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,CRITERION FOR THE PREVENTION
OF - .
CORE FRACTURE
DURING
EXTRUSION OF BIMETAL RODS
BY

Avitzur, B., Wu., R., Talbert, S., and Chou, Y.T.

ABSTRACT

Based on the upper-bound theorem in limit analysis, a theoretical
model for core fracture in bimetal rodsAduring extrusion has been
developed and a fraéture criterion established.'

The variables affecting core fracture are: reduction in area (r%),
die geometry, friction (m), relative size of the core and relative
_strength of the core. Within the wide range of possible combinations
of these process variables, only a small range permits extrusion
without fracture.

With suitable modifications the present analysis can be extended
to develop criteria for sleeve fragturé dﬁring extrusion and for becth

core and sleeve fracture during drawing.
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1. INTRODUCTION

Bimetals are components composed of two separate metallic
participants, each occupying a distinct position in the component.
Bimetal (also called clad metal, duo- or dual-metal) rods or wires
are made of two dissimilar metals. The core, a cylindrical body of
one metal, is surrounded by a concentric, cylindrical sleeve of
another metal. Some fibrous metals may also be regarded as bimetallic;
for example, rods made by unidirectional solidification of some eutectic
compositions contain a metallic {or nonmetallic) compound of fibrous
filaments imbedded in an almost pure metallic matrix. The structure
of present-day Nb-Sn superconducting wire is much more complex; it is
multimetallic-=containing more than two dissimilar metals.

The two elements of a bimetallic product are usually intimately
interlocked in order to function in unison. The usefulness of bimetal
rods or wire stems from the possibilities of combination of properties
of dissimilar metals. For example:

1 Aluminum-clad steel wire combines the strength of steel with the
electrical conductivity and corrqsion resistivity of aluminum;

2  Superconductor core clad with copper sleeve combines super-
conductivity at cryogenic temperatures with assurance against

failure when a local temporary rise in resistance or temperature.

occurs.
Although the number of desired combinations for practical use is
virtually unlimited, the number of bimetallic combinations actually in

use is limited, mainly because of manufacturing difficulties.




The object of this study is to define the forming conditions
which will enable plastic deformation of a bimetal rod composed of
two dissimilar metals to take place without core fracture. Although
this fracture mode can be eliminated after a lengthy trial-and-error
procedure in production lines, analysis of the problem could provide
more economical solutions.

Numerous experimental studies of the production of bimetal réds
are presented in Refs. 1-3. The analytical investigation of this
problem hés been. done by Avitzur4 and Osakadas. From their research,
we may establish models based solely on the upper-bound approach.and
the concept of minimum energy, without any extraneous stress evaluation.
These models describe the forming process of bimetal rods or wire by
extrusion and drawing. Because of the complexity of the actual deformation
patterns, separate models are used to simulate core and sleeve fracture
in both extrusion and drawing respectively. At present, only the.criteri@n
for prevention of core fracture during extrusion has been derived.
The criteria for the prevention of sleeve fracture during,extruSion
and for both core and sleéve fracture during drawing will be derived
from similar veluciLy fields in'‘the “future.

These criteria can also be extended to the handling of failures
such as fishskin and central burst (Refs.-6-11) in the mono-metal forming
process, and for tube making.

Extrusion of a clad rod with a tight bond between the sleeve and

. the core is shown in Fig. 1.




As it passes through a die of semicone angle (a), the sleeve

is forced to reduce in diameter from 2Ro to 2R At the same time,

£
when sound flow occurs, the core is reduced proportionally from
the diameter of 2Ri to 2Rfi' |

In co-extrusion, the following are the most common patterns of
flow:

1. proportional flow with no fracture

2. defective flow with fracture of the core

3. defective flow with fracture of the sleeve.

These modes are shown in Figure 2.

As shown in Fig. 3, plastic flows of core and sleeve are modeled,
respectively, by the spherical and the toroidal velocity fields. This
aspect will be discussed in the derivation section.

The core and the sleeve must undergo indentical elongation for
proportional flow to occur. The resulting deformation could be either

homogeneous or nonhomogeneous. But for both situations, the following

condition must prevail:

Res Ry
R, = ﬁ;‘ . (1)
where
R0 is the outer radius of the sleeve before forming,
Ri islthe interface radius between the core and the sleeve
: before forming,
Rf is the outer radius of the slegve after forming,
and Rfi is the interface radius between the core and the sleeve

after forming.




