
Syracuse University Syracuse University 

SURFACE SURFACE 

Physics College of Arts and Sciences 

7-27-1992 

Critical Behavior of Charge Density Waves Below Threshold: Critical Behavior of Charge Density Waves Below Threshold: 

Numerical and Scaling Analysis Numerical and Scaling Analysis 

Alan Middleton 
Syracuse University 

Daniel S. Fisher 
Harvard University 

Follow this and additional works at: https://surface.syr.edu/phy 

 Part of the Physics Commons 

Recommended Citation Recommended Citation 
Middleton, Alan and Fisher, Daniel S., "Critical Behavior of Charge Density Waves Below Threshold: 
Numerical and Scaling Analysis" (1992). Physics. 207. 
https://surface.syr.edu/phy/207 

This Article is brought to you for free and open access by the College of Arts and Sciences at SURFACE. It has been 
accepted for inclusion in Physics by an authorized administrator of SURFACE. For more information, please contact 
surface@syr.edu. 

https://surface.syr.edu/
https://surface.syr.edu/phy
https://surface.syr.edu/cas
https://surface.syr.edu/phy?utm_source=surface.syr.edu%2Fphy%2F207&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=surface.syr.edu%2Fphy%2F207&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/phy/207?utm_source=surface.syr.edu%2Fphy%2F207&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu


ar
X

iv
:c

on
d-

m
at

/9
20

70
27

v1
  2

7 
Ju

l 1
99

2

Critical Behavior of Charge Density Waves

Below Threshold: Numerical and Scaling Analysis

Daniel S. Fisher

Lyman Laboratories, Harvard University, Cambridge MA 02138

A. Alan Middleton

Physics Department, Syracuse University, Syracuse, NY 13244

(Received )

The critical behavior of pinned charge density waves (CDW’s) is studied as the

threshold for sliding is approached. Using the Fukuyama-Lee-Rice Hamiltonian with

relaxational dynamics, the polarization and linear response are calculated numeri-

cally. Analytic bounds on the subthreshold motion are used to develop fast numerical

algorithms for evolving the CDW configuration. Two approaches to threshold, “re-

versible” and “irreversible” are studied, which differ in the details of the critical

behavior. On the irreversible approach to threshold, the response due to avalanches

triggered by local instabilities dominates the polarizability, which diverges in one

and two dimensions. Such “jumps” are absent on the reversible approach. On both

the reversible and irreversible approach in two dimensions, the linear response, which

does not include the jumps, is singular, but does not diverge. Characteristic diverging

length scales are studied using finite-size scaling of the sample-to-sample variations

of the threshold field in finite systems and finite-size effects in the linear polariz-

ability and the irreversible polarization. A dominant diverging correlation length

is found which controls the threshold field distribution, finite-size effects in the ir-

reversible polarization, and a cutoff size for the avalanche size distribution. This

length diverges with an exponent ν ≈ 2.0, 1.0 in dimensions d = 1, 2, respectively. A
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distinct exponent describes the finite-size effects for the linear polarizability in single

samples. Our results are compared with those for related models and questions are

raised concerning the relationship of the static critical behavior below threshold to

the dynamic critical behavior in the sliding state above threshold.
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I. INTRODUCTION

Despite many years of experimental and theoretical work [1], much of the behavior of

systems which exhibit sliding charge density waves (CDW’s) is still puzzling. For most

collective properties of these materials, both thermal fluctuations and defects in the charge

density waves (e.g., dislocations) appear to play minor roles. The main problem is thus

that of an elastic medium moving through a random potential caused by impurities. Such

systems are quite ubiquitous [2], arising for weakly pinned vortex lattices in superconductors

and various kinds of driven interfaces in inhomogeneous media.

The phenomenology of the CDW is based on the existence of two “phases”. Above a

sharp threshold driving force, FT , proportional to the electric field, the CDW moves with a

non-zero mean velocity v, and the behavior appears to be history independent. One of us

has proved elsewhere that in this regime there is a unique periodic steady state [3] for CDW

models without dislocations. Below the threshold force, on the other hand, the CDW relaxes

towards one of many metastable minima and is then stationary at long times (neglecting

slow, thermally activated creep processes [3–6]). In this regime, the behavior is strongly

hysteretic due to the many minima. As threshold is approached from below, sections of

the CDW become unstable and start to slide locally, only to be stopped by neighboring

regions which are more strongly pinned. These give rise to a non-linear response to changes

in F . The cascade of avalanches which occurs bears considerable resemblance to that found

in other systems with collective transport, for example models of “sand piles” and motion

of geologic faults [7,8]. The maximum size of these “avalanches” diverges as threshold is

approached, leading eventually to the sliding of the whole system. It is the properties of

CDW’s as threshold is approached from below that will be the main subject of this paper.
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A. Model

The model of CDW’s that we study is a simplified version of the Fukuyama-Lee-Rice

Hamiltonian [9]. This model focuses on the phases ϕi of the CDW at impurity sites i =

1, . . . , N , which, for simplicity, are chosen to lie on a regular linear, square, or cubic lattice

of dimension d. Each impurity favors a fixed random phase of the CDW, βi, modulo 2π,

and couples to the phases with strength h, which we take to be uniform. The effective

Hamiltonian is then [4,9–12]

H =
1

2

∑

(i,j)

(ϕj − ϕi)
2 − h

N
∑

i=1

cos(ϕi − βi) − F (t)
N

∑

i=1

ϕi, (1.1)

where the first term represents the elastic interactions between the CDW at nearest neighbor

impurity sites (i, j) and the last term represents the effect of a spatially uniform driving force

F , which may be a function of the time t. The equations of motion are purely relaxational

[1,9,10,12,13]

dϕi

dt
= −

∂H

∂ϕi
= ∆ϕi + h sin(ϕi − βi) + F (1.2)

so that the system just slides down the many dimensional potential given by Eq. (1.1). Here

∆ϕi ≡
∑

δ(ϕi+δ − ϕi), with δ the nearest neighbor vectors, is the lattice Laplacian. The

preferred phases {βi} are independent, uniformly distributed, random variables, chosen in

the interval [0, 2π).

Because of the non-linear nature of the equations of motion, very few analytic results

are available: perturbation theory [10,14] is possible only for large fields F ≫ FT and some

general bounds on the behavior can be derived (see Sec. II and Ref. [3]). Mean field theory,

valid in the limit of long range elastic interactions, has been investigated by one of us in

some detail [4], but expansions about mean field theory are difficult, although very recently

progress has been made above threshold [15]. Since we are interested in the critical behavior

near threshold in finite-dimensional systems, we have thus resorted to extensive numerical

simulations, making use of analytic bounds. The numerical methods are discussed in Sec. III.
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B. Results for polarization for two approaches to threshold

For the simulations, we use periodic boundary conditions on one, two, and three dimen-

sional “cubes” of volume Ld. Starting from an initial configuration ϕinit
i , which is obtained

after relaxing to a local minimum of H, we adiabatically increase (or decrease) the uniform

force F , letting the {ϕi} relax to a local minimum for each value of F . One of the primary

quantities that we study in Sec. IV is the polarization (density)

P ≡ L−d
∑

i

(ϕi − ϕinit
i ). (1.3)

As F is increased, the polarization increases both by continuous motion — due to the

smooth evolution of the local minimum — and by discontinuous jumps which occur when

the local minimum of H, in which the CDW configuration is, disappears, i.e., a local saddle

node bifurcation takes place. Except on the set of measure zero in F for which the jumps

occur, we can define a linear a.c. polarizability density as the response to an infinitesimal

additional a.c. force δF (ω):

χ(ω) ≡
δ 〈ϕ(ω)〉

δF (ω)
(1.4)

where 〈ϕ〉 ≡ L−d ∑

ϕi. In the limit of zero frequency, the linear d.c. polarizability

χ0 ≡ χ(ω → 0) will not in general be equal to the derivative of the polarization den-

sity, because of the discontinuous jumps. Although precursors to the jumps contribute to

χ0, the discontinuous changes in polarization resulting from the jumps themselves are not

included in χ0. As we will see, however, we can define a polarizability for increasing F by

χ↑(F ) = lim
δF→0+

lim
L→∞

P (F + δF ) − P (F )

δF
, (1.5)

which does include the jumps. If F is subsequently decreased, the regions that jumped

forward on increasing F will, because of hysteresis [4,12], not jump back in the same fashion,

so that in general,

χ↓(F ) 6= χ↑(F ) 6= χ0(F ) 6= χ↓(F ), (1.6)
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where χ↓(F ) is defined as is in Eq. (1.5), but with the limit δF → 0−. Nevertheless, there

are special system histories in which no jumps occur and for which all the polarizabilities

are equal.

In order to get reproducible results which do not depend on the initial conditions, we

study a particular history: increasing F initially to F+
T , the threshold force for positive F ,

then decreasing the force to the opposite threshold F−
T < 0, and then back up to F+

T .

Since the last local minimum of H to disappear as F is increased is unique [3] (up to

uniform shifts of all phases by a multiple of 2π), the configuration at F+
T (and likewise at

F−
T ) is unique. After the first increase to F+

T , the system can be cycled back and forth to

F−
T . On the now-uniquely-defined subsequent increases to F+

T (and generically on the initial

increase), the jumps in P become larger as F+
T is approached as larger regions of the system

reach local thresholds, go unstable, and increase the elastic forces on their neighboring

regions. Right at threshold, a local instability leads to motion of the whole system by 2π.

Thus we anticipate that there should be a correlation length characterizing the size of the

“avalanches” which diverges as F ր F+
T .

Concomitantly, the polarizability χ↑ diverges, on the irreversible approach to threshold,

with a divergence of the form

χ↑(F ) ∼ (FT − F )−γ. (1.7)

The polarization itself will also diverge if γ > 1. The d.c. linear polarizability, χ0, will be

strongly dependent on F with this approach to threshold, but as shown below in Sec. IV,

it will follow a curve which is smooth almost everywhere in the limit L → ∞ and which is

distinct from χ↑. Equivalently, one can calculate the configuration averaged χ0(F ), which

does not include the effects of the jumps. The precursors to jumps will not contribute

significantly to this mean. As F ր F+
T , we find in the limit of an infinite system

χ0(F ) ≈ χT − AI(F+
T − F )−γI

ℓ (1.8)

with the exponent γI
ℓ < 0, so that χ0(F ) exhibits only an upwards cusp to a constant value

χT at threshold. (Note that in any finite system χ0(F ) diverges as (F+
T − F )−1/2; but the
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amplitude of this divergence is negligible in a large system. It dominates only very near to

threshold.) In two dimensions, which we have studied most extensively, we find γ = 1.8±0.15

and γI
ℓ = −0.40 ± 0.12.

When the force is decreased from F+
T , initially no jumps occur and the minimum of H

evolves smoothly. In this regime, which appears to persist for a finite range of F in large

systems, the evolution is reversible, so that χ↑ = χ↓ = χ0. For this history, the field can be

increased back to threshold, yielding a reversible approach characterized by a cusp

χ0(F ) ≈ χT − AR(F+
T − F )−γR

ℓ (1.9)

with γR
ℓ = −0.42 ± 0.05 in two-dimensional systems. Within our error bars, γI

ℓ = γR
ℓ (al-

though the amplitudes AI and AR differ), which is somewhat surprising in light of the large

differences between the two approaches: in the irreversible approach, the linear polarizabil-

ity is only a small addition to a much larger polarizability χ↑ dominated by the jumps. We

propose in Sec. IV that the scaling form for the distribution of linear eigenmodes is inde-

pendent of the approach to threshold, with a common frequency scale (F+
T − F )µ, where

µ ≈ 0.50, but with history-dependent scaling functions.

