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I
ntrinsically disordered proteins (IDPs) and regions (IDRs) that 
do not adopt a fixed, three-dimensional fold under physiological 
conditions are now well recognized in structural biology1. The last 

two decades have seen an increase in evidence for the involvement 
of IDPs and IDRs in a variety of essential biological processes2,3 and 
molecular functions that complement those of globular domains4,5. 
Their involvement in diseases such as Alzheimer’s6, Parkinson’s7 and 
cancer8 also makes them promising targets for drug discovery9,10. 
Despite their importance, IDPs/IDRs are historically understud-
ied due to the difficulties in direct measurement of their dynamic 
behavior and because some of them tend to be disordered only 
under specific conditions, such as pH, presence of post-translational 
modifications, localization and binding—that is, their structural 
disorder is context dependent11. Experimental methods used to 
detect intrinsic structural disorder (ID) include X-ray crystallogra-
phy, nuclear magnetic resonance spectroscopy (NMR), small-angle 
X-ray scattering, circular dichroism and Förster resonance energy 
transfer12–15. Each technique provides a unique point of view on 
the phenomenon of ID, and different types of experimental evi-
dence give researchers insights into the functional mechanisms of 
IDPs, such as flexibility, folding-upon-binding and conformational 
heterogeneity.

An accumulation of experimental evidence has corroborated 
the early notion that ID can be inferred from sequence features16. 
Dozens of ID prediction methods based on different principles and 
computing techniques have been published17, including VSL2B18, 
DisEMBL19, DISOPRED20, IUPred21 and Espritz22. Both predicted 
and experimentally derived coordinates of IDRs and annotations 
related to their function are stored in a variety of dedicated data-
bases: DisProt23, MobiDB24, IDEAL25, DIBS26 and MFIB27 each 
focus on particular aspects of the ID spectrum. More recently, IDR 
annotations are also included in some core data resources including 
InterPro28, UniProt29 and PDBe30.

Intrinsic structural disorder binding predictions are widely 
used, but an assessment of these predictors has never been system-
atically performed and is badly needed. In this report, we describe 
the first edition of CAID, a biennial experiment inspired by the 

critical assessment of protein structure prediction (CASP) for the 
benchmarking of ID and binding predictors on a community-curated 
dataset of 646 novel proteins obtained from DisProt23. CAID is 
expected to set a new quality standard in the field.

Results
CAID was organized as follows (Fig. 1a). Participants submitted 
their implemented prediction software to the assessors and provided 
support to install and test them on the MobiDB servers. The asses-
sors ran the packages and generated predictions for a set of proteins 
for which disorder annotations were not previously available. Given 
a protein sequence, the task of an ID predictor is to assign a score 
to each residue for its propensity of being intrinsically disordered at 
any stage of the protein’s life. In CAID, we evaluated the accuracy of 
the prediction methods as well as software runtimes, which directly 
impact their suitability for large-scale analyses.

Structural properties of proteins can be studied by a num-
ber of different experimental techniques, giving direct or indirect 
evidence of disorder. Different techniques are biased in different 
ways. For example, IDRs inferred from missing residues in X-ray 
experiments are generally shorter because longer, noncrystalliz-
able IDRs are either excised when preparing the construct or are 
detrimental to crystallization. At the other end of the spectrum is 
circular dichroism, which can detect the absence of fixed struc-
ture in the full protein but does not provide any information about 
IDR coordinates. IDR annotations are more reliable when con-
firmed by multiple lines of independent and different experimental  
evidence.

In this first round of CAID, we selected the DisProt database 
as the reference for structural disorder because it provides a large 
number of manually curated disorder annotations at the protein 
level, with the majority of residues annotated with more than one 
experiment23. DisProt annotates IDRs of at least ten residues likely 
to be associated with a biological function and excludes short 
loops connecting secondary structure elements. DisProt also con-
tains protein–protein interaction interfaces falling into disordered 
regions, used as a separate dataset (DisProt-binding).
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Ideally DisProt annotations would be complete—that is, each 
protein would be annotated with all disordered (or binding) regions 
present under physiological conditions. If this were true, we could 
simply consider all residues to be structured (that is negatives)  
when not annotated as disordered (that is, positives). Since not all  
IDRs are yet in DisProt, we created the DisProt-Protein Database  
(-PDB) dataset, where negatives are restricted to PDB Observed 
residues (Fig. 1c). This dataset is more conservative but can be  
considered more reliable as it excludes ‘uncertain’ residues that  
have neither structural nor disorder annotation. Compared to 
DisProt, DisProt-PDB is more similar to datasets used to train some 
disorder predictors (for example, refs. 19,20,22) and for CASP disorder 
challenges31.