When the core is harder than the sleeve it tends to undergo lower
reduction than the sleeve. If the core undergoes less deformation
than. the sleeve, the core elongates less than the sleeve. Consequently,
the sleeve exerts a tensile load on the core and, sooner or later,.

the core fractures. Mathematically, when the core fractures,
R R_ ' (2)

When the sleeve is harder and undergoes less deformation than
the core, the sleeve elongates less than the core. The core then
pulls the sleeve to fracture it. Mathematically, when the sleeve

fractures,
= < = (3)

Differential strengths of core and sleeve promote non-uniform
flow leading to failure. Other factors, like interface bond as is
studied through this manuscript, promote proportional flow and deter
failure. ‘The balance between thesé two driving forces detcrmines
the resulting mode of flow.

The failures in co-extrusion mentioned above, core fracture and
sleeve fracture, result from the employment of improper combinations
of theiprocess variables, including percent reduction in area (r%),
semicone angle of the die (@), the length of the bearing of the die

(L/Rf), friction (m), coefficient of interface bonding strength (ml),




relative size of the core (Ri/Ro)’ relative strength and properties
of the core (Goc/oos), and the prescribed body tractions, namely
forward tension in extrusion (Oxf/ooc).

Criterion for the prevention of core fracture during extrusion
is .found through the determination of the domains of the process
variables wherein core fracture is expected. We use the upper-bound
analysis to calculate the power expenditures involved in co-extrusion.
For each particular combination of process variables, the power
required for defective flow with core fracture and for proportional
flow with sound product can be derivea separately. The principle
of minimum power states that for each combination of process
parameters, the flow that consumes the least power will prevail
for that particular combination of process variables. Following
this principle, the boundary of the domain of core fracture is
explicitly determined.

The criterion obtained through .this method is presented in
the result section. The related power calculation will also be

described in the derivation section.




2. RESULTS

The criterion shown in Figs. 4(a,b§c) provides characteristic lines
for the prevention of core fraéture during extrusion. The abscissa
is the ratio of the radius of the core to the radius of the sleeve
(Ri/Ro) and the ordinate is the strength ratio of the sleeve to that
of the core (OOS/OOC). In each of these graphs core failure is
expected on the shaded side of the curves. In all three figures,
core fracture occurs only with intermediate;sized cores .which are
stronger than their sleeves, and is avoided with both smaller and
larger sized cores. The varying parameters in Figs. 4a, b and c
are sémicone die angles (o), percent reduction in area (r%) and
bond and friction levels (m and ml) respectively. 1In Figure 4a,
the semicone'angle of the die is the parameter, interface bond
between the sleeve and core is perfect (ml = 1), 30% reduction in
area is effected, the coefficient of friction (m) is 0.05 and no
back tension is applied. Below each characteristic line core
fracture is expected, and above it core fracture is avoided. As
shown, the higher the ratio Ooc/oos’ the larger is the fracture
rénge for Ri/Ro; while for smaller die angles, the fraclure zuoie
is reduced. Figure 4b shows smaller core fracture regions for
increasing reduction values. Figure -4c shows smaller core fracture
regions for increasing friction and increasing interface bond strength.

The complexity of the characteristics expressed in Fig. 4 drives
home the idea that it may be very hard to determine, without a rigorous

analysis, the precise range of process variables where no core fracture




is expected. Trial and error experimental procedure may often
fail or be prohibitively expensive. However, with the use of

Eq. (17) derived later, curves like those in Fig. 4 can be
constructed for any desired range of the parameters. The findings
of this analysis are useful in further understanding the expected
trends, and thus, may provide a guide in any experimental ttrial-
and-error method.

Some general observations for the prevention of core fracture:

1. The harder the core, for coc/ods > 1, the more likely it
is that core fracture will occur, and the narrower becomes
the range of process-:variables for a sound product.

2. The higher the mean pressure (higher back pressure, lower
front tension), the wider the range of variables for which
proportional flow is expected. Thus, in extrusion, the
range of proportional flow is wider than in drawing.

3. Normally, the lower the friction (m), the narrower the
range for proportional flow in extrusion.

4. Larger percent reduction, smaller semicone angle and stronger
interface bonding promotes the prevention of core fracture

during extrusion.




