
Criteria for the Simple Path Property in Timed Automata*

Will iam K.C. Lain I and Robert K. Brayton 2

1 Hewlett-Packard Co., Palo Alto, California
2 Department of EECS, University of California, Berkeley, California

Abstract. Timed automata have been studied in the past and have been found to
have a complexity dependent on the relative scale of the time constants involved
in the timing constraints imposed, even if the timing constraints are restricted to
the form x < k where x is a clock variable and k is a constant. We have previously
shown that this complexity dependence on the time constants can be eliminated
if the timed automaton has the simple path property (state A is reachable from
state B if and only if it is reachable along a path with no cycles), and gave a
set of conditions on the placement of clock queries and resets which imply this
simple path property. These automata were called alternating RQ timed automata.
We gave a technique for using this property to iteratively constrain an untimed
automaton to rule out simple paths which cannot meet their timing constraints.
The simple path property means that only simple paths need be constrained. In this
paper, we give conditions for a timed automaton with arbitrary constraint equations
to have the simple path property. As far as we know all practical examples in
the literature meet these criteria. For example, this includes all automata with
constraints of the form for each state s, a trace must remain in s for a time t where
ts,~,~ < t < ts,~x. We are currently working on an efficient implementation
for timed automata where arbitrary linear inequalities among the clock values are
allowed. Using linear programming, we iteratively detect simple paths which are
not traversable and construct untimed automata which disallow these paths. The
present paper serves to extend this approach to a wide class of applications. In
addition, we define extended RQ timed automata which include all the examples
in the literature and are easily tested for this property.

1 Introduction

To model real-t ime behavior of finite state automata, such as that each transition takes
at least 1 second and at most 2 seconds, t imed automata, proposed by Al lur and Dil l
[6, 3], add resemble clocks and conditions on the values of the clocks to the transitions
of ordinary finite state automata. I f a reset statement of a c lock appears on a transition,
then on complet ion of the transition the value of the clock becomes zero. Once a clock
is reset, the value of the clock increments as a real clock until it is reset again. A t imed
automaton can have several clocks which may increment at different r a tes) I f a condit ion
on the values of clocks, called t iming constraint or query, appears on a transition, then
the transition is enabled only i f the condit ion is satisfied. Hence, to transit from the

* Project supported by SRC under contract 93-DC-008
3 In this paper, we assume all clocks have the same rate.

28

present state to a next state, one must spend enough time in the present state so that the
values of clocks satisfy any query on the transition. Thus, a sequence of states in a timed
automaton can only be traversed in a such timely manner that all the queries along the
traversal are satisfied.

The introduction of resetable clocks into finite state automata complicates the traver-
sal problem: no longer can a state be decided reachable from another state by examining
only whether there is apath connecting the two states-- timing constraints or queries on
a path must also be determined satisfiable to conclude that the path is traversable. Thus,
a path is traversable only if there exists a schedule of stay-times on the states on the
path such that the transition from the present state to the next state on the path is always
enabled, i.e. the query (if any) is satisfied, upon the completion of staying in the present
state for the amount of time according to the schedule. Hence, reachability analysis can
not be performed on simple paths alone (simple paths are the paths on which each state
is visited at most once.). In the following example, state $4 is reachable from $1 through
non-simple paths only. Thus, in deciding whether a state is reachable one may need to
examine all paths to the state, which may be infinite. In addition, the following example
also shows that the traversal problem can depend on timing constraints.

~ x l = O ? ~xl) /(x3)
R(xl) ~. -- J X2=K?&

Fig. 1. Time Constant Dependent Traversal

Example 1. In this timed automaton, if K is a positive integer, then the accepting state
$4 can be reached. And the only way to get from the initial state $1 to the final state
$4 is to go around the loop K times, i.e. only by traversing a non-simple path. During
each visit of the loop, the automaton stays at $3 for 1 unit of time to get clock X: to
increment by 1. Thus, to satisfy the timing constraints on the transition between $2 and
$4, e.g.)(2 = K, the loop needs to be traversed K times. I f / f is not an integer, $4 is not
reachable, demonstrating that traversability is intimately related to the time constants.

