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Critical behavior in anisotropic cubic systems with the short-range interaction is 
studied by means of the Callan-Symanzik equations. As the static critical behavior, the 
stability of fixed points, the critical exponents 7J 0 , y 0 , ¢f and ¢f, etc. are investigated. As 
the dynamic critical behavior, the dynamic critical exponent Z 0 is derived on the basis of 
the time dependent Ginzburg-Landau stochastic model. New results are a correction term 
of order <3 in 71°, the crossover index ¢f and the dynamic critical exponent Z 0. 

§ l. Introduction 

Critical behavior in the second order phase transition has been investigated 

considerably in detail. Jl One of the most interesting problems · n this phase tran

sition is what effects the anisotropies in (magnetic) materials affect the critical 

behavior. In this article effects of the cubic anisotropy, which many magnetic 

materials have as a reflection of the lattice symmetry, to the critical behavior will 

be studied. For a cubic-symmetry lattice the lowest-order single-ion terms have 

the form 
N 

!Jfc(x) = (4!)- 1goc .L.:; S~a (1·1) 
a=l 

m the N-component spm system. The total Hamiltonian of the system is specified 

by 

(1·2) 

with S/= .L.:;~= 1S5a and g0,>0. Since higher order terms in S do not contribute to 

the critical behavior in the second order phase transition in the three-dimensional 

space (the S 6-terms give at most them logarithmic contributions) and the S-terms with 

different-space dependences (S"(x) S2(y), etc.) are not most dominant their terms will 

be neglected. The constants g0, and g0, have also no space-dependence as the most 

dominant term. By the sign of g0, the direction in which the spins tend to align, 

i.e., the easy axis is determined; the diagonal directions ( ± 1, ± 1, · · ·) for g0,>0 

and the cubic axes (0, · · ·, ± 1, 0, · · ·) for g0,<0. In case of g0,<0 a first order 

transition is shown in zero field. 2) In this article the case g0,>0 is discussed. 

*l Read Proceedings of the Annual Meeting of the Physical Society of Japan, 1973. 
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1734 Y. Yamazaki 

The case 9oc>O has been studied by several authors. 31 ' 41 Wilson and Fisher con

sidered the system for 1V=2 and concluded the existence of an additional Ising-like 

fixed point. Cowley and Bruce (for N=3) and Wegner (for general N) studied 

the stability of the Heisenberg fixed point (9oc=O) and concluded that its fixed 

point is stable for 1V=3. Aharony41 studied the stability of the anisotropic cubic 

system with general N with the aid of Wilson's renormalization-group approach and 

concluded that its fixed point is stable for N=3 and c:=1, and derived the crit'cal 

exponents r/, JP, crossover index ¢/ to order c2 and the equation of state to 

order :;;. 

In this article the static and dynamic critical behavior of the anisotropic cubic 

system \Vith general N is studied by means of the Callan-Symanzik equations. 

In § 2 the static properties are investigated; the stability of the fixed points is 

studied to order :;;' and the critical exponents r/ to order c:S, {, crossm,er indices 

rp8° and ¢/ to order c2 and the equation of state to order c. In § 3 the dynamic 

properties are studied on the basis of the time dependent Ginzburg-Landau (TDGL) 

stochastic model and the dynamic critical exponent z 1, is derived to order co'. The 

new results are the s3-correction term for r;, r/;, 0 and ;::;¢· 

§ 2. Static critical behavior 

At first let us consider the case without an external field. The effective 

Hamiltonian given in (1 · 2) can be rewritten by the use of the renormalized 

quantities11 ' 51 (i.e., fields S, coupling constants g, 9c C>O) and mass m') and the 

renormalization constants (i.e., Z 1, Z 1c and Z3 for the coupling constants g, 9c 
and the field S), as 