C. Finite size effects and avalanche size distribution

In order to investigate the correlation lengths which characterize the critical behavior

near threshold, we study finite size effects in some detail in Sec. V and determine the

avalanche size distribution for the irreversible approach to threshold. In general, one expects

the singular properties of large finite size systems to exhibit finite-size scaling behavior as

functions of L/ξ, with ξ the correlation length. For example, the polarization density on the

irreversible approach to threshold is expected to behave as

P ↑
sing(F, L) ≈ (F+

T − F )−γΦ↑(L/ξ). (1.10)

Here, however, because of the randomness and existence of a threshold in finite systems,

care must be taken to use the appropriate sample specific finite system quantities, as we see
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in Sec. V.

From the polarizability χ↑ on the irreversible approach, as well as the width of the

distribution of threshold fields, we find a correlation length

ξ ∼ (F+
T − F )−ν (1.11)

with ν = 2.01 ± 0.02, 1.01 ± 0.03 in d = 1, 2 respectively. To within our errors, ν seems to

saturate the inequality ν ≥ 2/d [16].

The divergence of ξ is in agreement with the divergence of the measured characteristic

size of avalanches as threshold is approached. At threshold, the distribution of avalanche

sizes is scale-invariant, with a distribution quite similar to that seen for sand-pile models of

the same dimensionality (d = 2). The CDW model is clearly not “self-organized”, as the

scale-invariant behavior is seen only at threshold. The apparent connection between the two

models is quite interesting, though, and it is briefly developed below.

One can also investigate finite size corrections to the polarizability in the reversible

approach to threshold. Surprisingly, these are characterized by a distinct characteristic

length

ξl ∼ (F+
T − F )−νℓ (1.12)

with νℓ ≈ 0.44 ± 0.05 < ν in d = 2. The origin of this second length, which naively violates

the inequality for ν, is quite subtle. It is connected to the effects of the smooth potential and

the absence of a natural connection (such as a magnetic field in conventional equilibrium

phase transitions) which links one side of the transition to the other. If the polarizability

in the reversible approach is scaled with the dominant correlation length ξ, there will be no

finite size corrections to χ0!

In the last section of this paper, we discuss the finite size lengths and related issues,

consider some possible scaling laws, and raise questions for future work. A summary of

our numerical results for critical exponents is presented in Table I. The error bars for the

exponents are subjective, except for νT, where the error bars are statistical, and reflect the
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range of values which are consistent with the data in the appropriate scaling regime (see

figures and discussion in each section).

D. Related models

Before proceeding with a more detailed discussion of the CDW model of Eq. (1.2), we

first define several other models to which we compare some of our results.

In the limit that the range of interactions in Eq. (1.2) becomes infinite range, mean

field theory becomes valid, and one can replace z−1 ∑

δ ϕi+δ (with z = 2d the coordination

number), by a self-consistently calculated mean field φ(t), so that the ∆ϕi term of Eq. (1.2)

is replaced by φ(t) − ϕi. This model has been studied in some detail in Ref. [4] and shows

some features qualitatively similar to the present finite dimensional results, particularly the

presence of reversible and irreversible approaches to threshold and the spectrum of local soft

modes.

A one dimensional incommensurate version of Eq. (1.2) has also been studied [17]. Here

the interactions are nearest neighbor, but the pinning phases {βi} are chosen to be quasiperi-

odic (rather than random), i.e., βi = 2παi, with α an irrational, usually chosen to be the

golden mean. For h greater than a critical value hc, this system exhibits a non-zero threshold

somewhat similar to the random system.

Finally, several authors have studied [18,19] a simple “random friction” model, in which

the cosine pinning potential is (essentially) replaced by a periodic sawtooth with

Vi(ϕi) = hiϕi for βi > ϕi > 2π − βi, (1.13)

and hi random with some distribution; Vi is periodic with period 2π. The discontinuity in

Vi at βi does not affect the steady state dynamics of the moving phase, but only stops the

phases from “backsliding” below threshold. At threshold, the distortion of the phases in this

model can be calculated directly, as can the distribution of threshold fields. The threshold

field FT ({hi, βi}) is simply the average of hi over the system, so that in a system of size Ld,
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the width of the distribution of threshold fields is ∆FT (L) ∼ L−d/2. The mean distortions

at threshold (and for all fields above threshold) behave as

(ϕi − ϕj)2 ∼ |i − j|(4−d)/2 (1.14)

for d < 4, since the discontinuities in the potential do not play a role (we note that a

“ratcheted kick” model [3], where the phase is advanced by a finite amount when it reaches

a discontinuity, has much more complicated behavior above threshold; see Sec. VI).

II. ANALYTIC BOUNDS

The behavior of CDW’s below threshold is characterized, as discussed above, by many

locally stable configurations and concomitant hysteresis. Above threshold, the many non-

linearly interacting degrees of freedom might be expected to lead to strong sensitivity of

the motion to initial conditions, aperiodicity, or non-uniqueness. As one of us has shown

elsewhere [3], however, the convexity of the interactions between the phases assures that

at long times, CDW’s above threshold approach a unique periodic steady state (as seen in

numerical simulations [11–13]). In this section, we show that similar convexity arguments

lead to a partial ordering of the configurations below threshold, bounds on the motion, and

the uniqueness of the configuration at threshold.

A. The no-passing rule

The central result upon which these conclusions are based is what we call the “no-passing”

rule. This rule severely restricts the behavior of solutions to the equation of motion. Suppose

one has two solutions to the equation of motion Eq. (1.2), for the same realization of the

pinning and same drive field. If the initial conditions are such that the values of all the

phases for one solution (the “greater” solution) exceeds the phases in the other solution (the

“lesser” solution) at each point in space, the greater solution can never be “passed” by the

lesser one (see Fig. 1). Physically, if the phases of the two solutions approach each other
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at some site, the pinning and drive forces cancel, but the elastic forces due to neighboring

sites keep the phases from passing through each other, since the elastic forces tend to flatten

out the configuration. This rule, though quite simple and easily derived, provides a partial

ordering for the stationary solutions to the equations of motion and directly implies that

the velocity is a unique function of the applied field.

We now justify this rule in more detail. Consider two solutions to the equations of

motion Eq. 1.2, {ϕ1
i (t)} and {ϕ2

i (t)}, for the same realization of the disorder {βi}, with initial

conditions chosen so that ϕ1
i (0) < ϕ2

i (0), for all i. We will say that such a configuration

{ϕ1
i (t)} is less than {ϕ2

i (t)} at t = 0. Each set of phases is driven by the same, possibly time

dependent, external field, F (t). Define the differences

ǫi(t) = ϕ2
i (t) − ϕ1

i (t). (2.1)

Subtracting the equations of motion Eq. (1.2) for the two solutions gives

dǫi(t)

dt
= ∆ǫi(t) + h

[

sin(ϕ1
i + ǫi − βi) − sin(ϕ1

i − βi)
]

. (2.2)

Let j(t) be a site where ǫ is equal to its minimum value. Since ∆ǫj(t) is non-negative and

the second term of Eq. (2.2) is bounded in magnitude by h |ǫi|,

d

dt
ǫj(t) > −hǫj(t)(t). (2.3)

It follows that ǫj(t)(t) decays no faster than exponentially to zero (indeed it will often in-

crease) and therefore, for all i, ϕ1
i cannot coincide with or cross ϕ2

i at any time (in the sliding

state, mini(ǫi) is bounded below by a constant which depends on the initial configurations

ϕ1
i , ϕ

2
i [3]). Thus we conclude that if {ϕ1

i (0)} is less than {ϕ2
i (0)}, {ϕ1

i (t)} will be less than

{ϕ2
i (t)}, for all t > 0.

It is clear that this no-passing rule relies crucially on the elastic potential between sites

being convex. Note that for models where the elastic potential is not convex, this result

does not hold, and, in fact, many of the conclusions that we will derive here do not hold for

models with phase slip [20].
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B. Consequences of no-passing

The no-passing rule has several immediate, useful consequences. The first is the unique-

ness of the velocity. Suppose there are two solutions to the equations of motion in a finite

system, for the same field F (t) and pinning realization {βi}. By discrete translation invari-

ance of the equations of motion by multiples of 2π, either of the two solutions initially can

be translated to become a lesser solution. By the no-passing rule, the average velocity of the

lesser solution is bounded above by that of the greater solution. Since the choice of initially

lesser configuration is arbitrary, all solutions to the equations of motion in finite systems

must have the same velocity, in the limit of long times.

This immediately implies that the threshold field is unique, since moving solutions cannot

coexist with stationary solutions. The threshold configuration itself is almost always unique.

Since the pinning potential is random, generically no more than one minimum will disappear

simultaneously at FT . The last stationary solution to disappear as F increases is thus, with

probability one, the unique threshold configuration, modulo uniform 2π shifts of all the

phases.

Another important consequence of the no-passing rule is the bounding of the motion

for fields F in the static range, F−
T ≤ F ≤ F+

T . This bound shows that, given an initial

configuration and for monotonic changes in the field, the final configuration approached

depends only on the final field. In particular, the final configuration is independent of the

rate of change of the applied field. This allows for a natural ordering of the static states

which is useful for understanding hysteresis and for the simulation of the model (see Sec. III).

Consider any particular realization of the pinning {βi}. Let {ϕi(t)} be a solution to the

equations of motion Eq. (1.2) for a (possibly) time-dependent field F (t) which is bounded

above by a constant F ∗, with

F (t) ≤ F ∗ ≤ F+
T , (2.4)

for all t. Define A∗({ϕi(0)}) as the set of all configurations {ϕ∗
i } that are stationary at

the field F ∗ and that are greater than the initial configuration, i.e., ϕi(0) ≤ ϕ∗
i , for all i.
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Suppose that the configuration {ϕ∗
i } is a member of A∗. The “no passing” rule implies that

ϕi(t) ≤ ϕ∗
i , for all t > 0 and all i; as the initial configuration evolves, it cannot pass any

configuration {ϕ∗
i } that is both stationary at the bounding field F ∗ and greater than the

initial configuration. Fig. 2 schematically shows some of the configurations {ϕ∗
i } ∈ A∗. If

the field F (t) is non-decreasing in time, with F ∗ = limt→∞ F (t), then {ϕi(t)} approaches a

stationary configuration defined by ϕ∞
i = limt→∞ ϕi(t). This limit configuration is stationary

at field F ∗ and is greater than the initial configuration {ϕi(0)}, therefore it belongs in

the set A∗. The configuration ϕ∞
i is the least configuration that is greater than {ϕi(0)}

and stationary at F ∗: it has the property that ϕ∞
i ≤ ϕ∗

i for all {ϕ∗
i } ∈ A∗, since the

configuration {ϕi(t)} cannot pass any of the configurations in A∗. For non-decreasing F (t),

the final configuration approached is thus unique and independent of the rate at which F (t)

approaches F ∗. The final configuration depends only on the initial configuration and the

value of F ∗. As we see below, this result enables the stationary configurations which occur

for adiabatically changing F to be computed more efficiently.

C. Other physical systems

We note that the no-passing rule and its consequences are applicable to models of other

physical systems, including the motion of interfaces in random systems, e.g., fluid interfaces

in porous media [21]. The two most important requirements for the no-passing rule are

convex elastic interactions and the parameterization of distortions by a single field defined

on the elastic medium. Flux flow in superconducting films, for example, fails both of these

tests: the flux lattice can rearrange itself plastically under large strains (non-convex elastic

forces) and there are two internal coordinates (the position vector of individual fluxoids). It

has been shown [20] that models with non-convex elastic interactions can have hysteresis in

the velocity vs. field relation. Note that is even possible to define zero-dimensional models

that have two (internal) coordinates where the velocity is hysteretic [22].
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III. NUMERICAL ALGORITHMS

Previous simulations [11,12,18,23] of the lattice CDW model have used direct numerical

integration of the equations of motion. Some of our results were also obtained with this

method. When we used a second-order predictor-corrector method to integrate the equations

of motion, we found that time steps in the range 0.05-0.1 were sufficient for finding stationary

configurations (and also for simulating the sliding state). For the parameters we used,

decreasing the time step did not change the results. A great disadvantage of this method is

that the relaxation time to a static configuration can be quite long. This occurs when the

simulation is converging towards a configuration that has soft modes (i.e., linear relaxational

modes with relaxation rates ≪ h). As we shall see, such soft modes are often important.

