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Abstract

For a supercritical accretion regime, we propose a critical accretion disk, where the mass-accretion rate is
regulated just at the critical rate with the help of wind mass-loss. We first derive a critical radius, inside of which
the standard picture is violated, using the condition that the radiative force is balanced by the gravity in the vertical
direction. The critical radius rcr is found to be rcr = (9

√
3σT/16πcmp)Ṁinput = 1.95(Ṁinput/Ṁcrit)rg, where Ṁinput is

the mass-accretion rate at the outer edge of the disk, Ṁcrit the critical accretion rate, and rg the Schwarzschild radius
of the central object. Outside of this critical radius, the disk is in a radiation-pressure dominated standard state,
while inside this radius the disk is in a critical state, where the excess mass is expelled by wind and the accretion
rate is kept to be just at the critical rate at any radius inside rcr. In such a critical accretion disk, the disk thickness is
H ∼ (1/6

√
3)r and the surface temperature is σT 4 ∼ (2/3

√
3)LE/4πr2, where LE is the Eddington luminosity. The

total disk luminosity becomes Ldisk ∼ (2/3
√

3)[ln(rcr/rin) + 1]LE, where rin is the inner radius. We apply the present
model to microquasars and narrow-line Seyfert 1 galaxies, which are supposed to be under supercritical accretion.

Key words: accretion, accretion disks — black hole physics — galaxies: active — microquasars — stars: winds,
outflows — X-rays: stars

1. Introduction

Accretion disks are now widely believed to be energy
sources in various active phenomena in the universe: in proto-
planetary nebulae, in cataclysmic variables, in galactic X-ray
binaries and microquasars, and in active galaxies and quasars.
Accretion-disk models have been extensively studied during
these three decades (see Kato et al. 1998 for a review).

From our present knowledge about the accretion-disk theory,
there are three types of accretion disk models. The criterion
is that the mass-accretion rate Ṁ in the disk around a central
object of mass M is less or greater than the critical rate, defined
by

Ṁcrit ≡ ηṀE ≡ LE

c2 = 1.39× 1017 M

M�
gs−1, (1)

where Ṁcrit (= LE/c2) is the critical accretion rate,
ṀE (= LE/ηc2) the Eddington accretion rate, LE (= 1.25 ×
1038M/M� erg s−1) the Eddington luminosity, and η (∼ 0.1)
the efficiency.

For a subcritical accretion rate (Ṁ ≤ ṀE), the disk is in
the classical standard state (e.g., Shakura, Sunyaev 1973).
For a very low accretion rate (Ṁ � ṀE), on the other hand,
the disk is supposed to be in the optically-thin advection-
dominated state, i.e., optically-thin ADAF (e.g., Ichimaru
1977; Narayan, Yi 1994; Abramowicz et al. 1995; Popham,
Gammie 1998). Finally, for a supercritical accretion rate
(Ṁ � ṀE), the disk must be in the optically-thick advection-
dominated state, optically-thick ADAF or slim disk or super-
critical disk (Abramowicz et al. 1988; Eggum et al. 1988;
Szuszkiewicz et al. 1996; Beloborodov 1998; Watarai, Fukue
1999; Watarai et al. 2000; Mineshige et al. 2000; Fukue
2000; Kitabatake et al. 2002; Ohsuga et al. 2002, 2003;

Watarai, Mineshige 2003).
In recent years, the final case of the disk in the supercritical

accretion regime is of great interest, because such supercrit-
ical disks play important roles in various astronomical sites:
in SS 433 and microquasars such as GRS 1915 + 105 and
GRO J1655−40; in ultra-luminous X-ray sources; in super-
soft X-ray sources; and in narrow-line Seyfert 1 galaxies and
luminous quasars. Indeed, the spectral behavior of several
black-hole binaries cannot be explained by the traditional
standard disk, but is well reproduced by slim disk models (e.g.,
Kubota 2001).

Theoretically, however, there remains several unrevealed
problems for disks under a supercritical accretion state. One
of the question is whether the disk is entirely supercritical and
geometrically thick, or not. In the spherical case, both the
gravity and the radiation forces vary as r−2, and the transi-
tion from the subcritical to supercritical regimes takes place in
all space. In contrast to the spherical case, the supercritical
condition in the disk system must be locally determined, since
the gravity and radiation properties depend complicately on the
distance r from the central object. Approximately speaking,
the gravity varies as r−2, but the radiation flux of the standard
disk in the vertical direction varies as r−3. Hence, the transition
from the subcritical to supercritical regimes takes place at some
radius, outside of which the disk is in the subcritical regime and
maintains its shape under the dominant gravity, while inside the
disk is in the supercritical regime and the standard state would
be violated under the dominant radiation. Indeed, in numerical
calculations (e.g., Watarai et al. 2000; Mineshige et al. 2000),
it was empirically found that, inside some radius, the standard
state is violated and the disk becomes an advection-dominated
state.

Another question is whether the mass loss takes place or not,
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and if it takes place, whether wind blows off in the entire disk
or not. Active objects often exhibit mass loss in the form of
winds and/or jets. Radiatively driven winds from accretion
disks have been examined by several researchers (Bisnovatyi-
Kogan, Blinnikov 1977; Katz 1980; Icke 1980, 1989; Melia,
Königl 1989; Tajima, Fukue 1996, 1998; Watarai, Fukue 1999;
Hirai, Fukue 2001). Since the surface temperature varies as
a function of the radius, the radiation fields produced by the
disk are very complicated. Using the calculated disk radiation
fields, the radiatively-driven disk winds were examined by Icke
(1980) without radiation drag, and by Tajima and Fukue (1998)
including radiation drag. In the latter case, the wind does not
blow off in the entire disk, but in the inner region, when the disk
effective luminosity is of the order of unity. In addition, the
configuration of radiatively-supported clouds above the disk
was examined (Fukue 1996; Kitabatake, Fukue 2003); it was
found that the cloud configuration becomes unstable above the
inner disk when the disk effective luminosity exceeds about
unity.

In this paper we thus examine supercritical accretion disks
with wind mass-loss, more carefully than in previous studies
(cf. Watarai, Fukue 1999; Fukue 2000; Kitabatake et al. 2002).
We then propose a critical accretion disk, where the mass-
accretion rate is regulated just at the critical rate with the help
of the wind mass-loss.