The distribution of organisms reflects what is known from other 
studies4,5, with the majority of ID targets coming from eukaryotes, 
a good representation of viruses and bacteria but much fewer from 
archaea (Fig. 1f). At the species level, annotations are strongly 
biased in favor of model organisms with a majority from human, 
mouse, rat, Escherichia coli and several other common model 
organisms (Supplementary Fig. 6). Target proteins are not redun-
dant at the sequence level, and are different from known examples 
available in the previous DisProt release. Mean sequence identity 
is 22.2% against the previous DisProt release and 17.1% within the 
dataset (Supplementary Fig. 3). CAID has two main categories—the 
prediction of ID and the prediction of binding sites found in IDRs. 
ID prediction can be further divided into prediction of IDRs and 
prediction of fully disordered proteins.

IDR prediction performance
The quality of IDR prediction can be evaluated in different ways. In 
some cases, it is relevant to know the fraction of disorder while in 
others it is more important to know the exact position of the IDR 
in the sequence. Since disorder can be used as a proxy either to 
estimate the complexity of an organism or complement a sequence 
search, it is also important for a predictor to be sufficiently rapid 
for genome-scale application. For CAID, we report the maximum 

F1-score (Fmax—that is, maximum harmonic mean between preci-
sion and recall across all thresholds), which takes into account pre-
dictions across the entire sensitivity spectrum32. The performance 
of top methods, based on Fmax and calculated over all targets, is 
shown in Figs. 2 and 3 for the datasets DisProt and DisProt-PDB, 
respectively. The F1-score, which is insensitive to dataset imbal-
ance (Fig. 1d), provides a ranking almost identical to that obtained 
with Matthews correlation coefficient (MCC). Supplementary  
Figs. 12, 13, 33 and 34 show a full comparison and the dependence 
of F1-score and MCC on predictor confidence scores, along with 
the predictor default confidence threshold (Supplementary Figs. 10,  
11, 30 and 31). All methods were compared with the various base-
lines described in Methods. In some applications, the objective was 
to predict which protein fragments are disordered based on known 
examples in the PDB. This is a different problem than prediction of 
functional IDRs—for example, aiming to evaluate their biophysical 
properties. The naive baselines help us understand this difference 
and assess the effectiveness of the transfer-by-homology of structural 
information for IDR prediction (Discussion). In the PDB Observed 
baseline, mimicking perfect knowledge, all residues not covered by 
any PDB structure are labeled as disordered. Alternatively, in the 
Gene3D baseline, residues are considered disordered if they do not 
match any Gene3D prediction for homologous domains. In the 
Shuffled dataset baseline, the reference is randomly shuffled at the 
dataset level while Random is an actual random predictor that does 
not use any previous knowledge.

The values of Fmax (Fig. 2b,d) and area under the receiver oper-
ating characteristic (ROC) curve (AUC) (Fig. 3e,g) were substan-
tially different when predictors were tested on the DisProt dataset, 
which contained uncertain residues, as opposed to the DisProt-PDB 
dataset. By definition, the PDB Observed baseline cannot predict 
negative residues outside PDB regions: it generates 56.5% false posi-
tives, which dropped to zero when considering the DisProt-PDB 
dataset in which the uncertain residues are completely filtered out. 
IDRs overlapping PDB regions, usually corresponding to residues 
involved in folding-upon-binding events, instead generate false 
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negatives. These are far less common (20.4%) and remain the same 
for the two datasets. The Gene3D baseline typically increases PDB 
coverage (negatives), exploiting the transfer-by-homology principle. 
As a consequence, the probability of false positives is lower (48.6%) 
and false negatives are only marginally more frequent (20.9%). For 
the DisProt dataset, Gene3D slightly outperforms PDB Observed 
in terms of both Fmax (Fig. 2b,d) and AUC (Fig. 3e,g). Rather, for 
the DisProt-PDB dataset, PDB Observed is notably superior to all 

methods with only 6.3% mispredicted residues, all false negatives. 
Given the relevance of the host organism in determining environ-
mental factors for IDPs such as temperature, we wondered whether 
predictor performance would be affected in different subsets. 
Performance was assessed separately for mammalian and prokary-
otic proteins (Supplementary Figs. 19–28 show the DisProt dataset 
and Supplementary Figs. 40–49 show the DisProt-PDB dataset). 
The ranking changes only slightly after the top two positions. 
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Performance for mammalian sequences is ~0.05 and ~0.03 lower in 
terms of Fmax and AUC, respectively, for all methods, suggesting that 
this is a somewhat harder challenge.

