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,CRITERION FOR THE PREVENTION 

OF 

CORE FRACTURE 

DURING 

EXTRUSION OF BIMETAL RODS 

BY 

Avitzur, B., Wu., R., Talbert, S., and Chou, Y.T. 

ABSTRACT 

Based on the upper-bound theorem in limit analysis, a theoretical 

model for core fracture in bimetal rods during extrusion has been 

developed .and a fracture criterion established. 

The variables affecting core fracture are: reduction in area (r%), 

die geometry, friction (m), relative size of the core and relative 

. strength of the core. Within the wide range of possible combinations 

of these process variables, only a small range permits extrusion 

without fracture. 

With suitable modifications the present analysis can be extended 

to develop criteria for sleeve fra~ture during extrusion and for beth 

core and sleeve fracture during drawing. 



1. INTRODUCTION 

Bimetals are components composed of two separate metallic 

participants, each occupying a distinct position in the component. 

Bimetal (also called clad metal, duo- or dual-metal) rods or wires 

are made of two dissimilar metals. The core, a cylindrical body of 

one metal, is surrounded by a concentric, cylindrical sleeve of 

another metal. Some fibrous metals may also be regarded as bimetallic; 

for example, rods made by unidirectional solidification of some eutectic 

compositions contain a metallic -(or nonmetallic) compound of f~brous 

filaments imbedded in an almost pure metallic matrix. The structure 

of present-day Nb-Sn superconducting wire is much more complex; it is 

rnultirnetallic-~contairting more than two dissimilar metals. 

The two elements of a bimetallic product are usually intimately 

interlocked in·order to function in unison. The usefulness of bimetal 

rods or wire sterns from the possibilities of combination of properties 

of dissimilar metals. For example: 

1 Aluminum-clad steel wire combines the strength of steel with the 

electrical conductivity and corrosion resistivity of aluminum; 

2 Superconductor core clad with copper sleeve combines suver­

conductivity at cryogenic temperatures with assurance against 

failure when a local temporary rise in resistance or temperature 

occurs. 

Although the number of desired combinations for practical use is 

virtuaJlj unlimited, the number of birnet~llic combinations actually in 

use is limited, mainly because of manufacturing difficulties. 
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The object of this study is to define the forming conditions 

which will enable plastic deformation of a bimetal rod composed of 

two dissimilar metals to take place without core fracture. Although 

this fracture mode can be eliminated after a lengthy trial-and-error 

procedure in production lines, analysis of the problem could provide 

more economical solutions. 

Numerous experimental studies of the production of bimetal rods 

are presented in Refs. 1-3. The analytical investigation of this 

problem has been.done by Avitzur
4 

and Osakada
5 

From their research, 

we may establish models based solely on the upper-bound approach and 

the concept of minimum energy, without any extraneous stress evaluation. 

These models describe the forming process of bimetal rods or wire by 

extrusion and drawing. Because of the complexity of the actual deformation 

patterns, separate models are used to simulate core and sleeve fracture 

in both extrusion and drawing respectively. At present, only the criteri9n 

for prevention of core fracture during extrusion has been de~ived. 

Th~ criteria for the prevention of sleeve fracture during extrusion 

and for both core and sleeve fracture during drawing will be derived 

from s.im.ilar veluc:.iLy I.iellls ·.in ·.the ~future. 

These criteria can also be extended to the handling of failures 

such as fishskin and central burst (Refs.· 6-11) in the mono-metal forming 

process, and for tube making. 

Extrusion of a clad rod with a tight bond between the sleeve and 

the core is shown in Fig. 1. 



As it passes through a die of semicone angle (a), the s1eeve 

is forced to reduce in diameter from 2R
0 

to 2Rf. At the same time, 

when sound flow occurs, the core is reduced proportionally from 

the diameter of 2Ri to 2Rfi" 

In co-extrusion, the following are the most common patterns of 

flow: 

1. proportional flow with no fracture 

2. defective flow with fracture of the core 

3. defective flow with fracture of the sleeve. 

These modes are shown in Figure 2. 

As shown in Fig. 3, plastic flows of core and sleeve are modeled, 

respectively, by the spherical and the toroidal velocity fields. This 

aspect will be discussed in the derivation section. 