This problem, not surprisingly, is especially bothersome near threshold.

For fields in the static range, of primary interest here, we used an alternative method to

find static configurations and to calculate the changes in configuration that occur when the

drive field is changed. It is similar to a method previously used in the incommensurate case

[17]. This method, which relies on the existence of the no-passing rule for the CDW model,

is often over two orders of magnitude faster than direct numerical integration. In fact, we

found this algorithm essential to achieve well-converged configurations in large systems for

fields near threshold.

For an example of the method used, suppose that, using numerical integration, one

has obtained an initial configuration stationary at a field F 0, and one wishes to find the

configuration that is static at some greater field F ∗, F 0 < F ∗ < F+
T , that would result from

integrating the equations of motion, with field F ∗ for times t > 0. This configuration is the

unique lowest configuration, above the initial configuration, that is static at field F ∗, by the

above discussion of the ordering of static states. Any algorithm that determines this lowest

configuration will be an acceptable method. The method that we use is to advance each

degree of freedom towards, but not beyond, the nearest local minimum of the local energy

defined at each site i, Hi(ϕi), which is determined by calculating the total energy H with
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all neighboring phases fixed.

To advance individual phases toward the minima of Hi, we use a variant of the Newton-

Raphson algorithm, which we modify to avoid overshooting the minima, while retaining

rapid convergence. We need to find zeroes of the velocity

ϕ̇i = −∂H/∂ϕi ≡ −H′
i ≡ Fi + V ′

i − 2dϕi, (3.1)

where the local field Fi ≡
∑

δ ϕi+δ + F and the pinning force V ′
i ≡ h sin(ϕi − βi). Instead of

the usual iterative map ϕi → ϕi −H′
i/H

′′
i , we solve for zeroes of ϕ̇i by the map

ϕi → ϕi −H′
i/(H′′

i − cH′
i), (3.2)

where c is a constant that depends on the pinning strength [24]. After a single iteration of

this map for each site, the local fields are updated. At each step, the phases only increase,

and the local fields Fi increase. This map is iterated until a fixed configuration is reached,

which corresponds to a stationary configuration. Since the phases never “pass” a minimum

of the energy, the configuration reached is the lowest configuration, greater than the initial

configuration, that is static at field F ∗. The fixed configuration obtained by this method is

therefore the same as would be obtained by numerical integration of the equations of motion.

The threshold fields for each particular realization of the pinning was found by bisection.

Upper and lower bounds were found for the threshold field (estimated from previous runs or

taken to be given by 0 < |FT | < h), and a configuration stationary at the lower bound was

found. These bounds were then improved by determining whether the configuration station-

ary at the lower field could be evolved, by the methods just described, into a configuration

that was stationary at a trial field equal to the mean of the two bounds. If so, then the lower

bound and static configuration were updated. If not, the upper bound was lowered to the

trial field. Note that the no-passing rule implies that if the movement of all of the phases

from their initial positions becomes greater than 2π at any iteration, the applied field must

be greater than the threshold field. This provides an unambiguous criterion to determine

when the threshold field has been exceeded.
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The computations were carried out on the 16K CM-2 Connection Machine at Argonne

National Laboratories and the CM-2 at Syracuse University. For small systems, many

realizations of the pinning were studied simultaneously. For all simulations, we used periodic

boundary conditions. The pinning strengths hi were taken to be uniform, as in Eq. (1.1),

with values of 2.5, 5.0, and 7.5 in one, two and three dimensions, respectively. These values

of the pinning strength, h = (2.5)d, were chosen to yield a Lee-Rice length ξLR, the scale at

which the elastic and pinning energies are comparable [9], of approximately one lattice unit.

Since regions of volume ξd
LR act effectively as single degrees of freedom, this choice allows

for the most efficient simulation of many effective degrees of freedom. With these values

for the pinning strength, we find the threshold fields for large systems to be 1.338 ± 0.004,

1.490± 0.005, and 1.282± 0.002 in one, two and three dimensions, respectively. That these

are of order unity is consistent with the Lee-Rice length being approximately one lattice

unit. (These values of the pinning strengths are also very similar to those used in Ref. [23].)

IV. NUMERICAL RESULTS FOR CRITICAL BEHAVIOR

In this section, we present our numerical results for the critical behavior as threshold is

approached from below. As discussed in the Introduction, the behavior is strongly history

dependent below threshold (this is already seen in the mean field limit [4]). We thus choose

two distinct, well-defined approaches to threshold on which much of the behavior differs

qualitatively. Nevertheless, some of the properties are quantitatively similar for these two

histories, suggesting some underlying genericity. The primary quantities we study are the

polarization P and various polarizabilities as defined in the Introduction.

As discussed above, the configurations at the positive and negative thresholds, F+
T and

F−
T , are unique. Thus natural reproducible histories can be analyzed in which the field is

slowly swept back and forth from F−
T to F+

T . The paths on approaching F+
T and going away

from F+
T are, as we shall see, quite distinct. If F is increased to above threshold, and then

decreased again slowly, the same configurations will be passed through below F+
T , up to
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uniform 2π translations.

A. Hysteresis and qualitative behavior

We now examine the results of a simulation of the histories, for which the initial config-

uration is the configuration static at F−
T . The applied field is then varied adiabatically; first

increasing to F+
T , then decreasing back to F−

T . Fig. 3 shows the polarization as a function

of applied field for a single two-dimensional system of linear size L = 64, for this history. A

similar hysteresis loop has been seen previously in simulations of the random-friction model

in one dimension [18]. We use this loop to uniquely (up to translations by multiples of

2π) define two paths in configuration space, which are parameterized by the applied field:

{ϕ↑
i (F )}, for field increasing from F−

T , and {ϕ↓
i (F )}, for field decreasing from F+

T .

We refer to these histories as the two “extremal” histories. For any system subject to

a time dependent field F−
T ≤ F (t) ≤ F+

T , with an initial configuration belonging to an

extremal history, the evolution of the configuration is bounded by this hysteresis loop:

ϕ↑
i (F (t)) ≤ ϕi(t) ≤ ϕ↓

i (F (t)), (4.1)

for all i and t > 0. This result follows directly from the no-passing rule: it bounds the changes

in polarization for such an initial configuration. General time-dependent configurations need

not be bounded by this simple loop. However, if the applied field changes adiabatically and

equals the threshold field at any time, the evolution at later times will be bounded by this

loop (or uniform 2π translations of it.)

For our choice of pinning strength, we find that the initial section of each of the extremal

paths, where the field is reduced in magnitude from its threshold value, F±
T , is reversible.

For all quasistatic field histories that start with a configuration that is static at field F+
T or

F−
T , the configuration is a unique function of the field for a range of fields near threshold,

even if the direction of the field change is reversed. This is consistent with our observation

that, over this field range, no jumps in the phase occur, since no local minima vanish. The
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polarization is a smooth function of field over this range, even for finite systems. In two

dimensions, we find the range of fields F+
T ≥ F ≥ FR over which the system is reversible is

given by F+
T − FR = 0.80 ± 0.03, while |FT | = 1.490 ± 0.005.

This reversibility over some range is consistent with that seen in experiments on CDW’s

[25], where the resistance is measured as a function of the history of the applied field. The

CDW configuration affects the electrical transport properties of the normal carriers, even

when the CDW is pinned. The resistance in the pinned state is therefore a useful probe of

the history-dependence of the CDW configuration, though the exact correspondence between

the resistance and CDW configuration is not clear. Duggan, et. al., [25] find that when the

field is lowered from above threshold to some distance below threshold, there is a region

where the resistance is a reversible function of the field. When the field is lowered further

below threshold, hysteresis is evident, however. Qualitatively, these results are in agreement

with our numerical results and with mean-field theory [4].

We have examined the critical behavior for the two approaches to the threshold value

of the field, F+
T , which are defined by the two extremal paths, {ϕ↑

i (F )} and {ϕ↓
i (F )}. One

history is the irreversible approach, for which the initial configuration is the one static at F−
T .

The critical behavior is given by the behavior of the configurations {ϕ↑
i (F )} as F ր F+

T and

is equivalent to the critical behavior that would be seen by sweeping the field adiabatically

from large negative field towards F+
T . The reversible history uses the configurations which

belong to the path obtained by lowering the field from F+
T (but not as far as FR) and then

approaching F+
T again. The critical behavior for this history is given by the properties of the

configurations {ϕ↓
i (F )} near F+

T and is statistically equivalent (by the statistical ϕ → −ϕ

symmetry) to increasing the field slowly from large negative fields and studying the behavior

near F−
T .
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B. Polarization at threshold

An obvious first question concerning the critical behavior below threshold is whether the

polarization diverges as the threshold field is approached (for some generic field history, such

as the extremal histories) in an infinite-size system. In the infinite-range model, if the range

of pinning values is bounded, the polarization cannot diverge [4]. But in an infinite system

in finite-dimensions, there is no constraint that prevents the polarization from diverging.

However, as shown in [3], there is a strict bound on the width W (L) ≡ maxi ϕi −mini ϕi of

a configuration in a system of size L, if h is bounded by a constant hmax.

This bound on the width, W (L) ≤ hmaxL
2/2, gives a bound for the polarization of the

threshold configuration: by the no-passing rule, some phase must move by less than 2π for

fields below threshold. The largest amount that a single phase can increase below threshold is

then 2W +2π, since no phase may differ by more than W from another. The polarization of a

configuration, relative to any static initial configuration, is therefore bounded by 2π+hmaxL
2.

As we now discuss, numerical calculations show that the typical polarization increases with

L much less rapidly than this strict bound.

Fig. 4 shows our numerical results for PT , the polarization at the threshold field F+
T , as a

function of L, the linear size of the system, in one and two dimensions. The initial reference

configuration is the one static at F = F−
T . Clearly the polarization diverges with system size

in both one and two dimensions, but more slowly than L2. At threshold, the only important

length scale is expected to be L, so the simplest behavior that might be expected for the

polarization at threshold, PT (L), is

PT (L) ∼ Lρ (4.2)

for some exponent ρ. From a fit to the data shown, we estimate ρ to be 1.3 ± 0.3 in one

dimension and 0.8 ± 0.2 in two dimensions. We discuss this result in terms of finite size

scaling in Sec. V. The variation in PT from sample to sample appears to be of the same

order as PT , so it would require many samples at large sizes to obtain a precise estimate for
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the exponent ρ (numerically, the r.m.s. fluctuations in PT are approximately 0.25PT in two

dimensions).

C. Subthreshold polarization and linear response

We now consider the critical behavior of the polarization as threshold is approached with

F ր F+
T . On the irreversible approach, the polarization changes by non-linear jumps, where

sections of the CDW move forward in response to infinitesimal changes in the applied field,

and also a linear response. Though the non-linear response is very different for the two

approaches to threshold, the linear response appears to have universal features.