Traversal in timed automata is a key part of timing verification. With both a design
and a specification expressed with timed automata, D and S, respectively, showing that
the design meets the specification amounts to showing that the language of the design
automaton is contained in that of the specification automaton, i.e. Z3(D) c_ s
equivalently, s | 6 'c) = ~, where S c denotes the complement of S, and | is the
product operation. The language of a timed automaton is empty if and only if there is
no input sequence accepted; that is, there is no traversable accepting path.

29

2 Previous Work

To verify timed automata, one can make several restrictions to reduce verification com-
plexity. One is the allowable contents of timing constraints, and another the allowable
placement of timing constraints. Allur and Dill [6, 3] restricted the contents of timing
constraints to z < k or z > k or z - y _< k, where z and y are clock variables and k
is a constant. However there is no restriction on the placement of these constraints. It
was shown that any timed automaton satisfying this restriction can be converted to an
ordinary untimed automaton, called a region automaton, by augmenting the state space
to account for the effects of timing constraints. With this conversion, a generic (untimed)
verifier can verify the original timed automaton. However, the number of extra states in
the conversion is proportional to the relative magnitudes of the time constants k's; thus
verification complexity depends on the time constants. The works in [1, 11] proposed
algorithms to minimize the number of states in the region automata.

Balarin and Sangiovanni-VincenteUi [4] considered the class of timed automata
whose only timing constraints are on the amount of time an automaton can stay in a state.
This amounts to restriction on both the contents and placement of timing constraints,
With this simplification, the class of timed automata can be verified iteratively by adding
timing constraints to eliminate traces that failed specifications in the preceding iteration.
Each iteration uses a generic verifier. If all failure traces are eventually eliminated,
the timing verification is successful. If there are still failure traces with all the timing
constraints added or if a trace is produced that satisfies its timing constraints, the
verification fails. A limitation of this class of timed automata is its expressiveness.

The approaches in [6, 3, 2] restrict the content of timing constraints, while the
approach in [4] restricts both the contents and placement of timing constraints. A
third method proposes alternating RQ timed automata, which allow arbitrary timing
constraints but restrict their placement, [9]. It was shown that the traversal problem
for alternating RQ timed automata can be reduced to simple paths. That is, a state is
reachable from another state if and only if it is reachable through a simple path. Further,
alternating RQ automata can be verified using generic verifiers with the introduction of
constraining automata which delete untraversable simple paths. Moreover, verification
complexity for this class is independent of the contents of timing constraints. A limitation
is their expressiveness for general timing conditions. Although many practical situations
can be represented with alternating RQ timed automata, the scope of this expressiveness
is not known previously.

3 Timing Verification Paradigm Using Generic Automata

Here we discuss a paradigm of verifying timed automata using generic verifiers, first
proposed by Kurshan [2] and used by others [4]. First, we examine the effects of
timing constraints for general timed automata with arbitrary timing constraints and
placement. Let P be the set of all paths, Pt the set of traversable paths, and Pc (c stands
for constrained.) the set of untraversable paths; thus, P = Pt + Pc. Without timing
constraints, Pc =- 0. Hence, the contribution of the timing constraints is to partition the
paths into Pt and Pc. Let M be a timed automaton, M0 derived from M by removing

30

all timing constraints, and Mc a generic automaton which accepts only the paths in Pc.
Then, a path is traversable in M if and only if it is also a path in M0 and is not accepted
by Me. Further, let M and M0 have the same acceptance conditions. Then, the language
of M is the language of M0 minus that of Me. Symbolically,

L(M) -= L(Mo | M•).

That is, timed automaton M is modelled by the product of M0 and the complement
of Me. We call M0 the untimed automaton of M, and Mc the constraining automaton
of M, both of which are ordinary automata with no timing constraints. If Mc can be
constructed, general timed automaton M can be verified using generic verifiers.

Using constraining automata to model timing constraints has the following ad-
vantages. First, timing verification can be performed using existing generic verifiers.
Second, since not all timing constraints may effect verification, it may not be necessary
to explicitly take into account all timing constraints. With the constraining automaton
paradigm, timing constraints can be incorporated iteratively. At each iteration, new tim-
ing constraints can be added by creating a new constraining automaton, treating the
present M0 | M~ as a new M0. So at the/th iteration, we check:

L(Mo(i) | M:(i)) =. r

If it is empty, it is verified successfully. Otherwise, we add more timing constraints.
For the next stage i + I, let Mo(i + 1) = Mo(i) | M~(i), M~(i + I) accept the paths
made untraversable by the new timing constraints, and repeat the language emptiness
checking. If no timing constraints are left and the language is not empty, it fails the
verification. Adding new timing constraints can also be done by augmenting the ac-
ceptance condition of Mc to accept the paths made untraversable by the new timing
constraints. An advantage of this iterative approach is that a design may be verified
without using all timing constraints, translating to faster run time and smaller memory
usage; of course, all timing constraints may have to be used to prove a design fails. Also,
if the verification succeeds, Mc contains a minimal set of timing constraints. Then the
design can be optimized by eliminating redundant timing constraints not in Mc or by
relaxing over-constraining conditions in Me. If the verification fails, Mc can be readily
augmented to accommodate new timing constraints or a new M~ is created.

4 Complexity Reduction of Mc

The crucial step in the above paradigm is the construction of Me. For general timed
automata, enumerating all untraversable paths is difficult. To make this tractable, we
restrict the placement of timing constraints for the following reason. We observe that for
an arbitrary distribution of timing constraints, it is hard for the designer to determine the
exact conditions being imposed; thus, placing timing constraints arbitrarily may result
in over-constraining or incorrect specification. Hence, for many practical situations,
regular patterns of timing constraints are observed.

Alternating RQ timed automata, defined in [9], are a class of timed automata that
allow arbitrary timing constraints but restrict the patterns of resets and queries to be

31

alternating. It is proved that alternating RQ timed automata have the so-called simple
path property that, independent of timing constraints:

1. a state is reachable from another if and only if it is reachable via a simple path.
2. a loop is traversable infinitely often if and only if it is traversable once.

We illustrate the importance of the first property. Consider two automata, one S with
the simple path property, and the other N without. When the generic verifier returns a
simple error trace a --* b ~ c whose timing constraints can not be satisfied, for N we
can only throw out the path a --* b ~ c and no other paths; however, for S we can
throw out an infinite number of paths, i.e. any path whose projection to a simple path is
a ~ b ---, c, e.g. a ~ b ~ . . . ~ b --+ c, where . . , represents any sequence of states.
Hence, with this simple path property. Mc can compactly represent the untraversable
paths, because to decide reachability of a state in the original timed automaton M, we
can simply check the traversability of all the simple paths to the state; and if there is
such a simple path not accepted by Me, then the state is reachable; otherwise, i.e. if all
simple paths to the state are accepted by M~, then the state is not reachable. Because
this simple path property is independent of timing constraints, reachability analysis, and
thus verification complexity is independent of timing constraints.

The restriction on the placement of timing constraints means that alternating RQ
timed automata can not express all timing conditions, and their exact modeling scope is
not known. In this paper, we generalize alternating RQ timed automata and show that
this generalized class is the largest class of timed automata that a) allow arbitrary timing
constraints and b)traversability can be decided based on simple paths only, independent
of timing constraints.

5 Reachability Analysis with Arbitrary Timing Constraints

Denote a reset of clock variables x l , . . . , x,~ by R(xl , . . . , x,~), and a query on clock
variables x l , . . . , x,~ by Q(xl , . . . , x,~). We want to find a condition such that, if satisfied,
reachability of a state can be decided efficiently. By arbitrary timing constraints, we
mean that the function of Q(xl , . . . , Xn) Can be any function involving clock variables
X I ~ �9 . �9 ~ X n .

Definition 1. 1. Given a set of distinct states S = { S l , , s~ } and an order on sl 's,
e.g. s l , . . . , sn, a path traverses S if the path traverses the states in S according to
the order. A simple path through S is a path such that every state appears at most
once in the sub-path between two consecutive si's, e.g. si and si+l.

2. If path 7r traverses through a set of states S, let Sim(Tr) denote the set of all simple
paths through S derived from path 7r by deleting cycles.

3. A RQ sequence of a path is the sequence of resets and queries on the path.
4. A symbol in an RQ sequence is either a reset or a query.
5. The interarrival time between two symbols is the amount of time between when

the transition of the first symbol is activated and when the transition of the second
symbol is activated.

32

6. The support of a query Q(Zl, �9 �9 �9 z ,) i s the set of clock variables in Q(zl , �9 Xn),
i.e. Zl, �9 �9 Zn.

7. Given apath, a reset R(zi)is effective if after R(zi)there is a Q (~ I , . . . , Xn)whose
support contains zi and there is no other R(a:i)between them. That is, R (z i) i s the
closest reset on zi preceding Q (z l , . . . , zn).