N 

!J{(x) =2- 1 [(PS)2 +m'S'J + (4!)-'[gs(S')'+gc L:; S""] 
a=l 

N 

+gc(Z,c-1) L:;Sa4 ], (2·1) 
a=l 

·where the last two terms are counter terms determined by the following normali

zation conditions for the amputated two- and four-point one particle irreducible 

(1-P.I.) \'ertex functions: 

r<'1 (P)] p'~o = m', Dr<21 (P) /Dp'] p'~~' = 1 , 

T 0 · 21 (0; 00) =1, T~2J(O; 00) =1 with :;;=4-d. (2·2) 

By expanding the two- and four-point vertex functions in a power series of g, and 

(]c according to the Feynman rule and matching them with the normalization con

ditions (2 · 2), the renormalization constants Z,, Z,c and Z, are obtained in a power 

expansion form as 
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and 

where 

and 
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Z1w-1 + 21~ + 2},2 + 0 (U 3); Z1~=zl;,; (1, 0) g,-1- zl~ (0, 1) ilc, 

Zcc,;]=zl~(2,0)g/+ (1,1)9,17c+zl~(0,2)g/ for w=s, c (2·3) 

2 3 = 1 -1- 23 l2l -1- 2 3 <3l -1- 0 ( g") ; 

23<2>=:::::3 <2>(2, O)g/-l-z3 <2l(1, 1)g,g,-l-z3 <2l(O, 2)gc', 

Z3 <sl -z3 l3l(3, O)g,3 -I-Z3 <31 (2, 1)gs'9c+z3<sl(1, 2)g,g/-l-z3 <3>(0, 3)gc3 , (2·1) 

(1,0)=(N+8)a/6, 2a; (0, 1) =a, 3a/2; 

:::::;~(2, 0) = (N+S)'a'/36- (5N-i-22)b/9, (N-i-20)a'/6- (N-1-U)b/3; 

zl~(1, 1)=(N+12)a'/4-4b, lla'/2-Sb; 

(0, 2) =5a2/4-b, 9a2/4-3b; for w==s,c, respectively, 

(2,0)=(N-i-2)c/18; z3<21 (l,l)=c/3; z 3 <"(0,2)--c/6; 

;:::;3 lSl (3, 0) -- (N -1- 2) (N -i-8) d/54; (2, 1) = (N -1-8) d/6; 

z, (S) (1, 2) =3d/2; z, (3) (0, 3) -d/2. (:2. 5) 

Here 9w=cs(Jw for w=s,c with s=c2/rrZ12/{T(d/2)(2;r)d}. The constants a. b, c anJ 
d in (2 · 5) describe the contributions of the Feynman diagrams e~pandecl in 
powers of 2 as 

a= (2;:) -rt S ddk(k' -1- 1) - 2/S= (1 -1- 2/2) /c: -1-0 (c:), 

b == (27r) _,d s ddk1dd1~,{ u~1 2 + 1) 2 (!;:," + 1) [ (k1 + k,) 2 + 1 J} -1/s' -a'/2 

cc=1/(42) -J-0(1), 

i>~ (21:) - 2dd/ dp' s ddfc1ddk,{ (k/-1- 1) (k,2-J- 1) [ (p-j-/;:1 -J-k2) 2-j- 1]} - 1 ~ 

=- [l+s(5/4-Z)]/(8c:) +0(1), 

d=ab -1/2 (2r:) - 3dd/ djJ2 S ddk1 [ (P -1- k1) 2 -1- 1] - 1 { S ddk, (l:c,' + 1) -l 

x [(kd-k,)'+1rflpz~ 1,,/s'=- (1-l-c:5/4)/(24c:') -t-0(1). (2·6) 

