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Abstract Following previous study about AdS-
Schwarzschild black holes minimally coupled to a cloud
of strings in the context of massive gravity (Ghanaatian et
al. in Effects of the external string cloud on the Van der
Waals like behavior and efficiency of AdS-Schwarzschild
black hole in massive gravity, arXiv:1906.00369 [hep-th])
and inspired by strong connection between Gauss–Bonnet
Gravity and heterotic string theory, in this paper, we first
take into account the Gauss–Bonnet term and we study ther-
modynamics and critical behavior of these black holes in the
extended phase space. The effects of Gauss–Bonnet, mas-
sive, and string cloud parameters on the criticality of these
black holes has been investigated. It can be seen that the
Gauss–Bonnet and massive parameters have opposite effects
on the criticality and phase transition of the solutions. We
also observe that the increase in the value of the string cloud
parameter above a critical value, eliminates the van der Waals
like behavior of these solutions. Also, the Joule–Thomson
effect is not observed. Then we examine thermal stability
of these black holes in canonical ensemble by calculating
the heat capacity. In addition, we explore critical behavior in
extended phase space by employing heat capacity and con-
sequently, we observe that the results are in agreement with
the previous results from the usual method in Sect. 3.

1 Introduction

After the introduction of Einstein’s theory of general relativ-
ity, at first a series of mathematical singularities appeared as
solutions to Einstein’s general equation of relativity. The first
settled solution of general relativity as a black hole was found
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by Schwarzschild in 1916. For a long time, black holes were
considered to be a mathematical peculiarity, until in 1973
Bekenstein introduced black holes as interesting thermody-
namic systems that follow the laws of usual thermodynamics
[2]. This progress made us one step closer to a better under-
standing of quantum gravity [3].

On the other hand, Einstein’s equation generally described
an expanding universe, and Einstein first added a cosmolog-
ical constant to his equation to describe a static universe. But
after discovering the expansion of the universe by Hubble
in 1931, Einstein ignored the cosmological constant, until
1998, it was discovered that the expansion of the universe is
accelerating, imposing a positive value for the cosmological
constant. If the cosmological constant is positive, the associ-
ated negative pressure will derive an accelerated expansion
of the universe, as observed from the Planck Collaboration
[4]. So far, cosmological constant is considered as a constant
parameter, but on the contrary, in black hole thermodynam-
ics is regarded as thermodynamic pressure which can vary.
From this perspective, an extended phase space appears with
a new dimension added, and the negative cosmological con-
stant determines a positive varying thermodynamic pressure
in this new framework

P = −
�

8π
, (1)

to review a few examples of work in the context of extended
phase space, see [5–8].

Among the modified gravity theories, one of the inter-
esting proposals is Lovelock theory, which is reduced to
Einstein’s theory in three and four dimensions, but in five
dimensions and more, it includes higher curvature terms. The
first additional term is Gauss–Bonnet (GB) gravity where is
quadratic in curvature tensors and leads to field equations that
are second-order unto metric derivatives and do not engage
in ghosts [9,10]. It was also shown that the GB theory can be
derived from the low-energy limit of heterotic string theory
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[11,12]. One of the promising theories in modern theoretical
cosmology is the scalar-Einstein–Gauss–Bonnet gravity the-
ory [13,14] which is motivated by string theory and shows
how the string theory affects the primordial acceleration of
the universe. Many other aspects of GB theory have been
studied in literature [15–23].

One of the most consistent theory of gravity that modifies
GR by endowing the graviton with a nonzero mass, is dRGT
massive gravity [24]. This theory is ghost free and avoids dis-
continuities in the limit where the graviton mass goes to zero.
Also, the theory of general relativity is modified by massive
gravity at large distances, explains the accelerated expan-
sion of the universe, without resorting to the concept of dark
energy. In addition , the cosmological solutions of massive
gravity and its expanded types, such as bimetric gravity [25],
can reflect late-time acceleration compatibility with obser-
vations [26–28].

However, string theory predicts the existence of a graviton,
but we do not have a successful quantum theory of gravity.
Superstring theory is a theory that considers the particles and
fundamental forces of nature as vibrations of tiny supersym-
metric strings. The idea of taking fundamental particles as
vibration modes of one-dimensional string objects plays an
essential role in these theories. The fast accelerated expan-
sion of the universe in the period of inflation can be attributed
to the stretch of such cosmic strings that penetrated every-
where in our observed universe [29]. A cloud of strings, an
aggregation of one dimensional objects in a certain geomet-
rical frame, was proposed by Letelier [30]. The gravitational
effects of matter in the form of sting cloud are studied [30–
32].

On the other side, when a control parameter such as tem-
perature is changed in a thermodynamic system, the system
may change to a different macroscopic state that is more sta-
ble, which this mutation is called phase transition. In a phase
transition, a thermodynamic potential such as free energy
becomes non-analytic. Although the AdS black holes in the
radiation can remain stable in the heat stability, but at a cer-
tain critical temperature, there is a phase transition called
Hawking–Page phase transition [33]. This phase transition is
mainly observed in Einstein’s general relativity family such
as Gauss–Bonnet gravity [34] and other theories like dila-
ton gravity [35], magnetic black brane [36], black Dp-branes
and R-charged black holes with an IR Cutoff [37] and BTZ
black hole [38]. There is also a resemblance between “small
black hole/large black hole”(SBH/LBH) phase transition and
the liquid–gas phase transition, that this critical behavior is
called Van der Waals-like behavior. It can be seen that this
behavior is commonly found in charged AdS black holes and
in massive gravity theories, as well as the coupled theory with
a cloud of strings [39–44].