8. The effective RQ sequence of a path is derived from the RQ sequence of the path
by deleting all ineffective resets.

9. Consider two symbols Cl and c2 in an RQ sequence. Let cl --< c2 denote that cl
appears before the transition of c2, cl = c2, that Cl and c2 appear on the same
transition, and Cl _ c2, that c~ appears before or on the same transition as c2, Let
F1 and F2 be two RQ sequences./~1 dominates F2 if the effective RQ sequences of
/~l and F2 have the same set of symbols and cl -< c2 in the effective RQ sequence
of F2 implies Cl _ c2 in that of FI, i.e. Cl -< c2 in the effective F1 may correspond
to cl = c2 in the effective F1.

10. Let ~rt = Va, �9 �9 �9 v~, vt, �9 �9 vz, Vm, �9 �9 vz contain cycle L = v t , . . . , vl, and 7r =
v , , . . . , vk, vl, v m , . . . , v~ be derived from rz by deleting L. 7rl is Ir with cycle
expansion (in path). Path 7r with cycle reset expansion to 7rt is the path 7r~ except
that all queries in the cycle L are removed. Queries not in L remain.

11. The RQ order of path 7r is preserved under cycle reset expansion if the effective
RQ sequence of 7r dominates the effective RQ sequence of 7r with cycle reset
expansion.

Example2. Consider the automaton in Figure 1. The seven symbols { C l , �9 � 9 C7} are:

{R(Xl), R(x2), R(x3), Xl -- 0 9, R(xl) , x3 -- 17, x2 -- K? A Xl = 0.9};

Symbols c, and c5 areboth equal to R(xl) . TheRQ sequenceof thepath $1, $2, $3, $2, $4
is

R(x,) A R(x2), R(x3) A xl = 0?, R(xl) A x3 = I?, x2 : K? A xl = 0?,

in symbols,

Cl A c2, c3 A c4, c5 A c6, c7.

Reset R (z l) of c5 is effective, because it is followed by c7, a query involving Xl, and
there is no other R (z l) between them. Reset R(z l) of Cl is also effective, because it is
followed by a query involving Zl, namely ca and there is no other R(z l) Cl and c4.

Let ti be the interarrival time between the ith and the i + lth symbols. For example,
t2 is the time between _R(x2) and R(x3), i.e. the time between the transition S1 ~ $2
and the transition $2 ---, $3. Because c3 and c4 are on the same transition, t3 = 0.
The inequalities of all queries involve interarrival times only. For example, the query
of c7 = (x2 = K? A xa = 0?), in above the RQ sequence, produces the following
constraints:

t 2 + t 3 + t 4 + t s + t 6 = K
t5 + t6 = 0

t3 = 0
t5 = 0

33

Consider the path a- = $1,6'2, $4 and a reset expansion of the cycle $2,5'3,5~. The
RQ sequence of path a- is:

(el, c2, eT) = (R(zl), R(z2), z2 = K? A xl = 0?),

which is effective, i.e. all resets on 7r are effective. A reset expansion of the cycle
$2, $3, $2 adds the reset in the cycle, namely c3 and cs, to the RQ sequence of path ~r,
resulting the RQ sequence of path 7r with the cycle reset expansion:

(el, C2, C3, C5, C7) = (R(Xl) A n(x2), R(x3), R(x,), ~2 = K? A Xl = 0.9).

Now, the reset R(:el) of Cl is ineffective, because there is another R(xl), namely c5
between it and its succeeding query c7. Reset R(z3) of c3 is also ineffective, because
there is no succeeding query involving x3. Eliminating these two ineffective resets, the
effective RQ sequence of path a- with the cycle reset expansion is:

(,2, es, eT) = (R(x2), R(~,), ~2 =K? ^ x, = 07).

This effective RQ sequence is not dominated by that of a', because R(z2) -<_ R(xl) in
this sequence but R(xl) -< R(x2) in that of path 7r (note that Cl and c5 are the same).
Thus, the RQ order of path 7r is not preserved under cycle reset expansion.

Theorem 2. I f the RQ orders of all simple paths from state sx to state s2 are preserved
under single cycle reset expansion, then s2 is reachable from Sl i f and only if it is
reachable through a simple path.