In the next section we first derive a critical radius, inside of
which the accretion disk is in a critical state. In section 3, a
standard-like critical model is shown, while an advection-like
critical model is presented in section 4. The general proper-
ties of critical accretion disks are discussed in section 5. In
section 6 the present critical model is applied to microquasars
and narrow-line Seyfert 1 galaxies. The final section is devoted
to concluding remarks.

2. Critical Radius

In a spherically symmetric case, the supercritical condition
was discussed by several researchers (Begelman 1979; King,
Begelman 1999). They found that the luminosity generated by
infall down to radius r will reach the Eddington limit at a radius
of Rex∼ (Ṁ/ṀE)rg, where rg is the Schwarzschild radius of the
central object. This radius is also the photon-trapping radius.

Similar derivation in a global form would be also applied
to the accretion-disk system. That is, from the condition
that the luminosity of the standard-like disk down to radius
r will reach the Eddington luminosity of the central object
(Lr = GMṀ/2r = LE = 4πcGMmp/σT), we can determine
some critical radius r ′cr as r ′cr = (σT/8πcmp)Ṁ . In the disk
system, however, the gravity and radiation forces depend on
the radius more complicately than those in the spherical case.
Hence, we treat the problem more carefully, although the result
does not alter very much.

Under the Newtonian approximation and using the cylin-
drical coordinates (r, ϕ, z), the local force balance in the
vertical direction around the disk is expressed as

Vertical Force = −GMz
R3 +

σT

mpc
F, (2)

where R =
√

r2 + z2 and F is the radiative flux in the vertical

direction. The gravitational force in the vertical direction
becomes a maximum at zmax = (1/

√
2)r , and the maximum

value of the vertical gravity is −2GM/(3
√

3r2). On the other
hand, for the standard disk the radiative flux F in the vertical
direction is F = σT 4 = 3GMṀ/(8πr3), where we drop the
boundary correction factor (1 −√

rin/r), rin being the inner
radius of the disk. Hence, the radiative force in the vertical
direction becomes 3σTGMṀ/(8πmpcr

3).
Ultimately, we have a critical radius rcr, outside of which

the radiation-pressure dominated standard disk is valid, and
inside of which the radiative force overcomes the gravity and
the traditional standard picture is violated:

rcr =
9
√

3σT

16πmpc
Ṁinput, (3)

where the accretion rate Ṁ is replaced by the accretion rate
Ṁinput at the outer edge of the disk. This critical radius is
very similar to the spherical case (King, Begelman 1999), and
depends only on Ṁinput and is independent of M . Numerically,
this critical radius is

rcr = 5.71× 105 M

M�

Ṁinput

Ṁcrit
cm (4)

or

rcr =
9
√

3
8

ṁrg ∼ 1.95ṁrg, (5)

where ṁ ≡ Ṁinput/Ṁcrit and rg = 2GM/c2.
This final expression (5) clearly means that the entire disk

would be in a supercritical state when the accretion rate is
highly supercritical (e.g., Ṁinput ∼ 105ηṀE ∼ 105Ṁcrit). In
other words, when the accretion rate is moderately supercrit-
ical (e.g., Ṁinput ∼ 102–3Ṁcrit), only the inner part of the disk
is supercritical, while the outer part remains in a subcritical
state. In addition, for an accretion disk around a black hole,
this critical radius appears when the accretion rate exceeds the
critical rate.

In numerical calculations (e.g., Watarai et al. 2000;
Mineshige et al. 2000), it was shown that inside some radius
(transition radius) the disk becomes an advection-dominated
state. However, physical explanations concerning the existence
of such a radius are insufficient, and therefore there is no
analytical derivation of such a transition radius. The existence
of the transition radius is also explained by the present
formula (3). Indeed, in the calculation of Watarai et al. (2000)
the transition radius is numerically located at around 100rg for
ṁ= 100; this value is very consistent with the present analytical
result of the critical radius.

By the way, what is a supercritical state inside rcr? One
extreme case is that the disk inside rcr would be slim-disk like,
where there is no mass loss and photon trapping takes place
(Abramowicz et al. 1988; Szuszkiewicz et al. 1996; Fukue
2000; Watarai et al. 2000; Mineshige et al. 2000; Ohsuga et al.
2002; Watarai, Mineshige 2003). In this picture, “no-mass-
loss” is only an assumption. Inside rcr, however, the radia-
tion pressure force overcomes the gravity force, and mass loss
would naturally take place. Observationally, moreover, there
exists mass loss in various objects. Hence, another extreme
case that we consider in this paper is that the disk inside rcr

D
ow

nloaded from
 https://academ

ic.oup.com
/pasj/article/56/3/569/2948882 by U

.S. D
epartm

ent of Justice user on 17 August 2022



No. 3] Critical Accretion Disk 571

Fig. 1. Schematic picture of critical accretion disks. When the accre-
tion rate at the outer edge of the disk is moderately supercritical, there
exists some critical radius rcr. Outside rcr, the accretion rate is constant
and the disk is a radiation-pressure dominated standard disk. Inside
rcr, the accretion rate decreases with the radius so as to maintain the
critical rate, expelling any excess mass by the radiation-driven wind.
The accretion rate must continuously change at rcr, but other quanti-
ties, such as the disk thickness, would jump at rcr, although there is no
shock at rcr.

would be highly mass-losing because of the radiation-pressure
driven disk wind, as suggested in previous studies (Tajima,
Fukue 1998; Kitabatake, Fukue 2003), and the accretion rate is
regulated just at the critical rate (figure 1). This is the critical
accretion disk.

In order for the inner disk to maintain the critical state, the
mass-accretion rate satisfies the critical condition (3) at any
given radius inside rcr. That is, the accretion rate would vary as

Ṁ(r) =
16πcmp

9
√

3σT
r (6)

inside rcr. Thus, the wind mass-loss rate via radiatively-driven
winds must be

Ṁwind = Ṁinput − Ṁ(r), (7)

where Ṁinput is the accretion rate at the outer edge of the disk
(and at the critical radius).

It should be noted that, because of the advection motion in
the inner critical disk, there may exist a jump in the physical
quantities at a critical radius, as is schematically shown in
figure 1.

In the subsequent sections we in turn examine a standard-
like critical disk and an advection-like critical disk under
condition (6).

