ample for m ≥ m0.

The first condition is the original definition of right σ−1-ample.
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Proof. (1) ⇒ (2) is [AV, Proposition 3.2].
(2)⇒ (3) follows from the fact that a very ample divisor plus a divisor generated

by its sections is a very ample divisor. Given any divisorH and a very ample divisor
H ′, choose m0 such that ∆m−H −H ′ is generated by global sections for m ≥ m0.
Then ∆m −H −H ′ +H ′ = ∆m −H is very ample for m ≥ m0.

(3) ⇒ (4) is trivial.
(4)⇒ (1). For any ample divisor H and any c ≥ 0, one can choose m0 so that for

m ≥ m0, we have N = ∆m− cH is an ample divisor. Then (1) follows immediately
from Lemma 2.2.

A similar proposition holds for left σ−1-ample divisors, with F and H replaced
by Fσ−m and σmH . One deduces this easily from

Lemma 2.4 ([St3, p. 31]). A divisor D is right σ−1-ample if and only if D is left
σ-ample.

Proof. Let D be right σ−1-ample. Then for any coherent sheaf F , there exists an
m0 such that

Hq(X,OX(D + σD + · · ·+ σm−1D)⊗Fσ) = 0

for q > 0 and m ≥ m0. Since cohomology is preserved under automorphisms,
pulling back by σm−1, we have

Hq(X,OX(D + σ−1D + · · ·+ σ−(m−1)D)⊗Fσm) = 0

for q > 0 and m ≥ m0. So D is left σ-ample.

It is often useful to replace D with ∆m and σ with σm to assume D and σ have
a desired property. Using standard techniques, one can also show

Lemma 2.5 ([AV, Lemma 4.1]). Let D be a divisor on X. Given a positive integer
m, D is right σ−1-ample if and only if ∆m is right σ−m-ample.

3. The non-quasi-unipotent case

Let A1
Num(X) be the set of divisors of X modulo numerical equivalence. That is,

for divisors D and D′, one has D ≡ D′ ∈ A1
Num(X) if and only if (D.C) = (D′.C)

for all integral curves C ⊂ X . We will use this definition implicitly several times,
especially the fact that a nonzero element of A1

Num(X) has nonzero intersection with
some curve. Further, one has that A1

Num(X) is a finitely generated free abelian
group [K, p. 305, Remark 3]. Let P be the action of σ on A1

Num(X); hence
P ∈ GL(Z`) for some `.

A matrix is called quasi-unipotent if all of its eigenvalues are roots of unity. We
call an automorphism σ quasi-unipotent if P is. The main goal of this section is to
show that a non-quasi-unipotent σ cannot give a σ-ample divisor.

First, we must review a useful fact about integer matrices.

Lemma 3.1. Let P ∈ GL(Z`). Then P is quasi-unipotent if and only if all eigen-
values of P have absolute value 1. Thus if P is not quasi-unipotent, then P has an
eigenvalue of absolute value greater than 1.

Proof. The first claim is [AV, Lemma 5.3]. For the second claim, the property of
P not being quasi-unipotent is reduced to saying P has an eigenvalue of absolute
value not 1. Since P has determinant ±1, P has an eigenvalue of absolute value
greater than 1.
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The following lemma shows a relationship between the spectral radius r = ρ(P )
and the intersection numbers (σmD.C), where D is an ample divisor.

Lemma 3.2. Let P be as described above with spectral radius r = ρ(P ). There
exists an integral curve C with the following property: If D is an ample divisor,
then there exists c > 0 such that

(σmD.C) ≥ crm for all m ≥ 0.

Proof. Let κ be the cone generated by numerically effective divisors in A1
Num(X)⊗R.

In the terminology of [V], κ is a solid cone since it has a nonempty interior [K, p. 325,
Theorem 1]. Since P maps κ to κ, the spectral radius r is an eigenvalue of P and
r has an eigenvector v ∈ κ [V, Theorem 3.1].

Since v ∈ κ \ {0}, there exists a curve C with (v.C) > 0. Given an ample divisor
D, there is a positive ` so that `D − v is in the ample cone [V, p. 1209]. Thus

`(σmD.C) = `(PmD.C) > (Pmv.C) = rm(v.C).

Taking c = (v.C)/`, we have the lemma.