The core and the sleeve must undergo indentical elongation for 

proportional flow to occur. The resulting deformation could be either 

homogeneous or nonhomogeneous. But for both situations, the following 

condition must prevail:· 

where 

R 
0 

R. 
1 

Rf 

and Rfi 

= 

R. 
1 

R 
0 

i~ the outer radius of the sleeve before forming, 

(1) 

is.the interface radius between the core and the sleeve 
before forming, 

is the outer radius of the sleeve after forming, 

is the interface radius between the core and the sleeve 
after forming. 
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When the core is harder than the sleeve it tends to undergo ,lower 

reduction than the sleeve. If the core undergoes less deformation 

than .. the sleeve, the core elongates less than the sleeve. Consequently, 

the sleeve exerts a tensile load on the core and, sooner or later,. 

the core fractures. Mathematically, when the core fractures, 

> 
R. 

1 

R 
0 

(2) 

When the sleeve is harder and undergoes less deformation than 

the core, the sleeve elongates less than the core. The core then 

pulls the sleeve to fracture it_. Mathematically, when the sleeve 

fractures, 

Rf. 
]_ 

Rf 
< 

R. 
]. 

R 
0 

(3) 

Differential strengths of core and sleeve promote non-uniform 

flow leading to failure. Other factors, like interface bond as is 

studied through this manuscript, promote proportional flow and deter 

failure. The balance between these two uriving f0rces determines 

the resulting mode of flow. 

The failures in co-extrusion mentioned above, core fracture and 

sleeve fracture, result from the employment of improper combinations 

of the process variables, including percent reduction in area (r%), 

semicone angle of the die (a), the length of the bearing of the die 

(L/Rf)' friction (m), coefficient of interface bonding strength (ml), 

4 



relative size of the core (R./R ), relative strength and properties 
1 0 

of the core (a /a ), and the prescribed body tractions, namely 
OC OS 

forward tension .in extr·usion (a flo ) . 
X OC 

Criterion for the prevention of core fracture during extrusion 

is .found through the determination of the domains of the process 

variables wherein core fracture is expected. We use the upper-bound 

analysis to calculate the power expenditures involved in co-extrusion. 

For each particular combination of process variables, the power 

required for defective flow with core fracture and for proportional 

flow with sound product can be derived separately. The principle 

of minimum power states that for each combination of process 

parameters, the flow that consumes the least power will prevail 

for that particular combination of process variables. Following 

this principle, the boundary of the domain of core fracture is 

explicitly determined. 

The criterion obtained through .this method is presented in 

the result section. The related power calculation will also be 

described in the derivation section. 

5 



2. RESULTS 

The criterion shown in Figs. 4(a,b&c) provides characteristic lines 

for the prevention of core fracture during extrusion. The abscissa 

is the rat:Lo of the radius of the core to the radius of the sleeve 

(R./R ) and the ordinate is the strength ratio of the sleeve to that 
1 0 

of the core (a /a ). In each of these graphs core failure is 
OS OC 

expected on the shaded side of the curves. In all three figures, 

core fracture occurs only with intermediate-sized cores.which are 

stronger than their sleeves, and is avoided with both smaller and 

larger sized cores. The varying parameters in Figs. 4a, b and c 

are semicone die angles (a), percent reduction in area (r%) and 

bond and friction levels (m and ml) respectively. In Figure 4a, 

the semicone angle of the die is the parameter, interface bond 

between the sleeve and core is perfect (ml = 1), 30% reduction in 

area is effected, the coefficient of friction (m) is 0.05 and no 

back tension is applied. Below each characteristic line core 

fracture is expected, and above it core fracture is avoided. As 

shown, the higher the ratio a Ia , the larger is the fracture 
OC OS 

range for R./R ; while for smaller die angles, the fracLure :wne 
1 0 

is reduced. Figure 4b shows smaller core fracture regions for 

increasing reduction values. Figure·4c shows smaller core fracture 

regions for increasing friction and increasing interface bond strength. 

The complexity of the characteristics expressed in Fig. 4 drives 

home the idea that it may be very hard to determine, without a rigorous 

analysis, the precise range of process variables where no core fracture 

6 
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is expected. Trial and error experimental procedure may often 

fail or be prohibitively expensive. However., with the use of 

Eq. (17) derived later, curves like those in Fig. 4 can be 

constructed for any desired range of the parameters. The findings 

of this analysis are useful in further understanding the expected 

trends, and thus, may provide a guide in any experimental trial-

and-error method. 

... , . 

Some general observations for the prevention of core fracture: 

1. The harder the core, for a /a · > 1, the more· likely it 
OC OS 

is that core fracture will occur, and the narrower becomes 

the range of process:variables for a sound product. 

2. The higher the mean pressure (higher back pressure, lower 

front tension), the wider the range of variables for which 

proportional flow is expected. Thus, in extrusion, the 

range of proportional flow is wider than in drawing. 