3. Standard-Like Critical Accretion Disk

From a dynamical point of view, we first consider a standard-
like critical accretion disk. For this case, we assume that, in the
disk inside rcr, the rotational velocity vϕ is nearly Keplerian vK,
and the viscous heating rate Qvis is nearly equal to the radiative
cooling rate Qrad, and other quantities are all standard disk-
like (Shakura, Sunyaev 1973; Kato et al. 1998), though the
mass-accretion rate Ṁ decreases as in equation (6) at any given

radius inside rcr. We show several quantities below.
First, using the scale-height H of the disk in the radiation-

pressure dominated region (Kato et al. 1998) and equation (6),
we have a solution for H as

H =




3κfin

32πc
Ṁinput for r ≥ rcr

fin

6
√

3
r for r ≤ rcr,

(8)

where κ is the electron-scattering opacity (= σT/mp), and fin =
1−√

rin/r is the boundary correction factor (this factor is set
to be unity in this paper, although it is often retained explic-
itly). This solution means that the shape of the standard-like
critical accretion disk is flat outside rcr, and conical inside rcr
with some opening angle. In addition, the disk opening angle δ

(defined by H/r = tanδ) is about 5.◦5, and the disk is geomet-
rically not so fat. It should be noted that the behavior of the
inner solution (H ∝ r) is the same as those for the advection-
like critical disk discussed in the next section. The coefficient
becomes the same when the parameter

√
c3, introduced in the

next section (see also the appendix), is 0.096 (δ = 5.◦5).
Similarly, replacing the accretion rate by equation (6), we

have a solution for the effective temperature Teff as

σT 4
eff =




3GMṀinput

8πr3 fin for r ≥ rcr

2
3
√

3
LE

4πr2 fin for r ≤ rcr,

(9)

where LE is the Eddington luminosity (= 4πcGM/κ). It should
be noted that the behavior of the inner solution (σT 4

eff ∝ r−2) is
the same as those for the advection-like critical disk discussed
in the next section. The coefficient becomes the same when
the parameter

√
c3, introduced in the next section (see also the

appendix), is 0.5132 (δ = 27◦).
The optical depth τ is

τ =




256πc2

9ακṀinputfin

√
r3

GM

=
128

√
2

9αfin

LE

Ṁinputc2

√
r3

r3
g

for r ≥ rcr

16
√

6
αfin

√
r

rg
for r ≤ rcr.

(10)

This means that, in spite of wind mass-loss, the disk is suffi-
ciently optically thick for electron scattering in an inner critical
region as well as in an outer standard region.

Finally, the radial drift velocity vr is

−vr =




9ακ2Ṁ2
inputfin

1024π2c2

√
GM

r5 for r ≥ rcr

αfin

108

√
GM

r
for r ≤ rcr.

(11)

That is, the radial drift velocity in an inner critical region is
proportional to the Keplerian velocity.

In standard-like critical accretion disks, the physical quanti-
ties of an outer standard disk, such as H , Teff, τ , and vr , are
continuously connected with those of an inner critical disk at
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the critical radius rcr (see dashed curves in figure 1 and figures
for applications).

4. Advection-Like Critical Accretion Disk

We next consider an advection-like critical accretion disk.
In this case, we assume that, in the disk inside rcr, the advec-
tion cooling rate Qadv is not negligible, and of the order of the
viscous heating rate Qvis and the radiative cooling rate Qrad,
while the rotational velocity vϕ is generally somewhat smaller
than the Keplerian speed vK. For optically-thick supercritical
disks, self-similar solutions without mass loss were found by
Watarai and Fukue (1999) and Fukue (2000), and those with
mass loss by Kitabatake, Fukue, and Matsumoto (2002). As
a solution for the inner advection-like critical disk, we use the
latter self-similar solutions with mass loss, which are summa-
rized in the appendix. Because of the critical condition (6),
we have imposed, for the inner critical disk, that the mass-
accretion rate should vary as Ṁ ∝ r; therefore, the parameter s

in the appendix is fixed as s = 1/2.
Using the scale-height H of the disk in the radiation-

pressure dominated region (Kato et al. 1998) and self-similar
solutions for optically-thick supercritical disks with mass loss
(appendix), we have a solution for H as

H =




3κfin

32πc
Ṁinput for r ≥ rcr

√
c3 r for r ≤ rcr,

(12)

where c3 is a numerical factor of the order of unity, and deter-
mined by the specific heat ratio γ , the viscous parameter α,
and the advection fraction f (see appendix). As is known
from equation (12), this numerical factor is related to the disk
opening angle δ by

√
c3 = H/r = tanδ. (13)

This solution means that the shape of the advection-like critical
accretion disk is flat outside rcr, and conical inside rcr with
some opening angle. It should be noted that the scale-heights
of the inner and outer disks are smoothly connected at rcr when
the parameter

√
c3 is 0.096 (δ = 5.◦5). When

√
c3 is larger

(smaller) than 0.096, the scale-height of the inner disk is larger
(smaller) than that of the outer disk at rcr (cf. figure 1). In
many cases of the advective solutions, a significant fraction
of the viscous heating is transferred to the advection cooling
(
√

c3 ∼ 1), and the scale-height of the inner disk becomes
thicker at rcr.

A solution for the effective temperature Teff is expressed as

σT 4
eff =




3GMṀinput

8πr3 fin for r ≥ rcr

3
4
√

c3
LE

4πr2 for r ≤ rcr.

(14)

In the inner critical region, the temperature varies as
Teff ∝ r−1/2. It should be noted that the value of the effec-
tive temperature is continuous at rcr when the parameter

√
c3 is

0.5132 (δ = 27◦), and discontinuous when the parameter is not.
The optical depth τ is

τ =




256πc2

9ακṀinputfin

√
r3

GM

=
128

√
2

9αfin

LE

Ṁinputc2

√
r3

r3
g

for r ≥ rcr

16
√

6
αfin

√
r

rg
for r ≤ rcr.

(15)

This means that, in spite of wind mass-loss, the disk is suffi-
ciently optically thick for electron scattering in an inner critical
region as well as in an outer standard region. It should be noted
that, in the advection-like critical accretion disk, the optical
depth (and therefore, the surface density Σ) can be smoothly
connected at rcr.

The radial velocity vr is

−vr =




9ακ2Ṁ2
inputfin

1024π2c2

√
GM

r5 for r ≥ rcr

c1α

√
GM

r
for r ≤ rcr.