Across the different performance measures, the methods 
SPOT-Disorder2, fIDPnn, RawMSA and AUCpreD are consistently 
found among the top five. While the ordering changes for different 
measures and reference sets, and the differences among them are 
not statistically significant (Supplementary Figs. 17, 18, 23, 28, 38, 

39, 44 and 49), these methods can be seen broadly as performing 
consistently well. Looking at the precision–recall curves (Fig. 2d), 
we notice that the top five methods (excluding fIDPnn/lr in the 
DisProt dataset and AUCpred-np in the DisProt-PDB dataset) 
leverage evolutionary information, introducing a database search as 
a preliminary step. The performance gain, on average 4.5% in terms 
of Fmax, comes at the cost of slowing prediction by two to four orders 
of magnitude (Fig. 2c and Supplementary Figs. 4, 12–14 and 33–35).
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Fully disordered proteins
We considered fully disordered proteins (IDPs) separately because 
these are particularly challenging to investigate experimentally; 
for example, they cannot be probed with X-ray crystallography yet 
they are of great interest because they fulfill unique biological func-
tions5,33. We therefore designed another classification challenge: 
separation of IDPs from all other proteins. We consider proteins 
as IDPs when at least 95% of residues are predicted or annotated 
as disordered, and predictors were asked to identify IDPs based 
on this criterion. According to this definition, the number IDPs in 
the DisProt dataset is 40 out of 646. Different threshold values did 
not substantially affect the ranking (Supplementary Tables 6–8). In 
Table 1 all methods are sorted based on F1-score. False positives 
are limited for many methods, although correct IDP predictions 
are generally made for less than half of the dataset. The fraction 

of residues predicted as disordered is also notably different across 
methods (Supplementary Fig. 50), suggesting room for improve-
ment. Methods using secondary structure information may be at a 
disadvantage for IDP prediction, since annotations frequently rely 
on detection methods without residue-level resolution (for exam-
ple, circular dichroism; Supplementary Fig. 7).

Prediction of disordered binding sites
As a second major challenge, CAID evaluated the prediction of 
binding sites within IDRs, commonly referred to as linear interact-
ing peptides24 or short linear motifs34 leveraging DisProt annotations 
for binding regions (Supplementary Fig. 52 shows dataset composi-
tion and overlap to other databases). In DisProt, binding annota-
tions retrieved from the literature are fraught with more ambiguity 
than disorder examples. In addition, experimental evidence for 

Table 1 | Confusion matrix and metrics for the prediction of fully disordered proteins in the DisProt dataset