In verification, sometimes traversability of a set, or a subset, of states needs to be
decided, e.g. cycle sets in L-automata. The orders of the states in the set to be traversed
may or may not be specified. A path is said to traverse through the states in a given set
of states if the path traverses the states in the set in a specified order (if any). We extend
the simple path property between two states to a set of states. By a simply path through
a set of given states, we mean that the sub-path between any two consecutive states is a
simply path. Note that a simple path through a set of states may traverse a state (not in
the set) more than once, i.e. a simple path through a specified set of states may contain a
loop. For L-automata, a cycle set is traversable if there is a traversable cycle of a subset
of states consisting of only the states in the cycle set.

Theorem 3. Given a set of states S, if the RQ orders of all simple paths through S are
preserved under single cycle reset expansion, then the set of states in S are traversable
if and only if they are traversable through a simple path.

6 Scopes and Classes of Simple Path Timed Automata

The following simple path property allows efficient reachability analysis and hence
verification. Here, we find classes of timed automata with arbitrary timing constraints
that have the simple path property. By arbitrary timing constraints, we mean queries of
the form Q (x 1 , . - . , z ~) where Q (x l , . . . , x,~) can be any function of the clock vailables in
thesupport o f Q (z l , . . . , x~)only, andthesupportofQ(zl , . . . , z,~), namely z a , . . . , x,~,

34

can be a subset of all clock variables in an automaton. For example, if Q@I, x2) is a
query in an automaton having clock variables xl, x2, x3, then Q(xl, ~2) can be any
function involving only Xl or x2 or both, but not x3. For this case, we give a sufficient
condition for a timed automaton to have the simple path property. However, if there
are no restrictions on both the support and form of the queries, i.e. a query can be any
function of any subset of the clock variables in an automaton, we give a necessary and
sufficient condition for a timed automaton to have the simple path property. We call the
following property the simple path property for timed automata:

1. A set of states is traversable if and only if there is a traversable simple path through
the entire set.

2. A cycle of states is traversable infinitely often if and only if it is traversable once
through a simple path.

The first statement of the simple property becomes "a state is reachable from another
state if and only if it is reachable via a simple path" when the set of states consists of
two states and the order is that one state is before the other.

Definition 4. 1. A cycle is separable if, for each clock, there is a state (entry state) in
the cycle such that in traversing the cycle, starting at that state, each query occurs
after all its effective resets.

If a cycle is not separable, then, every time the cycle is entered, a query in the cycle
is encountered before some of its resets in the cycle are encountered; thus, in the first
time the cycle is entered, that query involves interarrival times outside of the cycle. The
query can have or have no resets in the cycle. If it does, second and further traversals
of the cycle involve constraints on the interarrival times inside the cycle. Hence, the
first traversal constrains the interarrival times outside the cycle, while further traversals
constrain the interarrival times inside the cycle; this partitioning of constraints could be
done more systematically by using different clocks and queries for those outside and
inside the cycle. If the query does not have a reset inside the cycle, then the number of
times the cycle can be traversed is timing constraint dependent, because if the query is
of the form x < k then after a finite number of traversals the query will not be satisfied
(it is reasonable to assume that every cycle in a real system takes a finite amount of
time to traverse). Therefore; to have a condition on infinite cycle traversal with arbitrary
timing constraints, it is mild to assume that every cycle has an entry state. All timed
automata in literature meet this assumption, except the one in Figure 1.

Theorem 5. Assume that every cycle is separable in a timed automaton with arbitrary
timing constraints. The timed automaton has the simple path property if the RQ sequence
of each simple path is preserved under single cycle reset expansion.

Note that only those cycles of states that need to be traversed infinitely often, e.g.
those in a cycle set of a L-automaton, need to be separable. The condition that the
RQ order of each simple path is preserved under single cycle reset expansion is not
a necessary condition to have the simple path property. However, if we augment the
supports of all queries to be all clock variables in a timed automaton, i.e. a query can

35

be an arbitrary function of any subset of all clock variables, then the above is necessary
and sufficient.