Recently, the effects of a cloud of strings on the extended
phase space of Einstein–Gauss–Bonnet AdS black hole is

studied and the Van der Waals-like behavior in absence of the
GB term is observed [45]. Also, in the previous work [1], we
investigated the effects of the external string cloud on the Van
der Waals like behavior of AdS-Schwarzschild black holes
in massive gravity. With these explanation, in this paper, we
study critical behavior of AdS Gauss–Bonnet massive black
holes in the presence of external string cloud. One of the
motivations of this study is to investigate the simultaneous
effects of the massive, Gauss–Bonnet and cloud of strings
terms on critical points and other is study the effect of each
of these parameters on critical behavior by keeping the other
two parameters in constant.

This paper is organized as follows. In Sect. 2, the solutions
of AdS-GB black holes in dRGT massive gravity minimally
coupled to a cloud of strings are introduced and the metric
function and its diagrams in different modes are investigated.
In Sect. 3, we examine the first law of thermodynamics of
these black holes and employ extended phase space ther-
modynamics to explore critical points. Also, we study the
behavior of system along the coexistence line by plotting
isothermal curves in P − T diagrams. We then investigate
the possibility of the Joule–Thomson effect in our model by
drawing isenthalpic curves in T −P plan. In the following, the
critical exponents are calculated in our model. The thermal
stability of the solutions in canonical ensemble are studied in
Sect. 4, and more, a search for critical behavior in extended
phase space has been performed using heat capacity. Finally,
in last section we will present our conclusions.

2 Black hole in GB-massive gravity minimally coupled

to a cloud of strings

Let us start with an AdS GB-massive gravity in 5-dimensions
in the presence of external string cloud. The action is as fol-
lows,

I = −
1

16π

∫

d5x
√

−g

[

R − 2� + λgbLgb

+m2
4

∑

i=1

ciUi (g, f )

]

+
∫

�

NP
√

−χdλ0dλ1, (2)

where R is the scalar curvature, � = −6
L2 is cosmological

constant with L as the cosmological constant scale, f is a
fixed rank-2 symmetric tensor known as reference metric and
m is the massive parameter. The last part called a Nambu-
Goto action, in which NP is a positive quantity and is related
to the tension of string, (λ0, λ1) is a parametrization of the
world sheet � and χ is the determinant of the induced metric
[46–48]

χab = gμν

∂xμ

∂λa

∂xν

∂λb
. (3)
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Lgb is the Gauss–Bonnet term of gravity with λgb its dimen-
sionless coupling. Lgb is given by

Lgb = R2 − 4Rμν Rμν + Rμνρσ Rμνρσ , (4)

where Rμν and Rμνρσ are Ricci and Riemann tensors respec-
tively.

In massive term, ci ’s are constants and Ui ’s are symmetric
polynomials of the eigenvalues of the 5 × 5 matrix K

μ
ν =√

gμα fαν

U1 = [K],
U2 = [K]2 − [K2],
U3 = [K]3 − 3[K][K2] + 2[K3],
U4 = [K]4 − 6[K2][K]2 + 8[K3][K] + 3[K2]2 − 6[K4],

(5)

the square root in K means (
√

A)
μ
ν (

√
A)νλ = Aμ

λ and the
rectangular brackets denote traces.

A generalized version of fμν was proposed in [49,50] with
the form fμν = diag(0, 0, c2

0hi j ), where hi j = 1
L2 δi j . The

values of Ui ’s are calculated as below,

U1 =
3c0

r
, U2 =

6c2
0

r2
, U3 =

6c3
0

r3
, U4 = 0.

The energy–momentum tensor for a cloud of strings is given
by

Tμν = ρ�μσ �ν
σ /

√
−χ, (6)

where ρ is the proper density of a string cloud and �
μ
ν is the

spacetime bivector

�μν = εab ∂xμ

∂λa

∂xν

∂λb
, (7)

in which εab is Levi-Civita tensor.
Conservation of the energy–momentum tensor, ∇νTμν =

0 results in,

∂μ(
√

−gρ�μσ ) = 0. (8)

The equation of motion is obtained by variation of the action
with respect to the metric tensor gμν

Gμν + �gμν + Hμν + m2 Xμν = Tμν, (9)

where Gμν is the Einstein tensor, Hμν and Xμν are

Hμν = −
λgb

2

(

8Rρσ Rμρνσ − 4Rρσλ
μ Rνρσλ

−4R Rμν + 8Rμλ Rλ
ν + gμνLgb

)

, (10)

Xμν = −
c1

2
(U1gμν − Kμν) −

c2

2
(U2gμν−2U1Kμν+2K

2
μν)