1. Definition of reduced field

In contrast to thermodynamic transitions that occur at a critical temperature, for which

fluctuations make the definition of the exact location of the transition temperature ill-defined

in a finite size system, the dynamical system that describes CDW’s at zero temperature has

no noise and any finite system has a well-defined threshold, since the steady-state velocity

is either zero or non-zero. We thus define the reduced field f relative to the threshold fields

for each realization of the pinning:

f ≡ 2
F − F+

T (h, {βi}, L)

F+
T (h, {βi}, L) − F−

T (h, {βi}, L)
, (4.3)

where the threshold field F+
T for a system of size L depends on the pinning strength h and the

realization of the pinning phases {βi}. For all realizations of the pinning, then, −2 < f < 0

in the stationary phase and f > 0 or f < −2 in the sliding state. The reduced field f = 0

strictly separates the sliding from the stationary state in each sample. This definition is

necessary when averaging over many samples, since quantities such as the polarization are

not defined in the sliding state, above threshold.
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2. Irreversible approach: total response

Using this definition of the reduced field f , we have determined the polarization P (f)

for the irreversible approach to the threshold field F+
T in one and two dimensions and the

reversible approach for two-dimensional systems. Figs. 5 and 6 display the results in one

and two dimensions for various system sizes, for the irreversible history {ϕ↑
i (F )}. The

polarizations are measured relative to that of the configuration static at the field F−
T . In

Fig. 7, we plot the numerical derivatives of the polarization for two-dimensional systems on

a log-log scale. We define χ↑ = dP/dF as this polarizability, for the approach to threshold

with increasing field. From this plot of χ↑ for the largest samples studied, we deduce the

exponent γ = 1.8± 0.15 in two dimensions, with χ↑ ∼ f−γ for small f . For one-dimensional

systems, we calculate γ from a fit to P (f); the polarization diverges as P ∼ f−γ+1. We find

γ = 3.0 ± 0.5 in one dimension.

In three dimensions, we have not been able to determine whether the polarization diverges

as f ր 0, as the simulation of large three-dimensional systems requires very large amounts

of computer time. We display the polarization in Fig. 8 for a 643 and a 1283 system for

an approach to threshold where we have used an initial configuration found by relaxing

a configuration ϕi ≡ 0 at F = 0, i.e., slightly different from the ϕ↑
i approach, giving an

initial polarization P ≈ 0. The polarization may be divergent in infinite systems, but only

very slowly: for the 1283 system, the polarization exceeds 2π only for fields within ∼ 0.1%

of threshold. This is in qualitative agreement with experimental results, where the CDW

polarization is less than a wavelength of the CDW for fields approaching the threshold value

[26].

3. Calculation of the linear response

As the field is increased adiabatically in a finite size system, the evolution of the CDW

configuration is composed of intervals of smooth change that are interrupted by jumps due
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to vanishing local minima of the energy H. In the intervals between jumps, one can define

a linear differential polarizability, χ0 ≡ 〈ηi〉i, where ηi is defined as the linear response,

ηi = ∂ϕi/∂F , to a spatially uniform perturbation in the drive field. This linear polarizability

is the zero frequency limit of the polarizability, χ0 = χ(ω → 0), since the jumps are part

of the zero frequency response χ(ω = 0) [4]. This response is found numerically by taking

the derivative with respect to the drive field F of Eq. (1.2) for a metastable state (where

ϕ̇i = 0):

∆ηi + h cos(ϕi − βi)ηi = −1. (4.4)

Given a static configuration {ϕi}, we determine the ηi by iterative solution of the diffusion

equation [27], Eq. (4.4), by iterating the map

ηi → (
∑

δ

ηi+δ + 1)/[2d − h cos(ϕi − βi)], (4.5)

until the fixed point is reached.

4. Divergences due to jumps

Fig. 9 is a plot of the linear polarizability χ0 and polarization P for the irreversible

history over a small range of reduced field for a single sample of size 1282. This fine field scale

allows the individual jumps in the polarization and corresponding divergences in the linear

polarizability to be clearly seen. At the point where a metastable configuration vanishes,

the polarization jumps a small amount due to the rearrangement of the phases in some

region. For the range of fields shown in Fig. 9, the rearrangement occurs in regions of a

scale of several lattice constants, resulting, at least well below FT , in a change of the average

polarization P of order L−d ∼ 10−4.

As the metastable configuration approaches a saddle node bifurcation at a field fjump,

where the local minima of the energy vanishes, the linear polarizability from the local degrees

of freedom that go unstable diverges as (fjump − f)−1/2. This divergence leads to the spikes
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apparent in the linear polarizability plotted in Fig. 9. As the size of the system is increased,

these jumps must occur more frequently. In the thermodynamic limit, these jumps occur

on a set dense in the applied field. The question arises, then, as to whether the linear

polarizability is well-defined for the typical irreversible approach to threshold. Surprisingly,

the answer is yes. The contribution to the bulk linear polarizability from a single degree of

freedom in a sample of volume Ld is [28]

∆χ0 ∼ L−d(fjump − f)−1/2. (4.6)

For a given reduced field f , the number of jumps that occur in a small field interval must

be proportional to the volume Ld (for L large enough that the finite size effects discussed

below are unimportant at reduced field f). It follows that the expected distance between

jumps (avalanches) is ∆f ∼ n−1
av L−d for an avalanche density nav(f) (nav(f) is discussed in

more detail in Secs. V,VI below). At a given field reduced field f , the probability, p, that

∆χ0 > ǫχ0, for some desired small relative accuracy ǫ, behaves as

p ∼ (ǫχ0)
−2[nav(f)]−1L−d. (4.7)

Thus, with probability (1 − p) approaching 1 as L → ∞, χ0 is not affected by the diver-

gences due to local degrees of freedom going unstable, to arbitrary accuracy ǫ. We can

therefore examine the nonlinear polarizability, χ↑, which includes the jumps, and the linear

polarizability, χ0, separately; both are well-defined. To study the linear polarizability for the

irreversible history, we examine the median χ0, which, for an ensemble of a large number of

large systems, will have only a small probability of being affected by the spikes in the linear

polarizability. (In principle, the above argument implies that the mean χ0 could have been

used, but the convergence as L → ∞ would be worse.)

5. Critical behavior of linear polarizability

We have calculated the linear polarizability for both the reversible and irreversible paths

in two dimensions. For the reversible path {ϕ↓
i }, we find that limf→0 limL→∞ χ0(f) = χT ,
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where the threshold polarizability χT is a finite constant. The behavior near threshold of

χ0(f) shows only a power-law cusp. This is in marked contrast with finite systems, where χ0

diverges as |f |−1/2. In order to examine the leading cusp singularity in χ0 for the reversible

approach to threshold, it is better to calculate dχ0/dF , as the extrapolated constant χT

is then unimportant. We calculate dχ0/dF directly by solving a linear response equation

similar to Eq. (4.4), rather than by finding the numerical derivative of χ0. We plot the mean

of dχ0/dF in Fig. 10, for systems of sizes 322, 642, 1282, and 2562. We define γR
ℓ as the

exponent determining the singularity in χ0 for the reversible path, as f → 0:

χ0(f) = χT − AR |f |−γR
ℓ . (4.8)

We find that, for the larger systems, the data for dχ0/dF is well fit by the form

dχ0/dF ∼ |f |−γR
ℓ
−1 (4.9)

over more than one decade, with γR
ℓ = −0.42 ± 0.05. The coefficient AR is also determined

by the fit to the data for dχ0/df . Using the fitted quantities AR and γR
ℓ for the reversible

path, we estimate

χT ≃ lim
f→0

[

χ0(f) + AR |f |−γR
ℓ

]

≈ 0.483 ± 0.005 (4.10)

for d = 2 and h = 5.

For the irreversible path, the large-volume limit of the derivative of the linear polariz-

ability,

lim
L→∞

dχ0(F )/dF, (4.11)

is not well-defined, by an argument similar to that given in Eqs. (4.6) and (4.7). To determine

the behavior of χ0(f) as f → 0 for this path, we cannot take the derivative, as we did for

the reversible path, but must examine χ0(f) directly. If a fit is done directly, allowing

χT to vary, the leading singularity cannot be determined precisely. Instead, we use the

value of χT which has been calculated from the reversible path. This analysis assumes that
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χT = limf→0 limL→∞ χ0(f) is the same for both paths. This assumption is consistent with

the data; neither the reversible or irreversible linear polarizability diverges and they are both

increasing, with both paths approaching the unique threshold configuration [29]. We then

fit to the form χ0(f) = χT − AI |f |−γI
ℓ , where AI and γI

ℓ are the coefficient and exponent

that describe the leading singularity in χ0 for the irreversible path. We plot χT −χ0 for both

the reversible and irreversible path in Fig. 11. The uncertainties in χT −χ0 are larger for the

irreversible path because of the divergences in χ0 at the jumps. As mentioned above, we take

the median value for χ0 on the irreversible path, as the mean would poorly characterize the

typical value for χ0. Our resulting best estimate for γI
ℓ is −0.40±0.12. The exponents γ

(R,I)
ℓ

agree to within our error, though the coefficients A(R,I) are different for the two histories.

This numerical agreement suggests a universality for the singularity in the linear χ0, which

we now examine in more detail.

D. Linear response: eigenmodes

We next investigate more generally the linear response about a stationary configuration.

The linear response χ0 can be expressed as the sum of contributions from the eigenmodes

of the operator acting on η on the left-hand side of Eq. (4.4), i.e., the operator for the

linear relaxation of a perturbed configuration [13,17]. For a particular configuration {ϕi},

we define eigenmodes am
i , with eigenvalues −Λm, m = 0, . . . , N − 1, such that

− Λmam
i = [∆am]i + h sin(ϕi − βi)a

m
i . (4.12)

We take the eigenfrequencies to be ordered so that 0 < Λ0 < Λ1 < Λ2 < · · ·. The polariz-

ability is determined by the relation

χ0 = L−d
N−1
∑

m=0

(
∑

i

am
i )2/Λm. (4.13)

The sum over lattice sites,
∑

i a
m
i , gives the sum of the components of the eigenvectors, which

have been normalized so that
∑

i(a
m
i )2 = 1.
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We have calculated numerically the smallest eigenvalues, Λm, for m = 0, . . . , 5, in a

two-dimensional system of size 1282 for the reversible extremal history near threshold. We

find that the low lying eigenmodes are localized: the components of the eigenmodes are

very small outside of a region of size several times the lattice spacing. As the threshold is

approached, the localization length of the lowest mode approaches a constant ≈ 1.5 (where

the localization volume is estimated by the square of the sum of the components of the

normalized eigenmode). The smallest eigenvalues appear to behave as

|Λm| ∼ (f c
m − f)µ (4.14)

for small f , with µ = 0.50 ± 0.01, and f c
m discussed below, as shown in Fig. 12. Similar

results have been found in calculations for the one-dimensional model with random and

incommensurate pinning phases [13,17]. This result is in agreement with a natural picture

of the low-lying eigenmodes consisting of localized, almost independent degrees of freedom.

Each eigenmode approaches a saddle-node bifurcation at a field F+
T + f c

m, with f c
m > 0

for m > 0. In this picture, µ = 1/2 exactly, consistent with our numerical results. At the

threshold field, the smallest eigenvalue, Λ0, goes to zero (i.e., f c
0 = 0), with the last minimum

of the energy H becoming unstable. The magnitude of the other eigenvalues appear to go

to zero at the reduced fields f c
m indicated, but since the lowest mode has gone unstable and

the configuration is sliding for f > 0, the linear analysis clearly no longer applies.

Since the eigenmodes are localized at threshold, the leading singular behavior can not

come from the sum of the components of the lowest eigenmode, but rather arises from

the singularities in the eigenvalue distribution for small Λ. The matrix element (
∑

i a
m
i )2

in Eq. (4.13) can be approximated by an average size, b, which approaches a constant as

Λm → 0. The singular part of the linear polarizability is then given by [13,17]

χsing
0 (f) ∼ b

∫

dΛ ρ(Λ, f)/Λ, (4.15)

where ρ(Λ, f) is the density of eigenvalues at reduced field f .

For the incommensurate model in one dimension, numerical data suggest that the eigen-

values Λm obey the scaling form [17]
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Λm ∼ |f |µ D(m |f |−δ), (4.16)

with µ ≈ 0.50 and δ ≈ 0.18; for incommensurate pinning, the scaling function D is not

continuous and is invariant only under discrete rescalings. The exponent µ is interpreted

as determining the frequency of the softest modes (“active regions”) near the depinning

transition. The exponent δ describes the scaling of the density of these regions. These

exponents yield the dependence on frequency ω of the ac conductivity σ(ω) at threshold to

be σ(ω) ∼ ωδ/µ, consistent with numerical results for the incommensurate model [17].