Now a graded ring B =
⊕

i≥0Bi is finitely graded if dimBi <∞ for all i. Such
a ring B has exponential growth (see [SZ]) if

lim sup
n→∞

(∑
i≤n

dimBi

) 1
n

> 1.(3.3)

If B has exponential growth, it is neither right nor left noetherian [SZ, Theorem
0.1]. This fact combined with the intersection numbers above allow us to prove

Theorem 3.4. Let X be a projective scheme with automorphism σ. If X has a
right σ−1-ample divisor, then σ is quasi-unipotent.

Proof. Suppose that D is a right σ−1-ample divisor. Let ∆m = D + σD + · · · +
σm−1D. By (2.3) and (2.5), we may replace D with ∆m and σ with σm and assume
that D is ample.

Let P be the action of σ on A1
Num(X). Suppose P is non-quasi-unipotent with

spectral radius r > 1 and choose an integral curve C as in Lemma 3.2. Let I be the
ideal sheaf defining C in X . Since D is right σ−1-ample, the higher cohomologies
of I(∆m) = I ⊗ OX(∆m) and OC(∆m) vanish for m � 0. So one has an exact
sequence

0→ H0(X, I(∆m))→ H0(X,OX(∆m))→ H0(C,OC(∆m))→ 0.

For m � 0, the Riemann-Roch formula for curves [Fl, p. 360, Example 18.3.4]
gives

dimH0(C,OC(∆m)) = (∆m.C) + a constant term.

Thus using the exact sequence and the previous lemma, there exists c > 0 so that

dimH0(X,OX(∆m)) > crm

for m � 0. Thus the associated twisted homogeneous coordinate ring has expo-
nential growth and hence is not (right or left) noetherian [SZ, Theorem 0.1]. So D
cannot be right σ−1-ample, by [AV, Theorem 1.4].

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



522 DENNIS S. KEELER

Remark 3.5. One can give a more elementary, computational proof of Theorem 3.4.
Indeed, examining the Jordan form of P gives an upper bound on (σmD.C). Fur-
ther, using the full strength of [V, Theorem 3.1] and asymptotic estimates, one can
improve the lower bound of Lemma 3.2. We then have

c1m
krm > (σmD.C) > cmkrm(3.6)

for m > 0, where k+ 1 is the size of the largest Jordan block associated to r. Then
using estimates similar to those in the proof of [AV, Lemma 5.10], one can find an
ample divisor H such that

(∆m −H.σmC) < 0

for all m � 0. This contradicts the fourth equivalent condition for right σ−1-
ampleness in Proposition 2.3.

Even when an automorphism σ is not quasi-unipotent, one can form associated
twisted homogeneous coordinate rings. As might be expected, some of these rings
have exponential growth.

Proposition 3.7. Let X be a projective scheme with non-quasi-unipotent auto-
morphism σ. Let D be an ample divisor. Then there exists an integer n0 > 0 such
that for all n ≥ n0, the ring B = B(X,σ,OX(nD)) has exponential growth and is
neither right nor left noetherian.

Proof. Again choose a curve C as in Lemma 3.2 with ideal sheaf I. By Lemma 2.2,
there exists n0 such that for all n ≥ n0 and q > 0,

Hq(X, I(nD +N)) = Hq(C,OC(nD +N)) = 0

for any ample divisor N . In particular, the above cohomologies vanish for nD+N =
nD + σ(nD) + · · · + σm−1(nD) where m > 1. Then repeating the last paragraph
of the proof of Theorem 3.4 shows that B has exponential growth.

When X is a nonsingular surface, [AV, Corollary 5.17] shows that the above
proposition is true for n0 = 1. Their proof makes use of the relatively simple form
of the Riemann-Roch formula and the vanishing of H2(X,OX(∆m)) when ∆m is
the sum of sufficiently many ample divisors. The proof easily generalizes to the
singular surface case, but not to higher dimensions.

Question 3.8. Given a non-quasi-unipotent automorphism σ and ample divisor D
on a scheme X , must B(X,σ,OX(D)) have exponential growth?