(16)

That is, the radial drift velocity in an inner critical region is
proportional to the Keplerian velocity. It should be noted that
the radial velocity is continuous at rcr when the parameter c1 is
1/108, and discontinuous when the parameter is not.

Finally, the azimuthal velocity vϕ is

vϕ =




√
GM

r
for r ≥ rcr

c2

√
GM

r
for r ≤ rcr.

(17)

It should be noted that the azimuthal velocity of the inner disk
generally becomes smaller than that of the outer disk at rcr,
since the parameter c2 is somewhat smaller than unity (advec-
tion motion).

In advection-like critical accretion disks, physical quantities,
such as H , Teff, τ , and vr , generally jump at the critical radius
rcr (see solid curves in figure 1 and figures for applications).
This is because a part of the viscous heating is converted into
an internal energy and an advection energy.

5. General Properties of Critical Accretion Disks

In the previous two sections we show solutions of critical
accretion disks with winds for two simple cases: standard-like
and advection-like cases. Thanks to the critical condition (6),
both solutions are very similar, except for numerical factors. In
this section we discuss the general properties of critical accre-
tion disks.

5.1. Accretion Rates

For the present critical accretion disk, from the critical
condition (6), the mass-accretion rate Ṁ is expressed as

Ṁ =




Ṁinput for r ≥ rcr

16πcmp

9
√

3σT
r = Ṁinput

r

rcr
for r ≤ rcr.

(18)
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Hence, the mass-accretion rate Ṁin at the inner edge of the disk
is

Ṁin = Ṁinput
rin

rcr
= 0.51

LE

c2

rin

rg
. (19)

This means that the mass-accretion rate Ṁin at the inner edge
of the critical accretion disk is always of the order of LE/c2 =
Ṁcrit, provided that the inner radius rin is around rg, whereas the
mass-accretion rate Ṁinput at the outer edge can highly exceed
the critical rate Ṁcrit.

Using the above mass-accretion rate (18), the mass-loss rate
per unit surface area must be

2ρ̇H = − 1
2πr

dṀ

dr
=




0 for r ≥ rcr

−Ṁinput

2πrcr

1
r

for r ≤ rcr.
(20)

The total wind mass-loss rate Ṁwind is evaluated as

Ṁwind = Ṁinput

(
1− rin

rcr

)
. (21)

5.2. Black-Hole Growth Rate

If the central object is a black hole of mass M , it grows
via mass accretion. We can easily evaluate the growth rate
(growing time) of the black hole using the mass-accretion rate.

When the mass-accretion rate at the outer edge is smaller
than the critical rate, the mass-accretion rate at the inner edge
is equal to that at the outer edge, and the black-hole mass grows
linearly as

M = M0 + Ṁinputt, (22)

where M0 is the initial mass. In this case the growth time τgrowth
is M0/Ṁinput.

When the mass-accretion rate at the outer edge exceeds the
critical rate, on the other hand, the accretion rate at the inner
edge is suppressed, as in equation (19). In this case the black-
hole mass is determined by

dM

dt
= Ṁin = 0.51

LE

Mc2

rin

rg
M. (23)

Hence, the black-hole mass exponentially grows as

M = M0e
t/τgrowth, (24)

where the growth time is expressed as

τgrowth =
1

0.51
Mc2

LE

rg

rin
= 3.0× 108 3 rg

rin
yr. (25)

This timescale is about the Eddington timescale, which is the
growth timescale of a black hole under the Eddington rate.

5.3. Optical Depth

As already shown in equations (10) and (15), the optical
depth for electron scattering is sufficiently larger than unity in
the outer standard region as well as in the inner critical region.

When we consider both electron scattering and free-free
absorption, the opacity becomes

κ = κes + κff = 0.4 + 6.4× 1022ρT −3.5 cm2 g−1 (26)

for pure hydrogen plasmas. In this case, the effective optical
depth τ∗ is defined (Kato et al. 1998) by

τ∗ ≡√
κesκffρH (27)

for accretion disks.
For the present critical disk, this effective optical depth is

calculated for a standard-like critical disk as

τ∗ =




8.44× 10−3α−17/16m−1/16ṁ−2f −2
in (r/rg)93/32

for r ≥ rcr

3.22× 10−2α−17/16m−1/16f−2
in (r/rg)29/32

for r ≤ rcr,

(28)

where m = M/M� and ṁ = Minput/Mcrit. Hence, similar to the
case of the standard accretion disk, the effective optical depth
is small in the inner region of the disk.

5.4. Disk Luminosity

Using the surface temperature distributions (9) and (14), we
can roughly estimate the total luminosity emitted from the disk:

Ldisk =
∫ rcr

rin

2σT 4
eff2πr dr +

∫ ∞

rcr

2σT 4
eff2πr dr

=




2
3
√

3
3
4
√

c3


LE ln

rcr

rin
+

2
3
√

3
LE, (29)

where the first term is the luminosity from the inner critical
disk, the second one is that from the outer standard disk, and
the critical radius rcr is assumed to be sufficiently larger than
the inner radius rin. Moreover, in the first term the upper
factor in the bracket means the case of the standard-like critical
disk, while the lower factor means the advection-like disk,
respectively. Similar to usual supercritical disks without mass
loss, a part of generated energy via accretion is carried by
accreting gas and trapped photons into a black hole, instead
being radiated away. As a result, the total disk luminosity is
suppressed at the order of the Eddington luminosity, Ldisk∼LE.

In terms of expression (5), this total luminosity is further
rewritten as

Ldisk =
2

3
√

3







1

9
√

3
8

√
c3


 ln

(
1.95
rin/rg

ṁ

)
+ 1


LE. (30)

This relation (30) under a supercritical rate is very similar to
the case of the usual supercritical accretion disks (e.g., Watarai,
Fukue 1999; Watarai et al. 2000), when the accretion rate is
sufficiently higher than the critical rate (ṁ = Ṁinputc

2/LE � 1).
Indeed, Watarai et al. (2000) derived a similar expression by a
numerical calculation. The present analytical expression (30)
is very consistent with the result by Watarai et al. (2000) within
a factor of 3 for ṁ� 1 (the present case is less than their case).

