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Abstract

We study the effects of curved background geometries on the critical behavior of scalar field

theory. In particular we concentrate on two maximally symmetric spaces: d-dimensional spheres

and hyperboloids. In the first part of the paper, by applying the Ginzburg criterion, we find

that for large correlation length the Gaussian approximation is valid on the hyperboloid for any

dimension d ≥ 2, while it is not trustable on the sphere for any dimension. This is understood

in terms of various notions of effective dimension, such as the spectral and Hausdorff dimension.

In the second part of the paper, we apply functional renormalization group methods to develop

a different perspective on such phenomena, and to deduce them from a renormalization group

analysis. By making use of the local potential approximation, we discuss the consequences of

having a fixed scale in the renormalization group equations. In particular, we show that in the

case of spheres there is no true phase transition, as symmetry restoration always occurs at large

scales. In the case of hyperboloids, the phase transition is still present, but as the only true fixed

point is the Gaussian one, mean field exponents are valid also in dimensions lower than four.
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1 Introduction

Curved spaces in physics are typically associated to the setting of general relativity and cosmology.

However, their relevance is of course much more general, and they appear for example in the

classical mechanics of constrained systems, as well as in the study of membranes and interfaces

in condensed matter. A brief review of theoretical and experimental motivations for studying

the effects of curved geometry in condensed matter can be found in [1]. The search and study

of condensed matter systems characterized by an actual or effective curved geometry is also

stimulated by the idea of analogue gravity [2].

In this paper we will be interested primarily in the case in which the geometry is non-

dynamical. Such situation is commonly considered in the cosmological setting as a first ap-

proximation in which the gravitational degrees of freedom are frozen, and one studies just a

quantum field theory in curved spacetime. From the condensed matter perspective this can also

be seen as a first approximation, or alternatively as the primary case of interest in situations

where the curvature is introduced as a technical device (e.g. [3]) or for theoretical modeling (e.g.

[4]).

The presence of curvature in the background geometry can have drastic effects on the infrared

behavior of a model [5], and in particular on its phase transitions and critical behavior. Much

work has gone in this direction for the case of constant negative curvature, that is, for the

case of statistical models in hyperbolic space. The differences between models in the usual flat

background and in the hyperbolic one have been studied in the context of liquids [6, 7], percolation

[8, 9], Ising model [10, 11, 12, 13, 14, 15], XY model [16], self-avoiding walks [17] and more. Besides

the hyperbolic case, it is worth mentioning also that curved spaces appear in the study of finite

size effects [18], curvature defects [19], topological effects [20] and of course in the presence of

compactified dimensions [21].

Despite the many relevant works, many directions appear to be unexplored. In particular,

a renormalization group approach to this kind of problems seems to be lacking. Of course the

situation is quite different in the high-energy context, where renormalization group investigations

on curved backgrounds are quite common. However, the focus there is typically on ultraviolet

properties, at least until recently. Over the past few years there has been an increased interest on

IR effects in the cosmological setting of de Sitter spacetime (e.g. [22, 23, 24, 25]). In particular,
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it has been noticed how nonperturbative renormalization group techniques can be applied to this

context and it was showed that spontaneously broken symmetries are radiatively restored in de

Sitter spacetime in any dimension [26]. The de Sitter case, because of the Lorentzian signature

of the metric, presents a number of technical challenges, and one would expect the situation to

be somewhat easier in Euclidean signature. Surprisingly, as far as we know, there has not been

a thorough study of this sort in Euclidean signature.

The purpose of this paper is to in part bridge such gap. We will study scalar field theory on

two standard types of curved Riemannian geometry, d-dimensional spheres and hyperboloids. Our

goal will be to gain a detailed understanding of how the background curvature affects the critical

behavior of the model at large distances. In Sec. 2 we will use the Ginzburg criterion in order

to test when and whether we should expect that mean field gives trustable results. In this way

we confirm general expectations based on effective dimensionality arguments, which we expand

upon at the end of the section. In the second part of the paper, Sec. 3, we will explore more in

detail the effects brought in by the curvature of space, making use of functional renormalization

group techniques in the local potential approximation. We will in particular study the question of

symmetry restoration (or existence of a phase transition), and more in general we will discuss how

the presence of a dimensional external scale affects the usual renormalization group picture. In

order to keep the treatment as self-contained as possible, we include four appendices detailing the

geometry of spheres and hyperboloids (App. A), the spectra of their respective Laplace-Beltrami

operators (App. B), the associated heat kernels (App. C) and propagators (App. D).

2 The Gaussian approximation and effective dimensionality

Let (M, gµν) be a d-dimensional Riemannian manifold, that is, a differentiable manifold M
equipped with a positive-definite metric gµν (in a given coordinate basis xµ, µ = 1, . . . , d). The

metric can be defined by the associated line element,1

ds2(M) = gµνdx
µdxν . (2.1)

In this work we will restrict to homogenous spaces, and in particular we will consider only three

types of d-dimensional Riemannian spaces: the flat space (as a benchmark), the sphere and the

hyperboloid. The respective geometries are briefly reviewed in App. A.

We are interested on the statistical properties of scalar field theories on such backgrounds.

The statistical field theory of the field φ = φ(x) is characterized as usual by the generating

functional

Z[J ] ≡ eW [J ] =

∫
Dφe−S[φ]+

∫
ddx

√
gJφ , (2.2)

and by the bare action

S[φ] =

∫
ddx

√
g

[
Z

2
gµν∂µφ∂νφ+ V (φ)

]
, (2.3)

1We use the Einstein convention, according to which repeated indices imply a summation.
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where g is the metric determinant, and gµν the inverse metric. For the purpose of this Section,

we choose

V (φ) =
1

2
(m2 + ξR)φ2 +

u

4!
φ4 , (2.4)

where R is the Ricci scalar of the background, and ξ a dimensionless coupling. The mean-field

approximation is obtained evaluating the partition function Z[0] by saddle point method. For

constant field the classical solution satisfies V ′(φ0) = 0, that is,

φ0 =




0 for m2 + ξR > 0 ,

±
√

−6m2+ξR
u for m2 + ξR < 0 .