There do exist varieties with non-quasi-unipotent automorphisms. If the canon-
ical divisor K is ample or minus ample, then any automorphism σ must be quasi-
unipotent (cf. (5.6)). So intuitively, one expects to find non-quasi-unipotent au-
tomorphisms far away from this case, i.e., when K = 0. Further, there are strong
existence theorems for automorphisms of K3 surfaces (which do have K = 0).
Indeed, a K3 surface with non-quasi-unipotent automorphism is studied in [W].

Example 3.9. There exists a K3 surface with automorphism σ such that X has
no σ-ample divisors.

Proof. Wehler [W, Proposition 2.6, Theorem 2.9] constructs a family of K3 surfaces
whose general member X has

Pic(X) ∼= A1
Num(X) ∼= Z2, Aut(X) ∼= Z/2Z ∗ Z/2Z.
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(That is, Aut(X) is the free product of two cyclic groups of order 2.) The ample
generators H1 and H2 of A1

Num(X) have intersection numbers

(H2
1 ) = (H2

2 ) = 2, (H1.H2) = 4.

Aut(X) has two generators σ1, σ2 whose actions on A1
Num(X) can be represented

as two quasi-unipotent matrices

σ1 =
(

1 4
0 −1

)
, σ2 =

(
−1 0
4 1

)
.

However, the action of σ1σ2 has eigenvalues 7 ± 4
√

3. So X has no σ1σ2-ample
divisor. Note that by Corollary 5.4 below, any ample divisor is σ1-ample and σ2-
ample.

4. The quasi-unipotent case

Now let σ be a quasi-unipotent automorphism with P its action on A1
Num(X).

We will have several uses for a particular invariant of σ.

Definition 4.1. Let k+ 1 be the rank of the largest Jordan block of P . We define
J(σ) = k.

Note that J(σ) = J(σm) for all m ∈ Z \ {0}. It may be that k is greater than
0, as seen in [AV, Example 5.18]. We will see in the next section that k must be
even, but this is not used here.

To prove Theorem 1.3, it remains to show that (for σ quasi-unipotent) if D is a
divisor such that ∆m is ample for some m, then D is right σ−1-ample. So fix such
a D. We may again replace D with ∆n and σ with σn via (2.5), so that D is ample
and P is unipotent, that is, P = I +N , where N is the nilpotent part of P . In this
case, k = J(σ) is the smallest natural number such that Nk+1 = 0.

We let ≡ denote numerical equivalence and reserve = for linear equivalence. We
then have, for all m ≥ 0,

σmD ≡ PmD =
k∑
i=0

(
m

i

)
N iD,(4.2)

∆m ≡
k∑
i=0

(
m

i+ 1

)
N iD.(4.3)

Once a basis for A1
Num(X) is chosen, one can treat N iD as a divisor. Of course,

this representation of N iD is not canonical. However, since ampleness and intersec-
tion numbers only depend on numerical equivalence classes, this is not a problem.

Lemma 4.4. Let σ be a unipotent automorphism with P = I + N and k = J(σ).
If D is an ample divisor, then NkD 6≡ 0 in A1

Num(X).

Proof. Since Nk 6= 0, there exists a divisor E and curve C such that (NkE.C) > 0.
Choose ` so that `D − E is ample. By equation (4.2) above, the intersection
numbers (σm(`D − E).C) are given by a polynomial in m with leading coefficient
(`NkD − NkE.C)/k!. Since this polynomial must have positive values for all m,
we must have NkD 6≡ 0.
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We now turn towards proving that for any divisor H , there exists m0 such that
∆m0 −H is ample, when σ is unipotent and D is ample. Then since D is ample,
∆m −H is ample for m ≥ m0. For certain H , this is true even if σ is not quasi-
unipotent.

Lemma 4.5. Let X be a projective scheme with automorphism σ (not necessarily
quasi-unipotent). Let D be an ample divisor and H a divisor whose numerical
equivalence class is fixed by σ. Then there exists an m such that ∆m−H is ample.

Proof. Choose m such that D′ = mD −H is ample. Let

∆′j = D′ + σD′ + · · ·+ σj−1D′.

Then ∆′m ≡ m∆m −mH is ample and thus ∆m −H is ample.

Proposition 4.6. Let X be a projective scheme with unipotent automorphism σ.
Let D be an ample divisor and H any divisor. Then there exists an m0 such that
∆m0 −H is ample. Hence ∆m −H is ample for m ≥ m0.