To study the critical behavior the amputated 1-P.I. vertex functions J''"l 
( {P}; g, g" 11) ·without insertion of any composite field, and ru·"1 (q; {JJ} ;fJ, g" ;t) 

and r~nJ(q; {P};g,gc,fJ.) with insertion of a composite field S'(x) and S"(x)S,;(x) 
(a=/=/3), respectively, are needed. The Callan-Symanzik equations for these verte~ 
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1736 Y. Yamazaki 

functions are described as 

where 

[/10 /a/).+ {3,8 /8g, + {jJ) /age- rsn/2] rn) = am'r'l.n) , 

[p8 /8;_;_ + {3,8 jag,+ f3ca /8gc- rs (n/2 -1) - r4] r(l,n) = am'T''·n) , 

[!18 /8/J. + {3,() jag,+ f3c8 /8gc- rs (n/2 -1) - r5J nn; = am'T~1¢n) , (2. 7) 

/3, (g" g c) =/lOg ,/8111 g,, Yoc. A= - 2 [a ln (g, Z1s/ Zs ') /8g,] -I , 

f3c(g., gc) =j18gc/8/1lg,,goc,A= -2[8 ln(gcZlc/Za')/8gcr 1 , 

rj (g ,, g c) = j1a lnZ j (g, gc) /8111 gos, Yoc. A= {3,8 In Z)ag, + f3c8 In Zjj8gc , 

for j=3, 4, 5. (2·8) 

From the two coupled equations 

/3.,8 jf)g,ln g,Z, + f3c8 /age In g,Z, = - ( 2- 2rs), 

j3,f)jf)g,lngcZc+f3ca/8gclngcZc=- (c:-2rs), (2·9) 

the coefficient functions /3, and f3c can be determined to order g/gc q2r with p + q 
+r<3 as 

/3,, (g,, g c) = - cilw {1- [g,z~'~ (1, 0) + g cZ~2~ (0, 1)] 

- [g/z~3~ (2, 0) + g,gcz~3~ (1, 1) + 1J/z~3~ (0, 2)]} + 0 (g 4), (2 ·10) 

where 

(1, 0) = (N + 8) a/6, 2a; z~'~ (0, 1) =a, 3a/2; 

.::S~,(2, 0) = -2(5N +22)b/9-2(N +2)c/9, -2(N +14)b/3-2(N +2)c/9; 

z~'~(l, 1)--8b-4c/3, -16b-4c/3; z~3~(0, 2)=-2b-2c/3, -6b-2c/3 

for w = s, c, respectively. (2 ·11) 

The renormalization constants Z4 and Z 5 associated with the vertex functions with 

insertion of a composite operator S' and SaSp (acf=/3), respectively, are obtained by 

the Feynman rule and the last two normalization conditions in (2 · 2) in the same 

way as for Z1, Z1c and Zs: 

where 

Z; - 1-1 + Z/') + Z/3) + 0 (g3); Z/')=z /') (1, 0) g, +z/') (0, 1) ilc, 

z/') (1, 0) =- (N +2)a/6, -a/3; z/') (0, 1) = -a/2, 0; 

z/3) (2, 0) = (b-a'/2) (N +2) /6, (b-a'/2) (N +6) /18; 

(2·12) 

z/3) (1, 1) = (b-a'/2), (b-a'/2) /3; z/3) (0, 2) = (b-a'/2) /2, 0 

for j = 4, 5, respectively. (2 ·13) 
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Critical Behavior in Anisotropic Cubic Systems 1737 

The zeros floos and fl=e of order e of these f3w(fl., fie) =0 for w=s, c are 
calculated as 

(i) Gaussian: fl~s=fl~e=O; 

(ii) Ising: g~.=O, fl~e=e2/3[1+e(17/27-1/2)] +0(e3); 

(iii) Heisenberg: 9!!. = e6 (N + 8) - 1 [1 + e {3 (3N + 14) (N + 8) - 2 -1/2}] 

+0(e3), fl!!e=O; 

(iv) Cubic: g~.=e2/N[1+e{(N-1) (106-19N)/(27N2) -1/2}] +0(e3), 

fi~e=e2/(3N) [N-4+e{(N-1)(17N2 +110N-424)/(27N2) 

- (N-4)/2}] +0(e3). (2·14) 