For a continuous distribution of eigenvalues ρ(Λ, f), this scaling form can be rewritten

as a scaling form for the density of states ρ(Λ, f) = dm/dΛ by solving Eq. (4.16) for m and

differentiating. The result is

ρ(Λ, f) ∼ Λαρ̂(Λ |f |−µ), (4.17)

where α = (δ − µ)/µ and the scaling function ρ̂ approaches a constant as its argument

becomes large. The exponent α defines the distribution of the modes at threshold (f = 0)

for small eigenvalue Λ. The exponent µ characterizes the frequency scale at which the

distribution of modes for f < 0 differs significantly from the threshold distribution. This is

a plausible form for the form of the density of states, especially for the reversible path. If

the field is lowered from its threshold value by a small amount, the configuration will change

very little and the only modes which will have significantly different eigenvalues will be those

modes which are the softest at threshold. This scaling form is certainly consistent with our

results for the behavior of the individual eigenmodes as f → 0− for the reversible path in

two dimensions. For this reversible path, we thus expect ρ̂(u) = 0 for u less than a value uc,

indicating the absence of modes with frequencies less than uc |f |
µ. We now investigate the

consequences of assuming this scaling form for the density of states for both histories, albeit

with different scaling functions.

The scaling relation Eq. (4.17), taken together with Eq. (4.15), determine the form of

the linear polarizability for small f on the reversible path. From Eq. (4.17), the singular

part of the linear polarizability has the form

27



χsing
0 (f) ∼ fµα, (4.18)

implying the scaling relation

γℓ = −µα. (4.19)

In two dimensions, this scaling relation implies, given our computed values of µ and γℓ,

that α = 0.84 ± 0.12. Since α is defined by the distribution of states at threshold, which is

independent of history, the numerical agreement of the exponents γI
ℓ and γR

ℓ suggests that

the exponent µ is the same for the two histories; it is presumably exactly 1/2. Of course,

the scaling function ρ̂ is different for the two histories.

Fig. 13 schematically shows the density of states for the two paths that we have examined.

From the observation that Λm ∼ (f c
m − f)µ for small f on the reversible path, it can be seen

that there is a gap of size fµ in the density of states for configurations on the reversible

path. In Ref. [4], it is argued that, for configurations along the irreversible path, a density

of states that is linear at small Λ is stable to changes in the field. These considerations lead

us to speculate that the density of states for the irreversible and reversible approaches to

threshold are as shown in Fig. 13. We conclude that although the two histories have very

different densities of states at the same field, due to the difference in their scaling functions

ρ̂, there is a common underlying frequency scale defined by fµ, which, with the distribution

of eigenmodes at threshold, characterized by the exponent α, determines the singularity in

the linear response.

V. FINITE-SIZE EFFECTS AND AVALANCHES

In the study of conventional thermodynamic transitions, the concept of a dominant

diverging length scale, the correlation length, plays a crucial role in the understanding of

scaling relations and the physical description of the system. Likewise, correlation lengths

for some deterministic dynamical systems [30,31] have provided insight into the behavior of

those models. In order to better understand the nature of the CDW depinning transition,
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it is important to develop an understanding of the characteristic length(s). For CDW’s,

there have been some attempts to understand the correlation length in the sliding state

numerically [12,23,32] and there has been some success very recently in expanding about

mean-field theory in d = 4 − ǫ dimensions [15]. These results do not, however, address the

static behavior in the pinned phase.

In this section, we address the question of the definition and behavior of correlation

lengths in the static regime for the lattice CDW model with random pinning phases. We

define a finite-size-scaling length using the distribution of threshold fields and determine the

corresponding finite-size-scaling exponent νT, which we find to be very close to 2/d in both

one- and two- dimensional systems. We also give numerical results on finite-size scaling of

the polarization for the irreversible path; from these, we determine an exponent νn which

describes the finite-size crossover for the polarization which is, within numerical accuracy,

equal to the value for νT. The sizes of “avalanches”, which occur when a local mode becomes

unstable, are found to have a maximum typical size that diverges in a fashion consistent with

that given by νT and νn. By contrast, the finite-size crossover for the reversible polarizability

scales very differently in two dimensions, with an exponent νℓ = 0.44 ± 0.05. We discuss

these relationship of these results and their connection with the bound νf ≥ 2/d, for finite-

size-scaling exponents νf , proved by Chayes, et al [16].

A. Finite-size scaling

We first briefly review the theory of finite-size scaling, which has been very useful for

the numerical study of conventional critical points [33]. Suppose that in an infinite system,

some quantity Y scales as Y ∼ δ−y, where δ is the reduced control parameter, which goes

to zero at the critical point, and the exponent y describes the critical behavior for Y . In a

finite system of linear size L much larger than any microscopic length, the finite-size scaling

hypothesis states that

Y (δ, L) = |δ|−y Ψ(Lξ−1), (5.1)
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where ξ ∼ |δ|−ν is the correlation length and Ψ a universal scaling function which can,

however, depend on the type of boundary conditions. We consider only periodic boundary

conditions, which are the simplest. Given data on the behavior of Y (δ, L), the exponents

ν and y can be extracted by finding values of these exponents for which a scaling plot of

Y |δ|y vs. L |δ|ν yields (asymptotically) a single curve. In this section, we apply such a

finite-size-scaling analysis to the study of static properties of CDW’s as FT is approached

from below.

For disordered systems, a finite-size-scaling length can be defined in terms of the statis-

tical properties of a large number of finite-size samples [16]. Such a length can be defined by

the behavior of the probability of a finite-size-scaling event; the occurrence of such an event

in each sample depends on the realization of the disorder for that sample and the value of

the disorder parameter. For example, in a bond-percolation model a finite-size-scaling event

may be defined as the existence of a path of bonds that connects two sides of a finite-sized

system: in large samples the probability of such a path existing varies rapidly with the bond

probability p near the percolation threshold pc. The scaling of the probability distribution

for this event defines a finite-size length scale. In Ref. [16], it is proven that, when the

transition occurs at a non-trivial value of the disorder parameter, the exponent νf for the

divergence of such a finite size scaling length must satisfy the bound νf ≥ 2/d.

It is important to make a distinction between the statistical behavior of the model as a

function of the different realizations of the disorder and the behavior of a single sample. The

bound of Ref. [16] applies to the statistical behavior only and does not necessarily apply to

the finite-size effects in a single sample, which may be very different. For example, consider

the simple case of an Ising magnet at low temperatures in d ≥ 3 which, in an infinite-volume

sample, undergoes a first order transition as the magnetic field H passes through zero. At

this transition, the mean magnetization density m jumps between the values m0 and −m0.

We now introduce an independent random magnetic field hi, at each site. In a given finite

sample, an approximate transition field can be defined as the value, Hc({hi}), of the uniform
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field H for which the thermal expectation of the magnetization equals zero. For a collection

of finite-size samples, of size Ld, the width of the distribution over the random fields of the

approximate transition fields Hc({hi}) has width L−d/2; this can be seen by noting that the

sample-to-sample variations in the spatially averaged random field of the samples will have

variations of this magnitude. This implies a finite-size-scaling exponent νf = 2/d [34].

The width of the transition in a single sample, on the other hand, can be defined as

the range of applied magnetic fields over which the magnetization switches between some

ms and −ms, for a given ms, for example the range H(m = ms) − H(m = −ms)), with

ms = m0/2. The width of this transition in a single sample scales as L−d: for a range of

fields δH ≈ TL−d (T being temperature), the difference in free energy between the +m0

and −m0 configurations will be O(T ), so that the thermal average m will have a magnitude

considerably less than m0 for fields within this distance of the transition Hc({hi}) of the

single sample. In contrast with the finite-size effects for the statistical behavior, this suggests

a finite-size-scaling exponent ν = 1/d for individual samples.

B. Threshold field distribution

The threshold field is the first quantity that is calculated for each realization in our

numerical study of CDW’s, and it is a natural quantity to study for finite-size effects. We

examine the probability distribution of the threshold field for randomly chosen pinning

phases {βi}. For an infinite system, there should be a single value for the threshold field,

FT (∞), so that as L → ∞, the probability distribution of the threshold field should approach

δ(FT − FT (∞)). In finite size systems, however, due to the variations in the pinning from

sample to sample, the threshold field probability distribution will have a finite width.

The threshold field averaged over many realizations of the pinning for systems of linear

size L, FT (L), is plotted in Fig. 14. The average threshold field rapidly approaches a constant

as L → ∞. It is difficult to study finite size effects in the mean threshold field, as the

difference FT (L) − FT (∞) is smaller than the statistical error for the largest samples. Here
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we focus on the second moment of the distribution, noting the possibility that FT (L)−FT (∞)

might scale differently.

In Fig. 15, we plot a histogram distribution for the computed values of the threshold

field for 128 sample systems of size 322. From such a sample distribution, for systems of

various sizes L, we can determine an estimate for the widths of the distribution at various

scales. We characterize such a distribution by computing its r.m.s. width ∆FT (L).

This quantity, ∆FT (L), is directly related to a finite-size-scaling length, in the sense

of Ref. [16]. We choose the finite-size scaling event to be the sliding of the CDW. The

width of threshold fields ∆FT (L) then defines a field scale over which the probability of this

finite-size-scaling event changes significantly. The occurrence of this event depends on the

randomly chosen pinning phases and the value of the control parameter. The parameter

that controls the disorder is the pinning strength, h. If the infinite-system threshold field

has a dependence on h, FT (h), that is well behaved, with dFT /dh 6= 0, F can be taken as an

equivalent parameter. Since we expect that FT (h) is a smooth function, the finite-size-scaling

exponent that we derive from ∆FT (L) should satisfy the bound of Ref. [16].

In Fig. 16 we plot our results for the width of the threshold field distribution ∆FT (L) vs.

linear dimension L for one- and two- dimensional CDW’s. The lines show the least-square

fits to the form

∆FT (L) ∼ L−1/νT , (5.2)

where νT is a finite-size-scaling exponent for the transition between the static and sliding

states. To ensure that the length scale that we measure is much greater than any microscopic

length scale (ξo or the lattice spacing), we fit to systems of size L ≥ 16 (the fit would be

much worse if the L = 8 data were included). From these fits, we derive a value for νT of

2.01±0.02 in one dimension and 1.01±0.03 in two dimensions. Within our statistical error,

these results satisfy, and appear to saturate, the bound νf ≥ 2/d of Ref. [16]. In the infinite

range model, the width of the distribution of threshold fields as a function of number of

degrees of freedom obeys ∆FT (N) ∼ N−1/2 [3]. If one naively extends this result to short-
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range interactions, with N = Ld, one would obtain νT = 2/d. For the “random friction”

model [18], the threshold field can be calculated explicitly [19,35], and the exponent νT is

exactly 2/d, since the threshold field is just the average of the pinning strengths. It is not

at all clear how to show that a similar result should hold for the finite-dimensional CDW

model; indeed one might expect a non-trivial exponent, at least in low dimensions, and it is

quite possible that νT = 2/d only represents an approximate value.

Recent renormalization group calculations by Narayan and Fisher [15] have found that

the exponent for the distribution of threshold fields is equal to 2/d to lowest order in d = 4−ǫ,

and there is some indication that this may be true to all orders in ǫ, but perhaps with

non-perturbative corrections. An interesting open question is whether the distributions of

threshold fields for large systems is Gaussian; this is probably related to the question of

whether νT = 2/d.

C. Finite-size effects in polarization and polarizability

Examining finite-size effects of quantities other than the threshold field gives us a check

on the results for νT and allows us to investigate the possibility of the existence of more

than one important length scale.