TN FP FN TP MCC F1-s TNR TPR PPV BAC

fIDPnn 585 16 19 26 0.569 0.598 0.973 0.578 0.619 0.776

RawMSa 582 19 19 26 0.546 0.578 0.968 0.578 0.578 0.773

VSL2B 578 23 22 23 0.468 0.505 0.962 0.511 0.500 0.736

fIDPlr 566 35 18 27 0.468 0.505 0.942 0.600 0.435 0.771

Predisorder 589 12 26 19 0.479 0.500 0.980 0.422 0.613 0.701

SPOT-Disorder1 572 29 23 22 0.416 0.458 0.952 0.489 0.431 0.720

DisoMine 551 50 17 28 0.421 0.455 0.917 0.622 0.359 0.770

aUCpreD 588 13 28 17 0.431 0.453 0.978 0.378 0.567 0.678

SPOT-Disorder2 574 27 24 21 0.409 0.452 0.955 0.467 0.438 0.711

SPOT-Disorder-Single 594 7 30 15 0.452 0.448 0.988 0.333 0.682 0.661

IsUnstruct 588 13 29 16 0.411 0.432 0.978 0.356 0.552 0.667

IUPred2a-long 595 6 32 13 0.420 0.406 0.990 0.289 0.684 0.639

Gene3D 505 96 10 35 0.391 0.398 0.840 0.778 0.267 0.809

ESpritz-N 597 4 33 12 0.426 0.393 0.993 0.267 0.750 0.630

ESpritz-D 555 46 23 22 0.342 0.389 0.923 0.489 0.324 0.706

PyHCa 596 5 33 12 0.411 0.387 0.992 0.267 0.706 0.629

JRONN 595 6 33 12 0.397 0.381 0.990 0.267 0.667 0.628

MobiDB-lite 599 2 34 11 0.437 0.379 0.997 0.244 0.846 0.621

DisPredict-2 586 15 32 13 0.330 0.356 0.975 0.289 0.464 0.632

IUPred2a-short 599 2 35 10 0.413 0.351 0.997 0.222 0.833 0.609

S2D-2 572 29 30 15 0.288 0.337 0.952 0.333 0.341 0.643

PDB observed 468 133 13 32 0.286 0.305 0.779 0.711 0.194 0.745

aUCpreD-np 590 11 35 10 0.293 0.303 0.982 0.222 0.476 0.602

ESpritz-X 595 6 36 9 0.321 0.300 0.990 0.200 0.600 0.595

FoldUnfold 456 145 14 31 0.256 0.281 0.759 0.689 0.176 0.724

DISOPRED-3.1 596 5 39 6 0.246 0.214 0.992 0.133 0.545 0.563

DisEMBL-HL 601 0 41 4 0.288 0.163 1.000 0.089 1.000 0.544

PDB Remote 590 11 42 3 0.085 0.102 0.982 0.067 0.214 0.524

DisEMBL-465 601 0 43 2 0.204 0.085 1.000 0.044 1.000 0.522

PDB Close 589 12 43 2 0.043 0.068 0.980 0.044 0.143 0.512

Conservation 441 160 38 7 −0.064 0.066 0.734 0.156 0.042 0.445

DynaMine 601 0 45 0 0.000 0.000 1.000 0.000 0.000 0.500

GlobPlot 601 0 45 0 0.000 0.000 1.000 0.000 0.000 0.500

DFLpred 601 0 45 0 0.000 0.000 1.000 0.000 0.000 0.500

TN, true negatives count; TP, true positives count; FN, false negatives count; FP, false positives count; F1-s, F1-score; TNR, true negative rate, specificity; TPR, true positive rate, recall; PPV, positive predictive 

value, precision; BaC, balanced accuracy for prediction of fully disordered proteins. Proteins with disorder prediction or disorder annotation covering at least 95% of the sequence are considered fully 

disordered. Predictors are sorted by their F1-score. Baseline names are in bold.
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the exact position of a binding region is often inaccurate because 
binding is annotated as a feature of an IDR. Our reference includes 
all entries in the DisProt dataset, even if they were not annotated 
with binding regions. This translates to a dataset where the major-
ity of targets (414 out of 646) have no positives. In this challenge, 
we retained the PDB Observed and Gene3D baselines even if they 
were not designed to detect binding regions. Because target binding 
regions in DisProt are found within IDRs, the baselines are expected 
to attain high recall and low precision. All models perform poorly, 

as do the naive baselines (Fig. 4b,d). At Fmax, their recall is higher 
than their precision as for the baselines (Fig. 4c). However, the top 
five methods—ANCHOR-2 (ref. 21), DisoRDPbind35, MoRFchibi 
(light and web)36 and OPAL37—perform better than the baselines 
(Fig. 4b), which trade off considerably more precision due to an 
abundant overprediction. The execution times of the top five meth-
ods have very different scales and are inversely proportional to their 
performance, with the best methods requiring less central process-
ing unit (CPU) time. The performance of predictors on mammalian 
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Fig. 4 | Prediction success and CPu times for the ten top-ranking binding predictors in the DisProt-binding dataset. a, The reference used (DisProt-binding,  

n = 646 proteins) in the analysis and how it was obtained. b–g, Performance of predictors expressed as maximum F1-score across all thresholds (Fmax) 

(b) and aUC (e) for the ten top-ranking methods (light gray) and baselines (white), and distribution of execution time per target (c,f) using the 

DisProt-binding dataset. b,e, The horizontal line indicates, respectively, Fmax and aUC of the best baseline. d,g, Precision–recall (d) and ROC curves  

(g) of the ten top-ranking methods and baselines using the DisProt-binding dataset, with level curves of F1-score and balanced accuracy, respectively.  

c,f, boxplots are defined as follows: the middle value of the dataset is the median (Q2/50th percentile) and box boundaries are the first quartile  
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are hidden for clarity. c,f, Magenta dots indicate that the entire distribution of execution times is <1 s.
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and prokaryotic proteins for the DisProt-binding dataset is only 
marginal (Supplementary Figs. 63–72).

Software implementation
We also evaluated those technical aspects related to software imple-
mentation—that is, speed and usability—that have a direct impact 
on their application for large-scale analyses. Speed in particular is 
highly variable, with methods of comparable performance varying 
by up to four orders of magnitude in execution time (Supplementary 
Fig. 4). In general, all methods incorporate a mix of different scripts 
and programming languages. Some software configuration scripts 
contain errors. In many cases data paths and file names are hard-
coded in the program—for example, the sequence database or out-
put file path. Only a few programs allow specification of a temporary 
folder, which is important for parallel execution. It is possible to 
provide precalculated sequence searches for only a few methods. 
Several methods implemented are reliant on dependencies, some-
times on specific software versions or CPUs with a modern instruc-
tion set. Some programs are particularly eager for random-access 
memory (RAM), crashing with longer input sequences or do not 
have a timeout control and execute forever. Output formats dif-
fer, with some not adequately documented. Only a few software 
programs support multithreading and only one was submitted as 
a Docker container. In summary, the software implementation for 
disorder predictors has considerable room for improvement regard-
ing practical purposes.