3. Normally, the lower the friction (m), the narrower the 

range for proportional flow in extrusion. 

4. Larger percent reduction, smaller semicone angle and stronger 

interface bonding promotes the prevention of core fractun:~ 

during extrusion. 
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3. DERIVATION 

3.1 Foreword 

First, two separat~, kinematically admissible velocity fields 

are introduced for the core and sleeve respectively. Strain rates 

for the corresponding fields and power consumption of the process 

are then derived. Finally, the characteristics of the power 

consumption in the domain of two pseudoindependent process parameters 

is disussed. 

3.2 Velocity Fields 

3.2.1 General The flow of the core material and that of the 

sleeve material are considered separately with matching boundary 

conditions. The spherical velocity field is chosen to describe 

the deformation of the core. The toroidal velocity field simulates 

the deformation of the sleeve. 

3.2.2 Core (Spherical Field) The spherical field is described 

in Ref. 12, Sec. 8.3, as follows: 

"A kinematically admissible velocity field is described 

in Fig. 5. The rod is divided into three regions in 

whi.ch the· velocity field .is continuous. In zone Ic and 

IIIc the velocity .is uniform and has an axial component 

only. In zone Ic the velocity is v , and in zone IIIc 
oc 

the velocity is vfc' Because of volume constancy 

2 
v = v (Rf./R.) 

oc fc 1 1 

8 
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In zone Ic deformation has not yet begun. It includes the 

incoming rod, which is separated from the deforming zone lie 

by the surface r
2
c. Surface r

2
c is spherical, of radius r

0
i 

with the origin at the apex 0 of the cone of the angle a .. 
1 

Zone lie is the zone of deformation bounded by the surface 

of the cone with a cone of an included angle 2a. and two 
1 

concentric spherical surfaces rlc and r2c" The surface r2c 

is the previously mentioned spherical boundary between 

zones Ic and I Ic. The .·spherical surface r lc of radius r fi 

with the origin at the apex 0 of the cone, separates zone IIc 

from the emerging product of zone IIIc. In zone lie the 

velocity is directed toward the apex 0 of the cone, with 

cylindrical symmetry. 

"In the spherical coordinate system (r,8,¢), the 

velocity components for zone lie are 

2 
r 
oi . 

u = -v -2- cose 
rc oc 

r 

= 0 

Across the boundaries flc and r
2
c' the components of 

velocity normal to the surfaces cr lc and r 2c) are , ..... 

continuous. There exist velocity discontinuities 

parallel to these surfaces." 

9 
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3.2.3 Sleeve (Toroidal Field) 

Figure 6 shows the velocity field of the sleeve. Similar to 

that in the core, there are rigid flow zones I and III and the 
s s 

deformation zone II . 
s 

In zone II the toroidal coordinate system is used. The circle 
s 

(0') at the distance e from the axis of symmetry is an origin. This 

e will be named as 'eccentricity factor' from here on. The radial 

distance from 0' is r, varying from rfs* bn rls to ros* on r2s (rfs* 

and r * can be functions of the angular position; they will be 
OS 

determined later). The angular position e varies from a. (by Eq. (8)) 
1 

on the inner conical surface r to a on the conical surface of the 
cs 

Please note that a. > 0. The direction of e is normal to 
1 

the direction of r. Normal to these two axes (r and e) is the cp-axis. 

Axial symmetry exists with respect to ¢· 

In this toroidal coordinate system, the velocity is assumed to obey 

i. w (r ,.. 3in0 I c) . OS OS 
u = -v case 
rs OS r (r sine + e) 

(6) . . 
0

es 
= u¢s = 0 

where r * is the radial distance between r2s and 0' 
OS 

rfs * is the radial distance between rls and 0' 

It is noted here that the deformation zone II is bounded by surfaces 
s 

r7 , r.., , r and rls· r3s is the outer conical surface of the sleeve 
J3 '-3 cs 

and is predetermined by the semicone angle of the die a. For simplicity, 

the surface of discontinuity r
2 

is assumed to be a toroidal surface. . s 
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The radial distance r * of this surface from the toroidal center 
OS 

0' depends only on the eccentricity factor e. Mathematically, this 

means 

r 
OS 

* = r 
OS 

R - e 
0 

sin a 
(7) 

which is independent of the angular position e. The inner conical 

surface of the sleeve r is also determined through the value of 
cs 

the eccentricity factor e. The semicone angle a. of the surface r 
1 cs 

is thus a function of e. From the proposed geometry of Fig. 6, we 

found that 

a. 
1 

= sin -l {-=:-i-~-: sina } 

' 0 

The value of e itself is pseudoindependent, namely, the value is 

(8) 

arbitrary during the evaluation of the strains and power consumptions 

and is, finally, determined by the concept of minimum energy. (See 

Ref. 13 for detailed discussion on "limit analysis," the "upper 

bound approach" and the concept of minimum energy.) 

