
Guidelines and Guidance

Critical Appraisal and Data Extraction for Systematic
Reviews of Prediction Modelling Studies: The CHARMS
Checklist
Karel G. M. Moons1"*, Joris A. H. de Groot1", Walter Bouwmeester1, Yvonne Vergouwe1, Susan Mallett2,

Douglas G. Altman3, Johannes B. Reitsma1, Gary S. Collins3

1 Julius Center for Health Sciences and Primary Care, UMC Utrecht, Utrecht, The Netherlands, 2 Department of Primary Care Health Sciences, New Radcliffe House,

University of Oxford, Oxford, United Kingdom, 3 Centre for Statistics in Medicine, University of Oxford, Botnar Research Centre, Windmill Road, Oxford, United Kingdom

Introduction

Prediction models, both diagnostic and prognostic, are becom-

ing increasingly abundant in the medical literature [1–3].

Diagnostic models are aimed at calculating the probability that

an individual has a certain disorder, such as deep vein thrombosis

[4,5], ankle fractures [6], or conjunctivitis [7]. Prognostic

prediction models concern the prediction of the probability or

risk of the future occurrence of a particular outcome or event in

individuals at risk of such an event. Prognostic models may involve

models for individuals with a particular health condition, such as

prediction of recurrence or death after diagnosis of breast cancer

[8] or mortality after cardiac surgery [9], but also includes models

for predicting the occurrence of future outcomes in apparently

healthy individuals such as the risk of developing a coronary event

[10] or type 2 diabetes mellitus [11].

There are over 100 models for predicting outcome after

brain trauma [12], over 60 models for breast cancer prognosis

[13], 45 models for cardiovascular events after being diagnosed

with diabetes [14], 43 models for predicting prevalent and

incident type 2 diabetes [15], and 20 models for predicting

prolonged intensive care stay after cardiac surgery [16].

Furthermore, prediction models are increasingly being ap-

praised and recommended for formal risk assessment in clinical

guidelines [17,18].

To evaluate the proliferation of prediction models, systematic

reviews are necessary and led to the formation of the Cochrane

Collaboration Prognosis Reviews Methods Group [19,20]. Since

then, search strategies for identifying prognostic and diagnostic

prediction model studies have been developed [21–23], validated,

and further refined [24].

However, no published checklists support the design of

systematic reviews of prediction modeling studies, or what to

extract and how to appraise primary prediction modelling studies.

Existing guidance for synthesizing studies of prognostic factors

[25,26] does not address studies of multivariable prediction

models. Instead, reviews of prediction model studies have created

their own checklist [2,12,14,15,27–30], with variable inclusion of

key details.

Our aim was to design a CHecklist for critical Appraisal and

data extraction for systematic Reviews of prediction Modelling

Studies (CHARMS). The checklist is designed to help form a

review question for and appraisal of all types of primary prediction

modelling studies, including, regressions, neural network, genetic

programming, and vector machine learning models [1–

3,12,14,15,27–30]. Some items, such as ‘‘selection of predictors

during multivariable modelling’’ and ‘‘model presentation’’, are

somewhat more specific to regression approaches. The checklist is

not intended for systematic reviews of primary studies of

prognostic factors, for which we refer to the QUIPS tool

[25,26], nor is it intended for prediction model impact studies in

which, in principle, a comparative (intervention) design is used
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Summary Points

N Publications on clinical prediction models have become
abundant for both prognostic and diagnostic purposes.
Systematic reviews of these studies are increasingly
required to identify and critically appraise existing
evidence.

N No specific guidance exists to help frame a well-defined
review question and determine which details to extract
and critically appraise from primary prediction modelling
studies.

N Existing reporting guidelines, quality assessment tools,
and key methodological publications were examined to
identify seven items important for framing the review
question and 11 domains to extract and critically
appraise the primary included studies.

N Together these items and domains form the CHecklist
for critical Appraisal and data extraction for systematic
Reviews of prediction Modelling Studies (CHARMS).
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[1,31,32]. Box 1 shows the types of prediction modelling studies

for which the CHARMS checklist was developed.

Development of the Checklist

We developed our checklist based on published risk of bias tools,

existing critical appraisal checklists for systematic reviews of

randomised therapeutic trials and diagnostic test accuracy

research, methodological recommendations for conduct and

reporting of prediction model research, and data extraction sheets

used in published reviews of prediction modelling studies after

contacting authors.

First, we reviewed the existing reporting guidelines for other

types of clinical research including CONSORT, REMARK,

STARD, STROBE, GRIPS [33–37] and for the reporting of

systematic reviews (PRISMA) [38]. Furthermore, we considered

existing quality assessment tools including the Cochrane Risk of

Bias tool [39] for randomised therapeutic studies, QUADAS (and

QUADAS-2) for diagnostic accuracy studies [40,41], and the

QUIPS checklist for appraisal of prognostic factor studies [25,26].

We then reviewed published systematic reviews of prediction

models and prognostic factor studies, along with the checklists or

quality appraisal criteria used in those reviews [12,27–29,42–46].

Finally, we identified key methodological literature discussing

recommended approaches for the design, conduct, analysis, and

reporting of prediction models, followed by a search of the

corresponding reference lists [3,19,31,32,37,47–59].

Initial pilot versions of this checklist were presented and

discussed at the annual Cochrane Prognosis Methods Group

meetings and workshops from 2010–2014, held during the

Cochrane Collaboration Colloquia, and modified based on

feedback received during these meetings. Consecutive iterations

of the checklist were applied, tested, and modified in various

systematic reviews of prediction models [2,14–16,29,60–62],

which ultimately led to the current checklist. For the actual

reporting of systematic reviews of prediction models, we refer to

the PRISMA statement [38].