The eigenvalues for the matrix defined by Bww'=8f3w/8gw'lu=u~ are obtained by 
the use of the linearized relations (2 ·10) about their fixed points as 

(i) Gaussian: J../=Ae0 = -e; 

(ii) Ising: J.../=-e/3+e219/81+0(e3), J.../=e-e217/27+0(e3); 

(iii) Heisenberg: AsH =e-e2(9N +42)(N +8)- 2 +0(e3), AeH =e(4-N)j(N +8) 

-e2 (5N2 +14N+152) (N+8)- 3 +0(e3); 

(iv) Cubic: J.../=e-e2(N-1) (17N2-4N+212)/[27N2(N+2)] +0(e3), 

J.../=e(N-4)/(3N) -e2 (N-1) (19N3 -72N2 -660N+848) 

/[81N3 (N+2)] +0(e3). (2·15) 

The fixed points and their eigenvalues for the Gaussian and Is"ng systems are of 
course independent of the spin component N. Since any fixed point with positive 
eigenvalues for the matrix Bww' is stable in the critical limit, the Gaussian system 
is stable for e<O and unstable for e>O. Let us discuss the stability of the fixed 
points to order e2• The Ising system is stable for 1.421<e<1.588 whose e satisfies 
the relations J.../>0 and J.../>0. The Heisenberg system is stable for e satisfying 
O<e< (4- N) (N+8) 2/(5N2 +14N +152) for 4/7<N<4 or O<e<(N + 8) 2 

/(9N+42) for -2<N<4/7. The stable regions for the typical cases are as 
follows: For N=1, O<e<1.421; for N=2, O<e<1; and for N=3, O<e<0.506. 
The anisotropic cubic system is stable for O<e<y- 1 for N>Ne2 , O<e<x- 1 for 
4<N<Ne2, y- 1<e<x-1 for Ne1<N<4 and e>y-1 for O<N<1 where x= (N-1) 
(17N2-4N +212)/[27N2(N +2)], y= (N-1)(19N3-72N2-660N+848)/[27N2 

X (N+2) (N-4)], and Ne1 and Ne2 are the values satisfying x=y with 1.9<Ne1 

<2.0 and 20<Ne2<20.l. The typical-numerical results are as follows: For 
N=2, 1.421<e<1.636; for N=3, 0.479<e<1.721; and for N==, O<e<l.421. 
Let us summarize the important points in these results to order e2 • The 
stability of the Gaussian fixed point is of course rigorous in order e. There 
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1738 Y. Yamazaki 

1s no region of the stable fixed point for the Ising system m order c but the 

Ising fixed point is stabilized by the second order terms in c. The Heisenberg 

and anisotropic cubic systems are stable in order c for 1V<4 and N>4, respec
tively, and for any positive c (i.e., cis not a function of N), but their stable regions 

are modified in order c2 and described by the inequalities depending on N and e. 
Tllat is, their stable regions depend on the order of the c-expansion and the 

number of spin component N. Although e-expansions usually gi\'e reasonable 

results on truncation at order c2 , this approach is not always clearly justified. 

Let us consider the most realistic dimension d = 3, i.e., e = 1 in order 8 2• The 

Gaussian and Ising systems are unstable. The Heisenberg system with N<2 is 

stable but that with N>2 becomes unstable because the instability due to the 

anisotropic cubic interaction grows and the behavior of the cubic interaction dom

inates over the Heisenberg behavior. The cubic system is stable for the region 

mentioned above but otherwise unstable since the instability clue to the isotropic 

interaction arises and suppresses the anisotropic cubic behavior. The cubic fixed 

point is degenerate with the Gaussian fixed point for N=1 and with the Ising fixed 

point for 1V'"""' 2, as pointed by Wilson and Fisher. It is also stable for 1V = 3 whose 

region is contained in the third inequality (N>N,3 , 2.2<Nc3 <2.3). 

