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Recent investigations have utilized the measurement of the critical angle for reflection from a liquid-solid 
interface for determination of the elastic constants of the solid. For anisotropic media, this technique is 
appropriate only for certain special cases of the incident plane and reflecting surface. We discuss here the 
general condition for the critical angle in anisotropic media and show that for some planes in quartz, major 
errors may arise if one employs the ususl statement of Sncll's law for definition of the critical angle. 
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Recent investigators have utilized measurements of 
the critical angle for reflection from a liquid-solid in- 
terrace to measure phase velocities along the surface 
(see, for example, Refs. 1-3) and suggested that these 
velocities could then be used to determine the elastic 

constants. In addition, Diachok et al. 4 have determined 
the orientation of a quartz single crystal by determining 
the critical angles. In the experiments reported by 
these authors, the technique used was quite appropriate 
and led to results close to those predicted because of 
fortuitous selection of the reflection surfaces and inci- 

dent planes. We wish to point out here, however, that 
this technique can not be used in general for anisotropic 
solids, and, indeed, may lead to rather large errors if 
one does try to apply it without prior knowledge of the 
slowness surface for the solid. 

In the isotropic case, Snell's law of refraction states 
that the phase velocities of the incident and refracted 
waves are related by the expression vr/sinO r = VR/sinOR, 
where O r and 0 R are the angles between the incident and 
reflected wave vectors and the normal to the reflecting 
surface, respectively. Then, the critical angle of in- 
cidence, 0c, is assumed to occur when' 0 R becomes 
equal to 90 ø, and hence by this definition, the critical 
angie is given by 

sinOc= vr/v R . (1) 
Since the direction of the refracted wave at the critical 

angie is assumed to correspond to the direction of a 
body wave propagating along the boundary, Eq. 1 can be 
used to calculate vR for this known direction and a suffi- 
cient number of independent measurements will yield 
data from which the elastic constants can be determined. 

It has been recently pointed out, 5 however, that, in 
general, the critical angle occurs when the energy flux 
associated with the refracted wave becomes parallel to 
the interface of the two media and not when 8 R = 90 ø. 
For this general definition of the critical angle, the 
governing equations have too many unknowns to allow 
for determination of the elastic constants by the critical 
angle experimental technique unless one has prior 
knowledge of the slowness surface of the solid. The 
slowness surface, of course, depends in part upon the 
elastic constants. One is thus caught in a dichotomy. 

Thus, consider the dot product of the group velocity 6 

g and the vector b which is the vector component of all 
slowness vectors satisfying the reflecting-refraction 
problem on the interface, (see, for example, Fig. 1 
in Ref. 5). Since b can be written in terms of the re- 
fraeted wave as 5 rnR- xR •,, we have 

b.g=m R.g-zRv.g=l-zRv.g . (2) 

The last step follows from the fact that the slowness 
vector m R = nR/VR, where n R is the wave normal of the 
refracted wave, and from the fact that g. nR = vR. 7 Now 
when the critical angie occurs, according to the general 
definition given above, g becomes perpendicular to the 
interface normal •; and, therefore, at the critical angie 
of incidence, we have 

b,.g,=l . (3) 

The vector b is determined by the incident wave and, in 
fact, I b, I = sinS,/vxc. Thus, Eq. 3 can be rewritten in 
the form 

g, sine, cosf{, = vr, , (4) 
where fi is the angle between b and g and the subscript 
c indicates all values are evaluated at the critical angie. 
Finally, we can write Eq. {4) in terms of the phase ve- 
locity of the refracted wave by again making use of the 
relationship g. rn R = 1 =g cos•/v•,, where • is the angie 
between the normal to the refracted wave and its asso- 

ciated energy flux. Evaluating these quantities at the 
critical angie of incidence, we have the final general ex- 
pression for the critical angie: 

sin0c =v• cose, v•, cos•, ' (5) 
Again, for emphasis, we point out that in Eq. 5, vR, is 
not generally the phase velocity of a body wave propa- 
gating in a direction parallel to the interface between 
the two media; but rather, it is the phase velocity of a 
xvave which has its associated energy-flux vector paral- 
lel to the interface. This wave normal makes an angie 
4> with its energy flux. While the vectors b, mR, and 
p must all be eoplanar, E generally will not lie in this 
plane (the incident plane), and hence (p is not simply the 
angie between m R and the interface. Thus, in general, 
measurement of the critical angie •, will not be suffi- 
cient to determine vR, and hence neither the elastic con- 
stants nor the crystal orientation. The angles 8, and qb, 

204 J. Acoust. Soc. Am., Vol. 59, No. 1, January 1976 Copyright ¸ 1976 by the Acoustical Society of America 204 

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  128.173.126.47 On: Fri, 08 May 2015 20:48:36

mlohrey
Typewritten Text
Copyright by the Acoustical Society of America. Henneke, E. G. & Jones, G. L. (1976). Critical angle for reflection at a liquid-solid interface in single crystals. Journal of the Acoustical Society of America, 59(1), 204-205. doi: 10.1121/1.380847



205 Letters to the Editor 205 

26 

24 

_• 22 

•2o 
_ 

•18 

16 

14 

12 I 
0 20 40 60 80 100 120 

Angle Between Incident Plane and Y-Axis 

FIG. 1. Critical angle of incident, quasilongitudinal, and 
quasitransverse modes, versus incident angle for the classical 
Sne11's law (dotted lines) and for the modified law given in the 
text (solid lines). s 

must also be known, and these are related in a complex 
fashion to the elastic constants through the slowness 
surface of the solid. 

Figure 1 presents the results of numerical calcula- 
tions performed using the techniques discussed in Refs. 
5 and 8 for the critical angie at a plane interface be- 
tween water and quartz. For these calculations, the 
xy plane of quartz was fixed as the interface and the 
plane of incidence was varied by rotation about the z 
axis. The critical angie was then determined for each 
of the three possible refracted modes in quartz for an 
incident longitudinal wave in the water. In Fig. 1 the 
dotted curves give the results based upon the classical 
expression of Sne11's law while the solid curves delin- 
eate the results obtained on the basis of the new expres- 
sion given in Eq. 5. It is obvious from Fig. 1 that 

large errors may arise in measurement of the critical 
angle for certain incident planes and subsequent evalua- 
tion of the elastic constants. As previously stated, one 
can, with some effort, obtain the curves of Fig. 1 when 
the elastic constants are already known, but using the 
critical angle technique to calculate the elastic con- 
slants is impossible if one considers the full statement 
of Sneil's law in Eq. 5. 

It is also of interest to note in Fig. 1 that while there 
are indeed only three permitted body modes in quartz, 
in genersl five refracted waves are possible, leading to 
five distinct critical angles. This fact is due to the re- 
entrant contours of the slowness surface for the quasi- 
transverse mode 1 (Ref. 8). One should use care, how- 
ever, in applying Fig. 1 too freely to experimental re- 
sults. No calculations have as yet been made to deter- 
mine the refraction coefficients. It is possible that 
some of these modes have zero refraction coefficients 

for certain incident planes, and hence would never evi- 
dence themselves at the calculated critical angles. 
This is known to occur for the yz incident plane. How- 
ever, for other incident planes, preliminary calcula- 
tions do indicate that all five modes are generally re- 

. 

fracted. 
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