The Checklist

The checklist contains two parts. Table 1 summarises key items

to guide the framing of the review aim, search strategy, and study

inclusion and exclusion criteria. Table 2 and Text S1 describe the

overall domains and specific items within each domain to extract

from the reports of primary prediction modelling studies in light of

the review question, with a view to evaluate risk of bias and

applicability.

Risk of bias refers to the extent that flaws in the design, conduct,

and analysis of the primary prediction modelling study lead to

biased, often overly optimistic, estimates of predictive performance

measures such as model calibration, discrimination, or (re)classi-

fication (usually due to overfitted models). Applicability refers to

the extent to which the primary study matches the review

question, and thus is applicable for the intended use of the

reviewed prediction model(s) in the target population.

Guidance to frame the review question, search strategy,
and study inclusion and exclusion criteria

Table 1 addresses seven key issues (i.e., prognostic versus

diagnostic prediction model, intended scope of the review, type of

prediction modelling studies [see also Box 1], target population to

whom the prediction model applies, outcome to be predicted, time

span of the prediction, and intended moment of using the model)

that are helpful for systematic reviewers to frame the review

question and design the review. A focused review question enables

researchers to develop a tailored search strategy and to define the

inclusion and exclusion criteria—and thus the applicability—of

primary studies included in the review.

At the outset, the reviewer should decide whether the aim is to

review prognostic or diagnostic models (item 1) and define the

scope of the review (item 2). It is then important to decide whether

to include model development studies, model validation studies, or

both (item 3 and Box 1). For example, if the review aims to assess

the performance of a specific prediction model, then only external

validation studies of that model are applicable for the review.

Defining the target population of the prediction model(s) under

review (item 4) and the outcome(s) to be predicted (item 5) are

related items that are particularly important to indicate the

Box 1. Types of Prediction Modelling Studies

N Prediction model development studies without external
validation aim to develop a prognostic or diagnostic
prediction model from the dataset at hand: the
development set. Such studies commonly aim to identify
important predictors for the outcome under study,
assign mutually adjusted weights per predictor in a
multivariable analysis, develop a final prediction model,
and quantify the predictive performance (e.g., discrim-
ination, calibration, classification) of that model in the
development set. As model overfitting may occur,
particularly in small datasets, development studies
ideally include internal validation using some form of
data re-sampling techniques, such as bootstrapping,
jack-knife, or cross-validation, to quantify any optimism
in the predictive performance of the developed model.

N Prediction model development studies with external
validation in independent data have the same aim as
the previous type, but the development of the model is
followed by quantifying the model’s predictive perfor-
mance in participant data external to the development
dataset. This may be done in participant data collected
by the same investigators, commonly using the same
predictor and outcome definitions and measurements,
but from a later time period (temporal or narrow
validation), or by other investigators in another hospital
or country (geographical or broad validation).

N External model validation studies with or without model
updating aim to assess and compare the predictive
performance of an existing prediction model using new
participant data that were not used to develop the
prediction model and possibly adjust or update the
model in case of poor performance based on the
validation data.

Prediction studies exploring which predictors indepen-
dently contribute to the prediction of a particular
prognostic or diagnostic outcome as well as studies aimed
at quantifying the impact of using a prediction model (on,
e.g., clinical decision making, patient outcomes, or cost-
effectiveness of care) relative to not using the model may
also be considered in a systematic review of prognostic
and diagnostic prediction models [2]. However, data
extraction and critical appraisal of those types of predic-
tion studies is very different as they have different aims,
designs, and reporting issues compared to studies
developing or validating prediction models. Therefore,
here we explicitly focus on reviews of studies aimed at
developing, validating, or updating a prediction model.
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potential usefulness and application of the review results. For

example, relevance to physicians and patients is enhanced by

models that predict patient-relevant outcomes, such as death, pain,

or recurrence of disease, rather than those that predict process

outcomes such as duration of hospital stay or intermediate

outcomes, except when there is a clear and established causal

association with a subsequent patient-relevant outcome (e.g.,

predicting CD4 count instead of complications in patients with

HIV [47]).

Prognostic models commonly have a better predictive accuracy

for short-term outcomes than for long-term outcomes (item 6)

[63]. However, predicting long-term outcomes may sometimes be

more relevant from a patient perspective, though this is obviously

questionable in very elderly individuals [64].

Finally, clarifying when the model is intended to be used is

important to define what sorts of models are relevant for the

review (item 7). Models that incorporate predictors collected after

this predefined time point are inappropriate. For example, if the

aim is to review prognostic models to preoperatively predict the

risk of developing post-operative pain within 48 hours after hip

surgery, studies including intraoperative characteristics are not

useful.

In Box 2 we give various examples of potential review questions

of both prognostic and diagnostic models.

Relevant items to extract from individual studies
The key items to be extracted from each primary study are

grouped within 11 domains. Similar to critical appraisal checklists

for systematic reviews of randomised therapeutic and diagnostic

accuracy studies, these address potential sources of bias in the

primary studies and issues that may affect the applicability of the

results in relation to the intended use of the prediction models.

Source of data. Data from cohort, nested case-control, or

case-cohort studies are recommended for prognostic model

development and validation studies, and cross-sectional designs

for diagnostic modelling studies [47,58,59,65–67]. Clearly, a

prospective cohort design is preferable, as it enables optimal

measurement of predictors and outcome. However, prospective

studies evaluating (validating) the performance of an existing

model predicting a long-term outcome, e.g., ten-year survival, may

be too costly or the results insufficiently timely. Retrospective

cohorts typically have a longer follow-up period, but usually at the

expense of poorer data quality and unmeasured predictors [13]. A

non-nested case-control design, as opposed to a nested case-

control or case-cohort design, is inappropriate for developing a

prediction model since the design does not enable calculation of

absolute risks and thus yields incorrect estimates of model intercept

or baseline hazard [65–68].