(2.5)

The transition from zero to non-zero mean field is a text-book example of second-order phase

transition.

In the Gaussian approximation we keep also the quadratic fluctuations around the minimum

of the potential, their covariance being given by the inverse of the second functional derivative

(Hessian) of the action, evaluated at φ0:

S(2) =




−Z∇2 +m2 + ξR for m2 + ξR > 0 ,

−Z∇2 − 2 (m2 + ξR) for m2 + ξR < 0 .
(2.6)

Here ∇2 is the Laplace-Beltrami operator (or simply the Laplacian) on the curved background,

see (B.1), and from the structure of the Hessian we read off the correlation length ℓc,

ℓ−2
c =





m2+ξR
Z for m2 + ξR > 0 ,

−2m2+ξR
Z for m2 + ξR < 0 .

(2.7)

A simple test for the validity of the Gaussian approximation is given by the Ginzburg criterion

(e.g. [27]), obtained by computing (in the broken phase) the quantity

Q =

∫
ℓc
ddx

√
g G(σ; ℓ−2

c )∫
ℓc
ddx

√
g φ20

, (2.8)

where the integrals extend over a region of radius ℓc. Here G(σ; ℓ
−2
c ) is the correlation function,

G(σ; ℓ−2
c ) =

δ2W [J ]

δJ(x)δJ(x′)
∣∣∣
J=0

, (2.9)

which on homogeneous spaces depends on the space points x and x′ only via their geodesic

distance σ(x, x′), and in the Gaussian approximation it is given by the inverse of (2.6). The

correlation functions, or propagators, on curved backgrounds are reviewed in App.D.

If Q ≪ 1, the fluctuations are small and the Gaussian approximation provides a good ap-

proximation. On the other hand, if Q ≫ 1, fluctuations are large, the Gaussian approximation

breaks down and we need a nonperturbative treatment. At a second order phase transition, the

correlation length diverges, hence we are interested in checking what happens to Q in such limit.
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In flat space, approximating the integral in the numerator with an integral over the whole

space (exploiting the fact that the correlation function cuts off the integration at about a radius

ℓc, see (D.5)), one finds

Q ∼ ℓ4−d
c u

3Z2
, (2.10)

from which in the large-ℓc limit one deduces the well-known critical dimension dc = 4, below

which the Gaussian approximation does not provide a valid description of the phase transition.

2.1 The hyperboloid

On an hyperboloid Hd, we can use the results of Appendix D. In odd dimensions, we need the

expression (D.17), together with the volume integral, which is (see Appendix A)

∫

ℓc

ddx
√
g = ad Ωd−1

∫ ℓc/a

0
dy sinh(y)d−1 . (2.11)

For ℓc/a≫ 1, we thus find

Q(Hd) ∼
e(ρ−ω+)ℓc/aωρ

+

ω+ − ρ

d− 1

e(d−1)ℓc/a

uℓ2ca
2−d

3Z2
, (2.12)

and since ω+ → ρ+ 1
2ρ

a2

ℓ2c
for ℓc → ∞, we obtain

Q(Hd) ∼ 2(d− 1)ρρ+1e−(d−1)ℓc/a uℓ4c
3Z2ad

→ 0 , (2.13)

for any odd d > 1. On the other hand, for ℓc/a≪ 1, we recover (2.10) as expected.

In even dimensions the calculation is complicated by the integral nature of the fractional

derivative in (D.16). However, for d ≥ 4 even on flat space we know that mean field gives the

correct critical exponents, and it is quite clear that the hyperbolic space will not change that

situation. The most interesting even dimensional case is thus d = 2. For the latter, (D.16)

reduces to

G(H2)(y; ℓ
−2
c ) =

√
2

4π

∫ +∞

y
dx

e−
√

4a2+ℓ2c
2ℓc

x

(cosh x− cosh y)1/2
. (2.14)

For ℓc/a ≫ 1, we obtain G(H2)(ℓc/a) ∼ 1
πe

−ℓc/a, and again we find an exponentially decaying

Q(H2).

We conclude that on Hd the Gaussian approximation provides a trustable description of the

phase transition for any d > 1.

2.2 The sphere

On the sphere the dominant contribution to IR physics comes from the presence of a zero mode.

From (D.11) we find that in the limit in which we approach a phase transition and the correlation

length diverges, the propagator is dominated by the zero mode contribution G(Sd)(y; ℓ
−2
c ) ∼ ℓ2c ,

and as a consequence

Q(Sd) ∼
ℓ4ca

−d

3Z
u , (2.15)
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and comparing to (2.10) we conclude that, for large ℓc, the effective behavior on Sd is that

of a zero-dimensional space, and in particular the Gaussian approximation is expected to be

insufficient at large correlation length for any d.

2.3 Interpretation in terms of effective dimension

The conclusions we have reached with the Ginzburg criterion could have also been guessed by a

heuristic in terms of effective dimensionality. We are going to illustrate such an argument for two

different notions of effective dimension, that is, the spectral and the Hausdorff dimension. The

former is defined as

ds ≡ −2
∂ log Tr[K(s)]

∂ log s
, (2.16)

where K(s) is the heat kernel for the Laplace-Beltrami operator (b = 0, see App. C). On flat

space ds = d, which justifies the definition, while on a general space it is in the limit of s→ 0 that

we always have ds → d. A simple interpretation of such property is that, s being the diffusion

time, small s means that only a small neighborhood of a point is being explored by the diffusion

process, hence the space looks flat at those scales.

For large s, curvature effects become important, and for s → +∞ (at ℓ2c ≫ s) we find that

ds → 0 on Sd, while ds → +∞ on Hd. Such limits are easily found. For the sphere we use the

spectral sum representation of the heat trace, which is convergent in the large-s domain,

Tr[K(Sd)(s)] =
1

Ωdad

∑

n

Dne
−sωn , (2.17)

from which we see that Tr[K(Sd)(s)] → 1
Ωdad

for s → +∞ (again due to the zero mode), and

hence ds → 0. This can be heuristically understood as the statement that the sphere looks like a

point when observed from a very large distance.