Proof. Let W ⊂ A1
Num(X) ⊗ R be the span of D,ND, . . . , NkD. W is a k + 1-

dimensional vector space by Lemma 4.4. By equation (4.2), it contains the real
cone κ generated by S = {σiD|i ∈ N}. Using a lemma of Caratheodory [H, p. 45,
Lemma 1], any element of κ can be written as a linear combination of k+1 elements
of S with nonnegative real coefficients. Thus for all m ∈ N,

∆m ≡
k∑
i=0

fi(m)σgi(m)D

where fi : N→ R≥0 and gi : N→ N. Expanding the σgi(m)D above and comparing
the coefficient of D with equation (4.3), one finds that

k∑
i=0

fi(m) = m.

Since fi(m) ≥ 0, for each m, there must be some j such that fj(m) ≥ m/(k + 1).
Now choose l such that lD−H is ample and choose m0 such that m0/(k+1) ≥ l.

Then

fj(m0)σgj(m0)D − σgj(m0)H

is in the ample cone for the given j. Set g = gj(m0). The other fi(m0) are
nonnegative. Then ∆m0 − σgH is in the ample cone as it is a sum of elements in
the ample cone. Since it is a divisor, it is ample [K, p. 324, Remark 3].

We now prove the lemma by induction on q, the smallest positive integer such
that N qH ≡ 0. Since N is nilpotent, there is such a q for any H . The case q = 1
is handled by the previous lemma.

Now as σ ≡ I + N , we know σ−m0(σgH −H) is killed by N q−1. So there is an
m1 so that

Y = ∆m1 + σ−m0(σgH −H)

is ample. Then as σ fixes the ample cone,

∆m0 − σgH + σm0Y = ∆m0+m1 −H
is ample.
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We now immediately have by Propositions 2.3 and 4.6 and Theorem 3.4:

Theorem 4.7. Let X be a projective scheme with an automorphism σ. A divisor
D is right σ−1-ample if and only if σ is quasi-unipotent and D+σD+ · · ·+σm−1D
is ample for some m.

5. Corollaries

The characterization of (right) σ−1-ampleness has many strong corollaries which
are now easy to prove, but were only conjectured before.

Corollary 5.1. Right σ-ample and left σ-ample are equivalent conditions. Further,
σ-ampleness and σ−1-ampleness are equivalent.

Proof. Let D be right σ−1-ample. By Theorem 4.7, σ is quasi-unipotent and ∆m

is ample for some m. Then σ−1 is quasi-unipotent and

σ−(m−1)∆m = D + σ−1D + · · ·+ σ−(m−1)D

is ample. Applying the theorem again, we have that D is right σ-ample. Thus D
is left σ−1-ample by Lemma 2.4. The same lemma gives the second statement of
the corollary.

Remark 5.2. Combined with Theorem 4.7, this proves Theorem 1.3 and so we may
refer to a divisor as being simply “σ-ample”.

In [AV], left σ-ampleness was shown to imply the associated twisted homogeneous
coordinate ring is left noetherian. However, as noted in the footnote of [AS, p. 258],
the paper says, but does not prove, that B is noetherian. This actually is the case.

Corollary 5.3. Let B = B(X,σ,OX(D)) be the twisted homogeneous coordinate
ring associated to a σ-ample divisor D. Then B is a (left and right) noetherian
ring, finitely generated over the base field.

Analysis of the GK-dimension of B will be saved for the next section.
From the definition of σ-ample, it is not obvious when σ-ample divisors even

exist. Theorem 4.7 makes the question much easier.

Corollary 5.4. A projective scheme X has a σ-ample divisor if and only if σ is
quasi-unipotent. In particular, every ample divisor is a σ-ample divisor if σ is
quasi-unipotent.

Thus, it is important to know when an automorphism σ is quasi-unipotent. From
the bounds in equation (3.6), we obtain

Proposition 5.5. Let D be an ample divisor. Then σ is quasi-unipotent if and only
if for all curves C, the intersection numbers (σmD.C) are bounded by a polynomial
for positive m.