Example 3. The timed automaton in Figure 1 does not satisfy the RQ order preserving
condition under single cycle reset expansion, because by expanding the loop, resets
R(xx) and R(z3) are added to the RQ sequence of the simple path. But the newly added
reset R(~3) is not effective because there is no query on the simple path involving z3.
The newly added R(Zl) becomes effective and eliminates the original R(Xl) from the
effective RQ sequence. The order of R(xl) and R(z2) have changed after the cycle
expansion, from R(xl) = R(*2) to R(x2) -< R(xl), violating the RQ order preserving
condition; hence, the timed automaton is not guaranteed to have the simple path property
and, in this case, does not have the simple path property.

Theorem 6. Assume that the queries in a timed automaton can be an arbitrary function
of any subset of clock variables and that each cycle is separable. The timed automaton
has the simple path property if and only if the RQ order of each simple path is preserved
under single cycle reset expansion.

The above theorems show that, assuming separable cycles, the class of timed au-
tomata satisfying the RQ order preserving condition is a large class allowing arbitrary
timing constraints and having the simple path property, and is the largest such class
when timing constraints can be functions of any clock variable.

7 Example Class: Alternating RQ Timed Automata

A class of timed automata satisfying the RQ order preserving condition for simple paths
is the alternating RQ timed automata [9], which satisfy the following two properties:

1. For each clock xi, there is only one pair of R(xi) and Q(. . . , xi , . . .) , i.e. a distinct
clock is used for each query.

2. For each path rr starting from an initial state, the RQ sequence of each clock on rr
alternates.

In [9], it is proved that alternating RQ timed automata have the simple path property.
We would like to know whether this property can also be deduced from the RQ order
preserving condition. An alternating RQ automaton has only one pair of reset and query
for each clock variable. The alternating condition forces the pair to be in a cycle together
if either one is in the cycle. Therefore, in an expansion of a simple path to include a
cycle, there can be no query, on the simple path, that involves a reset variable from the
cycle; thus, the resets from the cycle are not effective and do not alter the RQ order
of the RQ sequence on the simple path. Hence the RQ sequence on the simple path is
preserved under single cycle reset expansion. Therefore, alternating RQ timed automata
have the simple path property and are a sub-class of simple path automata.

The timed automaton in [3] describing the language

{((ab)~~ : 3i, j >__ i: r2j+2 <__ r2j+l +2}

36

is not an alternating RQ timed automaton (Figure 2) (and cannot be converted into
one), but satisfies the RQ order preserving condition and thus is a simple path timed
automaton. For example, the RQ order of the effective RQ sequence of the simple path
So, $2, $3 under single cycle reset expansion, e.g. cycle $2, $1, $2, remains the same,
i.e. R(z), x < = 2?. Therefore, the RQ order preserving condition is more general than
the RQ alternating condition.

~R(x)

x>2? ~ x<=2?

R(x) R(x)

Fig. 2. A Non-alternating RQ Timed Automaton

However, checking whether a timed automaton satisfies the RQ order preserving
condition is more complicated than checking the condition for alternating RQ timed
automata which can be done with a simple graphical criterion [9]. Hence, it may be
desirable to generalize alternating RQ timed automata. An extension is to relax the
requirement that there is only one query for each clock variable.
DEFINITION (Extended Alternating RQ Timed Automata)

1. For each clock zi, there is only one R(zi) .
2. Each path 7r from an initial state starts with a reset R(xi) and every reset R(xi) is

followed by a query involving zi.
3. For each cycle that needs to be traversed infinitely often, a query on xi in the cycle

implies a reset R(xi) also in the cycle.

The second condition says that every path's first symbol is a reset so that all the
clock variables involved in a query on the path are reset before being queried. Of course,
if zi is never queried on a path, R(zi) may be missing on the path. The third condition
is required only for the cycles whose infinite traversability is a part of the specifications
to be verified, e.g. cycles with fairness constraints. That is, cycles other than those in
the specifications may not have to meet this requirement. This condition ensures that
infinite traversal of the cycle is timing constraint independent. Without this condition, a
cycle can easily depend on timing constraints. For example, if a cycle has a query of the
form zi < k and not a reset R(zi) , then the cycle can be traversed only a finite number
of times because each traversal takes a finite amount of time for a real system; then after
a finite number of traversals, the query zi < k will never be satisfied.

Theorem 7. TheextendedalternatingRQtimedautomatahavethesimplepathproperty.

With this extension, the timed automaton in Figure 2 can be converted into an
extended alternating RQ timed automaton, as shown in Figure 3.