5.5. Continuum Spectrum

For the present purpose, we assume that the disk surface
radiates blackbody radiation Bν with temperature Teff(r). Then,
the continuum spectrum (luminosity per frequency) Lν can be
calculated (see, e.g., Kato et al. 1998) by
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Lν = 2
∫ rout

rin

πBν(r)2πr dr, (31)

where a factor 2 means both sides of the disk, and

Bν(r) =
2h

c2

ν3

ehν/kBTeff(r) − 1
. (32)

For the present critical accretion disk, the surface tempera-
ture is expressed as [equation (9) or (14)]

Teff =

{
Tcr(r/rcr)−p1 for rin ≤ r ≤ rcr

Tcr(r/rcr)−p2 for rcr ≤ r ≤ rout,
(33)

where p1 = 1/2, p2 = 3/4, and Tcr the temperature at rcr. Hence,
the continuum spectrum (31) is written as

Lν = 2π
4πh

c2

r2
cr

p1

(
kBTcr

hν

)2/p1

ν3
∫ xcr

xin

x2/p1 − 1
ex − 1

dx

+ 2π
4πh

c2

r2
cr

p2

(
kBTcr

hν

)2/p2

ν3
∫ xout

xcr

x2/p2 − 1
ex − 1

dx, (34)

where

xin =
hν

kBTcr

(
rin

rcr

)p1

, (35)

xcr =
hν

kBTcr
, (36)

xout =
hν

kBTcr

(
rout

rcr

)p2

. (37)

As can be seen from equation (34), the slope of the
continuum breaks at hν ∼ kBTcr. In the low-frequency part,
where radiation from the outer standard disk is dominant, the
slope becomes νLν ∝ ν4−2/p2 = ν4/3, which is just that of the
standard disk. On the other hand, in the high-frequency part,
where radiation from the inner critical disk is dominant, the
slope is νLν ∝ ν4−2/p1 = ν0, which is just that of the supercrit-
ical disk. For the standard-like critical disk, the surface temper-
ature Tcr at the critical radius becomes

Tcr = 2.13× 107
(

M

M�

)−1/4 (
Ṁ

Ṁcrit

)−1/2

K, (38)

and the break energy at the spectrum is

hνcr ∼ kBTcr = 1.84
(

M

M�

)−1/4 (
Ṁ

Ṁcrit

)−1/2

keV. (39)

As was already stated, in the present critical disk with mass
loss, there exists a break in the slope of the surface tempera-
ture distribution at r = rcr. This nature may be common in the
case of supercritical disks with or without mass loss. That is, in
general there are two different slopes in the surface temperature
distribution as well as in the continuum spectrum for supercrit-
ical and/or critical accretion disks. However, in the reduction of
observational data or in the numerical fitting (e.g., Watarai et al.
2000; Mineshige et al. 2000), it has often been used a mean
value p of the slope. In order to treat the problem precisely, we
should use two values p1 and p2 for fittings.

6. Applications

In this section we apply the present model of critical accre-
tion disks to several active astronomical objects, including an
accretion disk around a black hole, which are supposed to be
under supercritical accretion: microquasars and narrow-line
Seyfert 1 galaxies.

6.1. Microquasars

Microquasars are highly luminous galactic X-ray sources
with mildly relativistic jets, such as SS 433, Cyg X-3, and
(maybe) 1E 1740.7−2942, or with highly relativistic super-
luminal jets, such as GRS 1915 + 105 and GRO J1655−40
(Mirabel, Rodrı́guez 1998). These microquasars are now
supposed to be stellar-mass black holes under supercritical
accretion (e.g., Watarai et al. 2000; Watarai, Mineshige 2003).
We thus apply the present critical disk to microquasars.

As typical values for microquasars, we adopt

M = 10M�M1, (40)

Ṁinput = 10−6 M� yr−1Ṁ−6, (41)

where M1 = M/(10M�) and Ṁ−6 = Ṁinput/(10−6 M� yr−1).
Therefore, the Schwarzschild radius is rg = 3 × 106 M1 cm,
the Eddington luminosity LE = 1.25 × 1039 M1 erg s−1, and
the critical accretion rate Ṁcrit = 2.21× 10−8 M1M� yr−1 (i.e.,
ṁ ∼ 100). In this case the critical radius is located at

rcr = 2.59× 108Ṁ−6 cm, (42)
= 5.71× 106M1 ṁ cm, (43)

which is ∼ 100rg.
For the case of a standard-like critical disk, several physical

quantities of critical accretion disks in microquasars are numer-
ically

H =

{
2.51× 107Ṁ−6 cm for r ≥ rcr

0.96× 105 r6 cm for r ≤ rcr,
(44)

Teff =

{
1.15× 108M

1/4
1 Ṁ

1/4
−6 r

−3/4
6 K for r ≥ rcr

2.87× 107M
1/4
1 r

−1/2
6 K for r ≤ rcr,

(45)

−vr =




2.29× 1013αM
1/2
1 Ṁ2

−6r
−5/2
6 cms−1

for r ≥ rcr

3.37× 108αM
1/2
1 r

−1/2
6 cms−1

for r ≤ rcr.

(46)

where r6 = r/(106 cm). These standard-like solutions as well as
several advection-like ones are plotted in figure 2.

In figure 2 several physical quantities of critical accretion
disks in microquasars are shown as a function of the radius (in
units of rg): i.e., (a) scale-height H in units of rg, (b) surface
temperature Teff, and (c) radial drift velocity −vr . As can be
easily seen in figure 2, for a typical microquasar the critical
radius rcr is located at around 100 rg. Outside rcr accretion disks
are in a radiation-pressure dominated standard state, while
inside rcr, we suppose, disks are in a critical accretion state,
where the mass-accretion rate is regulated just at the critical
rate via wind mass-loss. For such critical accretion disks, we
consider two types: one is a standard-like critical disk (dashed
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Fig. 2. Critical accretion disks in microquasars as a function of the
radius (in units of rg). The ordinates are (a) scale-height H in units
of rg, (b) surface temperature Teff, and (c) radial drift velocity −vr .
Outside the critical radius rcr accretion disks are in a radiation-pressure
dominated standard state, while for a disk inside rcr we consider two
types of critical accretion disks: one is a standard-like critical disk
(dashed curve), and the other is an advection-like critical disk (solid
curve). In the latter case, as an example, the parameter is γ = 4/3,
α = 1, and f = 0.1, 0.5, and 1 from the lower line to the upper line. A
chain-dotted line in (c) means the Keplerian velocity.