Randomised trials are a specific form of a prospective cohort

study and thus share its advantages. However, restrictive

eligibility criteria for entry into the trial may hamper generaliz-

ability of the prediction model. Furthermore, treatments shown to

be effective in the trial should be acknowledged and possibly

accounted for in the prediction model, as they may affect the

predictive accuracy of the prognostic model [47,56]. Finally, data

from existing registries (e.g., administrative or routine care

hospital databases) are increasingly used in prediction modelling

studies. However, such databases are especially prone to missing

Table 1. Key items to guide the framing of the review aim, search strategy, and study inclusion and exclusion criteria.

Item Comments and examples

1. Prognostic versus diagnostic prediction model Define whether the aim is to review models to predict:

N Future events: prognostic prediction models

N Current (disease) status: diagnostic prediction models

2. Intended scope of the review Define intended scope of the review and intended purpose of the models reviewed in it. Examples:

N Models to inform physicians’ therapeutic decision making

N Models to inform referral to or withholding from invasive diagnostic testing

3. Type of prediction modelling studies (see also Box 1) Define the type of prediction modelling studies to include. Examples of study types (Box 1):

N Prediction model development without external validation in independent data

N Prediction model development with external validation in independent data

N External model validation, possibly with model updating

4. Target population to whom the prediction
model applies

Define the target population relevant to the review scope. Examples:

N Women with diagnosed breast cancer

N Healthy adult men in the general population

5. Outcome to be predicted Define the outcome of interest to be predicted:

N Specific future event, such as a fatal or non-fatal coronary heart disease

N Specific diagnostic target disease, such as presence of lung embolism

6. Time span of prediction Define over what specific time period the outcome is predicted (prognostic models only). Example:

N Event within a specific time interval, such as event within 3 months, 1 year, or 10 years

7. Intended moment of using the model The systematic review may focus on models to be used at a specific moment in time. Examples:

N Models to be used at the moment of diagnosis of a particular disease

N Models to be used preoperatively to predict the risk of postoperative complications

N Models to be used in asymptomatic adults to detect undiagnosed type 2 diabetes mellitus

doi:10.1371/journal.pmed.1001744.t001
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Table 2. Relevant items to extract from individual studies in a systematic review of prediction models for purposes of description
or assessment of risk of bias or applicability.

Domain Key items General Applicability
Risk of
bias

Source of data N Source of data (e.g., cohort, case-control, randomised trial participants,
or registry data)

X X

Participants N Participant eligibility and recruitment method (e.g., consecutive participants,
location, number of centres, setting, inclusion and exclusion criteria)

X X

N Participant description X X

N Details of treatments received, if relevant X X

N Study dates X X

Outcome(s) to be
predicted

N Definition and method for measurement of outcome X X

N Was the same outcome definition (and method for measurement) used
in all patients?

X

N Type of outcome (e.g., single or combined endpoints) X X

N Was the outcome assessed without knowledge of the candidate
predictors (i.e., blinded)?

X

N Were candidate predictors part of the outcome (e.g., in panel
or consensus diagnosis)?

X

N Time of outcome occurrence or summary of duration of follow-up X

Candidate predictors
(or index tests)

N Number and type of predictors (e.g., demographics, patient history,
physical examination, additional testing, disease characteristics)

X

N Definition and method for measurement of candidate predictors X X

N Timing of predictor measurement (e.g., at patient presentation,
at diagnosis, at treatment initiation)

X

N Were predictors assessed blinded for outcome, and for each other (if relevant)? X

N Handling of predictors in the modelling (e.g., continuous, linear,
non-linear transformations or categorised)

X

Sample size N Number of participants and number of outcomes/events X

N Number of outcomes/events in relation to the number of candidate predictors
(Events Per Variable)

X

Missing data N Number of participants with any missing value (include
predictors and outcomes)

X X

N Number of participants with missing data for each predictor X

N Handling of missing data (e.g., complete-case analysis, imputation,
or other methods)

X

Model development N Modelling method (e.g., logistic, survival, neural networks, or
machine learning techniques)

X

N Modelling assumptions satisfied X

N Method for selection of predictors for inclusion in multivariable modelling
(e.g., all candidate predictors, pre-selection based on unadjusted association
with the outcome)

X

N Method for selection of predictors during multivariable modelling (e.g.,
full model approach, backward or forward selection) and criteria used
(e.g., p-value, Akaike Information Criterion)

X

N Shrinkage of predictor weights or regression coefficients (e.g., no shrinkage,
uniform shrinkage, penalized estimation)

X X

Model performance N Calibration (calibration plot, calibration slope, Hosmer-Lemeshow test)
and Discrimination (C-statistic, D-statistic, log-rank) measures with
confidence intervals

X

N Classification measures (e.g., sensitivity, specificity, predictive values, net
reclassification improvement) and whether a priori cut points were used

X

Model evaluation N Method used for testing model performance: development dataset only
(random split of data, resampling methods, e.g., bootstrap or cross-validation,
none) or separate external validation (e.g., temporal, geographical, different
setting, different investigators)

X
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data and missing important predictors, which can affect the

predictive accuracy and applicability of the resulting prediction

model [31,56,58,69].
Participants. The participant recruitment method is impor-

tant to establish whether the study population is representative of

the target population. A review of 83 diagnostic prediction models

for detection of ovarian malignancy found that studies often

sampled participants non-consecutively [70], increasing the risk of

bias due to selective sampling [42,56,71]. Also, it is important to

ascertain from the publication whether all included participants

were eventually used to develop or validate the prediction model

[15,56]. Selective inclusion based on data availability is likely to

influence the predictive accuracy of the prediction model, as study

data are seldom missing completely at random but are often

missing in a selective and biased way (see section below on missing

data).