In Fig. 7a a special case of prnpnrt.i.onal deformation, namely, 

homogeneous defor.mation with a spherical flow (e=O) , is described. 

Even when e~O and a toroidal flow exists (see Fig. 7b), it still 

may be proportional, so that Rfi is determined through Eq. (l)'and 

is not a function of the eccentricity (e). Under this circumstance, 

the surface r
2

s is toroidal (by our choice) and the angle ai is defined 

by Eq. (8). The surface r
1

s is not toroidal (if e~O) and is determined 

subsequently. 
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In order to render the exit inner radius Rfi a variable and 

permit the flow to become nonproportional, the deviation factor € 

was introduced as a second pseudoindependent parameter. Roth the 

inner radius Rfi and the surface r
1

s are then functions of € and 

also of e. Since the introduction of.the deviation factor € will 

introduce thinning or thickening of the em·erging sleeve, it will 

also introduce a change in the ratio·o'f exit to incoming sleeve 

velocity. 

From the established geometry, it is found that the relationship 

between the incoming velocity V of the rigid zone I and the exit 
OS S 

velocity vfs of the outgoing rigid zone IIIs depends on pseudoindependent 

parameters e and €. We define this relationship as 

(9) 

Whenever e or c is equal to zero, this relationship dictates the 

proportional flow condition. For nonzero e and € the variations in 

Rfi and the surface r
1

s are illustrated in Fig. 7c. In this figure~ 

when e€ > 0 the ratio .of exit velocity to entrance velocity will be 

larger than that for the proportional flow [according to Eq. (9)]. 

This will lead to the thinning of the sleeve. The surface r
1

s thus 

moves to the left side of the proportional position (which is designated 

as r '). 
13 ' 

Rfi, therefore, ·increases to Rfi' . When e€ < 0, changes 

of r
1

s and Rfi will be reversed. They are shown as r
1
s" and Rfi" 

in Fig. 7c. 
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Based on Volume constancy and the defined velocity field, 

the radial distance rfs* of r
1

s from a~ as obtained in the Appendix is: 

rfs * ce,e,e:) = 
e 

--+ 
sine 

0 OS Slne R ;v t . 
sine v fs ~sina + 

e 

R 
0 

(
Rf)2 

+ R 
0 

where the ratio v /vf is defined by Eq. (9). 
OS S 

The dimension of Rfi is, therefore, found to be 

[ (r fs *) 

e=a. 
l 

sin a. 
l 

{

v rsi.na. 
=R ~ -:~+ 

o vfs s1na 

3.3 Strain Rates 

+ e] 

e sinai0... 2 

lr (l - sina Y 
0 

In upper-bound analysis, the power to overcome the resistance of 

the material to deformation-is estimated through the integration of the 

function which contains the strain rate and the yield stress over the 

entire deformation volume. Therefore, it is necessary to derive the 

strain rates for the proposed spherical and toroidal fields. 

The strain rates in the spherical field as functions of velocity 

components are (Ref. 14): 

. 
E: 
rr 

. 
c 

re 
= 

1 
a~o 4 

2 ( ar 

= 
. 

• Ue 
Ur + - cote 
r r 

oe 
-+ 
r r 

.ill:.) 
ae 

Qr_ 
r 

( 12) 

1 < 

(11) 
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According to Sokolnikoff (Eqs. 48.7 and 48.9 of Ref. 15) the 
strain rates are: 

o. 3 
. 
uk . a 1 . 1 - ag ... e: .. = aa ·. rg-:-. + -·'> ~ 

v'g kk 
if i= j 

11 
1 1 1 2gii''1<=1 aak. 

~. 
D. J .,; . 1 a 1 . . a J '' e: .. = lg .. a ex. ( ~ ) + g jj aa ·. (--:::=: if i + 

, 
1J 2;9i-i 9jj ,I 11 gli 

/Jjy J 1 

where 

gr~ = 1, g~ 8 = r 2 
and g~¢ = (rsine + e)

2 

for the present toroidal field. 