−
c3

2

(

U3gμν − 3U2Kμν

+6U1K
2
μν − 6K

3
μν

)

−
c4

2

(

U4gμν − 4U3Kμν

+12U2K
2
μν − 24U1K

3
μν + 24K

4
μν

)

. (11)

We consider the following metric ansatz for a five-dimensional
static spherically symmetric metric

ds2 = − f (r)dt2 +
dr2

f (r)
+ r2hi j dx i dx j . (12)

Inserting this ansatz into the Eq. (8) yields two solutions for
f (r)

f±(r) = k +
r2

4λgb

⎡

⎣1 ±

√

√

√

√1 − 8λgb

(

1

L2
−

b4

r4
−

2a

3r3

)

− 8m2λgb

(

c3
0c3

r3
+

c2
0c2

r2
+

c0c1

2r

)

⎤

⎦ ,

(13)

in which b4 is an integration constant and a is a real positive
constant known as string cloud parameter. Since black hole
should have an event horizon we pick up f−(r). To calculate
the radius of the event horizon, r0, we set f−(r0) = 0, so we
have

b4 ≡ m0 = r4
0

[

1

L2
−

2a

3r3
0

+
k

r2
0

+
2λgbk2

r4
0

+m2

(

c3
0c3

r3
0

+
c2

0c2

r2
0

+
c0c1

2r0

)]

, (14)

where m0 is related to the total mass of the black hole with
M = 3V3m0

16π
where V3 = 4π

3 , is volume of the three dimen-
sional unit sphere as plane or hyperbola.

To provide the estimated value for the dimensionless
coupling coefficient associated with the GB-term, the well-
defined constraint of the vacuum solution (b4 = 0, a = 0

and m = 0) leads to 0 ≤ λgb ≤ L2

8 . Besides, the causality
and positive requirement of the boundary energy density in
holography requires that −7.72 ≤ λgb ≤ 9.20, [45], then we
can estimate L ≃ 8.579044 for maximum value of the cos-
mological constant scale in vacuum solution. However we
see that if r → 0 then f (r) approaches k so there is no r = 0
singularity in vacuum solution. Also in non-vacuum regime

we observe that if r → 0 then f (r) approaches k −
√

m0
2λgb

,

it means adding the Gauss–Bonnet term to the action causes
the causal singularity to be removed.

In order to investigate the effects of cloud string parame-
ter and GB parameter on the metric function of gravitational
theory we plot f (r) − r diagrams in the following (Fig. 1).
We observe that, due to the addition of the GB parameter,
singularity is gone. By comparing the diagrams (a) and (b),
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(a) a (b) b (c) c

(d) d (e) e (f) f

Fig. 1 f (r) − r for d = 5, L2 = 6, c0 = 1, c1 = 0.6, c2 = −2, c3 = 0.5, m0 = 2, and m = 2.1; a a = 1, λgb = 1, b a = 1, λgb = 0.3, c

a=60, λgb = 1, d a=60, λgb = 9, e a=1, λgb = −0.3, and f a = 60, λgb = −0.3

we observe that in flat topology, the number of horizons
decreases by decreasing the value of the GB parameter. It is
also clear from the difference between the two diagrams (c)
and (d) that the number of horizons increases with increasing
GB parameter. Contrary to this, the comparison of the dia-
grams (a) and (c) shows that the increase of the string cloud
parameter, in contrast to the GB parameter, has a decreasing
role in the number of horizons. All in all, it can be said, the
existence of a maximum of 3 roots in f (r) − r diagrams
is obvious. It should be noted that in diagrams (a) through
(d), the change in the parameters of λgb and a, except for
the effect on the number of horizons, does not have a signifi-
cant effect on the metric function, especially on asymptotical
behavior, but for the negative value for λgb, the diagrams (e)
and (f) show that for radii less than a certain value, the met-
ric function has no value and so is not defined. Also, for the
negative values of λgb, the asymptotical behavior is different
from that of the positive values of λgb.

3 Thermodynamics and critical behavior in the

extended phase space

In this section, we first calculate the thermodynamic quan-
tities of AdS black holes in GB-massive gravity minimally
coupled to a cloud of strings in the extended phase space
and we present the first law of thermodynamics and corre-
sponding Smarr relation. Then we study the phase transition
points and P −V criticality of these black holes. In extended
phase space, the mass appears not only as an internal
energy, but as an enthalpy of the thermodynamic system, as
below

H = M =
1

3
π Pr4

0 −
1

6
ar0 +

1

4
kr2

0 +
1

2
k2λgb

+
1

4
m2

(

c3
0c3r0 + c2

0c2r2
0 + c0c1r3

0/2
)

. (15)

The Hawking temperature of the black hole is obtained by
applying the definition of surface gravity, is as follows
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T =
K(r0)

2π
=

1

2π

[

1
√

grr

d

dr

√
−gt t

]

|r=r0 =
1

4π
∂r f (r)|r=r0

=
8π Pr3

0 − a + 3kr0 + 3m2(c3
0c3/2 + c2

0c2r0 + 3c0c1r2
0 /4)

6π(r2
0 + 4kλgb)

.