3. DERIVATION
3.1 Foreword

First, two separate, kinematically admissible velocity fields
are introduced for the core and éleeve respectively. Strain rates
for the corresponding fields and power consumption of the process
are then derived. Finally, the characteristics of the power
consumption in the domain of two pseudoindependent process parameters

is disussed.

3.2 Velocity Fields
3.2.1 General The flow of the core material and that of the
sleeve material are considered separately with matching boundary
conditions. The spherical velocity field is chosen to describe
the deformation of the core. The toroidal velocity field simulates
the deformation of the sleeve.
3.2.2 Core (Spherical Field) The spherical field is described .
in Ref. 12, Sec. 8.3, as follo&s:

"A kinematically admissible velocity field is described

in Fig. 5. The rod is divided into three regions in

which the velocity field is continuous. In zone'Ic and

IIIc the velocity is uniform and has an axial component

only. In zone Ic the velocity is Voc’ and in zone IIlc

the velocity is v Because of volume constancy

fc'

] 2
Voo = Ve (Rei/Ry) (4)



In zone Ic deformation has not yet begun. It includes the
incoming rod, which is separated from the deforming zone IIc
by the surface T', . Surface I', is spherical, of radius r_.

. 2¢ 2c ‘ oi
with the origin at the apex 0 of the cone of the angle o -
Zone IIc is the zone of deformation bounded by the surface
of the cone with a cone of an included angle 2ai and two
concentric spherical surfaces ', and I', . The surface T

lc 2c 2c
is the previously mentioned spherical boundary between
zones Ic and IIc. The 'spherical surface Flc of radius Tes
with the origin at the apex 0 of the cone, separates zone IIc
from the emerging product of zone IIIc. In zone Ilc the
velocity 1s directed toward the apex 0 of the cone, with
cylindrical symmetry.
"In the spherical coordinate system (r,6,¢), the

velocity components for zone Ilc are

.
[}
=N

re oc 2

(5)

»Uec B U¢c =0

Across the boundaries Flc and cm, the components of
velocity normal to the surfaces (Flc and FZC) are v
continuous. There exist velocity discontinuities

parallel to these surfaces."



3.2.3 Sleeve (Toroidal Field)

Figure 6 shows the velocity field of the sleeve. Similar to
that in the core, there are rigid flow zones Is and IIIS and the
deformation zone IIS. )

In zone IIs the toroidal coordinate system is used. The circle
(0') at the distance e from the axis of symmetry is an origin. This
e will be named as 'eccentricity factor' from here on. The radial

dista U i * ¢ tor * r, *
tance from 0' is r, varying from r on Fls o5 ON F25 ( £s

fs
and ros* can be functions of the angular position; they will be
determined later). The angular position 6 varies from oy (by Eq. (8))
on the inner conical surface Pcs to o on the conical surface of the
die FSS' Please note that o, > 0. The direction of § is normal to
the direction of r. Normal to these two axés (r and 8) is the ¢-axis.

Axial symmetry exists with respect to ¢.

In this toroidal coordinate system, the velocity is assumed to obey

: r * (r * sin0 1 ¢)
. 0s 0s

= -v . cosb
Ts 0s r (r sinb + €)

(6)

Ues - ,U¢s =0

where ros* is the radial distance between st and 0'

rfs* is the radial distance between Fls and 0'

It is noted here that the deformation zone IIS is bounded by surfaces
r..or,, T _and T . T, 1is the outer conical surface of the sleeve
23 csS ls 3s

and is predetermined by the semicone angle of the die a. For simplicity,

the surface of discontinuity P25 is assumed to be a toroidal surface.

10




The radial distance ros* of this surface from the toroidal center
0' depends only on the eccentricity factor e. Mathematically, this

means

r * = 7 = = ’ (7)

which is independent of the angular position 6. The inner conical
surface of the sleeve ch is also determined through the value of
the eccentricity factor e. The semicone angle o, of the surface ch

is thus a function of e. From the proposed geometry of Fig. 6, we

found that

-1 Ri - e
OLi = S1in RO—"e sS1no (8)

The value of e itself is pseudoindependent, namely, the Vélue is
arbitrary during the evaluation of the strains and power consumptions
and is, finally, determined by the concept of minimum energy. (See
Ref. 13 for detailed discussion on "limit analysis," the ''upper
bound approach' and the concept of minimum energy.)