Discussion
The problem of predicting protein ID is challenging, for several rea-
sons. The first is in the definition of ID, indicating that a protein 
sequence does not encode a stable structural state that is ordered. 
Defining ID as a property that a protein does not have (that is, order) 
implies that many conformational states fit the definition, covering 
a continuum between fully disordered states and folded states with 
long dynamic regions38,39. The second problem is the lack of a consen-
sus reference experimental method, or set of experimental methods, 
yielding an operational definition of ID (compared to X-ray crystal-
lography in the definition of ordered structures). The third problem 
is the dependence of ID on events or conditions at certain points 
in time along the life of a protein. Some proteins remain unfolded 
until they bind a partner40 while others are disordered providing 
they are in a specific cellular compartment and fold following trans-
location41, and some enzymes undergo order-to-disorder-to-order 
transition as part of their catalytic cycle42. Given these challenges, 
CAID represents a community-based effort to develop and imple-
ment evaluation strategies to assess (1) clear definitions of ID and 
(2) the performance of methods used in the prediction of ID. In 
its first round, CAID leverages the DisProt database23 of curated 
experimental evidence to assess ID predictors. In DisProt, curators 
store the coordinates of IDRs when there is experimental evidence 
in peer-reviewed articles of highly mobile residue stretches longer 
than ten residues. We anticipate that future rounds may include 
reference data arising from ever-improving consensus operational 
definitions—for example, NMR measurements, which are particu-
larly powerful in the characterization of experimental protein disor-
der. For example, one could define disordered regions as those that 
exhibit high conformational variability under physiological condi-
tions using multiple orthogonal measures. ID predictors were previ-
ously assessed from the fifth to the tenth editions of CASP, but this 
was abandoned due to the lack of good reference data.

A long-term goal for CAID is to help the selection of candidate 
IDPs for experimental testing. One of the main properties of IDPs 
is their ability to form many low-affinity and high-specificity inter-
actions43. It remains challenging to predict the interacting residues 
of an IDP from its sequence. At present, multiple high-throughput 
experiments are available for the detection of interactions capable 

of resolving interacting regions44. However, binding sites obtained 
from high-throughput experiments (for example, CoIP, Y2H) 
and reported in the literature often lack this grade of resolution. 
Furthermore, while some attempts have been made to mitigate this 
problem45, a high false-positive rate plagues all experimental methods  
used to identify binding: proteins interacting in experimental con-
ditions do not necessarily interact in the cell under physiological 
physicochemical conditions, or simply due to spatiotemporal segre-
gation46. DisProt annotates binding partners and interaction regions 
of IDPs used in CAID to attempt the first assessment of binding 
predictors.

One of the major challenges in CAID is the definition of nega-
tives—that is, residues that are not disordered or do not bind. 
Knowledge about negative results is a long-standing problem 
in biology47 and is especially relevant for our assessment. If the 
annotation of IDRs in a protein is not complete, how do we know 
which regions are structured? This is even more relevant for bind-
ing regions, because we are far from being able to map all binding 
partners of a protein with residue resolution under different cellular 
settings. To overcome this problem, which is intrinsic to how we 
detect and store data, ID predictor performance was tested in two 
scenarios. In the first of these we assumed that all annotations were 
complete, considering all residues outside of annotated regions as 
structured. In the second scenario, we used resolved residues from 
PDBs to annotate structure and filtered out all residues that were 
covered by neither disorder nor structure annotation. Binding site 
predictors were tested on a dataset where all residues outside of 
binding regions are considered nonbinding.

Despite these challenges, CAID revealed progress in the detec-
tion of ID from sequence and highlighted that there remains scope 
for improvement in both disorder and binding site predictors. One 
of the primary goals was to determine whether automated algo-
rithms perform better than naive assumptions such as sequence 
conservation or three-dimensional structure. As far as ID is con-
cerned, the performance of predictors in comparison to naive base-
lines largely depends on the assumption made on nondisordered 
residues. On the DisProt-PDB dataset, where disorder is inferred 
from DisProt annotation, order from the presence of a PDB struc-
ture and all other residues is filtered out: naive baselines outperform 
predictors. However, when only DisProt annotations are considered 
(DisProt dataset), the tables are turned and predictors, while obtain-
ing lower overall scores, outperform naive baselines (Figs. 2 and 3). 
When uncertain residues are retained in the analysis (DisProt data-
set), the number of false positives increases and precision plunges, 
lowering the F1-score. This means that either predictors detect ID 
in the uncertain residues—suggesting that DisProt annotation is 
incomplete, predictors overpredict or both. Naive baselines are out-
performed by predictors since they predict all uncertain residues as 
disordered, which are all counted as false positives. This suggests 
that predictors have reached a state of maturity and can be trusted 
with relative confidence when no experimental evidence is avail-
able. It also confirms that when experimental evidence is present, it 
is more reliable than predictions.