(16)

The entropy of the black hole is given by using Wald’s for-
mula

S =
∫ r0

0

1

T

(

∂ M

∂r0

)

dr0 = π

(

1

3
r3

0 + 4kλgbr0

)

, (17)

which clearly shows the correction of the area law with the
GB-term for non-flat topology (k �= 0). It is also obvious
that the entropy of a string cloud and massive term does not
affect the black hole entropy.

With these definitions, one can obtain the first law of ther-
modynamics in extended phase space in the following form

d M = T d S + V d P + Adλgb + Bda + C1dc1

+C2dc2 + C3dc3, (18)

with

V =
(

∂ M

∂ P

)

S,λgb,a,ci

=
1

3
πr4

0 , (19)

A =
(

∂ M

∂λgb

)

S,P,a,ci

=
1

2
k2, (20)

B =
(

∂ M

∂a

)

S,P,λgb,ci

= −
1

6
r0, (21)

C1 =
(

∂ M

∂c1

)

S,P,λgb,a,c2,c3

=
m2c0r3

0

8
, (22)

C2 =
(

∂ M

∂c2

)

S,P,λgb,a,c1,c3

=
m2c2

0r2
0

4
, (23)

C3 =
(

∂ M

∂c3

)

S,P,λgb,a,c1,c2

=
m2c3

0r0

4
, (24)

where V , conjugating thermodynamical variable correspond-
ing to pressure is thermodynamical volume of the black hole
and A, B, Ci ’s represent for physical quantities conjugated to
the parameters λgb, a and ci ’s respectively. By a dimensional
argument one can present the Smarr relation as

2M = 3T S − 2V P + 2Aλgb + Ba − C1c1 + C3c3. (25)

We observe that the massive term c2 has scaling weight 0 and
it is constant in the metric function, so, does not appear in
Smarr relation. By putting the thermodynamic quantities pre-
sented above in Smarr relation or directly from Eq. (16), we
obtain the equation describes the state of the thermodynamic
system in the extended phase space, called the equation of
state

P =
3

4r0

[(

1 +
4kλgb

r2
0

)

T −
3m2c0c1

8π

]

−
3k + 3m2c2

0c2

8πr2
0

+
2a − 3m2c3

0c3

16πr3
0

. (26)

To investigate critical behavior, one can calculate critical
values by using the inflection point properties, ( ∂ P

∂r0
)T =

( ∂2 P
∂r0

2 )T = 0, of the equation of state, as follow

rc =
(2a − 3m2c3

0c3 + 18kλgbm2c0c1 + ξ)

4(k + m2c2
0c2)

,

Tc =
1

64ϑ

{

6ac0c1m2ξ + 16kc2
0c2m2ξ

+16c4
0c2m4ξ − 9c4

0c1c3m4ξ + 54kλgbc2
0c2

1m4ξ

+486kλgbc2
0c2

1m6 + 288kλgbc5
0c1c2m6

−162kλgbc5
0c2

1c3m6 − 162kλgbc5
0c2

1c3m6

+486k2λ2
gbc3

0c3
1m6 + 108akλgbc2

0c2
1m4

+288k2λgbc3
0c1c2m4 + 108akλgbc2

0c2
1m4

+288kλgbc0c1m2(k + c2
0c2m2)2 − 48c7

0c2c3m6

+48c7
0c2c3m6 + 27c7

0c1c2
3m6

−18ac4
0c1c3m4 − 48kc5

0c2c3m4

−18ac4
0c1c3m4 + 96kc5

0c2c3m4

+12a2c0c1m2 + 48k2c3
0c3m2

−32akc2
0c2m2 − 32ak2

+64kc4
0c2m4rc + 128k2c2

0c2m2rc + 64k3rc

}

,

Pc =
1

32πr3
c

{

192πTcr3
c (k + c2

0c2m2)ψ

(2a − 3c3
0c3m2 + 18kλgbc0c1m2 + ξ)

3

+4a − 6c3
0c3m2 − 12πkrc

−12πc2
0c2m2rc − 9πc0c1m2r2

c

}

, (27)

where

ξ =
(

4a2 − 12ac3
0c3m2 + 72akλgbc0c1m2

+324k2λ2
gbc2

0c2
1m4 − 108kλgbc4

0c1c3m4

+192kλgb(k + c2
0c2m2)2 + 9c6

0c2
3m4

)

1
2

,

ϑ = 2πkc2
0c2m2r2

c + πc4
0c2m4r2

c

+πk2r2
c + 24πk2λgbc2

0c2m2

+12πkλgbc4
0c2m4 + 12πk3λgb,

ψ = 4a2 − 12ac3
0c3m2 + 72akλgbc0c1m2

+(2a − 3c3
0c3m2 + 18kλgbc0c1m2)ξ

+9c6
0c2

3m4 − 108kλgbc4
0c1c3m4 + 162kλgbc0c1m4

+162k2λ2
gbc2

0c2
1m4

+96kλgb(k + c2
0c2m2)2 + 32k3λgb

+64k2λgbc2
0c2m2 + 32kλgbc4

0c2m4. (28)
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rc, Tc and Pc are called horizon radius, temperature and pres-
sure, respectively.