Proposition 5.6. Let X be a projective scheme such that
(1) X has a canonical divisor K which is an ample or minus-ample divisor, or
(2) the Picard number of X, i.e., the rank of A1

Num(X), is 1.
Then any automorphism σ of X is quasi-unipotent. Indeed, some power of σ is
numerically equivalent to the identity.
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Proof. In the first case, for K to be ample or minus-ample, it must be a Cartier
divisor. Thus the intersection numbers (σmK.C) are defined, where C is a curve.
Since K must be fixed by σ, some power of σ must be numerically equivalent to
the identity by equation (3.6). In the second case, the action of σ itself must be
numerically equivalent to the identity.

Thus for many important projective varieties, such as curves, projective n-space,
Grassmann varieties [Fl, p. 271], and Fano varieties [Ko, p. 240, Definition 1.1],
one automatically has that any automorphism must be quasi-unipotent.

Returning to corollaries of Theorem 4.7, we see that building new σ-ample divi-
sors from old ones is also possible.

Corollary 5.7. Let D be a σ-ample divisor and let D′ be a divisor with one of the
following properties:

(1) σ-ample,
(2) generated by global sections, or
(3) numerically effective.

Then D +D′ is σ-ample.

Proof. Take m such that ∆m is ample and ∆′m = D′+ · · ·+σm−1D′ is respectively
ample, generated by global sections, or numerically effective. Then ∆m + ∆′m is
ample and we again apply the main theorem.

The following could be shown directly from the definition, but also using a similar
method to the proof above, one can see

Corollary 5.8. Let σ and τ be automorphisms. Then D is σ-ample if and only if
τD is τστ−1-ample.

Note that τ need not be quasi-unipotent.
Finally, as in the case of ampleness, σ-ampleness is a numerical condition.

Corollary 5.9. Let D,D′ be numerically equivalent divisors and let σ, σ′ be nu-
merically equivalent automorphisms (i.e., their actions on A1

Num(X) are equal).
Then D is σ-ample if and only if D′ is σ′-ample.

Proof. As ∆m ≡ D′ + (σ′)D′ + · · · + (σ′)m−1D′ and ampleness depends only on
the numerical equivalence class of a divisor, the corollary follows from our main
theorem.

6. GK-dimension of B

As mentioned, our main goal of this section is to prove

Theorem 6.1. Let B = B(X,σ,L) for some projective scheme X and σ-ample
invertible sheaf L.

(1) GKdimB is an integer. Hence B is of polynomial growth. In addition,
GKdimB is independent of the σ-ample L chosen.

(2) If σm ≡ I for some m, then GKdimB = dimX + 1.
(3) If X is an equidimensional scheme, then

k + dimX + 1 ≤ GKdimB ≤ k(dimX − 1) + dimX + 1

where k = J(σ) (cf. Definition 4.1) is an even natural number depending only
on σ.
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Remark 6.2. We now have all the necessary pieces of Theorem 1.4. In that result,
(1) =⇒ (2) is the theorem above. (1) =⇒ (3) is from Corollaries 5.3 and 5.4,
and finally (2) =⇒ (1) and (3) =⇒ (1) both follow from Proposition 3.7.

Theorem 6.1 generalizes [AV, Proposition 1.5, Theorem 1.7]. The authors of
[AV] further show that if X is a smooth surface, then k = 0, 2 and thus the only
possible GK-dimensions are 3 and 5. The proof that k ≤ 2 in the surface case uses
the Hodge Index Theorem and thus far we have been unable to find a similar bound
in higher dimensions. Note that if X is a curve or X = Pn, then rankA1

Num(X) = 1
and hence by Proposition 5.6, some power of σ is numerically equivalent to the
identity (in fact, P = I). So the theorem implies that GKdimB = dimX + 1.

In studying the GK-dimension of B = B(X,σ,OX(D)) with D σ-ample, [AV,
p. 263] proves that

GKdimB(X,σ,OX(D)) = GKdimB(X,σm,OX(∆m))(6.3)

for any positive m. Therefore, we may again assume P is unipotent, D is ample,
and Hq(X,OX(∆m)) = 0 for q > 0 and all m > 0. Then

dimBm = dimH0(X,OX(∆m)) = χ(OX(∆m))

where χ is the Euler characteristic on X . We will soon see this is a polynomial in m
with positive leading coefficient. Again replacing B with an appropriate Veronese
subring, we may assume dimBm ≤ dimBm+1 for all m ≥ 0. Then the proof of
[AS, Lemma 1.6] shows that