Fig. 3. Continuum spectra of critical accretion disks in microquasars.
The central black-hole mass is fixed as 10M�, while the mass accre-
tion-rate is 10−6 M� yr−1, 10−5 M� yr−1, and 10−4 M� yr−1, from
bottom to top.

curve), and the other is an advection-like critical disk (solid
curve). In the latter case, as an example, the parameter is
γ = 4/3, α = 1, and f = 0.1, 0.5, and 1 from a lower line to
an upper line. A chain-dotted line in (c) means the Keplerian
velocity.

As can be seen in figure 2, and already stated, in the
standard-like critical disk physical quantities are smoothly
connected at rcr, while this is not generally the case in the
advection-like critical disk. For example, the scale-height
thickens and the radial drift velocity approaches the Keplerian
speed as f increases (figures 2a and 2c).

The emergent spectra are shown in figure 3 for the case of
a standard-like critical disk. The central black-hole mass is
fixed as 10M�, while the mass accretion-rate is 10−6 M� yr−1,
10−5 M� yr−1, and 10−4 M� yr−1, from bottom to top. As
can be seen in figure 3, there exists a break in the continuum
spectrum. In addition, the maximum of νLν is always of the
order of the Eddington luminosity.

Recently, Kubota (2001) examined a microquasar XTE
J1550−564 through a spectral analysis. She found that the
temperature slope p shifts from 3/4 to 1/2 when its luminosity
slightly exceeds the Eddington luminosity. This result is
supposed to be evidence for a slim disk. As is well known,
there exists high mass loss in microquasars. Hence, under the
present picture, Kubota’s result may be reconsidered so that
the inner critical region extends with, e.g., an increase of the
accretion rate.

6.2. Narrow-Line Seyfert 1 Galaxies

Narrow-line Seyfert 1 galaxies have relatively narrow
Balmer-lines compared with those of a typical Seyfert 1, while
the other properties are similar to those of Seyfert 1 (e.g., Boller
et al. 1996). They exhibit extreme soft X-ray excess and large
variability in soft X-rays. These narrow-line Seyfert 1 galaxies
are supposed to contain relatively less massive black holes
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(∼ 105–6M�) under supercritical accretion (e.g., Mineshige
et al. 2000). We thus apply the present critical disk to narrow-
line Seyfert 1 galaxies.

As typical values for narrow-line Seyfert 1 galaxies, we
adopt

M = 106 M�M6, (47)

Ṁinput = 1M� yr−1Ṁ0, (48)

where M6 = M/(106M�) and Ṁ0 = Ṁinput/(1 M� yr−1).
Therefore, the Schwarzschild radius is rg = 3 × 1011M6 cm,
the Eddington luminosity LE = 1.25× 1044M6 ergs−1, and the
critical accretion rate Ṁcrit = 2.21 × 10−3 M6 M� yr−1 (i.e.,
ṁ ∼ 1000). In this case, the critical radius is located at

rcr = 2.59× 1014Ṁ0 cm, (49)
= 5.71× 1011M6 ṁ cm, (50)

which is ∼ 1000rg.
For the case of a standard-like critical disk, several physical

quantities of critical accretion disks in narrow-line Seyfert 1
galaxies are numerically

H =

{
2.51× 1013Ṁ0 cm for r ≥ rcr

0.96× 1010 r11 cm for r ≤ rcr,
(51)

Teff =

{
1.15× 107M

1/4
6 Ṁ

1/4
0 r

−3/4
11 K for r ≥ rcr

1.61× 106M
1/4
6 r

−1/2
11 K for r ≤ rcr,

(52)

−vr =




2.29× 1015αM
1/2
6 Ṁ2

0 r
−5/2
11 cms−1

for r ≥ rcr

3.37× 108αM
1/2
6 r

−1/2
11 cms−1

for r ≤ rcr.

(53)

where r11 = r/(1011 cm). These standard-like solutions as well
as several advection-like ones are plotted in figure 4.

In figure 4, several physical quantities of critical accretion
disks in narrow-line Seyfert 1 galaxies are shown as a function
of the radius (in units of rg): i.e., (a) scale-height H in units
of rg, (b) surface temperature Teff, and (c) radial drift velocity
−vr . As can be easily seen in figure 4, for typical narrow-line
Seyfert 1 galaxies the critical radius rcr is located at around
1000 rg. Outside rcr accretion disks are in a radiation-pressure
dominated standard state, while inside rcr, we suppose, disks
are in a critical accretion state, where the mass-accretion rate
is regulated just at the critical rate via wind mass-loss. For
such critical accretion disks, we consider two types: one is a
standard-like critical disk (dashed curve), and the other is an
advection-like critical disk (solid curve). In the latter case, as
an example, the parameter is γ = 4/3, α = 1, and f = 0.1, 0.5,
and 1 from a lower line to an upper line. A chain-dotted line
in (c) means the Keplerian velocity.

As can be seen in figure 4, and already stated, in the
standard-like critical disk the physical quantities are smoothly
connected at rcr, while this is not generally the case in the
advection-like critical disk. For example, the scale-height
thickens and the radial drift velocity approaches the Keplerian
speed as f increases (figures 4a and 4c).

The emergent spectra are shown in figure 5 for the case of
a standard-like critical disk. The central black-hole mass is

Fig. 4. Critical accretion disks in narrow-line Seyfert 1 galaxies as a
function of the radius (in units of rg). The ordinates are (a) scale-height
H in units of rg, (b) surface temperature Teff, and (c) radial drift
velocity −vr . Outside the critical radius rcr accretion disks are in a
radiation-pressure dominated standard state, while for a disk inside rcr
we consider two types of critical accretion disks: one is a standard-like
critical disk (dashed curve), and the other is an advection-like critical
disk (solid curve). In the latter case, as an example, the parameter is
γ = 4/3, α = 1, and f = 0.1, 0.5, and 1 from the lower line to the upper
line. A chain-dotted line in (c) means the Keplerian velocity.
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Fig. 5. Continuum spectra of critical accretion disks in narrow-line
Seyfert 1 galaxies. The central black-hole mass is fixed as 106M�,
while the mass accretion-rate is 1 M� yr−1, 10 M� yr−1, and
100M� yr−1, from bottom to top.

fixed as 106 M�, while the mass accretion-rate is 1M� yr−1,
10M� yr−1, and 100M� yr−1, from bottom to top. As can be
seen in figure 5, there exists a break in the continuum spectrum.
In addition, the maximum of νLν is always of the order of the
Eddington luminosity.