The other thermodynamic quantity that can be calculated
in the extended phase space for the considered black hole, is
the Gibbs free energy given as

G = M − T S =
Ŵ + 4kλgb�

r2
0 + 4kλgb

,

with

Ŵ = −
π

9
Pr6

0 +
1

12
(k + c2

0c2m2)r4
0

−
1

18
(2a − 3c3

0c3m2)r3
0 +

1

2
k2λgbr2

0 ,

� = −π Pr4
0 −

m2

4
(c0c1r3

0 + c2
0c2r2

0 ) −
1

4
kr2

0 +
1

2
k2λgb.

(29)

In a phase transition, always a thermodynamic potential such
as Gibbs free energy becomes non-analytic(discontinuous).
To further investigation of critical behavior and effects of
GB, massive and cloud string parameters on the criticality,
one can plot P −r0 and G −T diagrams (Figs. 2, 3, 4, 5, 6, 7)
and observe Van der Waals-like behavior clearly. Various
diagrams are based on the increase of the GB, massive and
cloud string parameters. From P − r0 diagrams, it can be
seen that by decreasing the value of the GB parameter and
increasing massive parameter, Van der Waals-like behavior
becomes more apparent. Also, the increase of the value of
the cloud string parameter in comparison with the two above-
mentioned parameters leads to a diminution of critical behav-
ior. It can be shown that there is no critical behavior and phase
transition for values greater than a critical value of the cloud
string parameter, ac, which satisfies the following condition

(

−
1

27
ℑ3 +

4

3
ℑℵ −

1

2
ℜ2

)2

−
(

1

9
ℑ2 +

4

3
ℵ
)3

> 0,

ℑ =
1

�

(

3k + 3m2c2
0c2 + 12kλgb�

)

,

ℜ =
1

�

(

3m2c3
0c3 − 2ac − 18kλgbm2c0c1

)

,

ℵ =
1

�

(

−12m2c2
0c2kλgb − 12k2λgb

)

, (30)

that is, the above inequality holds for a ≤ ac.
In addition, the appearance of discontinuity and swallow

tail in G − T diagrams corroborates critical behavior and the
occurrence of phase transition. It is obvious that the incre-
mental effect of the massive parameter on criticality is in
contrast to the GB and cloud string parameters. In Fig. 5, an
significant increase in the value of GB parameter has reduced
the criticality, which is more evident in flat topology. In Fig. 6,
we see that increasing the massive parameter from zero to a
common value causes the emergence of criticality and phase

transition. Finally, in Fig. 7, it can be seen that the increase
in the value of the string cloud parameter exceeds the critical
value, eliminates the criticality.

So far we have only investigated the critical behavior of
the system by fixing temperature. One can study the criti-
cal behavior of black hole temperature in P − r0 plane and
investigate the effect of GB, massive and a cloud of strings
parameters on that (Figs. 8, 9, 10). We observe that when the
temperature is above the critical value, a behavior similar to
that of an ideal gas appears, which is referred to as the ideal
gas phase transition. But for temperatures below the criti-
cal temperature, three branches are seen, representing small,
medium, and large black holes. Except for the latter, which is
unstable, the other two are stable and consistent with the Van
der Waals liquid/gas phase transition. As we can see in Fig. 9,
we find that for temperatures below the critical temperature,
the pressure decreases with mass reduction being negative.
Also, as seen in Fig. 10a, there exist a particular temperature
for which we have ∂ P

∂r0
= P = 0, similar to what we have

seen in Van der Waals fluid before.
Another way to illustrate the phase transition is to use the

P −T diagram for two different phases where the black hole
phase transition is between the two so that both phases have
the same Gibbs free energy. This phase transition is of the
first order and occurs where two surfaces of Gibbs free energy
intersect, known as coexistence line in P − T diagrams. At
any point on this line, the following equations exist between
the two phases mentioned,

G1 = G2, T1 = T2, 2T = T1 + T2, (31)

where the indices 1 and 2 correspond to the two different
phases of the black hole. The temperature equilibrium of
these two phases indicates the isothermal phase transition.
We plot equation of pressure with respect to temperature for
some values of λgb, m and a parameters and we observe the
effect of changing these parameters on P − T diagrams in
Fig. 11. In this figure, p is the value of pressure per unit of
critical pressure and τ is the value of temperature per unit of
critical temperature.

In addition, plotting T − P diagrams and examining the
behavior of the thermodynamic system would be helpful.
This method reveals a process known as Joule–Thomson
expansion, which describes the change in system tempera-
ture relative to pressure at a constant enthalpy. That means we
will have a isenthalpic process that can display heating and
cooling phases. To identify the phase of the system, we need
to denote the Joule–Thomson coefficient as μJ T = ( ∂T

∂ P
)H .