For the hyperboloid, we can use (C.7) to find that for d odd

Tr[K(Hd)(s)] ∝
e−sρ

(4πs)d/2
, (2.18)

where essentially the exponential decay is due to the presence of a “mass gap” in the spectrum and

the absence of a zero mode. Plugging (2.18) into (2.16) we find ds = d+2sρ, that is, the spectral

dimension grows linearly with s. For d even, the expression for the heat trace is complicated by

the integral nature of the pseudo-differential operator, however it is not hard to see that the same

exponential damping is in place, hence the same result is obtained for the spectral dimension at

large s.

We can also use a different notion of effective dimension, the Hausdorff dimension

dH =
∂ log

∫
L d

dx
√
g

∂ logL
, (2.19)

where the integral extends over the set of points for which σ(x, 0) ≤ L. For the sphere such

integral reaches a plateau at L = πa, hence the Hausdorff dimension is zero at large L. On the
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contrary, for the hyperboloid the integral keeps growing exponentially, that is, faster than any

power of L, and the Hausdorff dimension diverges.

It is well known that mean field theory becomes exact at large number of dimensions, hence the

infinite effective dimensionality of the hyperboloid at large scales provides a heuristic explanation

of the result we obtained from the Ginzburg criterion. At the same time, we know that in the

Ising universality class there is no phase transition below d = 2, hence we might expect a failure

of the Gaussian approximation for the sphere.

We should stress however that even though such arguments based on the effective dimension

give a correct picture of the underlying physical mechanism, the Ginzburg criterion is more

trustable as it involves directly the correlation function.

3 A functional renormalization group perspective

In this Section we want to analyze more in detail the effects induced by the curvature of the

background geometry. To that end, we will use the method known as functional renormalization

group (FRG).2 There are many reviews on the FRG [28, 29, 30, 31, 32, 27], to which we refer for

an introduction to the topic. We will employ here the FRG version that deals with the so-called

effective average action Γk[φ] [33], which is an IR-regulated version (k being the running RG scale

associated with the IR cutoff) of the Legendre transform of the functional W [J ], introduced in

(2.2). It satisfies the general equation

k∂kΓk =
1

2
Tr

[(
Γ
(2)
k +Rk

)−1
k∂kRk

]
, (3.1)

where Rk denotes the IR cutoff, and Γ
(2)
k the Hessian of Γk. The equation is amenable to several

approximation schemes, one of the most common being the derivative expansion, in which Γk is

expanded in invariants containing an increasing number of derivatives. The lowest order of the

derivative expansion is known as local potential approximation (LPA), and it is the one we will

consider here.

The ansatz for the average effective action in the LPA is

Γk[φ] =

∫
ddx

√
g

[
Zk

2
gµν∂µφ∂νφ+ Vk(φ)

]
. (3.2)

Strictly speaking, LPA usually stands for the case Zk = 1, otherwise (3.2) is typically referred to

as LPA′ (e.g. [34]). The functional RG equation (3.1) for the potential reads

k∂kVk(φ) =
1

2
Tr(M)

[
k∂kRk(−∇2/k2)

−Zk∇2 + V ′′
k (φ) +Rk(−∇2/k2)

]

|φ=const.

, (3.3)

where we have redefined the trace on the Riemannian manifold M by dividing out the volume of

M, and we have projected the equation onto constant field configurations.

2Sometimes referred to also as exact or nonperturbative renormalization group.
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The equation (3.3) describes the evolution of the potential under (continuous) coarse graining.

The latter is the first of the two standard steps of the renormalization group [35], the second

consisting in a rescaling of lengths and momenta such as to bring back the cutoff to its original

value, and in a field redefinition that restores the normalization of the kinetical term. In the LPA,

the second step is taken care of by the introduction of dimensionless variables

φ̃ = Z
1/2
k k(2−d)/2φ , Ṽ (φ̃) = k−dV (φ(φ̃)) . (3.4)

We also define ∆̃ = −∇2/k2, and we write the cutoff as Rk(z) = Zkk
2r(z), for some dimensionless

function r(z) constrained only by standard requirements [36]. In dimensionless variables, (3.3)

reads

k∂kṼk(φ̃) + d Ṽk(φ̃)−
d− 2 + ηk

2
φ̃Ṽ ′

k(φ̃) = T̃r(M)

[
(1− ηk/2)r(∆̃)− ∆̃ r′(∆̃)

∆̃ + Ṽ ′′
k (φ̃) + r(∆̃)

]

|
φ̃=const.

, (3.5)

where ηk = −k∂k lnZk is the scale-dependent anomalous dimension, and T̃r(M) = k−dTr(M).

The LPA′ needs an additional equation for the flow of Zk, which can be expressed as a relation

between ηk and (the derivatives of) the potential evaluated at its minimum (e.g. [30, 37, 38]). In

what follows, we will actually set ηk = 0 in any practical calculation (i.e. we will only perform

calculations within the strict LPA), so we will not need such expression.