In Fig., 7a a special case of proportional deformation, namely,
homogeneous deformation -with a spherical flow (e=0) , is described.
Even when e#0 and a toroidal flow exists (see Fig.. 7b), it still

may be proportional, so that Rf is determined through Eq. (1) and

i
is not a function of the eccentricity (e). Under this circumstance,
the surface FZs is toroidal (by our choice) and the angle oy is defined

by Eq. (8). The surface Fls is not toroidal (if e#0) and is determined

subsequently.

11




In order to render the exit inner radius Rfi a variable and
permit the flow to become nonproportional, the deviation factor €
was introduced as a second pseudoindependent parameter. Both the
inner radius Rfi and the surface rls are then functions of € and
also of e. Since the introduction of the deviation factor € will
introduce thinning or thickening of the emérginé sleeve, it will
also introduce a change in the ratio of exit to incoming sleeve
velocity.

From the established geometry, it is found‘that the relationship -
between the incoming velocity Vos of the rigid zome IS and the exit

velocity v, of the outgoing rigid zone IIIs depends on pseudoindependent

fs

parameters e and €. We define this relationship as

vos Rf ¢ e
= ) |1 - 26 (9)
fs o) o) )

Whenever e or € is equal to zero, this relationship dictates the

proportional flow condition. For nonzero e and € the variatipns in
Rfi and the surface Fls are illustrated in Fig. 7c. In this figure,
when ee > 0 the ratio of exit velocity to entrance velocity will be
larger than that for the proportional flow [according to Eq. (9)].

This will lead to the thinning of the sleeve.. The surface Fls thus

moves to the left side of the proportional position (which is designated

as I'''); R.., therefore, increases to R_..'. When ec < 0, changes
13 fi fi

of T and R.. will be reversed. They are shown as T'_ ' and R_."
1s fi 1s Cfi

in Fig. 7c.

12




Based on vVolume constancy and the defined velocity field,

the radial distance rfs* of Fls from 0° as obtained in the Appendix is:

R Y . . 2 R.\2
% - e o] oS <i’sme e _ sing _ £
Tes (6,e,€) sinb ¥ sinf V/ [. sing * RO 1 sinoa)j> o+ R

v
fs o}

where the ratio vos/v is defined by Eq. (9).

fs
The dimension Of'Rfi is, therefore, found to be
Rfl = [(rfs*) Sinui + e]
e=on.i

(11)

1]
-
(e}
N
w s
AN
wn wn
HHep e
S, 3
Qef e
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wn wn
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=3 3
el .2
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3.3 Strain Rates

In upper-bound analysis, the power to overcome the resistance of
the material to deformation-is estimated through thc integration of the
function which contains the strain rate and the yield stress over the
entire deformation volume. Therefore, it is necessary to derive the
strain rates for the proposed spherical and toroidal fields.

The strain rates in the spherical field as functions of velocity

components are (Ref. 14):

. 3 .
. BU . ] e g_[‘_ w
€.=_r = fgg T v3g T
rr I . .r 26 r

9, . U
_ ¢ LU, 0
é¢¢ T rsing 3¢ * r * r cote } (12)
a U .

. _ 1,8 Y81 a8l
o = 72 ( - r ¥ 3% )

] ] anﬂ ] HU¢ oto
. - L - 1 2 C .
€00 = 7 Gstne 56 T r 39 U
. al, 0 30
or 2 or r rsind 9¢ J

1%

(10



According to Sokolnikoff (Eqs. 48.7 and 48.9 of Ref. 15) the
strain rates are:

Uk ]

0. 3 A A
. a 1. ] X ag.., . . .
€.. = - = + > —13- '|f 1= J
T By Vg 294 KT oy Vg

£} . _
. 1 ] 1 ) J L. ‘.'a.f (]3)
€. R T g_. —_— ( ) +g.‘l. . ( : ]f i %:!
1 24..9.. [11 on, ,/g~.. jj oa \-—-] T
/g11 NN J i J%Jn )
where
grf =1, 989 = PZ and gg@ = (rsing + e
for the present toroidal field.