If μJ T > 0, it indicates the cooling process in which pressure
decreases during the expansion and μJ T < 0 shows heating
in which pressure increases. To plot the T − P curves and
find the process type in our model, we use Eqs. (15) and (16)
for different values of constant mass M (Fig. 12). As can
be seen from the diagrams, our process has only one cool-
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(a) a (b) b (c) c

Fig. 2 P − r0 for d = 5, T = 0.3, c0 = 1, c1 = −2, c2 = 3.75, c3 = −4, a = 1, and m = 2.1; a λgb = 0.0001, b λgb = 0.1, c λgb = 0.5

(a) a (b) b (c) c

Fig. 3 P − r0 for d = 5, T = 0.3, c0 = 1, c1 = −2, c2 = 4, c3 = −4, a = 1, and λgb = 0.01; a m = 0, b m = 1, c m = 3

(a) a (b) b (c) c

Fig. 4 P − r0 for d = 5, T = 0.05, c0 = 1, c1 = −2, c2 = 4, c3 = −4, λgb = 0.01, and m = 1 ; a a = 1, b a = 6, c a = 60
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(a) a (b) b (c) c

Fig. 5 G − T for d = 5, P = 0.33, c0 = 1, c1 = −2, c2 = 4, c3 = 4, a = 1, and m = 2.1; a λgb = 0.0001, b λgb = 0.01, c λgb = 1

(a) a (b) b (c) c

Fig. 6 G − T for d = 5, P = 0.033, c0 = 1, c1 = −2, c2 = 4, c3 = −4, λgb = 0.0001, and a = 1; a m = 0, b m = 1, c m = 2

(a) a (b) b (c) c

Fig. 7 G − T for d = 5, P = 0.033, c0 = 1, c1 = −2, c2 = 4, c3 = −4, λgb = 0.0001, and m = 2.1; a a = 1, b a = 6, c a = 60
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(a) a (b) b (c) c

Fig. 8 P − r0 for k = 1, c0 = 1, c1 = −2, c2 = 3.75, c3 = −4, a = 1, and m = 2.1 ; a λgb = 0.0001, b λgb = 0.1, c λgb = 0.5

(a) a (b) b (c) c

Fig. 9 P − r0 for k = 1, c0 = 1, c1 = −2, c2 = 4, c3 = −4, λgb = 0.0001, and a = 1 ; a m = 2.1, b m = 1, c m = 0

(a) a (b) b (c) c

Fig. 10 P − r0 for k = 1, c0 = 1, c1 = −2, c2 = 4, c3 = −4, λgb = 0.0001, and m = 2.1 ; a a = 0.1, b a = 6, c a = 20
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(a) a (b) b (c) c

Fig. 11 P − T for k = 1, c0 = 1, c1 = −2, c2 = 3.75, c3 = −4 ; a a = 1, m = 2.1 and λgb = {0.0001, 0.1, 0.5}, b λgb = 0.0001, a = 1 and
m = {2.1, 1, 0}, c λgb = 0.0001, m = 2.1 and a = {0.1, 6, 20}

ing phase and never enters a heating phase as shown in [51]
which follows a heating-cooling process in a Joule–Thomson
expansion.

Finally, we study the behavior of physical quantities near
the critical point. In order to calculate the critical exponents
characterizing the behavior of physical quantities in the vicin-
ity of the critical point, it is advisable to use rescaled quan-
tities ν = υ

υc
, τ = T

Tc
and p = P

Pc
where υ = 4

3r0 is specific
volume. This simplification makes the equation of state (26)
as follows

p =
(

Tc

υc Pc

)

τ

ν
+

(

64kλgbTc

9υ3
c Pc

)

τ

ν3
−

(

3m2c0c1

8πυc Pc

)

1

ν

−

(

2(k + m2c2
0c2)

3πυ2
c Pc

)

1

ν2
+

(

4(2a − 3m2c3
0c3)

27πυ3
c Pc

)

1

ν3
,

(32)

where is called as law of corresponding state. We can now
search for the thermodynamical behavior of the system near
the critical points by redefining parameters t, ω

τ = 1 + t, ν = 1 + ω.

That is, the ν, τ and p parameters are expanded around one,
so the law of corresponding state would be approximated as

p = 1 + �t + �tω + �ω3 + · · · (33)

where

� =
9Tcυ

2
c + 64kλgbTc

9Pcυ3
c

, � = −
3Tcυ

2
c + 64kλgbTc

3Pcυ3
c

,

� =
72(k + m2c2

0c2)υc + 27

(

3
8 m2c0c1 − πTc

)

υ2
c − 1920πkλgbTc − 40(2a − 3m2c3

0c3)

27π Pcυ3
c

. (34)

To characterize the critical behavior near the critical point,
one can introduce the critical exponents as [52]

Cυ = T
∂S

∂T
|υ ∝ |t |−α,

η = υl − υs ∝ |t |β ,

κT = −
1

υ

∂υ

∂ P
|T ∝ |t |−γ ,

|P − Pc| ∝ |υ − υc|δ. (35)

As is clear from the above definitions, the exponents α, β, γ ,
and δ describe the behavior of specific heat with fixed vol-
ume, the order parameter η, the isothermal compressibility
coefficient κT , and the critical isotherm, respectively. The
subscripts l and s represent the large black hole and the small
black hole, respectively, in the phase transition process.