GKdimB = deg(dimBm) + 1 = deg(χ(OX(∆m))) + 1.(6.4)

Thus far, we have only used the intersection numbers (D.C), where D is a
divisor and C is a curve. In studying the growth of ∆m in terms of m, we will need
to examine the intersection of divisors on higher dimensional subvarieties. More
precisely, for an n-dimensional variety V , we use the symmetric n-linear form

(D1. . . . .Dn)V = (OX(D1). . . . .OX(Dn).OV )

defined in [K, p. 296, Definition 1].
Recall that a polynomial with rational coefficients, integer valued on integers, is

called a numerical polynomial. We prove

Lemma 6.5. Let X be a projective scheme with unipotent automorphism σ and
ample divisors D and D′ with ∆′m = D′ + · · ·+ σm−1D′. Further let V be a closed
subvariety of X of dimension n. Then for 0 ≤ i ≤ n,

(1) (Di.∆n−i
m )V is a numerical polynomial in m with positive leading coefficient.

(2) deg(Di.∆n−i
m )V = deg((D′)i.(∆′m)n−i)V .

(3) deg(Di−1.∆n−i
m )W ≤ deg(Di.∆n−i

m )V where W ⊂ V is a closed subvariety
with dimW = dim V − 1.

(4) deg(Di.∆n−i
m )V < deg(Di−1.∆n−i+1

m )V .
(5) deg(∆j

m)W < deg(∆n
m)V where W ⊂ V is a closed subvariety and dimW =

j < n.

Proof. Since σ is unipotent and intersection numbers only depend on numerical
equivalence classes, we may replace ∆m by the divisor on the right hand side of
equation (4.3). As noted below that equation, it is not a problem to treat the N iD
as divisors. Since the intersection form is multilinear and integer valued on divisors,
(Di.∆n−i

m )V must be a numerical polynomial. By the Nakai criterion for ampleness
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[H, p. 30, Theorem 5.1], the function is positive for all positive m (since ∆m is
ample) and hence has a positive leading coefficient. Thus part (1) is proven.

Now for some fixed `, we know that `D′ −D is ample. Hence

`(D′.Di−1.∆n−i
m )V − (Di.∆n−i

m )V = (`D′ −D.Di−1.∆n−i
m )V > 0

for all m > 0. Thus

deg(D′.Di−1.∆n−i
m )V ≥ deg(Di.∆n−i

m )V

and by symmetry the two degrees are equal. We can continue this argument,
replacing each D with D′, so deg(Di.∆n−i

m ) = deg((D′)i.∆n−i
m ). By also noting

that

`∆′m −∆m = (`D′ −D) + · · ·+ σm−1(`D′ −D)

is ample, one can similarly replace each ∆m with ∆′m. Thus the second claim is
proven.

Now let W ⊂ V be a closed subvariety with dimW = dimV − 1. One has

(Di−1.∆n−i
m )W = (Di−1.W.∆n−i

m )V

by [K, p. 298, Proposition 5]. We claim that for some fixed `, the intersection
number of `D −W with any collection of n− 1 ample divisors is positive. This is
well known if V is normal so W is a Weil divisor; so for some `, the Weil divisor
`D−W is effective [R, p. 282]. The general case can be seen by pulling back to the
normalization of V . Since normalization is a finite, birational morphism, ampleness
[H, p. 25, Proposition 4.4] and intersection numbers [K, p. 299, Proposition 6] are
both preserved under pull-back. Thus the claim is proven. An argument similar to
the proof of part (2) proves the third claim of the lemma.

For part (4), equation (4.3) shows that the leading coefficient of (Di−1.D′.∆n−i
m )V

is a sum of terms

aα(Di−1.D′.Nα1D. . . . .Nαn−iD)V

where aα((k + 1)!)n is an integer. So any leading coefficient times ((k + 1)!)n is a
positive integer. Thus given any set of ample divisors {D′}, there is a D′ in that
set such that (Di−1.D′.∆n−i

m )V has the smallest leading coefficient.
Now let j be a natural number such that (Di−1.σjD.∆n−i

m )V has the smallest
leading coefficient of all (Di−1.σlD.∆n−i

m )V . Then for any l ≥ 0,

(Di−1.σlD.∆n−i
m )V

(Di−1.σjD.∆n−i
m )V

is a rational function with limit, as m → ∞, greater than or equal to 1. So given
any natural number M ,

lim
m→∞

(Di−1.∆m.∆n−i
m )V

(Di−1.σjD.∆n−i
m )V

≥M.