A cutoff that leads to a very simple expression for the righ-hand-side of (3.3) or (3.5) is Litim’s

optimized cutoff [39, 36]

r(z) = (1− z)θ(1− z) , (3.6)

with which we obtain

k∂kṼk(φ̃) + d Ṽk(φ̃)−
d− 2 + ηk

2
φ̃Ṽ ′

k(φ̃) =
1

1 + Ṽ ′′
k (φ̃)

F(M)(ã, ηk) , (3.7)

where

F(M)(ã, ηk) = T̃r(M)[θ(1− ∆̃)]− ηk
2

T̃r(M)[(1− ∆̃)θ(1− ∆̃)] , (3.8)

and we have introduced

ã = ak . (3.9)

In order to explicitly perform the traces, we need to fix the dimension d. It is instructive to

consider the case of d = 3, for which computations are easiest, and where a nontrivial critical

behavior is known to occur in the flat case. In flat space, using Fourier transform we find

F(E3)(∞, ηk) =
Ωd−1

d (2π)d

(
1− ηk

d+ 2

) ∣∣∣
d=3

=
1

6π2

(
1− ηk

5

)
, (3.10)

and the analysis of the equation is standard (see e.g. [40, 41, 37, 38]): one finds a non-trivial

(Wilson-Fisher) fixed point, at which the critical exponents differ from their mean field value,

and are in good agreement with the observed values.
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On the hyperboloid, using the results collected in Appendix B, we find

F(H3)(ã, ηk) =
1

6π2

(
1− 1

a2k2

) 3
2

θ

(
1− 1

a2k2

)(
1− ηk

5

(
1− 1

a2k2

))
. (3.11)

Finally, on the sphere we find

F(S3)(ã, ηk) =
1

a3k3Ω3
P(⌊N3⌋)

(
1− ηk

2
Q(⌊N3⌋)

)
, (3.12)

where ⌊x⌋ is the floor function,

P(N) =
N∑

n=0

Dn =
1

6
(1 +N)(2 +N)(3 + 2N) , (3.13)

Q(N) =
1

P(N)

N∑

n=0

Dn(1− ω̃n) =
5a2k2 − 9N − 3N2

5a2k2
, (3.14)

being ω̃n the eigenvalues (B.2) in units of k, and

N3 = −1 +
√

1 + a2k2 . (3.15)

The spherical case gives rise to a staircase function, as a combined effect of the discrete spectrum

and the use of a step function in the cutoff, a phenomenon already known in the literature (e.g.

[42, 43, 44]).

We notice a crucial difference between the flat and the curved cases: in the curved back-

grounds the FRG equation is a non-autonomous equation, in the sense that there is an explicit

dependence upon k on the rhs. On flat space, it is the introduction of dimensionless variables

that leads to an autonomous equation. In the curved background case, the existence of a fixed

external scale implies that we cannot in general achieve an autonomous equation. The same thing

generically happens if any non-running scale is present, for example in quantum field theory at

finite temperature [30], or on a non-commutative spacetime [45].

We thus immediately realize that true fixed points are unlikely, the potential will always retain

a dependence on k via its dimensionless product with a. In special cases such dependence can

be harmless, as in the case of the massless free theory. The latter is given by a φ̃-independent

potential Ṽk(φ̃) = vk, with vk satisfying (ηk = 0)

k∂kvk + dvk = T̃r(M)

[
r(∆̃)− ∆̃ r′(∆̃)

∆̃ + r(∆̃)

]
. (3.16)

Note that also on flat space the Gaussian solution to (3.7) has a non-zero vacuum term, Ṽ (φ̃) =

1/(d 6π2). We could eliminate such running vacuum terms, and obtain a proper Gaussian fixed

point with Ṽk(φ̃) = 0, by a modified equation in which vacuum contributions are appropriately

subtracted (see for example [27] or [46]).

Alternatively, we can introduce the concept of floating-points [45], i.e. solutions of the FRG

equation which are independent of k, up to dependence on ã = ak. In other words, we can
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introduce, and keep track of, an explicit dependence on ã, as if it was another field, an external

field. Clearly, in the present case such procedure can be seen as a first step towards the treatment

of cases in which the geometry is dynamical, and the curvature is indeed treated as on a par with

other fields.

3.1 Scaling dimension and symmetry restoration

We will first discuss the consequences of the non-autonomy of the equation, taking the explicit

formulas for d = 3 with optimized cutoff as a guidance.

On the hyperboloid we observe that the loop contributions on the rhs of the FRG equation

(i.e. the functional trace (3.11)), vanish as soon as k < 1/a, thus leaving us with the classical

(tree level) part of the equation. Although we have not computed explicitly the functional traces

needed to evaluate the anomalous dimension, it is not hard to check that a similar phenomenon

occurs also in such traces, and hence the anomalous dimension also vanishes in the deep IR. As a

consequence, IR fixed points coincide with classical scale invariant theories, and thus mean field

behavior is recovered at large distances, confirming our conclusions from Sec. 2.1. It should be

stressed that the use of a cutoff with step function, such as (3.6), provides us with an extreme

version of the general case: with a generic cutoff the approach to zero will be smooth, but in

general fast enough for k < 1/a, thus leading to the same conclusion.

On the sphere, we see that P(⌊N3⌋) → 1 for k → 0, or more precisely as soon as k2 < 3/a2,

that is, only the zero mode remains unsuppressed. However, the dimensionless volume of the 3-

sphere goes to zero, making the rhs of the FRG equation divergent. The presence of a singularity

for k → 0 is a general consequence of the presence of compact dimensions, with the d-sphere

behaving as k−d because all its dimensions are compact. In order to absorb such divergence we

should rescale the potential and the field such that the lhs be as divergent as the rhs. This is

achieved by introducing the new variables

φ̄ = (ka)d/2φ̃ = ad/2kφ , (3.17)

V̄ (φ̄) = (ka)dṼ (k−d/2a−d/2φ̄) = adV (a−d/2k−1φ̄) . (3.18)

The scaling of φ̄ with k has been chosen so that 1 + Ṽ ′′
k (φ̃) → 1 + V̄ ′′

k (φ̄). The resulting equation

for k2 < d/a2 is

k∂kV̄k(φ̄) + φ̄V̄ ′
k(φ̄) =

1

Ωd

1

1 + V̄ ′′
k (φ̄)

, (3.19)

which can be recognized as the flat FRG equation for d = 0, apart from the Ωd factor which could

anyway be removed with a k-independent rescaling of field and potential. We thus expect that

the IR properties of scalar field theory on a spherical background will resemble those the same

theory in zero dimensions. In particular, we expect no phase transition to be present.