Near the Heisenberg fixed point, the correlation length ~ ( t, gc) scales with 

since the cubic-symmetric behavior is expected to appear characteristically for 

t~ (T- T,) IT,<g/1"'' where the crossover exponent ¢/ is ¢c"=- vHlc,H. That is, 

the system under consideration shows cubic symmetric behavior only for small 

values of t(if O<g,<1 is assumed) in case of ),,H<O and approaches the Heisenberg 

behavior only for very small values of t in case of JL/I>O. 

The other coefficient functions j 3 , / 1 and j 6 in (2 · 7) are obtained by the 

relations T_;(g" g,) =:Ew~s,c fJw(g, g,)alnZj(g, g,)lilgw for j=3, 4, 5 as 

Is (g ,, I)"') = 82 (N -1) (N + 2) I (54N') + c3 (N -1) (109N3 - 222N2 

+ 1728N -1696) I (5832N1 ) +0(c:4), 

r,(g s· q~,) = -e2(N-1)1(3N) -c:2 (N-1) ( -11N2 +160N-212)1(81N') 

+0(e3), 

r,(gw,, g.0,,) = -e21(3N) +e"2(65N2 -268N+212)1(162N3 ) +0(c3). (2·16) 

From these results the main critical exponents can be derived by the relations 

r;=rs(g"" IJ=c), r=(2-r;)l[2-r;+r4(goo, gw,)], ¢/=r(d-dq,¢)1(2-r;) with d··=d 
-2-1 r;-r5(goo, gwc) and ¢/= -vHJ-/i, as 

r; 0 == e2 (N -1) (N +2) 1 (54N2) + 2.3 (N -1) (109N3 -222N2 + 1728N -1696) 

I (5832N) + O(e4), 

r0 =1 + c:(N -1) I (3N) + e'(N -1) (7N2 + 142N -212) I (162N3 ) +0(c:3), 

¢/=1 +e(N -2) I (3N) + e2 (N -2) (7N2 +196N -212)1 (162N3) +0(e3), 
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Critical Behavior in Anisotropic Cubic Systems 1739 

¢/ = c.(N -4) /[2(N + 8)] + s'(N' + 16~1\[2 + 4N + 240) /[ 4(N +8)'] + O(s'). 

(2·17) 

Let us show the numerical values for these critical exponents in the system with 

JV=3 in the three-dimensional space (s=1). The critical exponent 7)0 has the 

value 0. 0206 and 0. 0465 to order c2 and c3 , respectively. The exponents T0 , ¢, c 

and ¢/ to order c. and c2 are 1.2222, 1.3489; 1.1111, 1.2115; and -0.0455, 0.0340, 

respectively. The eigenvalues J./ and J.,C have the values 1, 0.4189; -0.1111, 

0.1206 to order 8 and c2, respectively. In the spherical model (N---"co) in the 

three-dimensional space r;0 is 0.0185 and 0.0372 to order E2 and E3, respectively. 
The exponents r0 , ¢/ and ¢/ to order c and 82 are 1.3333, 1.3765; 1.3333, 1.3765; 

and 0.5, 0.75, respectively. The eigenvalues l/ and J.,C to order f. and c2 are 1, 
0.3704; 0.3333, 0.0988, respectively. These may be compared with the critical 

exponents for the isotropic (Heisenberg-like) N-component spin system :6l In case 

N=3 and d=3, r;=0.039, r=1.347 and ¢,=1.22. In case N=co and d=3, ·r;=O, 
r = 1.750 and q), = 1.75. From these results it is very difficult to distinguish for 

N = 3 between the exponents in the anisotropic cubic system and those in the 
isotropic N-component spin system. For N=co it seems to be possible. In the 

former system the crossover phenomena arise. 
The results for the cubic system obtained in (2 ·14) and (2 ·15) are essenti

ally equivalent to those obtained by Aharony4l except for the differences based on 

the used method. In the results of (2 ·17) rc and ¢/ coincide with those obtained 

by Aharony, and r; 0 in order f.3 and ¢/ are new results. 
Now let us consider the case in a magnetic field h with g, gc>O: 