Participant description, including inclusion and exclusion

criteria, study setting (e.g., primary or secondary care), and

number of centres, is important to allow for proper assessment of

the applicability and thus generalizability of the study findings

[40,41,56,72]. For reviews of a single model that has been

validated in different study samples, differences or heterogeneity in

study design, sample characteristics, and setting that will affect the

performance of the prediction model should be determined. For

example, prediction models developed in secondary care perform

less well when evaluated in a primary care setting [73,74]. Reviews

of prognostic models for patients with breast cancer [56] and

patients with lower back pain [75] have identified that participant

characteristics were often poorly reported.

The performance of prediction models may also vary depending

on whether the study participants have received any treatment

(including self-administered interventions) that may modify the

outcome occurrence. It is therefore important to determine

whether the review addresses treated or non-treated individuals

or both, and whether the treatment effects (i.e., treatment

predictors) were handled appropriately in the models. Finally,

the dates of participant recruitment provide important information

on the technological state of the tests and treatments used, and the

lifestyle factors at that time. The predictive accuracy of models

may change over time and require periodic updating [76], as was

done for the QRISK models [77].

Outcome to be predicted. The definition and measurement

of the outcome event (prognostic models) or the target disease

(diagnostic models) in the primary studies should correspond to the

outcome definition of the systematic review question. Different

outcome definitions and measurement methods may lead to

differences in study results and are a source of heterogeneity across

studies and thus risk of bias. Occasionally a different definition of

outcome is intentional to examine the usefulness of a model to

predict alternative outcomes. For example, one may intentionally

seek to validate for non-fatal events a model originally developed

for predicting fatal events. A review of cancer prognostic models

found that outcomes were poorly defined in 40% of the studies

[60,78]. It was often unclear whether mortality referred to cancer

mortality or overall mortality from any cause, and in the definition

of disease-free survival it was unclear which events were included.

In diagnostic modelling studies, establishing the presence or

absence of the target disease is known as verification by a reference

standard. Primary studies on the same target disease frequently use

different reference standards which may have different accuracy

for determining the true target disease status, potentially compro-

mising the validity of study results; using a suboptimal reference

standard may lead to misclassification of the target disease [79–

81].

Some modelling studies use a combined outcome; for example,

cardiovascular disease often comprises myocardial infarction,

angina, coronary heart disease, stroke, and transient ischaemic

stroke. A combined outcome is considered easily translatable to

clinical practice or to achieve a higher effective sample size, but

could lead to important predictors not being identified, as

predictors may have opposite predictive effects in the component

outcomes, causing their predictive contributions to cancel each

other out. Reviewing and summarising predictors in models using

combined outcomes is particularly challenging [82,83]. In studies

validating a prediction model for a combined outcome, the

number and severity of individual component outcomes may differ

markedly from the derivation study, potentially affecting the

predictive accuracy of the model in the validation dataset [84].

When available, the systematic review should record the frequency

of the individual components in the combined outcome to enable

comparison across studies. If this information is not reported in the

Table 2. Cont.

Domain Key items General Applicability
Risk of
bias

N In case of poor validation, whether model was adjusted or updated
(e.g., intercept recalibrated, predictor effects adjusted, or new predictors
added)

X X

Results N Final and other multivariable models (e.g., basic, extended, simplified)
presented, including predictor weights or regression coefficients, intercept,
baseline survival, model performance measures (with standard errors or
confidence intervals)

X X

N Any alternative presentation of the final prediction models, e.g., sum
score, nomogram, score chart, predictions for specific risk subgroups
with performance

X X

N Comparison of the distribution of predictors (including missing data)
for development and validation datasets

X

Interpretation and
Discussion

N Interpretation of presented models (confirmatory, i.e., model useful
for practice versus exploratory, i.e., more research needed)

X X

N Comparison with other studies, discussion of generalizability,
strengths and limitations

X X

doi:10.1371/journal.pmed.1001744.t002
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primary study and cannot be retrieved by contacting the study

authors, then this should be reported in the systematic review.

In diagnostic studies the importance of assessing the reference

test without knowledge of (i.e., blinded to) the results of the index

tests is well established [35,40,54,69,79,80,85]. The same issue is

also important in prognostic studies where the assessor of the

outcome occurrence should be blinded to ascertainment of the

predictor [47,48]. In the absence of blinding, the predictive ability

of the model may be overestimated because the predictors may be

used in assessing the outcome. Blinded outcome assessment, in

both diagnostic and prognostic studies, is most important when

outcomes require subjective interpretation (e.g., results from

imaging) that could be biased by knowledge of predictors. For

so-called ‘‘hard’’ outcomes, such as overall mortality, blinded

outcome assessment is less important. However, cause-specific

mortality may include subjective interpretation so that knowledge

of the predictors could bias outcome assignment. Several reviews

have reported that many studies did not blind the outcome

measurement for the candidate predictors [70,81,86,87].

A special case of incorporating the predictor information in the

outcome assessment is the use of so-called consensus or expert

panel outcome assessments. This is often used in diagnostic studies

for target diseases where the reference standard used in practice is

known to include a subjective assessment of information

[52,54,88,89]. Here, a consensus panel typically uses all available

information on the study participants, including the predictors (or

index tests) under study, to determine whether the target disease is

present. The results of the predictors are directly and deliberately

incorporated in the assessment of the target condition, usually

leading to optimistic predictive accuracy of the developed models.