)2

Calculating the strain rates, substituting Ue. =Up = o

b

. _ oUp )
€rr T or
U
-
€06 = T
. U, sine
€66  rsind ¥ e ' ' (14)
a.
R R
ro 2r 3
Eeq): €r¢=0 )

From Eqs. (5) and (12), the strain rates for the spherical
field can be calculated. They are

. e e 2 cosf )

€pp T "28gp T _2€¢¢ =2 VyTo; rY

. 8 2 sing

€g ° ?-Vcho1 e » (15)
€op = Epy = O J

Similarly, Eqs. (6) and (14) give us the strain rates for toroidal
field: !

14




€ v ros (ros sing + e)(2 rsing + e) 5 W
rr 0s rZ (rsing + e)2 cos
. ros. ing- +
Eop = -Vos 0s (rogs1n6 : e) 058
rZ(rsing+ e)
‘ }()
© - ros (rossing + e) . 16
e¢¢ VOs r(rsing + €)2 sin® cos6
- _1 ros [rsiné + e)(rgssin® + e)sing - e(ros-r)cosze]
€ro = 7 Vos ré¢ (rsine + )2
€op = €pp = O
The compressibility equation érr + éee + é¢¢ = 0 is held for the

above expressions.

3.4 Normalized Total Power Consumption (j*)
3.4.1 General

The upperrbbund on power consumption during co-extrusion sleeve
and core composed of two dissimilar materials is given by

. - . . L d : - ‘
j (We + W, + W+ W_.+ ”is + W, + W+ W

ic sC f int Ss fs
. 2 (17)
.* mo_ v R
wfrc) / ocC 0 O
where, for extrusion v. = v =v .
o os oc

The definitiofs of the individual power terms follow.

3.4.2 The External Power: We
The external power We is associated with the prescribed surface

tractions. For extrusion, the prescribed surface traction is the front

tension O ¢ and the external power becomes
. e 2 2 2
We = Wg=m {Vfchi * Ve (Rem - Rey )} Okt (18)
15




3.4.3 The Internal Power of Deformation in the Core: wic
For the core, the simple spherical field of Eq. (5) was assumed
through this entire work. With this spherical field, the internal power

of deformation in the core, by Eq. (8.11) of Ref. 12, becomes

Q. T . —
W, = 2 o * °L v r .2 }—-V/Scosze + l—sinze (27rsin® r dr d6)
ic V3 oc oc oi 3 4
o ‘r_. T
fi
2
= ZWOOCVOCRi f(ai) En(Ri/Rfi) i (19)
where f(6) is defined by
/ T 1 + l];
_ 1 11 . 2 1 ' 12
TR S - e qwvnny i qpec Al RS
12 A 12 -

The function f£(0) is tabulated in Table 8.1 of Ref. 12, for 1°
intervals for 0 < © < 90°. Table 8.1 of Ref. 12 is reproduced
here as Table 1. Please note that £(6) is within 5% error if

replaced by 1 for 6 up to 67°.