7. Concluding Remarks

In this paper we proposed a critical accretion disk, where the
mass-accretion rate is regulated just at the critical rate via the
wind mass-loss, inside some critical radius. We have analyti-
cally derived the critical radius and other physical quantities of
critical accretion disks.

1. The critical radius rcr is found to be rcr = (9
√

3σT/

16πcmp)Ṁinput = 1.95(Ṁinput/Ṁcrit)rg, where Ṁinput is
the mass-accretion rate at the outer edge of the disk,
Ṁcrit the critical accretion rate, and rg the Schwarzschild
radius of the central object.

2. Outside this critical radius, the disk is in a radiation-
pressure dominated standard state with constant thick-
ness (H = constant), while inside the critical radius the
disk is in a critical state with conical shape, like H ∼
(1/6

√
3)r .

3. The radial distribution of the surface temperature Teff
changes its slope at rcr: Teff ∝ r−3/4 at r ≥ rcr and
Teff ∝ r−1/2 at r ≤ rcr. In addition, the surface
temperature Tcr at the critical radius is Tcr = 2.13 ×
107(M/M�)−1/4(Ṁ/Ṁcrit)−1/2 K.

4. The radial infall velocity vr also changes its pattern at
rcr: vr ∝ r−5/2 at r ≥ rcr and vr ∝ r−1/2 at r ≤ rcr.

5. The disk is sufficiently optically thick for electron
scattering on both sides of the critical radius, whereas
the effective optical depth is small in the inner region.

6. The emergent spectra Lν of the critical accretion disk
have a break at some frequency νcr: νLν ∝ ν4/3 in
the low frequency part and νLν ∝ ν0 in the high
frequency part. The break energy is hνcr ∼ kBTcr =
1.84(M/M�)−1/4(Ṁ/Ṁcrit)−1/2 keV.

7. The total disk luminosity is found to be Ldisk ∼
(2/3

√
3)[ln(rcr/rin) + 1]LE, where rin is the inner radius.

We further apply the present critical accretion disk to micro-
quasars and narrow-line Seyfert 1 galaxies, which are supposed
to be under supercritical accretion.

There are two extreme possibilities for a disk state inside the
critical radius: one is the traditional supercritical disk without
any mass loss, and the other is the present critical disk with
mass loss. Although the realistic situation would lie between
these two extremes, observational facts of winds/jets support
the mass loss. In any case, the mass-loss rate is one main
parameter that determines the disk state inside the critical
radius. The amount of the mass-loss rate would be deter-
mined by the momentum deposition from photon to the gas
within unit time. If, however, there is an advection motion via
viscosity, the radial drift motion would influence the mass-loss
rate so as to reduce it.

In addition, for critical accretion disks, we examined two
minor versions: standard-like critical disks and advection-like
critical disks. As can be seen from the figures in the appli-
cations, advection-like critical disks approach standard-like
critical disks as the advection fraction f becomes small. In
other words, the advection fraction is another main parameter
that determines the structure of critical accretion disks. In the
present luminous case the advection fraction involves the effect
of photon trapping (e.g., Ohsuga et al. 2002, 2003). Hence,
the amount of the advection fraction would be determined by
the energy transfer rate in the radial and vertical directions:
some part of energy is advected inward via photon trapping
to be swallowed by a black hole, while some part is trans-
ferred upward via photon diffusion to escape, although some
part is transferred inward via diffusion to infall. Moreover, in
the realistic situation, the advection fraction may depend on
both the radius and the height. In order to evaluate the advec-
tion fraction quantitatively, the disk structure must be solved
under radiation hydrodynamics.

The present critical disk would give a new aspect on the
accretion disk model, in spite of its simpleness. In its appli-
cation, however, there remain several points that must be
considered with caution. First, the present critical accretion
disk has some geometrical thickness, similar to supercritical
accretion disks. Because of the geometrical thickness, several
effects appear, including a projection effect, self-occultation,
self-irradiation, and so on (see Fukue 2000 for the case of
supercritical disks). For example, due to self-occultation, the
disk luminosity decreases and the high energy part of the
spectrum drops when we see a disk with a sufficiently high
inclination angle. Second, since the present treatment is self-
similar, the boundary effect at the innermost region was not
correctly included. Moreover, we also neglected the relativistic
effect, which would be important at the innermost region.
Thirdly, within the framework of the analytical models, we
treat the critical radius as some discontinuity, although it is
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not a shock. More realistically, the outer standard disk would
smoothly connect to the inner critical disk at the critical radius.
Finally, the stability of the present critical disk and other time-
dependent behavior are left as future work.

This work has been supported in part by a Grant-in-Aid
for Scientific Research (15540235 JF) of the Ministry of
Education, Culture, Sports, Science and Technology.

Appendix. Supercritical Accretion Disks with Winds

In this appendix we describe a model of a supercritical
accretion disk, where a significant fraction of the accreting
gas is expelled as a superwind, under a self-similar treatment
(Watarai, Fukue 1999; Fukue 2000; Kitabatake et al. 2002).

A.1. Basic Equations

Let us suppose a gaseous disk rotating around and infalling
onto a central object of mass M . The disk is assumed to be
steady and axisymmetric. Although the disk is not infinites-
imally thin, but has a finite thickness, the physical quantities
are assumed to depend only on the radius r , and vertically
integrated equations are used.

Hence, the continuity equation integrated in the vertical
direction is expressed for the present purpose as

1
r

d

dr
(rΣvr ) = 2ρ̇H, (A1)

where Σ is the disk surface density, vr the radial velocity, ρ̇ the
mass-loss rate per unit volume, and H the disk half-thickness.

The momentum equation is

vr

dvr

dr
=

v2
ϕ

r
− GM

r2 − 1
ρ

d

dr

(
ρc2

s
)
, (A2)

where vϕ is the rotation velocity and cs is the sound speed,
which is defined as c2

s ≡ p/ρ, p being the pressure. There is
no net momentum gain/loss associated with the wind.