The entropy S does not depend on the Hawking tempera-
ture T , so the specific heat at constant volume Cυ is equal to
zero, consequently the corresponding critical exponent van-
ishes (α = 0). To estimate the second exponent β, one can
evaluate υl and υs to calculate the order parameter. Dur-
ing the phase transition the pressure of the black hole keeps
unchanged. It results that the large black hole pressure equals
the small black hole pressure, pl = ps for which

1 + �t + �tωl + �ω3
l = 1 + �t + �tωs + �ω3

s . (36)
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(a) a (b) b (c) c

Fig. 12 T − P for k = 1, c0 = 1, c1 = −2, c2 = 3.75, c3 = −4, a = 1, m = 2.1 ; a λgb = 0.5 , b λgb = 0.1 and c λgb = 0

On the other hand, from the Maxwell’s equal area law, one
can further obtain
∫ ωs

ωl

ω
dp

dω
dω=0 → �t (ω2

l − ω2
s )+

3

2
�(ω4

l − ω4
s ) = 0.

(37)

With two above equations, one can get

ωl = −ωs =
√

−�t

�
. (38)

So the order parameter can be derived as

η = υl − υs = υc(ωl − ωs) = 2υcωl ∝
√

−t, (39)

where this leads to the conclusion that β = 1
2 .

The isothermal compressibility can be estimated as fol-
lows

κT = −
1

υc(1 + ω)

∂υ

∂ω

∂ω

∂ P
|T ∝ −

1
∂p
∂ω

|ω=0 = −
1

�t
. (40)

From this one can conclude that γ = 1. The critical isotherm
is an isotherm process at critical temperature T = Tc or
t = 0. Then we can conclude that p − 1 = �ω3 that leads to
δ = 3. We see that, the values of critical exponents are inde-
pendent of GB, massive and cloud string parameters. The
critical exponents in our model are the same as those men-
tioned in other articles [52–54], and all the models reviewed
have the same scaling laws.

4 Heat capacity in canonical ensemble vs in the

extended phase space

In this section, we first study the stability of the black hole by
using heat capacity in canonical ensemble. Then we inves-
tigate criticality in extended phase space by employing heat
capacity. When the black hole heat capacity is positive, we

say that the black hole is thermally stable. On the other side,
an unstable black hole may turn into a stable state, which
this transition is called phase transition. If we calculate the
heat capacity of this black hole, using it, we can determine
the type of phase transition. In this way, the presence of roots
and divergence points for the heat capacity will represents
the type one and the type two phase transition. When the
heat capacity is in the form of a fraction, in order to obtain
the roots, we set the numerator to zero and for calculation
the divergence points, we set the denominator to zero.

The heat capacity is calculated as follows

C =
∂ M

∂T
= T

(

∂S

∂T

)

=
ϒ

�
,

where

ϒ = 6π2(r2
0 + 4kλgb)

2
{

−�r3
0 +

9c0c1m2

4
r2

0

+3(k + c2
0c2m2)r0 − a +

3

2
c3

0c3m2
}

,

� = −�r4
0 − 3(k + c2

0c2m2

+4kλgb�)r2
0 + (2a − 3c3

0c3m2

+18kλgbc0c1m2)r0 + 12kλgb(k + c2
0c2m2). (41)

It is carefully observed in these equations, since the GB
parameter is coupled to the curvature factor, in flat topology,
the behavior of heat capacity is independent of GB gravity.
To check the black hole’s thermal stability, T −r0 and C −r0

diagrams are ploted (see Figs. 13, 14, 15, 16, 17, 18). For a
region of the event horizon, which temperature is negative,
the solution is non-physical, and we have removed it from
T − r0 diagrams. It is observed that, for spherical (k = 1)
and flat (k = 0) topologies, temperature have one root and
for hyperbolic (k = −1) have two roots. If the radius of
the black hole event horizon is called the size of the black
hole, there will be a black hole with minimum size and non-
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(a) a (b) b (c) c

Fig. 13 T − r0 for d = 5, P = 0.33, c0 = 1, c1 = −2, c2 = 4, c3 = −4, λgb = 0.0001, and a = 1; a m = 0, b m = 1.5, c m = 2.1

(a) a (b) b (c) c

Fig. 14 T − r0 for d = 5, P = 0.33, c0 = 1, c1 = −2, c2 = 4, c3 = −4, m = 2.1, and a = 1; a λgb = 1, b λgb = 0.01, c λgb = 0.001

(a) a (b) b (c) c

Fig. 15 T − r0 for d = 5, P = 0.33, c0 = 1, c1 = −2, c2 = 4, c3 = −4, m = 2.1, and λgb = 0.0001; a a = 0.1, b a = 6, c a = 60
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(a) a (b) b (c) c

Fig. 16 C − r0 for d = 5, � = −1, c0 = 1, c1 = −2, c2 = 4, c3 = −4, m = 2.1, and a = 1; a λgb = 1, b λgb = 0.1, c λgb = 0.01

(a) a (b) b (c) c

Fig. 17 C − r0 for d = 5, � = −1, c0 = 1, c1 = −2, c2 = 4, c3 = −4, λgb = 0.1, and a = 1; a m = 0.05, b m = 1, c m = 2