An interesting special case is how predictors behave with fully 
disordered DisProt targets (Table 1). This case is compelling because 
predictors are usually not trained on these examples. Predictors 
vastly outperform naive baselines in these cases due to their large 
overprediction. The count of false positives puts baselines at a dis-
advantage, compensating for their low count of false negatives. PDB 
Observed classifies a protein as fully disordered whenever no struc-
ture is available for that protein. However, the absence of a protein 
from PDB may be simply due to the lack of studies on that protein. 
Gene3D performs better since it generalizes from existing structures, 
but still tends to overpredict disorder (or underpredict order). At 
the opposite side of the spectrum, methods that are too conservative 
in their disorder classification (for example, MobiDB-lite) perform 
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worse than expected on fully disordered proteins. Results from the 
DisProt dataset suggest that several methods are consistently among 
the top performers, although the exact ranking is subject to some 
variation. fIDPnn and SPOT-Disorder2 perform consistently well, 
with RawMSA and AUCpreD following closely. The execution 
times for these four methods vary by up to three orders of magni-
tude, suggesting there is room for optimization of the software. Of 
note, both fIDPnn and RawMSA were unpublished at the time of 
the CAID experiment. While top-performing methods are able to 
achieve a certain balance between under- and overprediction, it is 
interesting to note how they are not able to identify all fully disor-
dered targets. Not even methods that trade off specificity to increase 
the detection of relevant cases are able to attain full sensitivity. This 
confirms that predictors are not trained on this particular class of 
proteins, and suggests that they have room for improvement in this  
direction.

CAID offers an attempt at assessment of binding predictors. As 
discussed above, this is intrinsically difficult due to the complex 
nature of this phenomenon and how it is detected and stored. While 
we are aware of these difficulties, we still think that an assessment 
is useful for researchers who either use or develop binding predic-
tors. Furthermore, while it is arguable that this evaluation has limi-
tations, its publication helps highlight such constraints and exposes 
this problem to the rest of the scientific community. We compared 
predictors to the same baselines used for the disorder challenge 
but, while their design remains unchanged, their underlying naive 
assumption changes slightly. The PDB Observed baseline assumes 
that whatever is not covered by a structural annotation in PDB is not 
only disordered but also involved in one or more interactions. When 
considering all targets in the CAID dataset, including those not 
annotated as binders, predictors slightly outperform the baselines 
but have limited performance overall. Figure 4 shows disagreement 
with the DisProt-binding reference in both positive and negative 
classification, highlighting the potential for improvement of bind-
ing predictors. We have to consider that the dataset used is strongly 
unbalanced. Although a prominent function of IDPs is mediation of 
protein–protein interactions, most targets (414 of 646) do not con-
tain an identified binding region and those that do include binding 
regions often have them spanning the whole disordered region in 
which they are found. This strong bias is due to how DisProt was 
previously annotated, with the label ‘binding’ being associated with 
an entire IDR. In the latest DisProt version this annotation style  
has been replaced with a more detailed one, ensuring that future  
editions of CAID will be less biased towards long binding regions. 
The improved definition of boundaries for disordered bind-
ing regions could favor methods trained specifically to recognize 
shorter binding regions. Overall, this suggests a large growth poten-
tial in both predictors and reference sets for this challenge.

In conclusion, the CAID experiment has provided a fully blind 
assessment of ID predictors, almost a decade after CASP stopped 
assessing them, and a new assessment of ID binding regions. The 
results are encouraging, showing that the methods are sufficiently 
mature to be useful but also that substantial room for improvement 
remains. As the quality of ID data improves, we expect predictors to 
become more accurate and reliable.
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Methods
All software programs were executed using a homogeneous cluster of nodes 
running Ubuntu 16.04 on Intel 8 core processors with 16 GB of RAM and a 
mechanical hard disk. In the text we refer to proteins as targets, to disordered 
residues as positive labels and to structured/ordered residues as negative labels. 
Experiment design is described in the Nature Research Reporting Summary.

Reference sets. In CAID different reference sets were built, differing in the subset 
of DisProt used to define positive labels and in the definition of negatives labels.