One such quantity is the polarization, P , for the irreversible history (i.e., {ϕ↑
i (F )} near

F+
T ). As discussed earlier, the polarization in the stationary phase is bounded in a finite

system. The critical divergence in the polarization of the infinite system must therefore be

cutoff at some field scale, which depends on the size of the system. In Fig. 5 and Fig. 6

we plot the polarization for one- and two-dimensional systems of various sizes. Apparent in

these plots is a crossover from the divergent large-system critical behavior to a finite value

of P , which is plotted in Fig. 4.

We first examine the finite-size scaling in the case of two dimensions. We assume a

scaling form for the mean polarization:

P = f−γ+1P̂ (Lf νn), (5.3)
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with P̂ approaching a constant for large values of its argument and behaving as ∼ x(γ−1)/νn

for small arguments x, consistent with the observation of constant polarization at small |f |.

Fig. 17 shows a scaling plot of P |f |γ−1 vs. L |f |νn , for fitted exponents νn = 1.0 ± 0.1 and

γ = 1.8 ± 0.1 (where the errors are estimated by finding what values of the exponents give

an unacceptable deviation from a single curve). These values are in agreement with our

earlier estimate for γ, based on the nonlinear polarizability χ↑, and are also consistent with

the numerical equality of νT and νn. It follows directly from the assumed behavior for the

scaling form that

νn = (γ − 1)/ρ, (5.4)

where the polarization at threshold PT ∼ Lρ, as shown in Fig. 4. The scaling relation

Eq. (5.4) is found to be satisfied by our exponents for two-dimensional systems. Note

however that, for f < L1/νn , the sample to sample variations of the polarization are of the

same order of magnitude as the mean polarization.

It is not possible to find a good fit to a single scaling form for the polarization data in

one dimension. We instead estimate νn by a cruder procedure, using the observation that

the polarization approaches a constant at small |f |. We can define a crossover reduced field,

fX(L), by PT = P0(fX)−γ+1, with γ and P0 determined from the divergent behavior of χ↑ in

the largest systems. This is consistent with assuming the scaling form of Eq. (5.3). From the

data of Fig. 4, we thereby derive an exponent νn for the finite-size effects in the polarization,

using fX ∼ L−1/νn . Using this relation, we find that νn = 2.0 ± 0.5, in numerical agreement

for our value for νT in one dimension.

In Fig. 18 we plot the one-dimensional data on a scaling plot, using the above calculated

value for νn. This plot suggests a consistent explanation for the failure to find a single fit

for the data of various sizes: we are not close enough to threshold to see the asymptotic

scaling behavior. The larger systems appear to be approaching a single scaling form, for low

fields (|f | < 0.1), while the smaller systems seem to deviate strongly. Our large value for νn

implies that very large systems must be examined to see clearly the true scaling behavior.
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D. Relation of finite-size effects

Our results for the finite-size effects of the irreversible polarization and comparison with

the results for νT suggest a picture for a diverging correlation length near the depinning

transition characterized by an exponent ν = νT = νn. As the threshold field is approached

in an infinite system along the irreversible path, regions of size |f |−ν are subject to fields that

exceed the threshold field for these subsystems, if they were to be considered independently.

These regions slide forward some distance, but are prevented from sliding further by the

subsystems where the threshold field has not been exceeded; on scales large than |f |−νT,

the probability of the subsystem threshold being exceeded is small. There are, therefore, a

series of “avalanches” which occur on length scales up to ξ ∼ |f |−νT , as the threshold field

is approached. The jumps in the polarization thus grow as the size of the avalanches grow.

The polarizability and polarization on the irreversible path can thus diverge as threshold is

approached in an infinite system.

In a finite system, if an avalanche of size of order the system size occurs, the whole

system will start sliding. The average difference of the reduced fields at which thresholds of

subsystems of size L occur is of the order of L−1/νT . For reduced fields of order L−1/νT , there

will thus be a leveling off of the polarizability, as there will be no avalanches of linear size of

order L in this range, but subsystems smaller than the system size will continue to depin at

the same rate, as the width of the distribution of the threshold field on these length scales is

much larger than L−1/νT . This physical picture is supported by the data of Fig. 7, where the

polarizability appears to roughly level off at a value that increases with system size. With

the polarizability approaching a constant, the polarization saturates. This is consistent with

a crossover in the polarization curve at a reduced field scale given by the exponent for the

threshold field distribution, νT. We therefore conjecture that

νn = νT ≡ ν. (5.5)

We emphasize that the definition of the finite-size-scaling length for the polarization is not

based on the scaling of the probability distribution for some finite-size-scaling event, and it
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is therefore necessary to argue, as we have here, that the exponents νT and νn are directly

related, since we cannot prove νn ≥ 2/d directly.

E. Avalanches

The above argument relating avalanche size to the definition of νT can be compared

with the numerically calculated distribution of avalanche events. We have conducted such

a calculation for a system of size 2562. Starting from the negative threshold field F−
T , we

adiabatically increase the field F , thereby following the path {ϕ↑
i (F )} in configuration space.

At each local instability, we measure the moment ∆P , defined as the change in polarization

P from just below to just above the instability. The no-passing rule can be used to show that,

for an infinitesimal change in the field, no phase may advance more than 2π. The change

in phase ∆ϕi at each site during an avalanche is therefore bounded by 2π, and the quantity

∆P/2π provides a good estimate of the avalanche size, as the width of the “boundary” of

the avalanche is of the order of the Lee-Rice length (qualitatively, the avalanches appear to

be compact and not fractal in our simulations).

The results of this calculation are plotted in Fig. 19. Each point represents a single

avalanche (event) due to a local instability (corresponding to the peaks in χ0 and disconti-

nuities in P shown in Fig. 9), plotted in the ∆P -F plane. According to the arguments in

the previous section, there should be a scale ξ which determines avalanche sizes and diverges

as ξ ∼ (F − FT )−ν . The solid line in Fig. 19 shows the expected dependence of avalanche

size on field, ∆P ∼ (F − FT )−dν , under the assumption that ν = νT (we have added an

arbitrary vertical shift in the curve). The dependence of the apparent cutoff in the measured

avalanche sizes on the field is consistent with this dependence. A more detailed analysis of

the cutoff length would require a greater number of events than can be feasibly obtained at

this time.

To investigate the limit F ր F+
T , we find the cumulative distribution of the events con-

tained in the region outlined by the dashed lines shown in Fig. 19. For this set of avalanches,
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the cutoff length is greater than the linear size of the avalanches, and therefore these data

should reflect the distribution of avalanche sizes just below the threshold field in an infinite

system (we have tried several different reasonable criteria for choosing sets of avalanches

near threshold, and find results independent of the exact choice). A logarithmically binned

distribution of these events is shown in Fig. 20, where N(∆P ) is the number of events in

the range [2−1/2∆P, 21/2∆P ]. To within the statistical errors, this distribution is fit by the

power law form

N(∆P ) ∼ ∆P−κ/d (5.6)

with κ = 0.34± 0.10. The value of this exponent is in numerical agreement with that of the

corresponding distribution seen in models of self-organized criticality [7,36]. This strongly

suggests that the state on approach to threshold in CDW’s is closely related to the self-

organized critical state seen in “sandpile” models. This is consistent with a distribution

of avalanches cutoff only by the system size in the range of reduced fields L−1/νT < f <

0 in the CDW models and a distribution of responses to perturbations similar to that

seen in the sandpile models. These results suggest a possible universal behavior for the

nonlinear response in systems in such critical states, whether obtained by adjusting a control

parameter near threshold or by a mechanism of “self-organization”. Note that the typical

avalanche has a non-divergent size as F ր FT , since κ > 0 — the diverging correlation length

becomes evident only in the tail of the avalanche size distribution. The average avalanche

size does diverge as threshold is approached, accounting for the diverging polarizability on

the irreversible path (see Sec. VI below).

F. Effects of finite-size for the reversible path for d = 2

We can also define a finite-size-scaling exponent, νℓ, for the crossover in the linear po-

larizability, for the reversible history. Since our value for χT in the limit of an infinite-size

system is an extrapolation which can only introduce error into the study of finite size effects,
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we examine, as above, the derivative of the linear polarizability, dχ0/df , for finite-size effects.

In Fig. 10, we have plotted dχ0/dF for several system sizes in two dimensions, averaged over

several realizations for each size. In Fig. 21, we show scaled data (dχ0/dF ) |f |γ
R
ℓ

+1 as a

function of |f |L1/νℓ , to test the scaling form

dχ0

dF
= |f |−γR

ℓ
−1 X(L |f |νℓ), (5.7)

with X(z) → ∞ as z → ∞, and γR
ℓ as determined earlier. The value of νℓ which gives the

curves shown in Fig. 21 is νℓ = 0.44 ± 0.08.

Our numerical result for the value of νℓ, which is less than 2/d, implies that the natural

definition for the finite-size length scale on the reversible path, does not satisfy the definition

of a finite-size length scale in the sense of Ref. [16]. The distinction between the finite-size-

length scale for the linear polarizability and the behavior of sample-to-sample fluctuations

can be understood by examining the effects of finite-size on the linear polarizability for the

reversible path.

On the reversible path, there are no hops, and no triggerings of any “avalanches”. The

configuration at reduced field |f | ≪ 1 is connected to the threshold configuration by a

continuous path. The scaling of the threshold avalanche distribution thus does not enter.

The polarizability of configurations on this path in the finite-size case can be treated as in

Sect. (3.3.3), with an integral over a spectrum replaced by a sum over discrete values. It is

easily seen that the polarizability of the softest mode dominates the finite-size effects. The

contribution of the softest mode to the bulk polarizability χ0 is

∆χ0 ∼ L−d |f |−µ , (5.8)

since the softest mode goes unstable at |f | = 0. When ∆χ0 becomes of the same order as

the singular part of χ0, there will be a crossover from the bulk critical behavior to the single

particle behavior. This crossover will occur at reduced field

|f | ∼ Ld/(γℓ−µ). (5.9)
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This implies that the finite-size-scaling exponent for the linear polarizability on the reversible

path satisfies the scaling relationship

νℓ =
1

d
(µ − γℓ). (5.10)

The relationship Eq. (5.10) is consistent with our numerical values for these exponents in

two dimensions. The finite-size effects on the reversible path are due to the behavior of

the softest mode in each sample near to its threshold and not the probability for some

finite-size-scaling event to occur, which would depend more strongly on the realization of

the disorder.

VI. DISCUSSION

In this final section, we compare our results with those on related models and, quali-

tatively, with experiments on CDW’s below threshold, as well as raising general questions

about universality and scaling. We first recapitulate our main results.

On the irreversible approach to threshold (starting from the negative threshold), the mo-

tion of the CDW consists of smooth motion superimposed on a series of jumps or avalanches

that result from the local minimum of the energy in which the system lies becoming un-

stable. On increasing F , the polarizability χ↑ diverges with an exponent γ dominated by

the jumps. The avalanches are initiated by local instabilities via simple saddle-node bifur-

cations (i.e., the vanishing of the eigenvalue for a localized mode), though the avalanches

can be quite large, with an apparently power law distribution of their sizes extending out to

the correlation length. The low frequency linear response in contrast is dominated by the

local modes which are nearly unstable. The divergences of χ0 at each of the local instabil-

ities typically contributes a negligible amount in the large system limit, so that χ0(F ) is a

well-defined smooth function in this limit. In an infinite system, the zero-frequency linear

response χ0 approaches a finite value χT at threshold with an upwards cusp characterized

by an exponent −γℓ > 0; this is in contrast to the divergence of χ0 in a finite system at

threshold.
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Associated with the non-linear behavior of the avalanches, we have found evidence for a

characteristic length, ξ ∼ (FT − F )−ν with ν ≈ 2/d, appearing in the width of the distribu-

tion of threshold fields in finite-size systems or the finite-size rounding of the polarization

divergence. In two dimensions, this exponent is also consistent with rough estimates of

the divergence of the maximum likely avalanche size as threshold is approached on the ir-

reversible extremal path. We believe therefore that this length is the correlation length

associated with the dominant physics. The exponent ν should satisfy the bound ν ≥ 2/d

and appears to be close to saturating this bound in the dimensions (d = 1, 2) that we have

studied.