This specific form of non-blinded outcome assessment bias is

commonly referred to as ‘‘incorporation bias’’ [52,88,89].

In the prognostic setting, retrieval of the follow-up period or a

summary of the follow-up from the primary studies deserves

special attention. Disappointingly, these key details are often

poorly reported [72,75]. A recent review found the number of

participants with ten years follow-up was frequently not reported,

even in studies validating prognostic models predicting a ten-year

outcome [15].

Candidate predictors. Candidate predictors may range

from simple patient demographics and clinical characteristics to

advanced test results. We emphasise that candidate refers to the

predictors chosen to be studied for their predictive performance,

and not restricted to those included in the multivariable analysis

[59]. The number of candidate predictors analysed in the primary

studies is highly important. Together with the number of

participants with the outcome (i.e., those with the event or the

target disease) they contribute to the assessment of whether the

model is likely to be overfitted. Overfitting occurs when

idiosyncratic features of the development data attain spurious

statistical significance and are retained in the final model: the

model is too closely tailored to the data at hand [51,58]. These

models do not produce inaccurate predictions in the dataset from

which they are developed, but they do when applied to other

individuals. Predictions tend to be too extreme; low predicted risks

will be too low and high predicted risks too high. Overfitting thus

leads to models that are not transportable or generalizable.

Different definitions and measurement methods of candidate

predictors are a potential source of heterogeneity and thus risk of

bias, and the use of different measurement methods may affect the

strength of predictors and influence whether the predictors

ultimately are included in the prediction model [42,61]. For

example, type 2 diabetes mellitus, a known risk factor and

therefore predictor for cardiovascular disease, can be defined by

an oral glucose tolerance test, HbA1c measurement, fasting

plasma glucose measurement, or even by self-report. These

different predictors may have different predictive effects in the

Box 2. Examples of Systematic Reviews of
Prognostic or Diagnostic Prediction Models
with Different Aims

Reviews of prediction models for specific target
populations (development and/or validation)

N Existing models for predicting the risk of having
undiagnosed or developing (incident) type 2 diabetes
in adults [15].

N Prognostic models for activities of daily living, to be used
in the early post-stroke phase [46].

Reviews of prediction models for specific outcomes
in a target population (development and/or
validation)

N Prognostic models for survival, for independence in
activities of daily living, and for getting home, in patients
with acute stroke [27].

N Prediction models for diagnosis of venous thromboem-
bolism in patients suspected of having the disease [28].

Review of the performance of one or more specific
models (validation)

N Predictive performance of the EuroSCORE for operative
mortality following cardiac surgery when validated in
other patient samples [139].

N Relative predictive performance of specific prognostic
models for occurrence of cardiovascular disease when
applied in general populations [44].

Reviews of all existing models in a particular
clinical field (development and/or validation)

N Existing prognostic models in reproductive medicine
[29].

N Existing prognostic models in the traumatic brain setting
[12].

Review of methods and reporting of prediction
models (development and/or validation)

N Quality of reporting of diagnostic and prognostic
modelling studies published in high impact general
medical journals or in a specific time period [2,48].

N Reporting and methods used to develop prognostic
models in cancer [60].

Review of added value of specific predictor or
updating of a specific model (development and/or
validation)

N Added predictive value of C-reactive protein to the
Framingham risk scores [134].

N Added predictive value of carotid imaging markers to
existing cardiovascular predictors in the general popu-
lation [140].
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multivariable models. Also, models including predictors measured

using routinely accessible equipment are likely more generalizable

than predictors measured with less available techniques [61]. As

with the outcome, the definition and measurement method of the

predictors may sometimes be intentionally different when evalu-

ating an existing model in a separate dataset. The review should

highlight differences in definitions or measurement methods of any

of the predictors, so readers can place the results in context.

Candidate predictors that can vary over time should be

available and measured at the time of intended use of the

prediction model, not at a later moment in time or after the

outcome has occurred [47,90].

As described for outcome assessment, measurement of predic-

tors with knowledge of outcome information may inflate the

predictive accuracy of the predictors and thus of the final

prediction model. This concern particularly applies to predictors

requiring subjective interpretation. In prospective studies, predic-

tor assessment is inherently blinded, as it is completed prior to

outcome occurrence. It may also be important to blind assessment

of predictors to each other, particularly if a review seeks to address

the predictive contribution of an additional subjective predictor

beyond previously obtained predictors. For example, if the

predictive ability of an MRI in addition to laboratory measure-

ments is studied, the MRI should be interpreted blinded to the

laboratory measurements to reduce possible bias [73,91].

The methods used to handle predictors in the analysis can

influence which predictors are selected for inclusion in the model

and so affect model predictions. Continuous or categorical

predictors are frequently dichotomised for the analysis

[2,42,56,60,78] despite strong evidence and recommendations to

the contrary [92–94]. Categorisation assumes a constant risk up to

the cut-point and then a different risk beyond the cut-point, which

is implausible and nonsensical. In addition, dichotomising discards

information and commonly results in a loss of power [93].

Dichotomising predictors, particularly when choosing a so-called

‘‘optimal’’ cut point based on data from one study, often causes

selection of spurious predictors and overfitting, reducing the

reliability and applicability of model predictions in new patients

[55,93–96].