For the disorder challenge, we generated two reference sets called DisProt 
and DisProt-PDB. Both references are composed of a set of 646 targets, annotated 
between June 2018 and November 2018 (DisProt release 2018_11). Positive 
labels in both reference sets are those residues annotated as disordered in 
the DisProt database. In the DisProt reference set, all labels not positive are 
assigned as negatives. In the DisProt-PDB set, PDB structures mapping on 
the protein sequence define negative labels. All residues not covered by either 
DisProt annotation or PDB structures are masked and were excluded from the 
analysis. It should be noted that a fraction of resolved structures in the PDB has 
been annotated as disordered48,49. While in this edition of CAID we decided to 
consider any resolved residue from crystallography, NMR or electron microscopy 
experiments (excluding those overlapping with DisProt annotation) as structured, 
we plan to apply a filtering on subsequent editions. This problem will become 
progressively less relevant as DisProt annotations become more complete, since 
disorder always overwrites structure.

For the binding challenge we generated a reference set that we called 
DisProt-binding. Positive labels are those residues annotated as binding in the 
DisProt database, whereas all labels not positive are assigned as negatives. Notice 
that 232 targets have at least one annotation of binding in the DisProt database. 
Because DisProt-binding is composed of all 646 targets considered in the analysis, 
the majority of targets (that is, 646 – 232 = 414) do not contain positive labels.

Predictions. Most predictors output a series of score and state pairs per residue 
of the input sequence. Scores are floating point numbers while states are binary 
labels predicting whether a residue is in a disordered or structured state. If 
scores are missing, states will be used as scores. If states are missing, they are 
generated by applying a threshold to scores. By default, thresholds are inferred 
from states. When states are not available and a threshold is not specified by the 
authors of the method, we set the threshold to 0.5. This ensures correct default 
threshold estimates for any distribution of scores. Prediction scores are rounded 
to the third decimal figure, which sets the number of possible thresholds to 
1,000. Bootstrapping samples the whole dataset with replacements 1,000 times. 
Resampling is done at the label (residue) level. Confidence intervals are calculated 
on Student’s t-distribution at alpha set to 0.05.

Baselines. A number of baseline predictors have been built for comparison with 
actual predictors. Two are based on randomization of the dataset (Shuffled dataset, 
Random) and one on an estimate of residue conservation through evolution 
(Conservation). The last four consider the opposite of structure as disorder  
(PDB Observed, PDB Close, PDB Remote and Gene3D).

The Shuffled dataset is a reshuffling of the DisProt dataset—that is, random 
permutation of labels across the entire dataset. This preserves the proportion of 
positive labels across the dataset but not necessarily for each single target. The 
Random baseline is a random classifier in which the prediction score of each label 
is assigned randomly. It is built by randomly drawing floating point numbers out of 
a uniform distribution [0,..,1] and applying a threshold of 0.5.

The Conservation baseline uses the naive consideration that IDPs on average 
are less conserved than globular proteins. It is calculated from the distance between 
the residue frequencies of homologous sequences for each target against the residue 
frequencies of the BLOSUM62 alignments. Amino acid frequencies for the targets 
are extracted from the position-specific scoring matrix generated by running three 
iterations of PSI-BLAST50 against UniRef90. The distance is calculated from the 
Jensen–Shannon divergence51 of the two frequencies. This returns values in the 
[0,…,1] interval where any position with a score >0.4 is considered positive (that 
is, disordered).

Several naive baselines are based on the assumption that whatever is not 
annotated as structure in the PDB is disordered. PDB Observed has the structure 
annotation defined by PDB structures as mapped on UniProt sequences by 
Mobi 2.0 (ref. 52) (October 2019). Whenever we are unable to map perfectly the 
PDB sequence on the UniProt sequence, unmapped residues were considered 
not observed and excluded from the analysis. This applies to His-tags, mutated 
sequences and missing residues (in both X-ray and NMR structures); PDB Close 
and PDB Remote have the structure annotation defined by observed residues in 
PDBs with similar sequence. The similarity is calculated as the identity percentage 
given by a three-iteration PSI-BLAST50 of DisProt targets against PDB seqres. 
PDB Close considers PDB structures with at least 30% sequence identity (that is, 
close homologs), while PDB remote considers only PDB structures with sequence 
identity 20–30% (that is, remote homologs). Gene3D has structure annotations 
defined by Gene3D53 (v.4.2.0) predictions, calculated with InterProScan28 
(v.5.38–76.0).

Target and dataset metrics. Metrics were calculated following two strategies—
dataset and target. In the dataset strategy, all targets (proteins) reference 
classifications and prediction classifications are concatenated in two single 
arrays. Confusion matrix and subsequent evaluation metrics are calculated once, 
comparing these arrays. In the target strategy confusion matrix and subsequent 
evaluation, metrics are calculated for each target (protein) and the mean value 
of the evaluation metrics is taken. The former strategy is equivalent to summing 
the confusion matrices for each target and computing evaluation metrics on the 
resulting confusion matrix, while the latter is equivalent to calculation of the 
evaluation metrics on the average of the confusion matrices of the targets.