(a) a (b) b (c) c

Fig. 18 C − r0 for d = 5, � = −1, c0 = 1, c1 = −2, c2 = 4, c3 = −4, m = 2, and λgb = 0.1; a a = 0.1, b a = 20, c a = 100
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(a) a (b) b (c) c

Fig. 19 P − r0 for d = 5, c0 = 1, c1 = −2, c2 = 4, c3 = −4, a = 1, and m = 2; a λgb = 0.01, b λgb = 0.0001, c λgb = 0

zero entropy at zero temperature. As one can see, increasing
the value of the massive parameter leads to the formation of
extrema on the T − r0 diagrams, indicating type two phase
transition (Fig. 13). It is also seen in Fig. 14 that the decrease
of the GB parameter has a direct effect on the formation of
type two phase transition. Finally, the increase of the string
cloud parameter above the critical value results in the loss of
the type two phase transition (Fig. 15).

It is observed clearly in Fig. 16 that, for spherical topology,
with the decrease of the GB parameter, the black hole’s insta-
bility domain becomes larger. In Fig. 17, the C −r0 diagrams
are ploted in three modes in terms of the massive parameter
increase. For small values of massive parameter (Fig. 17a),
there is no divergence points, ie, the massive term has a direct
effect on the presence of type two phase transition. When the
massive parameter increases sufficiently enough (Fig. 17b,
c), the heat capacity has divergencies, indicating type two
phase transition, ie, the black hole in these points changes
the phase between stable and unstable states. As the mas-
sive parameter increases, the black hole’s instability domain
extends. Finally, in Fig. 18, we observe that with the increase
of the cloud string parameter, the black hole stability domain
grows, as long as the string cloud parameter exceeds the crit-
ical value, the solutions become completely stable.

As mentioned earlier, to calculate the divergence points,
we must denote the denominator of the fraction of the heat
capacity equal to zero. In extended phase space, the critical
values in which phase transition takes place are the same as
divergencies in heat capacity. Therefore, as stated in refer-
ence [55], by substituting (1) in the denominator of the heat
capacity and solving it with respect to pressure, the following
relation is obtained

P =
3(k + c2

0c2m2)r2
0 − (2a − 3c3

0c3m2 + 18kλgbc0c1m2)r0 − 12kλgb(k + c2
0c2m2)

8πr2
0 (r2

0 + 12kλgb)
(42)

This equation obtained for pressure is different from Eq. (26)
calculated for pressure which is called the equation of state.
At the point(s) where this new relation is obtained for pres-
sure, has a maximum(s), phase transition takes place. Indeed,
instead of looking for the criticality using the equation of
state, we can search for the maximums of the new relation
obtained for the pressure from this method. According to
the diagrams are plotted in Fig. 19, we can say that when
λgb → 0, the pressure has maximum and the phase transi-
tion takes place. Therefore, by using this method, one can
calculate critical horizon radius and pressure without refer-
ring to the complex formulas given in the usual way.

5 Conclusion

In this paper, we have studied GB-massive black holes in
the presence of external string cloud. It is observed that the
solutions of the gravitational theory modified by GB term
are protected from the causal singularity. It is worth noting
that in all of the computed quantities throughout the paper,
apart from the metric function, the GB parameter is coupled
to the curvature factor, which means that in the case of flat
topology (k = 0), GB gravity has no effect. We observe that
the first law of the black hole thermodynamics is modified
because the black hole entropy gains a contribution from the
GB term.

We also investigated the criticality and phase transition
of the solution in the extended phase space by employing
the equation of state. It is important to note that the massive
parameter plays a crucial role in creating critical behavior.
Also, when λgb → 0, the criticality becomes more obvious.
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It was shown that, the effects of GB and massive parameters
on criticality are opposite of each other. Also, the effect of
the cloud string parameter on the criticality, like the effect
of the GB parameter, is a decreasing effect. In other words,
the cloud of strings coupling with the desired gravitational
theory has a positive effect on the critical behavior of the
theory’s solutions, provided that the value of the string cloud
parameter does not exceed its critical value. That is, when
the cloud string parameter becomes more than critical value,
the solutions are completely stable and the phase transition
disappears.

By studying critical behaviour of the black hole tempera-
ture, we conclude that when temperature is above the critical
value, Van der Waals-like phase transition would be disap-
peared and an ideal gas-like behaviour recovers. We also
plotted the coexistence line in P − T diagrams in which two
phases are in equilibrium and Gibbs free energy and Hawking
temperature keep unchanged during transition.

We investigated T − P diagrams to find out the sign of the
Joule–Thomson coefficient. It is shown that the system has
only one cooling phase and never enter to a heating phase, that
is, the Joule–Thomson effect does not happen. Investigations
on the critical exponents showed that the GB, massive and
cloud string parameters do not affect them.

Then, we examined thermal stability of these black holes
by calculating heat capacity. As expected, it was observed
that, the effects of the above three parameters on stability
was the opposite of their effects on the criticality. Finally,
using the method mentioned in reference [55], showed that
this method is much simpler than the usual method for inves-
tigating critical behavior.
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