Calculating the strain rates, substituting u8 = U¢ = o, 

. aur 
~rr = o:r 

£88 = r 

• or sine 

e:¢¢ = rsin8 + e (14) 

• - 1 aur 
e:re - 2r ~ 

. . 
e:B¢ = e:rcjl = 0 

From Eqs. (5) and (12), the strain rates for the spherical 
f1eld ca~ be calculated. They are 

. 
e: = rr 2• 2. 2 V r 2. cose 

- e:ee = - -e:¢¢ = oc o1 ~ 

1 2 sine 
2 Vocroi --rr- (l!j ) 

. 
E "' re 

Similarly, Eqs. (6) and (14) give us the strain rates for toroidal 
field: 

14 

~~----w---------------------------~~----------------~-----------------~---------



e: = vas 
ras (r05 sine + e)(2 rsine + e) 

rr r2 (rsine + e)Z case 

. 
-Vas 

ras {r05 sine-+ e) 
e:ee = case 

r2(rsine+ e) 

-Vas 
ros fr05 sine + e) ( 16) 

e:<P<P 
= sine case r rsine + e)2 

1 ras [rsine + e) r ssine + 
e:re = 2 Vas r rsine + 

. 
e:e¢ = e:r<P = a 

. . . ' 

The compressibility equation e:rr + e:ee + e:<P<P = 0 is held for the 

above expressions. 

3.4 Normalized Total Power Consumption (j*) 

3.4.1 General 

The upper.•.·bound on power consumption during co-extrusion sleeve 

and core composed of two dissimilar materials is given by 

. . . . . . . 
j* = (W~ + Wic + Wsc + Wf + Wis + Wint + *ss + Wfs 

+ w ) I TIO v R 
2 

frc oc o o 

where, for extrusion v = v = v 
0 OS OC 

The definitions of the individual power terms follow . 

. 
3.4.2 The External Power: W 

e . 
The external power W is associated with the prescribed surface 

e 

(17) 

tractions. For extrusion, the prescribed surface traction is the front 

tension crxf' and the external power becomes 

. 
w 

e 

. 
= W = TI 

f 
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. 
3.4.3 The Internal Power of Deformation in the Core: W. 

1C 

For the core, the simple spherical field of Eq. (5) was assumed 

through this entire work. With this spherical field, the internal power 

of deformation in -the core, by Eq. (8.11) of Ref. 12, becomes 

f
a.. fr . 1 01 

o rf. 
·1 

v r . 
2 

.1:_
3 

/3cos
2
8 + -

4
1 

sin
2

8 
1 

(2Tirsin8 r dr d8) 
oc 01 

r 

2 
= 2Tia v R. f(a..) ln(R./Rf.) 

oc oc 1 1 1 1 

where f(8) is defined by 

(19) 

f(8) = 
1 

. 28 s1n 
~ - cose h 11 0 28 1 

12 s 1 n +111·12 
ln 

1 :+;# 
/H cos8 + /1 

II . 2 J (20) 
- - s1n 8 

12 -

The function f(8) is tabulated in Table 8.1 of Ref. 12, for 1° 

intervals for 0 < 8 < 90°. Table 8.1 of Ref. 12 is reproduced 

here as Table 1. Please note that f(8) is within 5% error if 

replaced by 1 for 8 up to 67°. 
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Table 1 Relative Average Effective Strainf(a) and Shear Losses 

"' a 
"' 0 0 f(a) ---cot a 0 f(a) ---cot a 

"' 
f(a) --- cota a 

sin 2 a 
a 

sin 2 a sin' a 

0 1.00000 0 

1 1. 00001 0. 011636 31 1.00672 0.37539 61 1.03603 0.83746 
2 1.00003 0.023275 32 1.00721 0.38854 62 1.0378·1 0.85632 
3 1.00006 0.03-l920 33 1.007i2 0.40180 63 1.03974 0.875-l9 
4 1.00010 0 .0·16573 34 1.00825 0.41516 64 1.o,n 74 0.89500 
5 1.00016 0.058237 35 1.00881 0.42864 65 1.04384 0. 91484 

6 1.00023 0.069915 36 1.00939 0.44224 66 1. 0·1605 0.93503 
7 1.00031 0.081611 37 1.01000 0.45596 67 1.04838 0.95559 
8 1.00041 0.093327 38 1.01063 0.46981 68 1.05082 0.97653 
9 1.00052 0.10507 39 1.01129 0.48380 69 1.05340 0.99787 

10 l. 0006,1 0.11683 40 1.01198 0.49792 70 1. 05613 1. 01961 

11 1.00078 0.12862 41 1.01270 0.51218 71 1.05900 1.o.n 78 
12 1.00093 0.14045 42 1.01H5 0.52660 72 1. 0620-1 1. 06,138 
13 1.00109 0.15231 <l3. 1.01423 0.54117 73 1.06526 1.087.15 
H 1.00127 0.16421 44 1.01505 0.55590 74 1.06867 1.11099 
15 l.OOU6 0.176l<t 45 1.01590 0.57080 75 1.07228 1.13503 