Sample size. One of the biggest concerns when developing a

prediction model is the risk of overfitting. For dichotomous

outcomes, overfitting typically arises when the number of

individuals with the outcome (event or target disease) of interest

is small relative to the number of variables. The number of

variables includes all candidate predictors, transformations for

continuous predictors, indicator variables for categorical predic-

tors, and interactions examined. The number of events-per-

variable (EPV) is commonly used to calculate the sample size,

where attaining a sample size with an EPV of ten or more is

frequently recommended to avoid overfitting [97–101]. For studies

validating prediction models, sample size considerations are not

well established, but a minimum of 100 events and 100 non-events

have been suggested [102]. For continuous outcomes, 20

participants per predictor have been recommended [51].

A systematic review should therefore record both the number of

individuals in the study and the number of individuals with the

outcome or target disease. Numerous systematic reviews of

prediction models have reported that the number of events per

candidate predictor is often poorly reported and, when it is

reported, that the EPV is often less than ten [2,15,56,78].

Missing data. In all types of medical studies, including

prediction modelling, some data is not available or not recorded.

Differences between studies in the extent and type of missing data

and the methods used to handle this missing data may greatly

influence model development and predictive performance.

Knowing the number of participants with any missing data across

all included studies and whether these participants were included

in model development or validation is important to understanding

possible biases in prediction modelling studies. However, reporting

on the frequency and type of missing data is often poor

[2,15,56,62,78,103–105] despite the adverse effects of missing

data on development, validation, and updating of a prediction

model [34,103,105–112]. These adverse effects are related to the

amount of missing data [112] and the extent to which data are

missing completely at random [108,111]. Missing data are seldom

missing completely at random; the missing data are often related

to other observed participant data. Consequently, participants

with completely observed data are different from those with

missing data. A so-called complete-case analysis, which simply

deletes participants with a missing value, thus leaves a non-random

subset of the original study sample, yielding invalid predictive

performance, both when developing and when validating a

prediction model. Only if omitted participants are a completely

random subset of the original study sample will the estimated

predictor-outcome associations and predictive performance mea-

sures of the prediction model be unbiased [113]. Multiple

imputation is generally acknowledged as the preferred method

for handling missing data in prediction research. In this strategy,

missing observations are substituted by plausible estimated values

derived from analysis of the available data. However, when data

are ‘‘missing not at random’’, i.e., missing data is still partly due to

unobserved data or characteristics of the participants, multiple

imputation does not sufficiently solve the invalidity problem

[107,112,113].

Detailed reporting in primary studies on whether missing data

may reasonably be missing at random (by comparison of the

participants with and without missing values) is invaluable for

reviewers to judge the potential for bias. Numerous recommen-

dations for reporting missing data in medical research have been

proposed [103,104,114,115]. It is therefore important during the

systematic review to record from the primary studies whether the

presence of missing data (how much and how handled) was

mentioned.

Model development. In appraising studies that include

model development, first the type of model (e.g., logistic, survival,

machine learning, other models) used should be assessed. It is

important to summarise and understand key components that

might lead to bias and variability between models. An important

source of bias in model development is in the method of selecting

the final predictors, especially in studies with a small sample size.

We split the selection of predictors into two components, the

selection of predictors for inclusion in the multivariable analysis

and selection during multivariable modelling. The use of different

predictor selection methods and criteria for predictor inclusion

across studies may yield different models and different amounts of

bias. These issues should thus be carefully documented during the

review.

Selection of predictors for inclusion in multivariable modelling. In

some model development studies, predictors are selected for

inclusion in the multivariable modelling based on the association

of each candidate predictor with the outcome. Although common,

such screening or pre-selection based on univariable significance

testing carries a great risk of so-called predictor selection bias

[51,56,58,116]. Predictor selection bias occurs when predictors

selected for inclusion in multivariable modeling have a large but

spurious association with the outcome. Including such predictors

increases the likelihood of overfitting and thus over-optimistic

predictions of a model’s performance for other individuals.
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Furthermore, predictors that show no association with the

outcome in univariable analysis because of small sample size

may become associated with the outcome after adjustment for

other predictors. The risk of predictor selection bias is greater in

smaller datasets (when the EPV ratio is small), and when there are

notably weak predictors.

Bias in predictor selection may also occur when continuous

predictors are categorised. As discussed, it is recommended to keep

continuous variables continuous and to check whether nonlinear

transformations (e.g., using restricted cubic splines or fractional

polynomials) are indicated [45,51,58,93,94,96].

The systematic review should record how many candidate

predictors were examined, any methods used to select predictors,

and any methods used to transform predictors prior to inclusion in

the multivariable analysis to assess risk of bias.

Selection of predictors during multivariable modelling. Just as the

selection of predictors for inclusion in the multivariable modelling

can contribute to optimistic and biased models due to overfitting,

so can the selection of predictors during multivariable modelling.

There is no consensus on the best method, but certain methods

have been shown to be less useful and increase the risk of model

overfitting, such as forward selection techniques [51,55,58,117].

Two of the most commonly used methods are the ‘‘full model

approach’’, and ‘‘backward elimination’’. The full model approach

pre-specifies all predictors in the final model and no predictors are

omitted, which avoids predictor selection bias [51,58]. Whilst this

approach sounds attractive, it requires substantive prior knowledge

about the most promising candidate predictors [59], which is not

always straightforward. Backward elimination starts with all

candidate predictors in the model and runs a sequence of

statistical tests to remove them from or keep them in the model

based on a pre-specified criterion. Possible criteria for predictor

inclusion include Akaike or Bayesian Information Criterion, the

use of a nominal p-value (e.g., ,0.05 based on the log likelihood

ratio test in regression approaches), or using a change in the

model’s c-index (see below) [58]. The choice of a relatively small

nominal significance level for predictor selection (e.g., p-value,

0.05 or even ,0.01) generates models with fewer predictors, but

increases the chance of missing potentially important predictors,

while larger levels (e.g., p,0.20 or p,0.25) increase the risk of

selecting less important predictors. In both cases, overfitting may

arise, particularly in small datasets [51,55,58,59].