N N 

+ (4!)- 1 (gc -Cc) ~ S/- ~ haSa, (2 ·18) 
a=l a=l 

where a=m2 - Z,m0
2, b=Z3 -1, Cw= (1- Z 1w) gw for w = s, c. The aim to study 

this system is to derive the equation of state near the critical point. The equation 
of state in order c has been derived by Aharony4l by means of a method similar to 

the one used by Brezin, Wallace and Wilson7l when this author derived it and 
attacked it in second order in c by means of the soft-renormalization procedure. 5) 

The equation of state obtained in order c in a similar way to the one used for the 
quenched random systems8l coincides with that by Aharony: 

h/2VI'=x+1+c./(3N2) [2(N-1) (x+3)ln(x+3) + (N-1) (N-2) 

X {x+3(N-2)/[2(N-1)]}ln{x+3(N-2)/[2(N-1)]}- {6(N-1)ln3 

+ 3/2(N- 2) 2 ln(3(N -2) /[2(N -1) ]) } (x + 1) + {4(N -1) ln2 + 1/2(N -2) 

X (N-4)ln((N-4)/[2(N-1)])}x] +0(s2) (2·19) 

by choosing the standard normalizations: h/l'\J6 =1 at t=O and t/M11P=x= -1 at 
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h=O, T<Tc with t=mo'-m/ (m/: critical mass), o=3+.s+O(c2) and 1/P'=2+.s 

X (N+2)/(3N) +0(c2). This expression reflects the stability of the anisotropic 

cubic fixed point in order 2, i.e., (2 ·19) is valid for N>4 but otherwise the 

negative logarithmic term arises on the right-hand side of it. For the typical 

cases N=5(oo) the numerical results are as follows: f(5) =6+c1.845 (13.352), 

f(4) =5+.s1.354 (10.731), f(3) =4+c:0.910 (8.266), !(2) =3+c:0.522 (5.987), 

f(1)=2+.s0.209 (3.939),f(0)=1+.s0 (O),J(-1)=.s0 (O),respectively. For the 

Heisenberg system with N=5 (oo), f(5) =6+c:2.091 (5.375), f(4) =5+c:1.548 

(4.024), !(3) =4+c:1.052 (2.773), f(2) = 3+c:0.615 (1.648), f(1) = 2 + .s0.252 

(0.693),j(O)=l+c:O (O),f(-1)=.s0 (0), respectively. In case N=5 the be

havior in both the systems is qualitatively the same but in case N = oo apparently 

different because the number of easy axes, i.e., the number of the degenerate 

lowest states rapidly increases with N in the anisotropic cubic system. The static 

critical exponents to the next order will be published in the near future. 

§ 3. Dynamic critical behavior 

Let us study the dynamic critical behavior in the anisotropic cubic system 

based on the time dependent Ginzburg-Landau (TDGL) stochastic model: 

a¢~v/at = -To (1 + ibo) [o& (¢o, ¢o *)I o¢tva (t) - hv a (t) ]'l)pa (t), 

!}{ (¢o, ¢o*) = ;_; Cro + P') cp~pcf;tpa + (3!)-1tl[9os S ddx cf;oa (x) cf;ta (x) ¢/ (x) ¢t 13 (x) 