16




Table 1 Relative Average Effective Strain f(a) and Shear Losses

o® fe) sin? a T cotal o f(a) sinfe coted  af () sinfa cot o
0 1.00000 0 )
1 1.00001 0.011636 31 1.00672 0.37539 61 1.03603 0.83746
2 1.00003 0.023275 32 1.00721 0.38854 62 1.03731 0.85632
3 1.00006 0.034920 33 1.00772 0.40180 63 1.03974 0.87549
4 1.00010 0.016573 34 1.00825 0.41516 64 1.04174 0.89500
5 1.00016 0.058237 35 1.00881 0.42864 65 1.04384 '0.91484
6 1.00023 0.069915 36 1.00939 0.44224 66 1.04605 0.93503
7 1.00031 0.081611 37 1.01000 0.45596 67 1.04838 0.95339
8 1.00041 0.093327 38 1.01063- 0.46981 68 1.05082 0.97653
9 1.00052 0.10507 39 1.01129 0.48380 69 1.05340 0.99787
10 1.00064 0.11683 40 1.01198 0.49792 70 1.05613 1.01961
11 1.00078 0.12862 41 1.01270 0.51218 71 1.03900 1.04178
12 1.00093 0.14045 42 1.01345 0.52660 72 1.06204 1.06438
13 1.00109 0.15231 43" 1.01423 0.54117 73 1.06526 1.08715
14 1.00127 0.16421 44 1.01505 0.55590 74 1.06867 1.11099
15 1.00146 0.17614 45 1.01590 0.57080 75 1.07228 1.13503
16 1.00167 0.18813 46 1.01679 0.58587 76 1.07611 1.15958
7 1.00189 0.20016 47 1.01772 0.60111 77 1.08018 1.18467
18 1.00212 0.21223 48 1.01869 0.61655 78 1.08451 1.21031
19 1.00237 0.22437 49 1.01970 0.63217 79 1.08912 1.23653
20 1.00264 0.23656 50 1.02075 0.64800 80 1.09404 1.26335
21 1.00292 ©0.21881 51 1.02185 0.66403 81 1.09928 1.29080
22 1.00322 0.26112 52 1.02300 0.68027 82 1.10188 1.31890
23 1.00351 0.27350 53 1.02120 0.69674 83 1.11087 1.34768
24 1.00387 0.23595 S4 1.02546 0.713.41 84 1.11727 1.37717
25 1.00422 0.29848 55 1.02677 0.73037 85 1.121413  1.40740
26 1.00439 0.31108 56 1.U281d4  U.(4i5S 86 1.13148  1.43840
27 1.00498 0.32377 57 1.02938 0.76498 87 1.13935 1.47020
28 1.00538 0.33653 58 1.03108 0.78268 88 1.11780 1.50284
29 1.00581 0.34939 59 1.03265 0.80066 89 1.15687 1.53636
30 1.00625 0.3623¢ 60 1.03430 0.81891 90 1.16660 1.57080
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3.4.4 The Shear Power in the Core: WSC
The shear power over surfaces of velocity discontinuity cm

by Eq. (8.12) of Ref. 12, becomes

o
. 1. i . .
W =3 Ooc J : Voc‘51ne (ZTrroi sin® rbide)

(21)

3.4.5 The Friction Loss along the Bearing of the Die: Wf
The friction power losses between the sleeve and the cylindrical
portion of the die (bearing-of the die) are independent of the assumed

velocity field. They are

-2 2 L
Wf = /-S-mTTOOS fo Rf (E;) (22)

3.4.6 The Internal Power of Deformation in the Sleeve: wis
The internal power of deformation in the sleeve wis’ by the

toroidal field, is obtained as follows:

o (T
. _ 2 - 0s 1 - .
WiS =z Oos J Jr . /2 Eijeij 2m(rsin® + e) rdH dr (23)

fs
1« « 1 .« 2 = . 2 - 2
where 5 €,5€55 =7 (&r * Sgg * Fgp ) * Sro (24)
[8rr > g9 > €¢¢ and € o were calculated and listed in Egs. (16).]
o, is defined by LCq. (8)
rfs* is defined by Eq. .(10)
Tos is defined hy Fq. (7)
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3.4.7 The Shear Power on the Interface : wint

The shear loss over the conical interface between the core and
the sleeve is due to the discontinuity in the tangential components
of the assumed velocity fields. Because the normal component is zero,
the equation for the shear 1oss is

rs rc ds (25)

int - mlir l U.. - U
ro
cs

where m} is the coefficient describing the bonding condition, 0 <m1 < 1,

ch is the conical surface of separation,

and I' is the lower of the two ratios,
o o
05 ang 0

/3 V3

Consequently, a]erraic complications are avoided if the equi-
valent equation

int = m] T Ursds - FUrcds

(26)

FCS 1-‘CS

is used where the integrals are computed separately with different
variables.

In the first integral,

ds = 2m (r sina; + e) dr (27)
) - sinaj + e
Urs = Vos v (r fETﬁ&l_i_E'] cosay (28)

and the limits of the integration are

.- e . -
AL P (29)
sinai - sina;

In the second integral,

ds = 2mwr sinai dr (30)
. R.2 cosa. :
Upe = -V —to—o
rc oc résin%a; (31)
and
i LS |
sfna; = ° = sina; (32)
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3.4.