To address possible overfitting of a model, shrinkage techniques

can be used to adjust the estimated weights of the predictors. The

corresponding adjusted estimates of predictive performance are

likely to be closer to the predictive accuracy that will be found

when the developed model is applied to other individuals. Hence,

studies that develop prediction models that are adjusted or shrunk

are less prone to bias. The need for use of shrinkage methods

increases with smaller datasets, although in datasets with a low

number of EPV, even shrinkage methods cannot account for all

bias [51,58,117,118].

Given the strengths and weaknesses of various modelling and

predictor selection strategies, the systematic review should record

all information on the multivariable modelling, so readers can gain

insight into how each model was developed.

Model performance. Regardless of the statistical method

used to develop or validate the model, various model performance

measures such as calibration, discrimination, (re)classification, and

overall measures of performance may be used [51,58,117].

Calibration and discrimination should always be recorded when

reviewing clinical prediction models. Calibration refers to how well

the predicted risks compare to the observed outcomes; preferably

this is evaluated graphically by plotting observed against predicted

event rates [51,58,119]. For time-to-event models using, e.g., Cox

regression, calibration is usually evaluated at specific time points

by comparing observed and predicted risks for groups of

individuals [119]. Calibration plots are often supplemented by a

formal statistical test, the Hosmer-Lemeshow test for logistic

regression and its equivalent for Cox regression. However, such

tests have frequently been criticised because of the limited

statistical power to assess poor calibration and being oversensitive

in large samples [58,117,120,121]. Furthermore, the Hosmer-

Lemeshow test gives no indication of the direction or magnitude of

any miscalibration. Discrimination refers to how well the model

differentiates between those with and without the outcome and is

typically assessed using the c-statistic, which is the equivalent to the

area-under-the-curve of a receiver operating characteristic curve.

The c-statistic should not be used as the only performance

measure, however, since it is influenced by the distribution of

predictor values and is often insensitive to inclusion of an

additional predictor in the model [59,122–125].

Classification measures, notably sensitivity and specificity, may

also be presented. However, the use of these measures requires a

predefined probability threshold. The same model would show

very different sensitivity and specificity depending on the chosen

threshold. The reporting of performance based on thresholds

chosen from the data itself can produce over-optimistic and biased

performance [95].

Reclassification measures, such as net reclassification

improvement or index (NRI), evaluate whether a single

biomarker has any incremental value to a prediction model

[124,126]. Their use has been criticised as they rely on a

priori–defined probability thresholds and do not account for

difference in consequences of falsely reclassified individuals

[122,127,128]. Furthermore, NRI is a measure of comparative

performance and is therefore not directly useful as a measure

of performance of a single model.

Recent systematic reviews have found the reporting of performance

measures to be poor, with reliance on measures of discrimination

[2,15,60]. Objective evaluation across multiple studies and models is

difficult if other aspects of model performance are missing. Systematic

reviews should ensure that if possible, at a minimum, aspects of

discrimination and calibration are extracted. For a full appraisal of

models across multiple studies, systematic reviews should also record

whether the primary study actually evaluated both calibration and

discrimination. The absence of either component makes a full appraisal

of prediction models difficult.

Model evaluation. When the predictive performance mea-

sures described above are evaluated or estimated in the same

dataset used to develop the model, they are termed ‘‘apparent

performance’’. The apparent performance tends to be biased (i.e.,

overestimated relative to performance in other individuals).

Regardless of which modelling technique (regression, neural

network, or machine learning techniques) is used, this risk of bias

is more pronounced when the development dataset is small, the

number of candidate predictors is large relative to the number of

outcomes, data-driven predictor selection techniques have been

applied, and shrinkage techniques have not been used. The

assessment of the performance of prediction models should not

rely on the development dataset, but rather be evaluated on other

data. In fact, evaluation in an independent dataset is all that

matters; how the model was derived is of minor importance [49].

Quantifying model performance in other individuals is often

referred to as model validation (Box 1) [1,32,49,51,56,58,59,

119,129,130]. Several strategies exist depending on the availability

of data, but are broadly categorised as internal and external

validation [1,32,49,51,56,58,59,129].
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Often the original dataset is randomly divided into a

development sample and validation sample. However, this

approach merely creates two similar but smaller datasets differing

only by chance, and generally provides little additional informa-

tion beyond the apparent performance, and for large datasets, the

difference in performance in the development and validation

dataset is even negligible, as expected [3,32,56,58,131]. Moreover,

the method is statistically inefficient because not all available data

are used to develop the prediction model, increasing the likelihood

of overfitting, particularly in small datasets. Thus, for small

datasets, the use of split-sample methods actually increases the risk

of bias, whilst for large datasets there is no practical benefit [61]. If

splitting the data is to be considered in large datasets, then a non-

random split is preferable, for example splitting by time, centre, or

geographic location [49,51,56,58,59,129].

Internal validation using resampling (Box 1) is a method to

estimate the amount of overfitting or optimism in the apparent

predictive performance of the developed model, for which no

other data than the original study sample is used. Internal

validation by resampling quantifies bias in the apparent model

performance. Rather than cross validation, bootstrapping

resampling methods are generally regarded as the preferred

internal validation method, as all the data is used for model

development and for model evaluation. Regardless of the

modelling technique, bootstrapping is particularly recommended

in small datasets with many candidate predictors and when

predictor selection techniques have been used [3,49,51,

55,58,59]. In addition to capturing optimism in model perfor-

mance, bootstrapping provides a shrinkage factor to adjust the

estimated regression coefficients and apparent model perfor-

mance for such overfitting.