We believe that the irreversible approach to threshold described above is generic in

the sense that the same behavior will be found on approaching threshold from all except

specially prepared initial conditions, although the amplitudes of the divergences in χ↑ and ξ

may differ. Experimentally, the polarization on the generic approach to threshold does not

exceed that given by an average CDW displacement of more than several CDW wavelengths

[26,37] (a polarization by one CDW wavelength is P = 2π in the dimensionless units here).

This is consistent with our results for three-dimensional CDW’s, shown in Fig. 8.

The behavior of specially prepared initial conditions can be strikingly different from the

generic behavior. When the field is reduced from threshold, there appears to be a region

of finite width in F over which there are no jumps and the polarization is fully reversible,

so that χ↑ = χ↓ = χ0. It appears quite likely that this will persist even in infinite systems,

especially if the distribution of pinning strengths is bounded away from zero. As noted

earlier, the qualitative features of the reversibility found in our numerical simulations is

consistent with experiment [25]. Although we have not been able to find a type of rare

region which would invalidate this conclusion, and our numerical evidence does not appear

to indicate even logarithmic dependence on size of the lower limit of reversibility F+
R , this

conclusion should nevertheless be regarded with some caution.

In any case, the behavior of the polarizability in the reversible approach back to threshold

(after F is lowered to a field above F+
R ), is characterized by only an upwards cusp in χ0 to
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a constant, χT , at threshold. To numerical accuracy, both the value, χT , at threshold in

an infinite system, and the exponent −γℓ characterizing the cusp, are the same as found for

the linear polarizability χ0 in the irreversible approach although the amplitudes of the cusps

differ. Thus there is evidence for some degree of universality in the linear response in spite

of the radical difference of the non-linear behavior in the two approaches to threshold.

This can be interpreted in terms of scaling functions for the distribution of relaxational

frequencies of the linear modes which are characterized by history independent exponents (α

and an apparently trivial exponent µ ≈ 1/2) but history dependence of the actual scaling

functions. The reason for this behavior is somewhat of a mystery, however, because of the

rather large rearrangement of the distribution of modes following avalanches as is discussed

below. The finite size corrections to the linear polarizability in the reversible regime of each

particular sample are characterized by a length which diverges more slowly than ξ with an

exponent νℓ < 2/d. It appears that this is not a true correlation length because it essentially

is determined by the crossover from behavior of the large system to that of a single localized

mode, rather than to a collective property of the whole system; it is a length related to a

power of the density (ρ−1/d) of soft modes, rather than a length related to a response on large

scales. Because of the existence of a sharp threshold in finite systems and the absence of a

smooth connection between the pinned and moving phases, many quantities which naively

appear to be characteristic lengths can occur. Similar behavior is found in other types of

collective non-linear transport with a sharp threshold [38].

Before further analysis of the implications of our results, which are summarized in the

Table, we first briefly compare them with those on related models.

A. Comparison with related models

In mean field theory — valid for infinite range stiffness of the CDW — the critical be-

havior of the polarization depends, as in short-range systems, on the approach to threshold,

but, in addition, it depends on the distribution of the pinning strengths [4]. Consider the
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generic case of a distribution of pinning strengths, {hi}, which is bounded below by a value

h0. If h0 is not too small, then the following behavior is found: on the first approach to

threshold, the polarizability χ↑ diverges with an exponent γ > 0 which depend on the form

of the distribution of the {hi}. As the field is decreased from threshold, there is a regime

of reversible behavior [39] characterized by a polarizability χ0 which goes to a constant at

threshold with an upwards cusp with a non-universal exponent γℓ < 0. If the field is de-

creased to −FT and then increased again, the polarizability will again diverge. Thus the

behavior we have found in this paper is quite similar qualitatively to that of mean field

theory, although we expect the latter to be less universal (see below).

The one-dimensional incommensurate CDW model has also been studied quite exten-

sively [17]. Although there are again many possible approaches to threshold, the only one

which has been studied is the approach from the F = 0 ground state, which is reversible

all the way from −FT to FT , a consequence of the identical pinning strengths and special

symmetry. As the threshold is approached, the polarizability diverges with γℓ ≈ 0.34. This

is associated with a distribution of local relaxational frequencies the lowest of which van-

ishes at thresholds with an exponent µ = 0.50 ± 0.005, consistent, as are our data, with

µ = 1/2. Near threshold, the distribution of these frequencies has the form Eq. (4.17) with

α ≈ −0.68. A characteristic length diverging with exponent νℓ = µ − γℓ is also found.

The primary difference between this behavior and the behavior of the random 2-d system

studied here on its reversible approach, is associated with the sign of γℓ. In both cases, dνℓ

should be interpreted as the density of spatial modes with frequencies of order |f |µ. [For

the 1-d incommensurate model, there is of course no distribution of threshold fields, but the

size dependence of the threshold field itself converges very rapidly, apparently faster than a

power law; the interpretation of this behavior is unclear, but probably due to the nature of

the best rational approximants to the incommensurate system used in the study.]

Finally we compare our present results with those of the random friction (or “ratchet”)

model [18,19], which contains randomness and short range interactions, but no jumps.

Although this model can be solved exactly only above threshold, much of the behavior
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below threshold can be guessed. A static configuration of the system consists of pinned

phases which sit exactly at the ratchet positions, on which the net force (excluding the

ratchet constraint) is negative, and unpinned regions with zero net force.

The distribution of threshold fields is trivially characterized by an exponent νT = 2/d

since FT ({hi}) = 〈hi〉i (where 〈〉i denotes spatial averaging in a given configuration). Note,

however, that the mean FT (L) is size independent. Right at threshold, the phases are just

given in terms of the Fourier transform h(q) by

φ(x) =
∑

q

−h(q) + 〈h〉

q2
(6.1)

so that the rms spread of phases ∼ L(4−d)/2. Ignoring the effects of the tail of the distribution

(which probably gives rise to only ln(L) corrections) this suggests that (for d < 4) PT (L) ∼

L(4−d)/2, so

γ − 1

ν
=

4 − d

2
. (6.2)

The distribution of linear sizes of unpinned regions will be cutoff above a correlation length

ξ which is the size of the largest regions which have exceeded their local threshold. Thus we

have

ν = νT = 2/d. (6.3)

From Eq. (6.2) one obtains γ = 4/d [19], for a generic approach to threshold. When the field

is decreased from threshold, the ratchet constraints will immediately repin some regions.

The resulting singularities in χ↓ will definitely be weaker than χ↑ on a typical approach;

concomitantly there will be characteristic length νℓ < ν. Further study of this non-trivial

length may be useful even though the ratchet model, because of the absence of jumps, is

very different on first approach to threshold from the more realistic CDW model studied

here.

The values of γ we have found in one and two dimensions appear to be somewhat lower

than the ratchet model result 4/d. Nevertheless our errors are large enough not to exclude
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these values. Well above threshold, the ratchet model has larger deformations than the

CDW model (although they scale with the same exponent [15]). This may well also be the

case at and below thresholds, perhaps leading to γ < 4/d.

Renormalization group calculations in d = 4 − ǫ yield PT ∼ Lρ with ρ = ǫ/2 to leading

order in ǫ; this result might hold to all orders in ǫ [15].

B. Universality and scaling

A way to generalize the ratchet model to include jumps and make it more realistic is

to replace the cosine potential in the CDW model with a sawtooth with finite slope, rather

than the infinite downward slope of the random friction model. A limit of this model, called

the “ratcheted-kick” model, has been studied by us above threshold, and it appears to be in

the same universality class (at least as far as the dominant scaling behavior) as the cosine

CDW model in two dimensions and probably also for d = 1 and 3. This is a priori somewhat

surprising since the models yield different dynamic exponents both in mean field theory and

in zero dimensions (i.e., finite systems)!

The following conjecture is naturally suggested: for all properties which involve the

jumps, the cosine and sawtooth models are in the same universality class in low dimensions.

Thus, for example, on a generic irreversible approach to threshold, γ and the distribution of

avalanche sizes will be the same [40].

Quantities which involve smooth evolution rather than jumps must, however, be different.

Thus γℓ will be different (or nonexistent) in the sawtooth model, and there are no obvious

analogs of µ and α in the sawtooth model (at least providing the modes which go unstable

and trigger avalanches are localized, which, in contrast to the ratchet model, we expect them

to be). Nevertheless, the density of potentially unstable regions which are destabilized by a

small increase in δf might well be the same in both systems. In the cosine pinning model,

the density of these regions diverges as |f |dνℓ−1 ∼ |f |(α−1)/2 (using µ = 1/2) so that the

density of modes which would be destabilized by decreasing |f | to |f/2| is |f |dνℓ = |f |(α+1)/2
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(for the cosine model, this is the number of modes with frequency of order |f |µ as noted

earlier).

We thus conjecture that an exponent equivalent to dνℓ or (α+1)/2 can be defined for the

sawtooth model and that this will be the same as for the cosine model in low dimensions.

This certainly merits direct testing in the sawtooth model. Although the reversible regime

for F decreasing from FT should also exist for the sawtooth model, it is not clear whether

νℓ can be found from finite size corrections to the polarizability, since there are no obvious

precursors of the local instabilities in this model.

We now discuss the conjectured universality in the context of the distribution of avalanche

sizes seen in the cosine model and the rate at which avalanches are triggered. An important

observation is that the distance between local regions which would be destabilized by an

increase in the local driving force by of order the distance to the bulk threshold appears

to be much less than the correlation length ξ (since ξ ∼ |f |−ν and the distance between

destabilized regions behaves as ∼ |f |−νℓ ≪ ξ). This is even more striking if one notes

that one should perhaps consider the effective increase in the force on each region as F is

increased to threshold as being enhanced by the divergent polarization so that one might

consider the number of regions which would go unstable if the local force were increased by

|f/2|1−γ rather than just by |f/2|. This would, however, overestimate the effects since we

know (from the no-passing rule) that at least some region does not move by as much as 2π

even when F is increased all the way from F−
T to F+

T .

These considerations lead naturally to the consideration of the distribution of avalanche

sizes near threshold. If the scaling form Eq. (4.17) for the distribution of almost unstable

modes is correct in the irreversible approach to threshold, then the density of avalanches nav

which is triggered by a small increase δf is

navδf ∼ |f |(α−1)/2 δf. (6.4)

Our avalanche data for the 2562 system of Fig. 19 are consistent with a number of events per

unit field diverging roughly as |f |−0.10±0.05, consistent with Eq. (6.4). If a finite fraction of the
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avalanches were of size ∼ ξd (κ < 0), then this would result in γ = (1−α)/2+dν = 2.10±0.09,

which is probably an overestimate. Indeed, from the discussion in connection with the

ratchet model above, we expect that in d = 2, γ ≤ 2 ≤ dν (note that for d = 1, α may

well be negative, as it is for the incommensurate model). This suggests that the typical

avalanche is not of the size of the correlation length.

Given a probability distribution of avalanche sizes pav(l, f)dl/l, for avalanches of linear

size l ∼ (∆P )1/d at reduced field f , and the normalization
∫ ∞
0 pav dl/l = nav, we have

|f |(α−1)/2
∫ ∞

0
pav(l, f)ld

dl

l
∼ |f |−γ . (6.5)

This assumes that the typical avalanches are non-fractal, qualitatively consistent with our

numerical results. A natural scaling form for pav, consistent with our data, is

pav(l, f) ∼ l−κΦ(l/ξ), (6.6)

with Φ(u) → const. for u ≪ 1 and decaying rapidly for u ≫ 1. In this case, we have

(d − κ)ν = γ −
1 − α

2
, (6.7)

suggesting for d = 2,

κ = 0.3 ± 0.2, (6.8)

consistent with our numerical result of Sec. VE. A power law decay of pav(l, f) for l ≪ ξ

has the natural interpretation that the probability of an avalanche reaching size > 2l given

that it is larger than l is scale invariant. If it is assumed that the exponent κ for the power

law distribution of avalanche sizes at threshold is independent of the model, as suggested

by our agreement with the distribution in models of self-organized criticality, and that γ is

independent of the details of the model, we again reach the remarkable conclusion suggested

above: that α, which gives the divergence of the avalanche triggering rate as threshold is

approached, is also a universal feature of CDW models.