37

Fig. 3. Extended Alternating RQ Timed Automaton

In addition, this extension allows the use of the following common branching con-
dition, which sends the automaton to the appropriate state depending on the value of the
clock variable x. It is assumed that paths are reset before entering the switch statement
and once going through one of the transition T/, i = 1 , . . . , n the paths can only re-enter
the statement through the switch.

switch (x): {
case z < kl" activate transition T1.
case kl < z < k2" activate transition T2.

case k,~-i < z < k,~: activate transition T,~.

This branching condition is not allowed in the unextended alternating RQ timed
automata, because there is more than one query on clock variable z.

Checking whether a timed automaton is an extended alternating RQ timed automaton
is similar to that for (unextended) alternating RQ timed automata, [9]. The following
theorem expresses the alternating condition in terms of cut requirements on the reset
and the query edges.

Definition 8. In a graph, a set of edges {e~ } is a cut for an ordered vertex pair (vl, v2) if
either v2 is not reachable from Vl or the removal of all the edges in {el} from the graph
makes v2 unreachable from vl. Denote the cut by {e~ }l(vl, v2).

Thus, if ei I(vl, v2), then all paths from V 1 t o 13 2 must pass through ei.

Theorem 9. Assume that a given timed automaton with initial states { sj } satisfies the
extended alternating RQ condition i and 3 (which can be easily checked). It is an
extended alternating RQ timed automaton, if and only if for each clock z and each
initial state sj,

erl(sj 1 , eq,), {eq,}l(e2r, el).

38

where er = (e~, e 2) is the edge where R (z) resides, and eq, = (e~,, eq,2), where Qi(x)
resides.

The first condition of Theorem 9, a cut requirement on reset edges, requires that
every path from an initial state encounters a reset of a clock before its query. The second
condition, a cut requirement on query edges, says that a rest on z must be followed by
at least a query on x before the reset is encountered again. All these conditions involve
reachability analysis in (untimed) graphs; thus, they can be easily implemented using
techniques such as depth first search.

8 Application in Non-simple Traversability

Here, we examine how the RQ order preserving condition can be used in deciding
traversability in general timed automata which may not have the simple path property.
First, even if a timed automaton does not have the simple path property, the RQ order
preserving condition can detect the simple paths that violate these condition and only
these simple paths need to be examined in more details, possibly including non-simple
paths. Second, a general timed automaton can be iteratively converted to a simple path
timed automaton by adding simple paths which are cycle expansions in path of the
simple paths that violate the RQ order preserving condition. Then verification can be
done using the above paradigm.

Example 4. The timed automaton in Figure 1 does not satisfy the RQ order preserv-
ing condition; we try to convert it to one satisfying the condition by adding simple
paths which are cycle expansions of the loop. Since the simple path from sl to s4 is
not traversable and does not satisfy the RQ order preserving condition, meaning going
through the loop may help, we expand the cycle once to obtain the timed automa-
ton in Figure 4. The new simple path again does not satisfy the RQ order preserving
condition and is not traversable. This procedure may be repeated. For this particular
timed automaton, each newly introduced simple path does not satisfy the RQ order
preserving condition, because each expansion changes the order R(Zl) = (x3 = 1?)
to (x3 = 1?) ___ R(zl); thus, no finite number of cycle expansions will convert this
automaton to a simple path automaton. This is expected, because the number of times
the loop needs to be traversed depends on the time constant K, i.e. itis timing constraint
dependent. If K is an integer, then the automaton with the loop expanded K times has
a traversable path from $1 to $4.

9 Simple Path Property of Composite Timed Automata

As discussed, preservation of RQ orders under cycle reset expansion of timed automata
implies the simple path property. Here we examine the simple path property of product
timed automata, namely, whether preservation of RQ orders under cycle reset expansion
in component timed automata implies the simple path property in the product timed
automata. Let M = Ml • . . . x Mn be a product timed automaton of components
M1 , . . . , M,~.

39

x3=l?~

Fig. 4. Non-simple Path Conversion

Definition 10. 1. Let 7r be a path in M. The projected path of 7r on Mi, denoted by
7riM i is the sequence of states in Mi visited by 7r.

Theorem 11. Assume M is a product timed automaton with arbitrary timing constraints
and every cycle of states in M is separable, l f Tr, is a simple path in the product timed
automaton M and the RQ order of Tr8]M~ is preserved under single cycle reset expansion
in Mi i = 1 , . . . , n, then M has the simple path property.