Such expectation can be directly tested by studying the flow of the dimensionful potential,

and looking for a transition in the IR between a potential with spontaneous symmetry breaking

and one without. On flat space, this is a standard analysis (see for example [30, 27, 38]), and
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it proceeds as following: one solves numerically the flow equation for the dimensionful potential

with an initial condition at k = Λ corresponding to a potential with spontaneous symmetry

breaking, i.e. VΛ(φ) = λΛ(φ
2 − ρΛ)

2 with ρΛ > 0. Integrating down towards k = 0 one observes

in general that the local maximum at φ = 0 flattens out, and two different behaviors can arise

depending on the initial condition ρΛ, namely in one case the potential becomes flat in a finite

interval around the origin at k = 0, corresponding to the effective potential of a broken phase,

while in the other case the lowering of the maximum continues until we obtain at finite k > 0 a

global minimum at φ = 0, i.e. we obtain a symmetry restoration. On a flat background we know
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Figure 1: The flow of the potential (with the minimum subtracted for graphical purposes) on

a flat background. The blue curve is the initial condition VΛ(φ) = λΛ(φ
2 − ρΛ)

2, with Λ = 20,

λΛ = .05, ρΛ = 2.25 (left) and ρΛ = 0.49 (right). The red curve is at k = 0.1, smaller values of k

being indistinguishable on the scale of the plot. Symmetry restoration is evident in the plot on

the right. The phase transition occurs near ρΛ ≃ 1.82.

that both phases are present for d ≥ 2 (or d > 2 in the O(N) model with N > 1 [30, 47]), and

a continuous phase transition separates them at some critical value ρΛ = ρc > 0. The behaviors

characteristic of the two phases are depicted in Fig. 1. On the hyperboloid, the phase diagram

is qualitatively similar to the flat case, i.e. there exists a broken phase, and the plots look very

similar to those in Fig. 1. In the spherical case the situation is instead quite different, as it turns

out that symmetry is always restored at some finite k > 0, i.e. we do not find the broken phase

for any value of ρΛ. An example of symmetry restoration is shown in Fig. 2. Interestingly we find

that, for large enough ρΛ, at some intermediate scale (k ∼ 0.6 in the specific case of Fig. 2) the

potential is basically that of a broken phase, but as we keep decreasing the scale the symmetry

is restored by the development of a minimum at φ = 0.

3.2 Floating points

We can introduce an explicit dependence on ã = ak in the potential, so as to transform the flow

equation into an autonomous equation, but with an additional independent variable. In order

to highlight the presence of an additional argument in the potential, we denote the potentail as

11
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Figure 2: The flow of the potential (again with the minimum subtracted) on a spherical back-

ground with a = 1/5. The blue curve is the initial condition VΛ(φ) = λΛ(φ
2 − ρΛ)

2, with Λ = 20,

λΛ = .05, ρΛ = 25, while the red curve is at k = 0.1. Despite the large value of the initial

symmetry breaking parameter, it is evident that symmetry restoration still takes place.

Uk(φ, a). We then introduce the dimensionless potential

Ũk(φ̃, ã) = k−d Uk(φ(φ̃), ã/k) , (3.20)

for which we obtain the equation

k∂kŨk(φ̃, ã) + d Ũk(φ̃, ã)−
d− 2 + ηk

2
φ̃ ∂φ̃Ũk(φ̃, ã) + ã ∂ãŨk(φ̃, ã) =

1

1 + ∂2
φ̃
Ũk(φ̃, ã)

F(M)(ã, ηk) .

(3.21)

This is simply a rewriting of (3.7), with k∂kṼk(φ̃) = k∂kŨk(φ̃, ã) + ã ∂ãŨk(φ̃, ã). Now the fixed

point (or floating point) equation is provided by the PDE obtained by setting k∂kŨk(φ̃, ã) = 0.

In order to understand the meaning of (3.21) we can first consider the case in which we discard

the loop contribution on the rhs. That is, we study the tree level equation (with ηk = 0)

d Ũk(φ̃, ã)−
d− 2

2
φ̃ ∂φ̃Ũk(φ̃, ã) + ã ∂ãŨk(φ̃, ã) = 0 . (3.22)

Such equation, in the absence of boundary conditions simply constraints the dependence on the

variables to

Ũk(φ̃, ã) = ã−d Y
(
ã

d−2
2 φ̃

)
, or U(φ, a) = a−d Y

(
a

d−2
2 φ

)
, (3.23)

or in other words, the floating point potential is effectively a fixed point potential, where dimen-

sional quantities (the potential and the field) are expressed in units of a. This was to be expected

as in the absence of the rhs, the FRG equation is simply a statement of classical scale invariance

(or k-independence), and thus dimensional analysis is enough to fix the potential. If in addition

we require analyticity in both φ and a−1 (the latter in order to recover the flat space limit), that

is, if we require regular behavior at a−1 = φ = 0, and also Z2 symmetry, we find

U(φ, a) =

⌊ d
d−2

⌋∑

n=0

cn a
−d+n(d−2) φ2n , (3.24)

12



with free dimensionless coefficients cn. Because of the presence of the dimensionful parameter a,

we find a more general potential than the usual φ
2d
d−2 required by scale invariance in flat space.

As another consequence of the dimensional scale given by the curvature, we can straightfor-

wardly see that the Gaussian fixed point has a massive generalization that would be forbidden

on flat space: we can solve the full floating point equation with an ansatz of the type

Ũ(φ̃, ã) = u(ã) + c
φ̃2

ã2
. (3.25)

When plugged into (3.21), the second term disappears from the linear (or tree level) part of

the equation, because it is a solution of (3.22). On the other hand, the trace part becomes φ̃-

independent, with ∂2
φ̃
Ũk(φ̃, ã) = 2c/ã2. We are then left with an inhomogeneous linear ODE for

u(ã), for which the solution of the associated homogeneous equation is uhom(ã) = u0/ã
d, for an

arbitrary constant u0, while the special solution of the inhomogeneous equation is scheme and

dimension dependent.