16 1.00167 0.18813 46 1.01679 0.58587 76 1.07611 1.15958 
17 1.00189 0.20016 47 l.Oli72 0.60111 77 1.08018 1 .18·1·67 
18 1.00212 0.21223 48 1. 01!169 0.61655 7B 1.08·151 1.21031 
19 1.00237 o .22.n7 49 1.01970 0.63217 79 1.08912 1.23653 
20 1. 0026,1 0.23656 50 1.02075 0.64800 80 1 . 09·1.0-1 1.26335 

21 1.00292 0 .2.1.fl81 51 1.02185 0.664.03 81 1.0992!! 1.29080 
22 1. OO:l22 0.26112 52 1.02300 0.68027 82 1 .10-lB8 1.31890 
23 1. 00:~5-l 0.2n5o 53 1. 02-120 0.696H 83 1.11087 1.3,1768 
2-l 1.00387 0.2!1595 5,1 1.025,16 0. 713-l .. t 8-1 1.11727 1.37717 
?" _;, 1.00·122 0. 298·1.3 55 1.02677 0.730:37 85 1.12·U3 1 A07·l0 

26 1.0(H59 0. 3110!! 5u l.U:!Bl'l U.H'i!>S uti 1.13U3 1.:13840 
27 1 . 00-l'.IB 0.32377 57 1.0295!! 0.76-1.98 87 1.13935 1.47020 
2B 1.00538 0.3:1653 51! l.O:HO!l 0.7!\268 88 1. U780 1.5028·1 
29 1. OO:i!l1 0. 3'1·9:~9 59 1.03265 O.ll0066 ll9 l.156ll7 1.5%36 
30 1.00625 0 .3623·1· 60 1. O:l-130 0.81ll91 90 1.16660 1.57080 
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. 
3.4.4 The Shear Power in the Core: W 

sc 

The shear power over surfaces of velocity discontinuity r
2

c 

by Eq. (8.12) of Ref. 12, becomes 

• 1 Jao:i W sc = /3 a oc v oc sine (2nr oi sine r
0

i de) 

1 
= 13 na oc v oc 

2 ( ai 
R. 2 

1 . 
s1n a. 

1 

. 
3.4.5 The Friction Loss along the Bearing of the Die: Wf 

(21) 

The friction power losses between the sleeve and the cylindrical 

portion o"f the die (bearing·of the die) are independent of the assumed 

velocity field. They are 

. 
3.4.6 The Internal Power of Deformation in the Sleeve: W. 

13 . 
The internal power of deformation in the sleeve W. , by the 

1S 

toroidal field, is obtained as follows: 

· 2 fa J:os /1 W = r.:; a - E E 2n(rsine + e) rde dr 
is v3 os * 2 ij ij 

a. rf 

1 • 
where 

2 
E .. E .. 

1J 1J 

. 

1 s 

(23) 

(24) 

[Err ' Eee ' E<f><f> and Ere were calculated and listed in Eqs. (16).] 

a. is defined by Uq. (8) 
1 

rfs * is defined by Eq .. (10) 

r is defined hy F.q. (7) 
. OS 

18 



3.4.7 The Shear Po0er on the Interface : Wint 

The shear loss over the conical interface between the core and 
the sleeve is due to the discontinuity in the tangential components 
of the assumed velocity fields. Because the normal component is zero, 
the equation for the shear loss is 

wint = f mlr 
r . 
cs 

ds (25) 

where ml is the coefficient describing the bonding condition, 0 ~ ~l < l, 

res is the conical surface of separation, 

and r is the lower of the two ratios, 

0 os 
a 

and oc 

13 13 

Consequently, algebraic complications are avoided if the equi­
valent equation 

w. t 1n 
(26) 

is used v1here the integrals are computed separately with different 
variables. 

In the first integral, 

ds = 21T ( r sina
1 

+ e) dr (27 ) 

0rs = -v ros r~ss~na; 
os r rs1na. 

1 

+ e.) 
+ e COSet; (28) 

and the limits of the integration are 

Rfi - e R. - e 
< r < 1 

sinai sina; 
(29 ) 

In the second integral, 

ds = 21T r sina. 
1 dr (30) 

R.2 COSet; 

urc = -v 1 
oc r2 sin2a. 