The result of. this shear loss computation then becomes
¥ 2T . . (
W = —-ml - min ‘0 o ‘] -V

int 3 _oc, "os 0

i i f and o_ .
where min [Ooc’ Oos] is the smaller o Toc d os

8 The Shear Power in the Sleeve : wss

The shear power on the surfaces of velocity d1scont1nu1ty F1 and
FZS is given by the following two equations:

o
0S .
W = —= I V_ sing ds
I125 /5_ I‘25 °
_ Q
%s J (Vosine) - 2m (rosine +e) r_do (34)
/3 : °
3 oy
. o}
_ oS . i _
and wr]s /f3'[ sts1n(e—w) + [ - Urs] slnw ds
F]S r=reg
o ’ .
o r (r._sing + e) N *
.. _o0s ol 0S' 0S . .
= a sts1n(e V) + VOS rfgfrfgsin6+ %) cosesiny 2n(rfss1ne + e)rfsde

(35)
where ¢ 1is the angle between the plane normal to the surface F]
and the radial direction of the toroidal coordinate, i.e.,

w = tan-] - l . d rfg_ . (36)
fs . de

The total shear loss in the sleeve is therefore

WSS = NF + WF

2s 1s
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3.4.9 The Friction Loss Between the Sleeve and the Surface

of the Die: W
fs

This friction loss is calculated by

o T .
« - 0s os . :
We = z=m [ .(Urs)6=al 21 (rsino + e) dr ' (38)
. *
(rfs )6=a

3.4.10 The Fracture Energy Associated with Core Fracture: wfrc

If core fracture occurs, there must have been volume separation
along Flc' That is, velocity discontinuity appears in the directions
of both the plane normal and the tangent of the Flc surface. The

energy consumption associated with this event as given by Eq. (57c¢)

of Ref. 13 is,

\
. (AVT)Z 2
WfI‘C = OOC JF 1 =3 + AVN ds . (39)
roi 2
where AVN = Vi, cosf - Voe \ T cosb (40)
fi
AVT = Ve sinb (41)
4 = 2 R i 4
ds 2m (rfi 51n8? rfide (42)

3.5 The Characteristics of j*; The Contour Lines

The individual power terms of Eqgs. (235, (34), (35), (38) and (39)
are presented in integral form. Precise analytical integration of these
terms was not performed. Before further analysis and approximations

are made, it is helpful to analyzé the characteristics of the total power j*.

A
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These characteristics are studied by performing numerical integration.
Specifically, the effect of the two pseudoindependent parameters,
namely, the eccentricity factor (e/Ro) and the deviation factor (g)

on the total power j* is presented in the form of j* contour lines.

Each specific combination of process variables is associated with
a set of j* contour lines in the e/R0 and € domain. The extrusion
process begins with homogeneous proportionallflow, which means e/RO
and € are originally zero. As deformation proceeds, the process
chooses the flow pattern that minimizes the j* without the addition
of extrusion power. Therefore, the location of the minimum j*
determines the type of flow - proportional flow or defective flow
with core fracture - that takes place.

By examining Eq. (9) we know.that core fracture is associated
with ee > 0, and ee = 0 defines proportional flow. Four different
types of j* contour lines are given in Figs. 8 - 11 . The conditions
in cach of Figs., 8 - 11 are identified by the respective stars on
Fig. 4a . In Fig. 8 , the origin is a global minimum, while it is
a local minimum in Fig. 9}. Figure9h is the enlarged portion of
Fig. 9a in the vicinity of the origin. Figure 10 -shows that the
minimum is on the e/RO axis. In Figs. g& - 19 the minimum value of
j* is at ee = 0. Proportional flow is expected in those situations.

Figure 11 is an example of core fracture with eg > 0.

22



4. THE CONSTRUCTION OF FRACTURE CRITERION' CURVES

As observed in the earlier section and in Eqs. (5) and (6),
proportional .flow is expected  when the minimum value of j* exists
anywhere along the axis of Figs. 8-10; namely, along e = 0 or € = O,

including the origin where e = ¢ = 0. Core fracture will occur when

<0 ‘and

<0 (43)

The first of Eqs. (43) suggests that one condition necessary
for the occurrence of core fracture is that the slope of j* at € = 0
(along the e axis) will lead away from the origin, at a positive e
value. This condition, although necessary, is not.in itself sufficient
to cause such fracture. For example, the processing conditions
handled in Fig. 10 lead to a minimum of j* along the e axis at e/Ro =0.24.
The flow, nevertheless, is proportional.and fracture does not occur.
The power requifed is lower than that required for a homogeneous flow
by the spherical field for e = € = 0.

The observation suggests that a combined spherical/toroidal field
for a homogeneous material may provide a lower upper-bound-than will
the conventional spherical field.12 However, since the complexity of
the solution might not justify the imprevement, the present study will
not concern itself with that aspect.