Non-trivial floating points are much harder to study without truncations, as they require the

flat case solution as boundary condition at ã−1 = 0. For this reason, we will now resort to a

polynomial truncation.

3.3 A simple truncation

Truncations of the potential to polynomial form are a very useful approximation even on flat

space. The lowest order truncations can serve as a playground to understand qualitative features

of the theory under examination (e.g. [29, 30]), while their recursive extension can serve even

as a quantitative method for the extraction of precise critical exponents (e.g. [48, 41]). Here,

since we focus on the qualitative picture rather than on precise quantitative estimates, we will

consider the simplest possible truncation, that is, a simple quartic potential, and again Zk = 1.

We distinguish two cases, corresponding to equation (3.7) and (3.21) respectively:

Ṽk(φ̃) = v0(k) + v2(k) φ̃
2 + v4(k) φ̃

4 , (3.26)

and

Ũk(φ̃, ã) = u0(k, ã) + u2(k, ã) φ̃
2 + u4(k, ã) φ̃

4 . (3.27)

As observed previously, the first case (3.26) does not lead to nontrivial fixed points. We obtain

the system of beta functions

k∂kv0 = −d v0 +
F(M)(ã, 0)

1 + 2 v2
, (3.28)

k∂kv2 = −2 v2 − 12 v4
F(M)(ã, 0)

(1 + 2 v2)2
, (3.29)

k∂kv4 = (d− 4) v4 + 144 v24
F(M)(ã, 0)

(1 + 2 v2)3
. (3.30)

13



It is easy to check that setting the left-hand-sides to zero, if F(M)(ã, 0) has a nontrivial dependence

on ã (i.e. in the non-flat case), then the only fixed point is at v2 = v4 = 0 (as already discussed,

in order to fix also v0 we would need to modify the equation). The nontrivial solution is

v∗2 =
4− d

2d− 32
, v∗4 =

12(d − 4)

(d− 16)3F(M)(ã, 0)
. (3.31)

In the flat case F(M)(ã, 0) is a constant, and for d < 4 this is the Wilson Fisher fixed point in

the simplest truncation. In the curved case this solution changes with k (at fixed a), and we

cannot interpret it as a fixed point. From the known behavior of F(M)(ã, 0), we find that as

k → 0, v∗4 → +∞ in the hyperbolic case (actually as k → 1/a because of the optimized cutoff),

while v∗4 → 0 in the spherical case. In the spherical case, the nontrivial solution merges with the

Gaussian fixed point, but as we already know, there is no phase transition in this case. In the

hyperbolic case, the nontrivial fixed point is pushed to infinity, leaving us with only the Gaussian

fixed point, thus explaining why the Gaussian approximation is valid in this case. We can also

study the linear perturbations around (3.31) in H3. We find that the stability eigenvalues are k-

independent and equal to ν± = 1
6(2±

√
82), but the eigendirections are k-dependent and become

degenerate at k = 1/a, both reducing to the vector (0, 1). As a consequence, critical exponents

have to be taken from the Gaussian fixed point, and thus they trivially coincide with the results

from the Gaussian approximation (i.e. in d = 3 they are ν2 = 2 and ν4 = 1).

In the parametrization (3.27) we obtain instead

k∂ku0 = −ã∂ãu0 − du0 +
F(M)(ã, 0)

1 + 2u2
, (3.32)

k∂ku2 = −ã∂ãu2 − 2u2 − 12u4
F(M)(ã, 0)

(1 + 2u2)2
, (3.33)

k∂ku4 = −ã∂ãu4 + (d− 4)u4 + 144u24
F(M)(ã, 0)

(1 + 2u2)3
. (3.34)

Imposing again the vanishing of the left-hand-sides, we obtain this time a system of ordinary

differential equations. The interesting case is the hyperboloid, which we can study once more in

d = 3. The equation for ã > 1 is not easily integrated analytically but can of course be integrated

numerically. However, whatever the solution is in that range, this has to be matched with the

solution for ã < 1. The latter is trivial because of the vanishing of F(M)(ã, 0), and we are left

with a set of equations that is essentially the same of the usual tree-level flow equations but with

k replaced by ã. We thus obtain

u∗0 =
c0
ã3
, u∗2 =

c1
ã2
, u∗4 =

c2
ã
, (3.35)

corresponding to the potential

U∗(φ, a) =
c0
a3

+
c1
a2
φ2 +

c2
a
φ4 . (3.36)

Of course from (3.35) we obtain the same result as from (3.31), i.e. that the dimensionless

couplings go to infinity as ã→ 0. However, (3.36) gives a different point of view on what is going

on: due to the dimensionful scale a, we obtain a mean field k-independent potential.
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4 Conclusions

In this paper we have studied the effects of curvature on the critical behavior of a scalar field,

concentrating on spherical and hyperbolic spaces. By applying the Ginzburg criterion we have

deduced that on a d-dimensional sphere the Gaussian approximation is never trustable when

the correlation length becomes large, while on a d-dimensional hyperboloid it is trustable for

any d ≥ 2. We have interpreted this in terms of effective dimensions, such as the spectral and

Hausdorff dimension: in the far IR both notions of dimension indicate that spheres are effectively

zero-dimensional (they look like a point) while hyperboloids have an infinite effective dimension.

In view of the known dependence of the Ising universality class on the dimension, one would then

expect to find no phase transition on the sphere, and to find a phase transition well described

by mean field theory on the hyperboloid. Such expectations were confirmed in Sec. 3, where we

applied functional renormalization group techniques to the analysis of the scalar model on curved

backgrounds. After discussing the general new features of the FRG equation in the presence of an

external scale, we have shown by numerical integration in the local potential approximation that

on the sphere there is only the symmetric phase. Finally, with the help of a simple truncation, we

have shown how the Wilson-Fisher fixed point is pushed to infinity in H3, thus leaving us with

the sole Gaussian fixed point, with trivial critical exponents.