1 
(.31 ) 

and 

Rfi R. 

sina~ 
<. r < 

1 
sina. 1 1 

(.32 ,) 
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The result of this shear loss computation then becomes 

t~. t 1n 
21f . [' = - 4 ml · min·. cr 
/3 '· oc' 

{ R; 

R. - e 2 
R. } (R. - e) cota. £n 

1 
- R. cotai 

1 . 
(13) 

Rfi- e 
£n·-1 1 1 Rfi 

where min [aoc' a
0

s] is the smaller of a
0

c and a 
OS 

3.4.8 The Shear Power in the Sleeve Wss 

The shear power on the s.urfaces of velocity discontinuity r
1

s and 
r2s is given by the following two equations: 

0
0

s f wr = n- r v sine ds 
2s vJ 2s 0 

f 
a (V sine) · 21f (r sine + e) r de 

0 0 0 
O'.i 

(34 ) 

and 
ds 

r (r sine + e) * * 
V sin(e-l/J) + V osos . cosesin\jJ ·2rr(rfssine + e)rfsde 
fs os rf~(rf~s1ne+ e) 

( 35) 
where \jJ is the angle between the plane normal to the surface r

1
s 

and the radial direction of the toroidal coordinate, i.e., 

{ 
* 

} 
\jJ = tan -l 1 d rfs 

* rfs de 
(16) 

The total shear loss in the sleeve is therefore 

wss = ~~ r + wr 
2s ls 

(37) 
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3.4.9 The Friction Loss Between the Sleeve and the Surface 

. 
of the Die: Wfs 

This friction loss is calculated by 

• 
0

os Jros 
wfs = 73 m 

(r fs *) 8=a 

I (U )
8 

I 2rr (rsina + e) dr 
rs =a 

3.4.10 The Fracture Energy Associated with Core Fracture: 
. 
w 
frc 

(38) 

If core fracture occurs, there must have been volume separation 

along r
1
c. That is, velocity discontinuity appears in the directions 

of both the plane normal and the tangent of the r
1

c surface. The 

energy consumption associated with this event as given by Eq. (57c) 

of Ref. 13 is, 

2 . 
Jr 

(L'lvT) 2 w a + L'lvN ds 
frc oc 3 

(39) 

('} where L'lvN cos8 
01 

cose v fs - v --
0(; l'fi 

(40) 

L'lvT = vfs sinS ( 41) 

ds .. 2TI (rfi sinS) rfide ( 4 2) 

3.5 The Characteristics of j*; The Contour Lines 

The individual power terms of Eqs. (23), (34), (35), (38) and (39) 

are presented in integral form. Precise analytical integration of thes~ 

terms was not performed. Before further analysis and approximations 

are made, it is helpful to analyze-the characteristics of the total power j*. 
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These characteristics are studied by performing numerical integration. 

Specifically, the effect of the two pseudoindependent parameters, 

namely, the eccentricity factor (e/R ) and the deviation factor (€) 
0 

on the total power j* is presented in the form of j* contour lines. 

Each specific combination of process variables is associated with 

a set of J"* contour lines in the e/R and € domain. The extrusion 
. 0 

process begins with homogeneous proportional flow, which means e/R 
0 

and € are originally zero. As deformation proceed~, the process 

chooses the flow pattern that minimizes the j* without the addition 

of extrusion power. Therefore·,: the location of the minimum j * 

determines the type of flow - proportional flow or defective flow 

with core fracture - that takes place. 

By examining Eq. (9) we know that core fracture is associated 

with e€ > 0, and e€ = 0 defines proportional flow. Four different 

types of j* contour lines are given in Figs. 8 - 11 . The conditions 

in each of Pig~. 8 · 11 are identified.by the respective stars on 

Fig. 4a . In Fig. 8 , the origin is a global minimum, while it is 

a local minimum in Fig. 9,. Figure 9b is the enlarged portion of 

Fig. 9a· in the vicinity of the origin. Figure 10 ·shows that the 

minimum is on the e/R axis. In Figs. 8 - 10 the minimum value of 
0 

j* is at e£ = 0. Proportional flow is expected in those situations. 

Figure 11 is an example of core fracture with ee: > 0. 
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4. THE CONSTRUCTION OF FRACTURE CRITERION CURVES 

As observed in the earlier section and in Eqs. (5) and (6), 

proportional .flow is expected when the minimum value of j* exists 

anywhere along the axis of Figs. 8-10; namely, along e = 0 or E = 0, 

including the origin ·.where e = E = 0. Core fracture will occur when 

a·*l _J_ < 0 

ae I E=O 

e;:O 

and 
aj * 
~ 

< 0 (43) 

The first of Eqs. (43) suggests that one condition necessary 

for the occurrence of core fracture is that the slope of j* at E = 0 

(along the e axis) will lead away from the origin, at a positive e 

value. This condition, although necessary, is not. in itself sufficient 

to cause such fracture. For example, the processing conditions 

handled in Fig. 10 lead to a minimum of j* along the e axis at e/R =0.24. 
0 

The flow, nevertheless, is proportional.and fracture does not occur. 