Since this is true for any M , the limit must be +∞. So

deg(Di−1.∆m.∆n−i
m )V > deg(Di−1.σjD.∆n−i

m )V .

Examining the proof of part (2), we see the right hand side equals deg(Di.∆n−i
m )V ,

proving part (4).
Finally, for part (5), find a chain of subvarieties W = V0 ( · · · ( Vn−j = V .

Then part (3) combined with part (4) proves the claim for each part of the chain.
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By a version of the Riemann-Roch Theorem for an n-dimensional complete
scheme X and coherent sheaf F [Fl, p. 361, Example 18.3.6]:

χ(F(∆m)) =
n∑
j=0

1
j!

∫
X

(∆j
m) ∩ τX,j(F).(6.6)

The τX,j(F) is a j-cycle, a linear combination of j-dimensional closed subvarieties
of SuppF . In other words,

τX,j(F) =
∑
V

aV [V ](6.7)

where V is a subvariety of X , [ ] denotes rational equivalence, and aV is a rational
number. The terms of (6.6), for F = OX , can then be interpreted as∫

X

(∆j
m) ∩ τX,j(OX) =

∑
V

aV (∆j
m)V .

If Xi is an irreducible component of X of dimension j, then [Xi] = n[(Xi)red] is
a term in τX,j(OX), where n is the degree of the natural map (Xi)red → Xi. To see
this, first note that (∆dimXi

m )Xi/(dimXi)! must be the dimXi term of χ(OXi(∆m))
[Fl, ibid.]. Also a(Xi)red = n by [K, p. 298, Corollary 2]. The short exact sequence

0→ Ii → OX → OXi → 0

gives χ(OX(∆m)) = χ(OXi(∆m))+χ(Ii(∆m)). The support of Ii does not contain
Xi and an irreducible component is rationally equivalent only to itself [Fl, p. 11,
Example 1.3.2]. So there is no [Xi] term in χ(Ii(∆m)) which could cancel out the
[Xi] term in the first summand.

Lemma 6.8. Let X be a projective scheme with unipotent automorphism σ and
irreducible components Xi. Then

degχ(OX(∆m)) = max
Xi

deg(∆dimXi
m )Xi .

Proof. If the left hand side is larger than the right hand side, then by the discussion
before the lemma, there is a subvariety V with

degχ(OX(∆m)) = deg(∆dimV
m )V > deg(∆dimXj

m )Xj ,

where Xj is an irreducible component properly containing V . This cannot happen
by Lemma 6.5(5).

On the other hand, if the right hand side is larger, then there exists a subvariety
V with aV < 0 in the notation of equation (6.7) and

deg(∆dimV
m )V = max

Xi
deg(∆dimXi

m )Xi .

The earlier discussion shows that aXi > 0 for each i. Hence V is properly contained
in some irreducible component. But again this cannot happen by Lemma 6.5(5).

Lemma 6.9. Let X be a projective scheme with unipotent automorphism σ. Let
V ⊂ X be a closed subscheme which does not contain (the reduction of ) an irre-
ducible component of X. Then degχ(OV (∆m)) < degχ(OX(∆m)).
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Proof. By Lemma 6.8 we may pick an irreducible component V0 of V with

degχ(OV (∆m)) = deg(∆dimV0
m )V0 .

ThenX has an irreducible componentX0 with V0(X0. Combining Lemmata 6.5(5)
and 6.8, the claim is proven.

Proposition 6.10. Let X be a projective scheme with unipotent automorphism σ
and ample divisor D. Then χ(OX(∆m)) is a numerical polynomial in m. The
degree of this polynomial is independent of the ample divisor D chosen. Further, if
σ is numerically equivalent to the identity, this polynomial has degree dimX.

Proof. The first claim is obvious since the intersection numbers in equation (6.6)
are numerical polynomials, as noted in Lemma 6.5. The independence of the degree
comes from Lemma 6.5(2).