+ 9oc sddx t cf;oa (x) ¢r (x) ¢oa (x) ¢ta (x)]. (3 ·1) 

where q)~P(t) and hPa stand for the a-th component (a=1, ···, N) of the unrenor

malized complex order parameters and of the space- and time-varying external fields, 

respectively. r;P a is a Langevin noise source governed by a Gaussian probability 

distribution (r;a(x, t)r;~(y, t'))=2T00a~o(x-y)o(t-t') and T 0 (1+ib0) is an in

verse complex time scale. The subscript 0 describes the unrenormalized quantity, 

the repeated subscripts a, fl are summed over 1 to N. The space-time correlation 

function of the order parameter G~t (t), averaged over all r;p a with the Gaussian 

distribution,9J can be described in the classical limit by the use of renormalized 

quantities (without the subscript 0), as 

Gp af3 (If)) =E-1 J{d¢} {d¢*} exp [.£ (¢, ¢*)] ¢~w¢;:, 

E= J{d¢} {d¢*} exp [.1'(¢, ¢*)], 

- .1'= ~ [- ilf)Z</> {ToZr (1 + ib) }-1 + r+ P 2] ¢~w¢;:+ ~ [ (roZ</> -r) 
p.~ p.~ 
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Critical Behavior in Anisotropic Cubic Systems 1741 

+ (gc- Cc) t~ ¢~,(x) ¢!,a(x) ¢~,(x) ¢!,"-w,+w,(x)] - H {iwZ¢ [ToZr (1 + ib) ]-1 

X [Zr(1+ib)l(1+ibo) -1]}¢~w¢;:, (3·2) 

where i abbreviates is(w) =i sgn Im(w) and the sum over W takes the values 

O) = i2rrl, l = 0, ± 1, · · ·. The last three counter terms are determined by the nor

malization conditions at criticality: 

rw<4 )(0;0000),p(p)=;fgw, w=s,c, 

Let us assume aT0Iat constant and take into consideration the renormalization 

constants Z¢ (g, g,) and Zr (g,, g" b). Further let us apply the normalization con

ditions to the R-G equation for r<')(-i(;P;ib,g,g"/1) 

Then the asymptotic behavior of r<') at the infrared stable fixed point (goo, gooc, b=) 

can be expressed in the form r<'l (- i(; p) ~ f1 2 (PI /1) 2-r>'(/) (- i(l 11' (!11 p) wr*-r;'), 

where the quantities with the superscript * stand for the value at criticality. The 

dynamic critical exponent Z¢ defined by W¢= (PI !1) '' satisfies the scaling law Z¢ 

=2+rr*-n and is calculated by using the static fixed point values in the dynam:c 
part of r<') as 

(3. 5) 

at the stable fixed point (g=, goo" b=) =(goo, goo" 0). In the nonconserved case the 

anisotropic cubic system has also the same behavior as Halperin, Hohenberg and 

Ma pointed out in the TDGL stochastic model with the isotropic N-component spin. 

The difference between the anisotropic cubic and the (Heisenberg like) isotropic 

systems in the dynamic critical behavior is very small for the system with N = 3 

in d = 3 and increases with N in d = 3. 

§ 4. Concluding remarks 

Critical behavior in the anisotropic cubic system with N-component spin has 

been studied by means of the Callan-Symanzik equations and the conclusions are 

as follows: The stability of the fixed points can be discussed by the positivity of 

the eigenvalues for the matrix Bww' and the stable regions for any fixed point 

depend on the truncated order in c: and the value of N In three dimensions the 

anisotropic cubic system is stable for N> Ncs (2.2<Ncs<2.3). The static critical 

exponents in d=3 are ?7°=0.0465 (0.0372), r 0 =1.3489 (1.3765), ¢,0 =1.2115 

(1.3765) and ¢/=0.0340 (0.75) for N=3 ( oo, respectively). The equation of 

state in order c: coincides with that obtained by Aharony. The dynamic critical 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/55/6/1733/1860568 by guest on 21 August 2022



1742 Y. Yamazaki 

exponent Z¢ m order c2 has the form Z¢-2='ij[6ln4/3-l] +0(e8) which is the 

same form derived in the TDGL stochastic model with the isotropic N-component 

spin by Halperin, Hohenberg and Ma. 

Finally the author would like to thank Professors S. Katsura, M. Suzuki and 

S. Inawashiro for useful discussions. 
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