The main purpose of this paper was to show how the FRG can help us understanding the

effects of geometry on critical phenomena. To that end, we studied the simplest model, and tried

to keep things simple, but many other extension and applications are of course possible. On the

technical level, it would be desirable to consider smooth cutoffs, thus avoiding the nonanalytic

staircase effects encountered with (3.6), and to study the LPA′ more in detail, as well as the full

next-to-leading order of the derivative expansion. A natural and simple extension of this work

would be to study the O(N) model, something to which we hope to come back in the near future.

It would also be interesting to study what happens on different spaces, and in particular whether

some space can be found in which a nontrivial behavior persists at the phase transition, but with

different exponents than in the flat case.
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A Geometry of backgrounds

The most trivial homogeneous space, which we consider in this work as reference case, is flat

Euclidean space Ed, with metric element ds2
(Ed)

= δµνdx
µdxν . The other two spaces we study

here are d-dimensional spheres and hyperboloids.

The d-sphere can be defined in an intrinsic way as the quotient Sd ≃ SO(d+1)/SO(d), or in

an extrinsic way via its embedding in Ed+1

d+1∑

A=1

(XA)2 = a2 , (A.1)

where XA are the Cartesian coordinates in R
d+1, and a is the radius of the sphere. Its metric

element can be written as

ds2(Sd) = a2dΩd ≡ a2
d∑

i=1

dθ2i

d∏

j=i+1

sin2(θj) = a2dθ2d + a2 sin2(θd)dΩd−1 , (A.2)

where the product is omitted for i = d. The angles θi take values in [0, π], except for θ1 ∈ [0, 2π].

As any homogeneous space, the d-sphere is maximally symmetric, which implies that it is an

Einstein space, i.e. Rµν = 1
dgµνR with constant scalar Ricci curvature R, and that it has zero

Weyl tensor. In other words, the Riemann tensor reduces to

Rµνρσ =
R

d(d − 1)
(gµρgνσ − gµσgνρ) . (A.3)

On Sd the scalar Ricci curvature is given by

R(Sd) =
d(d− 1)

a2
. (A.4)

We often use the volume of the unit d-sphere, which is

Ωd ≡ a−d

∫

(Sd)
ddx

√
g =

Γ(d/2)

Γ(d)
(4π)d/2 . (A.5)

The d-dimensional hyperboloid is defined intrinsically as the quotient Hd ≃ SO(d, 1)/SO(d),

or extrinsically as the upper sheet (Xd+1 > 0) of the hypersurface

d∑

A=1

(XA)2 − (Xd+1)2 = −a2 , (A.6)

embedded in Minkowski space Md,1, i.e. R
d+1 with flat metric of signature (+, . . . ,+,−). Its

metric element can be written as

ds2(Hd) = dτ2 + a2 sinh2(τ/a)dΩd−1 , (A.7)

where dΩd−1 is the metric element on the unit (d− 1)-sphere, defined above, and τ ∈ [0,+∞) is

the geodesic distance from the origin. The dimensional parameter a is the characteristic length

or “radius” of the hyperboloid, in terms of which the scalar Ricci curvature is

R(Hd) = −d(d− 1)

a2
. (A.8)
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B Spectra of Laplacian operators

On flat space the eigenfunctions of the Laplacian are of course the plane waves, and the functional

traces are evaluated via Fourier transform. On curved backgrounds we lack a Fourier transform,

however we are on a comparable situation whenever we know the spectrum of the Laplacian, as

in the case of the spaces we consider in this work.

On generic Riemannian manifold with metric gµν the Laplace-Beltrami operator acting on a

scalar field φ(x) is given by

∇2 φ(x) =
1√
g
∂µ(

√
ggµν∂νφ(x)) . (B.1)

The Laplacian spectrum on the sphere is well known [49], the scalar eigenmodes satisfying

−∇2 ψn,j =
n(n+ d− 1)

a2
ψn,j ≡ ωn ψn,j , (B.2)

with multiplicity Dn = (n+d−2)! (2n+d−1)
n!(d−1)! , j = 1, 2, ...Dn, and n = 0, 1, 2, ... + ∞. Eingenmodes

(whose explicit expression we do not need here) are orthonormal, that is,

∫

Sd

ddx
√
gψ∗

m,j(x)ψm′,j′(x) = δmm′δjj′ . (B.3)

For the scalar Laplacian on the hyperboloid we follow [50, 51, 52]. The eigenmodes of the

Laplacian on Hd satisfy

−∇2φλ,l =
1

a2
(λ2 + ρ2)φλ,l ≡ νλ ψλ,l , (B.4)

where

ρ = (d− 1)/2 , (B.5)

λ ∈ [0,+∞), and l = 0, 1, 2, ... +∞. Eigenmodes are normalized as

∫

Hd

ddx
√
gφ∗λ,l(x)φλ′,l′(x) = δjj′ δ(λ− λ′) . (B.6)

The analogue of the multiplicty for the continuum spectrum is the spectral function, or Plancherel

measure, which is defined by

µ(λ) ≡ πΩd−1a
d

2d−2

∑

l

φ∗λ,l(0)φλ,l(0) , (B.7)

and explicitly given by

µ(λ) =
π

22(d−2)Γ(d/2)2

(d−3)/2∏

j=0

(λ2 + j2) (B.8)

for odd d ≥ 3, and by

µ(λ) =
πλ tanh(πλ)

22(d−2)Γ(d/2)2

(d−3)/2∏

j=1/2

(λ2 + j2) (B.9)
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for even d ≥ 2 (for d = 2 the product is omitted).

Functional traces (which we define divided by the volume) reduce to

Tr(Sd)[W (−∇2)] =
1

Ωdad

∑

n

DnW (ωn) (B.10)

for the sphere, and to

Tr(Hd)[W (−∇2)] =
2d−2

πΩd−1ad

∫ ∞

0
dλµ(λ)W (νλ) (B.11)

for the hyperboloid.