The second requirement that supplements the first of Eqs. (43) is

that when the first condition is satisfied, the slope of j* with respect
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to € (for positive €) for any positive value of e will also be
negative. Note that along the € axis, when e = 0, the slope of
j* with respect to € is automatically zero.

Numerically, the two necessary cohditions of Eqs. (43) can

be evaluated from Eq. (17) as follows:

j*(€=0, e) - j*(e=0, e=0)

<0
€
(44)
i*(e, e) - §*(e=0, €)
< 0
€
where = e << 1, e1 << 1, € <1

In evaluating the slopes of Eqs. (44) it is helpful to note that
j* at the point e = ¢ = 0 is determined analytically through the

following solution;

o R. 2 ' R R. 2 q.
. xf 2
j*(e20, €=0) = 2=+ 20 £(o;) IS+ T2 D) (—— - cota,,)
oc o N o f R ¢ sin“g. : .
ih
qos Ri 2 Ro
oc o £
c o
2 0s o . ih )
+ 7_3—-0——[ ) - cota - ( - - COtaih')]
oc Lsin a sin a.
_ ih
2 Ro
+ 7 m cota Kni—
vl f
- Rl )
where aih = sin {ﬁ; 51na}
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The above equation is easily obtained using Eq. (8-16b) and (8-17b)
of Ref. 12 for the calculation of forces. For the core, o is
replaced by a, - For the sleeve, the solution for a=ai is subtracted
from the same solution with o.

Figures 4 were constructed by the substitution of the values
from Eq. 17 for j* into Eqs. (44). The solid lines define the
border between positive and negative slopes for the first of
Eqs. . (44); the dashed lines for the second. The above numerical
integration and differentiation are time-consuming processes and
require larger computers.

The present results suggest that an attempt should be made to
perform the integration of Eq. (17) and the differentiation of
Eqs. (43) only in the immediate proximity of the origin, for e << 1
and € << 1. When these expressions are determined, Figs. 4 ‘and
figures like them will be constructed from explicit expressions at

a fraction of the cost of the present runs.
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APPENDIX

Determination of the Radial Coordinate rfs* of the Surface of Discontinuity Fls'

The principle of volume constancy requires that the normal
component of velocity across the surface of discontinuity Fls must

remain continuous. The radial distance r. * of this surface Fls

fs
from the center of the toroidal coordinate system can, therefore,
be found from the principle of volume constancy.

As shown in Fig. 12, each plane AA',normal to the surface Fls’
makes an angle ¥ with the radial direction. Thus, the velocity
continuity of the normél component acress Fls surface dictates

-(L'Jrs) + cosy = v cos(y-b) (66)

r=r,. *
fs

where 1 is ‘defined by Eq. (46) as

. dr_ *
_ -1 1 fs
¥ = tan <rfs* 15 > (46)

Substituting (ﬁrs)r-r « of Eq. (5) and Eq. (46) into Eq. (66) leads to
" fs

dr _* Voo ror(ropsine + e)
_ 1o * = o o - pa o
(tane) ET) + rfs (rfq* sind + e) = 0 (67)

Eq. (67) is a first-order differential equation with the Boundary condition

Rf - e

© Tsina (68)

(r..*)
fs 0=a

After lengthy manipulations, the solution of Eq. (67) 1is obtained.as

R v . . : R. 2)1/2
* _ _-€ 0 0s sin® e _ sinb 2 f
rfs (8,e,€) = sind sine{v‘fs [<sina * R0 (1 sin(x)> d} * (R ) } (10)

(o)
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"FIG.1 DIE, CORE AND SLEEVE.
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FIG.3 COMBINED FLOW IN CO-EXTRUSION .
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(a) PROPORTIONAL FLOW OF THE SLEEVE WITH e = 0.

(b) PROPORTIONAL FLOW OF THE SLEEVE WITH e# 0.

FIG.7 DETAIL VARIATIONS IN TOROIDAL VELOCITY FIELD.




(c) THE EFFECT OF € ON SLEEVE THINNING AND THICKENING.

FIG.7 DETAIL VARIATIONS IN TOROIDAL VELOCITY FIELD.
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FIG.[2 DETERMINATION OF THE SURFACE OF VELOC!TY DISCONTINUITY AT
THE EXIT SIDE OF THE SLEEVE.
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