Preferably, the predictive performance of a model is quantified

in data that were not part of the development study data, but

external to it (Type 3, Box 1). External data can differ in time

(temporal validation) or location (geographical validation) from the

data used to derive the prediction model. Usually this second

dataset is comparable to the first, for example, in patients’ clinical

and demographic characteristics, reflecting the target population

of the model development study. Sometimes, however, it is of

interest to examine whether a model can also have predictive

ability in other scenarios. For example, a validation dataset may

differ in the clinical setting of participants (e.g., primary care

versus secondary care), in the age range of participants (children

versus adults), in the clinical inclusion criteria, or even by using

different predictor or outcome definitions and measurements

[1,31,32,56,129,132]. A crucial point is that a validation study

should evaluate the exact published model (formula) derived from

the initial data. Repeating the original modelling process in the

validation data, refitting the model on new data, or fitting the

linear predictor (in case a regression modelling technique was

used) as a single term on the new data is not model validation, but

rather model re-development [3,32,49,51,56,58,119]. If an exist-

ing model shows poor performance when evaluated in other

individuals, researchers may adjust, update, or recalibrate the

original model based on the validation data to increase

performance. Such updating may range from adjusting the

baseline risk (intercept or hazard) of the original model, to

adjusting the predictor weights or regression coefficients, to

adding new predictors or deleting existing predictors from the

model [53,58,133]. Model updating, if done, usually follows an

external validation of a previously published prediction model

(Type 3, Box 1).

Systematic reviews should thus identify whether reported

performance measures of the prediction models were obtained

using only the development data (apparent performance), were

corrected for optimism (e.g., using resampling techniques), used a

random split-sample approach, or were based on performance in

separate (external) datasets. If separate datasets have been used to

develop and validate a prediction model, it is important to report

any differences between the datasets. Updating or recalibrating a

model based on external data should also be reported, if done.

External validation studies provide the best insight into the

performance of a model, indicating how useful it might be in other

participants, centres, regions, or settings. However, many reviews

have shown that external validation studies are generally

uncommon [1,12,14,15,27,29,56,78].

Results. The results of the models in the review should match

the systematic review question. If the aim is to review all existing

prediction models in a particular clinical area, or for a particular

outcome or groups of individuals (Box 2), results may include the

components of the different models that have been developed,

including the selected predictors, predictor weights, or regression

coefficients (in case a regression approach was used) and their

precision estimates, in addition to the performance of these models

[12,27,29,45]. If the aim is to review the reproducibility or

predictive performance of the same model(s) across different study

samples (external validation), as for example in [44,134,139], the

predictive accuracy measures and their precision estimates are

important to focus on, whilst issues surrounding the development

of the models are less relevant to report.

As models are usually developed to estimate an individual’s

outcome probability, it is important to capture and record whether

this can actually be done from the published model. The format

used to present models in the original papers should be extracted.

Options include the original model formula (e.g., the regression

equation if a regression approach was used to develop the model)

enabling direct probability estimation, rounded scoring rules, or

predefined risk groups with corresponding predicted and observed

outcome probabilities. Rounding or simplifying original predictor

weights or regression coefficients is likely to cause a loss in

predictive accuracy. Hence, if relevant, the systematic review

should report the performance measures of the original and

‘‘rounded’’ models where this information is available in the

published primary report [32].

Risk groups are frequently presented. For reasons described

above, data driven methods to create risk groups, such as the

‘‘optimal’’ probability threshold method or at the median, are not

recommended [135]. Therefore, it is important to note if and

how risk groups were created. Recent reviews in oncology

highlighted poor methods and poor reporting for creating risk

groups [56,60].

When a review includes both development and validation

studies of the same model(s), or several external validations of the

same model, reporting differences in frequency (binary) and

distribution (continuous) of the predictors and outcomes across the

study samples is recommended, as a different case-mix is known to

result in different predicted risks that may influence model

performance measures [49,53,129,133,136,137].

Interpretation and discussion. All tools for reporting of

medical studies recommend discussing strengths, weaknesses, and

future challenges of a study and its reported results [33–37],

including the PRISMA statement for reporting of systematic

reviews itself [38]. How a model was developed and validated and

its reported performance give insight into whether the reviewed

model is likely to be useful, and for whom. Conclusions about

model performance and applicability should be based on the

validation results of the model, the comparison with other studies

and other prediction models, and study strengths and weaknesses,
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rather than predictor effects or corresponding p-values. Further-

more, one may like to overview the performance of all prediction

models for a specific outcome or target population before making

decisions on which model to apply in routine practice [138].

Conclusion

In contrast to systematic reviews of therapeutic and diagnostic

test accuracy studies, there is no formal checklist for guidance on

defining a proper review question, let alone for data extraction or

critical appraisal of primary studies on the development or

validation of diagnostic or prognostic prediction models, despite

the sharp increase of such studies in the past decade. We combined

published risk-of-bias tools, existing critical appraisal checklists for

systematic reviews of randomised therapeutic trials and diagnostic

test accuracy research, methodological recommendations for

conduct and reporting of prediction model research, and data

extraction sheets used in published reviews of prediction modelling

studies to provide the CHARMS checklist. The checklist is

intended to help frame the review question, design the review, and

extract the relevant items from the reports of the primary

prediction modelling studies and to guide assessment of the risk

of bias and the applicability of the reviewed prediction models. We

recognise that this checklist will require further evaluation and use

to adjust and improve CHARMS.
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