C Heat kernel

By definition the heat kernel is the solution of the heat equation

(∂s −∇2
x + b)K(x, s;x0, b) = 0 , (C.1)

with initial condition

lim
s→0

K(x, s;x0, b) =
δ(x− x0)√

g
. (C.2)

On a homogeneous space the heat kernel depends only on the geodesic distance between x and

x0, which we denote by σ(x, x0). We thus write K(x, x0, s; b) = K(σ, s; b).

Knowing the spectrum of the Laplacian we can write the general solution in the form

K(σ, s; b) =
∑

u

e−s(λu+b)χu(x)χ
∗
u(x0) , (C.3)

where −∇2χu(x) = λuχu(x), and u labels the whole set of eigenmodes.

On flat space we have

K(Ed)(x, s; b) =
e−

|x|2

4s
−sb

(4πs)
d
2

. (C.4)

For spheres and hyperboloids, the nearest we can get to a closed expression for the heat kernel

on these spaces is probably in terms of fractional derivatives [50]. We introduce the dimensionless

variable y = σ/a, rescale s→ a2s, and define

ω± =
√
ρ2 ± a2b . (C.5)

On the sphere one finds

K(Sd)(y, s; b) =
1

ad
esω

2
−

(4πs)
1
2

(
1

2π

∂

∂(cos(y) + 1)

) d−1
2

+∞∑

n=−∞
(±1)ne−

(y+2πn)2

4s , (C.6)

where the plus and minus sign are for d odd and even respectively. As y = θd (see (A.2)), we have

that y ∈ [0, π], however geodesics can wrap several times around the sphere, and such “indirect

paths” precisely give rise to the sum over n in (C.6).
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On the hyperboloid we have

K(Hd)(y, s; b) =
1

ad
e−sω2

+

(4πs)
1
2

(
− 1

2π

∂

∂ cosh(y)

) d−1
2

e−
y2

4s . (C.7)

Note that the fractional derivatives have different definitions for the cases of the sphere and the

hyperboloid [50], but always reduce to ordinary derivatives for d odd. Note also that the absence

of indirect paths for the geodesics makes the expression for the hyperboloid simpler than that for

the sphere.

D Propagators

By definition the propagator G(x, x0; b) is the solution to the equation

(−∇2
x + b)G(x, x0; b) =

δ(x− x0)√
g

. (D.1)

Again, due to homogeneity of space the propagator depends only on y = σ(x, x0)/a, hence we

will simply write G(y; b) for the propagator. Its relation to the heat kernel is provided by the

Schwinger proper time integral,

G(y; b) = a2
∫ ∞

0
dsK(y, s; b) , (D.2)

which, upon using (C.3), gives (assuming that λu + b > 0, ∀u)

G(y; b) =
∑

u

1

λu + b
χu(x)χ

∗
u(x0) . (D.3)

On flat space the propagator is well known, and it takes the form (e.g. using (C.4) and (D.2))

G(Ed)(x; b) =
bd−2

(2π)d/2
(
√
b |x|)1− d

2K d−2
2

(√
b |x|

)
, (D.4)

where Kν(x) modified Bessel function of the second kind, leading to the asymptotic behavior

G(Ed)(x; b) ∼
bd−2

(2π)d/2
(
√
b |x|) 1−d

2

√
π

2
e−

√
b |x| (D.5)

for
√
b |x| ≫ 1, and

G(Ed)(x; b) ∼
2

d−4
2

(2π)d/2
Γ(
d− 2

2
) |x|2−d (D.6)

for
√
b |x| ≪ 1. This justifies the definition (2.7) of correlation length ℓc = b−1/2.

The propagators for both Sd and Hd have been computed in [53] directly solving (D.1), or

from an explicit mode sum in [54] for the sphere and in [55, 51] for the hyperboloid. Define

α± = ρ+ ω± , (D.7)
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β± = ρ− ω± . (D.8)

The propagator on Sd is given by

G(Sd)(y; b) = a2−dΓ(α−)Γ(β−)

Γ(γ) 2d πd/2
F (α−, β−; d/2; z) , (D.9)

where F (α, β; γ; z) is the hypergeometric function, and

z = cos2(y/2) . (D.10)

For small b the propagator has the following Laurent expansion

G(Sd)(y; b) =
1

b ad Ωd
+ f(y) +O(b) , (D.11)

where the b-independent part f(y) contains the UV divergent (y = 0) contributions. For d odd

it takes the form

f(y) =
a2−d

2 (4π)(d−1)/2

(
(1− z)1−

d
2 f1(1− z) + f2(1− z)

)
, (D.12)

with f1(1− z) and f2(1− z) two analytic functions at z = 1, while for d even we find

f(y) =
a2−d

(4π)d/2




d/2∑

n=1

an

(1− z)
d
2
−1

− (d− 2)!

(d2 − 1)!
log(1− z)


 , (D.13)

where for example a0 = −1 for d = 2, and a0 = −7/3, a1 = 1/2 for d = 4. Note that for

b→ 0 the divergent part of G(Sd)(y; b) arises from the constant mode −∇2 ψ0,0 = 0, which by the

normalization condition (B.3) is ψ0,0(x) = a−d/2Ω
−1/2
d (compare (D.3) with (D.11)).

The propagator on Hd is given by

G(Hd)(y; b) = a2−dΓ(α+)Γ(α+ − d/2 + 1)

Γ(α+ − β+ + 1)2dπd/2
z−α+ F (α+, α+ − d/2 + 1;α+ − β+ + 1; z−1) , (D.14)

where

z = cosh2(y/2) . (D.15)

A more compact expression can be obtained for the propagator on Hd by plugging (C.7) into

(D.2). Exchanging integral and (fractional) derivative, we find

G(Hd)(y) =
a2−d

2ω+Z

(
− 1

2π

∂

∂ cosh(y)

) d−1
2

e−ω+ y . (D.16)

In odd dimensions, the evaluation is trivial as the derivatives are ordinary ones, and we find

G(Hd)(y) =
a2−d

2ω+Z

(
ω+

2π sinh(y)

) d−1
2

e−ω+ y . (D.17)
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