The power required is lower than that required for a homogeneous flow 

by the spherical field for e = E = 0. 

The observation suggests that a combined spherical/toroidal field 

for a homogeneous material may provide a lower upper·-baurid than will 

the conventional spherical field.
12 

However, since the complexity of 

the solution might not justify the impr0vement, the present study will 

not concern itself with that aspect. 

The second requirement that supplements the first of Eqs. (43) is 

that when the first condition is satisfied, the slope of j* with respect 

23 



to E (for positive e:) for any positive value _of e will also be 

negative. Note that along the E axis, when e = 0, the slope of 

j* with respect to E is automatically zero. 

Numerically, the two necessary conditions of Eqs. (43) can 

be evaluated from Eq. (17) as follows: 

j*(£=0, e) - j*(£=0, e=O) 
0 < 

e 

(44) 
j * Ce:, el) - j"*(e:=O, el) 

< 0 
e: 

where e << 1' el << 1, e: << 1 

In evaluating the slopes of Eqs. (44) it is helpful to note that 

j* at the point e = e: = 0 is determined analytically through the 

following solution; 

j * (e=O, e:=O) 

+ 2 

a. 
OS 

0: 
oc 

R. 2 
2(~) 

R 
0 

R. 2 

[f(a) - (__2_) 
R 

0 

2 aos [ a 
+ 13 a -.-2-::: cota-

oc s1n a 

a R 
2 OS 0 

+ l3 m --- cota ln--
auc Rf 

. -1 
where = s1n {

R. } 
R

1 
sina 

0 

24 

- cot a. h) 
. 1 

(45) 



The above equation is easily obtained using Eq. (8-16b) and (8-17b) 

of Ref. 12 for the calculation of forces. For the core, a is 

replaced by a.. For the sleeve, the solution for a=a. is subtracted 
l l 

from the same solution with a. 

Figures 4 were constructed by the substitution of the values 

from Eq. 17 for j* into Eqs. (44). The solid lines define the 

border between positive and negative slopes for the first of 

Eqs. (44); the dashed lines for the second. The above numerical 

integration and differentiation are time-consuming processes and 

require larger computers. 

TI1e present results suggest that an attempt should be made to 

perform the integration of Eq. (17) and the differentiation of 

Eqs. (43) only in the immediate proximity of the origin, for e << 1 

and £ << 1. \Vhen these expressions are determined, Figs. 4 and 

·figures like them will be constructed from explicit expressions at 

a fr8ctinn of the cost of the present runs. 
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APPENDIX 

Determination of the Radial Coordinate rfs* of the Surface of Discontinuity r
1
s. 

The principle of volume constancy requires that the normal 

component of velocity across the surface of discontinuity r
1

s must 

remain continuous. The radial distance rfs* of this surface r
1

s 

from the center of the toroidal coordinate system can, therefore, 

be found from the principle of volume constancy. 

As shown in Fig. 12, each plane AA' ,normal to the surface rls' 

makes an angle ~ with the radial direction. Thus, the velocity 

continuity of the normal component acress r
1

s surface dictates 

. 
-CUrs) • cos~= vfs cos(~-6) 

r=r * 
fs 

where ~ is ·defi~ed by Eq. (46) as 

,1, ::.1 ( 1 drfs *) 
o/ =tan rfs* de 

(66) 

( 46) 

Substituting (Urs)r=r * of Eq. (5) and Eq. ( 46) into Eq. (66) leads to 
fs 

dr * v r (r sine + e) 
fs 0~ O!J O!J 

(tan8) + rfs * -- ~ 0 de (r * sine + e) 
. = (67) vfs fs 

Eq. (67) is a first-order differential equation with the Houndary condition 

(r *) "' 
fs e=a 

Rf - e 

sin a 
(68) 

After lengthy manipulations, the solution of Eq. (67) is obtained as 

-e 0 OS Sln R {v [<: · e 
sine + sine v·fs sina + 
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e 
R 

0 

. · J R 2}1/2 
(1 - s~n~j'-,,..2 -1 + (__i) 

s1nc?/ R 
0 

(10) 
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