Note that a simple path 7rs in M does not imply that 7r8 [Mi in Mi is a simple path.
Thus, non-simple paths in M/may need to be checked for RQ order preservation under
single cycle reset expansion. However, if every simple path in M consists of simple
paths in the component automata, i.e. 7rs in M implies that 7r8 IM, is a simple path in
Mi, then RQ order preservation of the simple paths in the component automata implies
RQ order preservation of the simple paths in the product automaton.

Corollary 12. Assume that every simple path in M consists of simple paths in all of
the component automata and every cycle of states in M is separable. If the RQ order
of every simple path in Mi is preserved under single cycle reset expansion, then M has
the simple path property with arbitrary timing constraints.

10 Construction o f Constraining Automaton, Mo

As discussed in Section 3, verification of timed automata can be done with generic
verifiers if constraining automata Mc can be constructed. Constraining automata accept
the paths that can not be traversed, because they are blocked by timing constraints.
The complexity of constraining automata is drastically reduced if the associated timed
automata have the simple path property because only the untraversable simple paths
need to be represented. The construction consists of two steps. First, untraversable
simple paths are identified by determining satisfiability of the queries on simple paths.
If the timing constraints are linear, linear programming can be used for this purpose.
Once all the untraversable simple paths (from initial states) are determined, constraining
automata are built to recognize these paths. Heuristics may be used to further reduce
the complexity of constraining automata by identifying untraversable partial paths. In
[9], a more detailed explanation and algorithms are given for constructing constraining
automata and their use in verifying alternating RQ timed L-automata.

40

11 Conclusion

Timed automata have been studied in the past and have been found to have a com-
plexity dependent on the relative values of the time constants involved in the timing
constraints imposed, even if the timing constraints are restricted to the form z < k. We
have previously shown that this complexity dependence on the time constants can be
eliminated if the timed automaton has the simple path property and proposed alternating
RQ timed automata which have this property. In this paper, we gave conditions for a
timed automaton with arbitrary constraint equations to have the simple path property.
As far as we know all practical examples in the literature meet these criteria. We are
currently working on an efficient implementation for timed automata where arbitrary
linear inequalities among the clock values are allowed. Using linear programming, we
iteratively detect simple paths which are not traversable and construct untimed automata
which disallow these paths. The present paper serves to extend this approach to a wide
class of applications. In addition, we defined extended RQ timed automata which include
all the examples in the literature and are easily tested for this property.

References

1. R. Aiur, C. Courcoubetis, N. Halbwachs, D. Dill, and H. Wong-Toi. Minimization of timed
transition systems. International Conference on Computer-Aided Verification, 1992.

2. R. Alur, A. Itai, R. Kurshan, and M. Yannakakis. Timing verification by successive approx-
imation. International Conference on Computer-Aided Verification, 1992.

3. Rajeev Aiur and David Dill. Automata for modeling real-time systems. 1990 ACM Inter-
national Workshop on Timing Issues In the Specification and Synthesis Of Digital Systems,
1990.

4. Felice Balarin and Alberto Sangiovanni-VincenteUi. A verification strategy for timing con-
strainted systems. International Conference on Computer-Aided Verification, 1992.

5. E. Clarke, O. Grumberg, and R. Kurshan. A synthesis of two approaches for verifying finite
state concurrent systems. Workshop on Automatic Verification Methods for Finite State
Systems, 1989.

6. David Dill. Timing assumptions and verification of finite-state concurrent systems. Workshop
on Automatic Verification Methods for Finite State Systems, 1989.

7. R.Kurshan E.M.Clarke, I.A.Draghicescu. A unified approach for showing language contain-
ment and equivalence between various types of w-automata. Tech. report, CMU,, 1989.

8. R. Hojati, H. Touati, R. Kurshan, and R. Brayton. Efficient w-regular languagecontainment.
International Conference on Computer-Aided Verification, 1992.

9. W. Lam and R. Brayton. Alternating rq timed automata. International Conference on
Computer-Aided Verification, 1993.

10. W. Lam and R. Brayton. Criteria for the simple path property in timed automata. UC
Berkeley ERL memorandum: UCB/ERL, 1994.

11. Mihalis Yannakakis and David Lee. An efficient algorithm for minimizing real-time transition
systems. International Conference on Computer-Aided Verification, 1993.