If σ is numerically equivalent to the identity, then k = 0. So χ(OX(∆m)) =
χ(OX(mD)) has degree dimX .

Combined with equations (6.3) and (6.4), this proposition implies the first two
parts of Theorem 6.1.

Considering Lemma 6.8 and equation (6.4), we immediately have

Proposition 6.11. Let X be a scheme with unipotent automorphism σ, ample
divisor D, and irreducible components Xi. Let B = B(X,σ,L). Then

GKdimB − 1 = degχ(OX(∆m)) = max
Xi

deg(∆dimXi
m )Xi .

In particular, if X is equidimensional, then

GKdimB − 1 = deg(∆dimX
m )X .

Note that by replacing σ by a power, we may assume σ fixes each irreducible
component. That is, σ is an automorphism of each component. Thus the soon to
be proven bounds of Theorem 6.1 for equidimensional schemes can be used to find
bounds in the general case.

Lemma 6.12. Let σ be a unipotent automorphism with numerical action P =
I +N , with k = J(σ) (cf. Definition 4.1). Then k is even and degχ(OX(∆m)) ≥
k + dimX.

Proof. Given an ample divisor D, one has NkD 6= 0 by Lemma 4.4. So there exists
a curve C such that (NkD.C) 6= 0. Since (σmD.C) > 0 for all m ∈ Z and in
particular for m > 0, (NkD.C) > 0. However, if k is odd, (4.3) implies that the
leading term of (σ−mD.C) is −

(
m
k

)
(NkD.C) where m > 0. Then (σ−mD.C) < 0

for large m, which cannot occur.
For the lower bound, note degχ(OC(∆m)) = deg(∆m.C) = k+ 1. Constructing

a chain of subvarieties between C and X , Lemma 6.9 shows that degχ(OX(∆m)) ≥
dimX + k.

Lemma 6.13. Let n = dimX. Then (∆n
m)X has degree at most k(n− 1) + n.

Proof. If k = 0 the lemma is trivial. So assume that k > 0. Let P = I +N .
Expanding (∆n

m) gives terms of the form

f(m)(N i1D.N i2D. . . . .N inD)

where i1 ≤ i2 ≤ · · · ≤ in and degm f = n +
∑
ij. We will show that if

∑
ij >

k(n− 1), then (N i1D.N i2D. . . . .N inD) = 0.
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Order (i1, . . . , in) in the following way: (i1, . . . , in) > (i′1, . . . , i
′
n) if the right-most

nonzero entry of (i1, . . . , in) − (i′1, . . . , i′n) is positive. We proceed by descending
induction on this ordering.

The largest n-tuple in this ordering is (k, k, . . . , k). Since k > 0, Nk−1D exists
(taking N0 = I) so

(Nk−1D.(NkD)n−1) = (PNk−1D.(PNkD)n−1)

= (Nk−1D.(NkD)n−1) + ((NkD)n)

and hence ((NkD)n) = 0.
Now suppose (i1, . . . , in) is such that

∑
ij > k(n − 1) and we have proven our

claim for all larger (i′1, . . . , i′n). Since
∑
ij > k(n− 1), we have i1 > 0 so examine

(N i1−1D.N i2D. . . . .N inD) = (PN i1−1D.PN i2D. . . . .PN inD).

A typical term in the right hand side is of the form

(N i1−1+δ1D.N i2+δ2D. . . . .N in+δnD)

where δj = 0, 1. The terms with δj = 1 where j > 1 are all higher in the ordering
than (i1, . . . , in) and hence are zero. This only leaves

(N i1−1D.N i2D. . . . .N inD)

= (N i1−1D.N i2D. . . . .N inD) + (N i1D.N i2D. . . . .N inD)

and so (N i1D.N i2D. . . . .N inD) = 0.

Using equation (6.3) and Proposition 6.11, these lemmata complete the proof of
Theorem 6.1.

Example 6.14. Let X be a 3-fold and σ an automorphism with k = J(σ) = 2.
Then for any σ-ample D, GKdimB = k + dimX + 1 = 6. We will not give the
proof of this example, since it is not particularly illuminating. However, as one
might expect, it consists of expanding (∆3

m) and showing that most of the terms
are zero.
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