The angular momentum conservation is

rΣvr

d

dr

(
rvϕ

)
=

d

dr

(
2αρc2

s r
3H

ΩK

dΩ
dr

)
, (A3)

where α is the viscous parameter, Ω (= vϕ/r) the angular speed,
and ΩK the Keplerian angular speed. There is no net angular-
momentum gain/loss associated with the wind.

The hydrostatic balance in the vertical direction is

GM

r3 H 2 =
Π
Σ

= c2
s , (A4)

where Π is the vertically integrated pressure. There is no net
momentum gain/loss in the vertical direction associated with
the wind. Furthermore, we assume that the wind initial velocity
as well as the advection motion in the vertical direction is suffi-
ciently small, compared with the sound speed.

The energy equation becomes

Σvr

γ − 1
dc2

s

dr
+ 2Hc2

s

(
ρ̇ − vr

dρ

dr

)
=f

αΣc2
s r

2

ΩK

(
dΩ
dr

)2

, (A5)

where ρ (= Σ/2H ) is the gas density and f is an advec-
tion parameter. That is to say, the advection heating Qadv

is assumed to be expressed by the viscous heating Qvis as
Qadv = Qvis −Qrad = f Qvis, Qrad being the radiative cooling
(Narayan, Yi 1994). In this energy equation (A5), the term
associated with mass loss on the left-hand-side comes from
the work done by pressure with the help of the continuity
equation (A1).

A.2. Self-Similar Solutions

Although the simple self-similar model cannot describe the
innermost region and outer limb, it well reproduces the overall
structures in a non-relativistic regime. In the self-similar model
the velocities are assumed to be expressed as follows:

vr (r) = −c1αvK(r), (A6)

vϕ(r) = c2vK(r), (A7)

c2
s (r) = c3v

2
K(r), (A8)

where

vK(r) =

√
GM

r
, (A9)

and constants c1, c2, and c3 are determined later.
From the hydrostatic equation (A4), we obtain the disk half-

thickness H as

H/r =
√

c3 = tanδ. (A10)

Hence, a supercritical disk with winds also has a conical
surface, whose opening (half-thickness) angle is δ.

Assuming the surface density Σ to be in the form of

Σ = Σ0r
s, (A11)

we obtain, e.g.,

Π = Σc2
s = Σ0c3r

s GM

r
. (A12)

It should be noted that, for a self-similar disk without any wind
mass-loss, the suffix s is s = −1/2. On the other hand, for a
critical accretion disk in the present paper, the suffix s is s =
1/2, because of the restriction of a critical accretion rate (6).

Then, from the momentum, angular momentum, and energy
equations [(A2), (A3), and (A5)], we can determine the
constants uniquely as follows:

c1 =
1

3α2 h(α,ε′), (A13)

c2
2 =

2ε′

9α2 h(α,ε′), (A14)

c3 =
2

9α2 h(α,ε′), (A15)

where

ε′ =
1
f

(
5/3− γ

γ − 1

)
, (A16)

h(α,ε′) ≡
√(

2− s

s + 1
+ 2ε′

)2

+ 18α2

−
(

2− s

s + 1
+ 2ε′

)
. (A17)
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Fig. 6. Numerical factors ci ’s as a function of the advection parameter
f for several values of the viscous parameter α: (a) c1α (= −vr/vK),
(b) c2 (= vϕ/vK), and (c)

√
c3 (= cs/vK). The solid curves are for the

case of the present critical disk with mass loss (s = 1/2), whereas the
dashed ones are for the case of the supercritical disk without mass loss
(s = −1/2). The values of α are 0.1, 0.5, and 1. The ratio of specific
heats is set to be γ = 4/3.

When s is −1/2, these expressions reduce to those found by
Narayan and Yi (1994).

The parameters of the model are the ratio of the specific
heats γ , the standard viscous parameter α, and the energy-
advection fraction f .

Comparing the case without mass loss (s = −1/2) and the
case with mass loss (s > −1/2), for s > −1/2, ε′ decreases
and f increases. Hence, the effect of mass loss is similar to the
advection effect.

These parameter ci’s are shown in figure 6 as a function
of the advection factor f for several values of the viscous
parameter α. The solid curves are for the case of the present
critical disk with mass loss (s = 1/2), whereas the dashed ones
are for the case of the supercritical disk without mass loss
(s = −1/2). The values of α are 0.1, 0.5, and 1. The ratio
of specific heats is set to be γ = 4/3.

A.3. Radiation Properties

The surface flux and disk luminosity of the supercritical
model are derived as follows.

By assuming a dominance of the radiation pressure, we can
write the height-integrated pressure Π (= Σc2

s ) and the averaged
flux F as

Π = Πrad =
1
3
aT 4

c 2H =
8H

3c
σT 4

c , (A18)

F = σT 4
c =

3c

8H
Π =

3
8
cΣ0

√
c3GMrs−2, (A19)

where σ is the Stefan–Boltzmann constant. The optical thick-
ness of the disk in the vertical direction is

τ =
1
2
κΣ =

1
2
κΣ0r

s, (A20)

where κ is the electron-scattering opacity.
Hence, the effective flux and the effective temperature of the

disk surface become

σT 4
eff =

σT 4
c

τ
=

3c

4κ

√
c3

GM

r2 =
3
4
√

c3
LE

4πr2 , (A21)

It should be emphasized that the radiative appearance, such
as Teff, are not affected by the mass loss, although the pressure
Π and the averaged flux F depend on the mass-loss distribu-
tion. This can be understood as follows. When there is a wind
mass loss from the disk surface, the averaged flux F decreases
all over the disk, compared with the no-wind case. At the same
time, the surface density and optical depth decrease for the
mass loss case, compared with the no-wind case. That is, we
see the deep inside of the disk in the case with mass loss. As
a result, the effective temperature of the disk does not depend
on the mass loss, and the radiative appearance is similar to that
without mass loss.

A.4. Accretion Rates

Using the self-similar solutions, the mass-accretion rate is
expressed as

Ṁ = −2πrΣvr = Ṁinput

(
r

rout

)s + 1/2

, (A22)

where rout is the radius of the disk outer edge and Ṁinput is
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the accretion rate there. In the critical accretion disk, rout is
replaced by the critical radius rcr.

Because of the critical condition (6), we have imposed, for

the inner critical disk, that the mass-accretion rate should be
Ṁ ∝ r in the inner critical region; therefore, the parameter s is
fixed as s = 1/2.
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