Notes on calculation of evaluation metrics. Throughout the manuscript, Fmax 
and AUC are the main assessment criteria used. Fmax is the maximum point in the 
precision–recall curve while AUC is the area under the ROC curve. Additional 
metrics are used for comparison, and they all follow standard definitions as 
described in Supplementary Table 4. F-beta (0.5, 1, 2) and MCC are set to 0 if the 
denominator is 0. Since the MCC denominator is a multiplication of the number 
of positive and negative classifications and positive and negative labels in the 
reference, if any of these classes amounts to 0 we set MCC to 0. This means that, 
for both fully disordered proteins and those predicted to be fully disordered or 
fully ordered, MCC is 0. This situation is very likely in target strategy with the 
DisProt-PDB dataset, and explains why the MCC for target strategy is much lower 
than that for the dataset strategy (Supplementary Fig. 34). This effect can also be 
seen in the heatmap of target MCC, where a large number of targets have MCC = 0.

Statistics. In ranking plots (Supplementary Figs. 17, 18, 23, 28, 38, 39, 44, 49, 61, 
66 and 71), P values are calculated with a two-tailed t-test. The bootstrapping used 
in Figs. 2–4 samples the whole dataset with replacements 1,000 times. Resampling 
is done at the label (residue) level. Confidence intervals are calculated based on 
Student’s t-distribution at alpha set to 0.05.

Assessors’ policy. Prediction methods published by the assessors were not 
included in the challenges: their methods are included for reference only.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Raw DisProt annotations, reference datasets and predictions in CAID format are 
available at https://idpcentral.org/caid/data/1/. Description of the process and code 
to produce references is available in the GitHub CAID repository at https://github.
com/BioComputingUP/CAID. All data used in the analysis are also available in the 
Code Ocean capsule (https://doi.org/10.24433/CO.3610625.v1).

Code availability
Results of the CAID assessment can be fully reproduced by downloading the 
code and following the instructions in the CAID GitHub repository at https://
github.com/BioComputingUP/CAID. The CAID software is a Python 3 package 
that produces all outputs necessary for CAID, including baselines, references and 
plots. See Data availability for information about how to obtain Input predictions, 
references and sequence annotations. The CAID package is dependent on public 
Python 3 libraries and on the vectorized_cls_metrics library, available at https://
github.com/marnec/vectorized_cls_metrics. The code is also available and 
reproducible in the Code Ocean capsule (https://doi.org/10.24433/CO.3610625.v1).
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Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 

in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection No software was used for data collection

Data analysis Results of the CAID assessment can be fully reproduced downloading the code and following the instructions in the CAID GitHub repository at 

URL https://github.com/BioComputingUP/CAID. 

The CAID software is a Python 3 package that produces all outputs necessary for CAID, including baselines, references, plots. See the Data 

Availability section for information about how to obtain Input predictions, references and sequence annotations. The CAID package depends 

on public Python 3 libraries and on the vectorized_cls_metrics library, available at URL https://github.com/marnec/vectorized_cls_metrics. 

The code is also available and reproducible in the Code Ocean capsule available at URL https://doi.org/10.24433/CO.3610625.v1.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A list of figures that have associated raw data 

- A description of any restrictions on data availability

Raw DisProt annotations, reference datasets and predictions in CAID format are available at URL https://idpcentral.org/caid/data/1/.  

The description of the process and code to produce references is available in the GitHub CAID repository at URL https://github.com/BioComputingUP/CAID. 

All data used in the analysis are also available in the Code Ocean capsule available at URL https://doi.org/10.24433/CO.3610625.v1.
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Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Sample size of 646 proteins was used. All non-ambiguous entries annotated in DisProt (annotation round 2018) were used in the analysis. 

Bootstrapping of this dataset produced confidence intervals for the classification metrics in the order of 10^-5

Data exclusions DisProt annotations marked by curators as "ambiguous" were excluded. This ensures that only disordered regions annotated with strong 

confidence were considered in the analysis. This exclusion was planned in advance.

Replication Replication was used for confidence interval calculations, which were provided for all analyses at the dataset level (not protein level).

Randomization Randomization was used in the design of "random" and "shuffled-dataset" baselines.

Blinding The assessment was blind by design, since disorder annotations were not publicly available at the time of the collection of predictors. Hence, 

predictors could not be trained (or parametrized) on such data.

Reporting for specific materials, systems and methods
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