46



C. Relation to dynamics above threshold

In another paper, we will present detailed results on the dynamics of the cosine and

sawtooth models above threshold. There, the steady state is a unique periodic function of

time with period 2π/v [3] and

v ∼ f ζ (6.9)

with ζ = 0.63±0.06 for both models in d = 2 [3]. Again, for the cosine model a double finite

size crossover is seen, analogous to that found below threshold in the linear polarizability.

We note that a corollary of the relations proposed by Coppersmith and Fisher [17] in the

1-d incommensurate case is that ζ + νℓ = 2µ. This relationship clearly does not hold in

the d = 2 random models. The jumps in the incommensurate model are correlated over the

full system and a picture of locally propagating avalanches is not applicable, so that the

dynamics must be described by a different picture.

For conventional phase transitions, an understanding of the scaling behavior is greatly

enhanced by the addition of an ordering field which can take the system smoothly from one

phase to the other. Indeed, in cases where such an ordering field per se does not exist —

e.g., spin glasses — the understanding of the transition is far less complete.

In the case of interest here — charge density waves and related problems — it is not at

all clear that a smooth connection between the two “phases” should exist, since they are

so radically different, one involving no motion at all in equilibrium, but with a high degree

of metastability, and the other dynamic, but unique. One possible way to connect the two

phases is by adding thermal noise which will round out the threshold and yield a finite

velocity for any non-zero force, F . Noise can be added in two rather different ways. The

first is to add a Langevin white noise η(i, t) to the equation of motion, with the variance

of η proportional to the temperature T . This will, in the stationary phase, primarily affect

the modes which are near to an instability. Such an approach has been used before in mean

field theory and the velocity as a function of T and f has been found to exhibit a scaling
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form [4]. Numerical results and arguments based on the distribution of barrier heights in

finite dimensional systems are consistent with this scaling form [6]. The exponents, however,

are dependent on the form of the pinning potential, as the dependence of barrier heights on

reduced field differs between smooth potentials and those with cusps. The effects of thermal

noise are therefore nonuniversal.

From the above discussion of the dominance of jumps over the smooth motion, it is

probably better, for examining universal properties, to add a noise which will trigger jumps

in a way which depends much less on the details of the potential. The hope is that the

sawtooth and cosine models will then behave similarly. We thus consider giving random

“kicks” to individual phases with fixed impulse magnitude (of order π) at a slow rate Θ. For

any finite Θ, the mean velocity will be non-zero. Below threshold in the limit of infinitesimal

Θ, the mean velocity 〈v〉 should be proportional to Θ (provided the kicks are large enough)

so that we may define a linear response

Ξ ≡
d 〈v〉

dΘ

∣

∣

∣

∣

∣

Θ↓0

. (6.10)

Near to threshold, Ξ will presumably diverge, and above threshold, 〈v〉 will be non-zero

even at Θ = 0, but we would again expect Ξ to be finite. Thus Ξ is somewhat like an order

parameter susceptibility near a conventional thermal transition. Although we must leave

investigation of this kind of noise response for future investigation, a few remarks relevant

to the present paper are in order.

The main effects which cause subtleties below threshold are transients and the non-

uniqueness in the absence of noise. A natural way to define, at least statistically, another

type of preferred configuration at a given F < FT is to turn on a very small noise, let

the system equilibrate (if the kicks are large enough, the steady state distribution will

presumably be unique, although this needs establishing), turn off the noise, let the system

relax, and then study the statistical behavior of the resulting static configurations (e.g.,

polarizability, distribution of modes, or closeness to local instabilities, etc.). It is by no

means clear, a priori, that such a procedure — which should be qualitatively similar to that
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in real experiments — will produce configurations which are similar to either of the histories

we have studied in this paper. If not, then it is perhaps only transients in the behavior

above threshold and not the steady state itself which could have critical behavior related to

that of, say, the irreversible approach to threshold. If, on the other hand, the configurations

are statistically similar to those produced on generic noiseless approaches to threshold, then

there will presumably be dynamic responses in the moving phase — such as Ξ — which can

be related to exponents below threshold.

We leave these and related intriguing questions for future study.

The recent renormalization calculations of the dynamics above threshold suggest that

the role of the various correlation lengths is rather different: above threshold the dominant

correlation length exponent for dynamic quantities in the steady state is ν+ = 1/2 exactly. A

larger exponent νT = 2/d+O(ǫ2) (and perhaps with no perturbative corrections) appears and

controls the distribution of threshold fields. Thus the dominant length below threshold, for

irreversible approaches, diverges with an exponent ν− = νT, while above threshold dynamics

is controlled by ν+ < νT. Whether this difference is primarily due to the increased level

of cooperativity in steady state above threshold, or to some other reason, is unclear. In

addition, whether or not an exponent equal to νT might control the dynamics far from

steady state above threshold is also interesting.

Another set of questions concerns relationships to other so-called “self-organized critical”

transport [7], which we have discussed above only as far as it relates to the behavior at

threshold and as threshold is approached. It is plausible that such relations can also be

developed in the sliding state. If CDW’s are driven at constant, very slow, current (i.e.,

fixed mean velocity) by an external field — somewhat analogous to the quasistatic limit of

“sandpile” dynamics that has been extensively studied recently — then the system is near

criticality and will exhibit power law correlations, etc. How the other problems studied are

related to CDW’s (except in spirit and the quantitative similarities in the distribution of

avalanches) is an open question: “sandpile” models typically have thermal noise (analogous

to small Θ above) but no quenched randomness. Models of earthquakes [8] with inertia but
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no quenched randomness have been studied, and so have models with intrinsic randomness,

but no inertia. Which are more realistic is controversial.

At this point, perhaps all that can safely be said is that the relationships between different

non-linear collective transport phenomena and the possible existence of some degree of

universality are likely to remain challenging problems for some time.
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TABLES

TABLE I. Numerical results for critical exponents of the charge-density wave model defined by

Eq. (1.2).

Exponent Definition d = 1 d = 2

γ Divergence of total polarizability (irreversible path), Eq. (1.7) 3.0 ± 0.5 1.8 ± 0.15

ρ Size dependence of configuration width at threshold, Eq. (4.2) 1.3 ± 0.3 0.8 ± 0.2

νT Size dependence of threshold field distribution, Eq. (5.2) 2.01 ± 0.02 1.01 ± 0.03

νn Finite-size crossover field of polarization, Eq. (5.3) 2.0 ± 0.5 1.0 ± 0.1

κ Avalanche size distribution near threshold, Eq. (5.6) — 0.34 ± 0.10

γR
ℓ

Cusp in linear polarizability (reversible path), Eq. (1.9) — -0.42 ± 0.05

γI
ℓ

Cusp in linear polarizability (irreversible path), Eq. (1.8) — -0.40 ± 0.12

α Distribution of linear eigenvalues at threshold, Eq. (4.17) — 0.84 ± 0.12a

νℓ Finite size crossover of linear polarizability (reversible path), Eq. (1.12) — 0.44 ± 0.08

a Calculated using Eq. (4.19)
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FIGURES

FIG. 1. A schematic illustration in one dimension of the “no-passing” rule for CDW configu-

rations. The lines show the phases, ϕi, as a function of position, i, for two configurations, one of

which (open circles) initially trails (is less than) the other (solid circles) at time t = 0. Both config-

urations are driven by the same external field F (t). As the configurations evolve from their initial

positions, according to the equations of motion Eq. (1.2), they may come close to intersecting, as

shown in the figure for t > 0. They never cross, though: as the two configurations approach each

other at some site, the drive and pinning forces on the phase at that site tend to cancel, but the

elastic forces, which tend to flatten out the configuration, do not allow the configurations to pass

through each other. The arrows indicate the relative elastic forces for t > 0.

FIG. 2. An illustration of the partial ordering of the configurations in the static state. The

lines show the phases ϕi as a function of position in the lattice, i, for static solutions to the equations

of motion for the CDW. The lowest line shows the initial configuration {ϕi(0)} static at field F (0),

while the other lines show configurations {ϕ∗
i } ∈ A∗(ϕi(0)) which is the set of configurations with

ϕ∗
i ≥ ϕi(0), for all i, that are static at the field F ∗, where F ≤ F ∗ ≤ F+

T . Given the initial

configuration {ϕi(0)}, if the field is raised to F ∗, the configuration must converge to the unique

configuration, {ϕ∞
i }, shown as the heavy line, which is the lowest stationary configuration that

is above the initial configuration. The configurations that are static at F ∗ and exceed the initial

configuration may cross each other as shown, but no configuration in A∗ may cross the configuration

{ϕ∞
i }.

FIG. 3. Plot of the polarization, P , vs. applied field, F , for a two-dimensional system of size

642. The initial configuration is the configuration static at the negative threshold field, F−
T . The

applied field is increased to the upper threshold value, F+
T , and then lowered again. This particular

history of applied field, for an adiabatic variation of the field, defines two approaches to threshold:

the initial path in configuration space from F−
T to F+

T is the “irreversible” path and the path for

decreasing field, near F+
T , defines the “reversible” path.
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FIG. 4. The polarization at threshold, PT = P (F+
T )−P (F−

T ), plotted as a function of the size

of the system L for one and two dimensions. Straight lines showing power law behavior PT ∼ Lρ

with ρ = 1.3 ± 0.3 and 0.8 ± 0.2 are shown, corresponding to the estimated exponents for one and

two dimensions, respectively.

FIG. 5. Polarization P vs. reduced field f for one-dimensional lattice CDW systems, for the

irreversible approach to threshold. The sample sizes (and number of realizations averaged over)

are indicated. The dashed line shows power law behavior P ∼ |f |−γ+1 with γ = 3.0 ± 0.5.

FIG. 6. Polarization P vs. reduced field f for the irreversible approach to threshold in two

dimensions. The system sizes (number of realizations) are indicated. The straight line shows power

law behavior, P ∼ |f |−γ+1, with γ = 1.8 ± 0.15 determined by the fits to the polarizability shown

in Fig. 7.

FIG. 7. Polarizability χ↑(f) for the irreversible path in two dimensions, which is found by

calculating the numerical derivative of the data of Fig. 6, i.e., the difference of the polarization

between two consecutive data points. The straight line shows a fit to the form χ↑ ∼ |f |−γ , with

γ = 1.8 ± 0.15.

FIG. 8. The polarization P as a function of the magnitude of the reduced field |f | on a

irreversible approach to threshold (see text), for single samples in d = 3 of size 643 and 1283. The

critical behavior is difficult to determine with confidence, but note that the polarization exceeds 2π

only for fields within 0.1% of threshold. The dotted line shows an exponent γ = 0.33 for comparison

only.
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FIG. 9. A fine scale plot of the polarization P (upper curve, right scale) and linear polariz-

ability χ0 (lower curve, left scale) for the irreversible path (increasing F ) for a single system of

size 1282. The discontinuities in the polarization are due to the jumps that occur when a local

minimum of the potential vanishes. The corresponding spikes in χ0 are due to the diverging linear

response as these jumps are approached (the divergence has been cut off at an arbitrary value for

the plot). From the size of the jumps in the polarization, it can be seen that, for reduced fields of

this order, the jumps involve only a few of the degrees of freedom. In an infinite system, the jumps

occur at a dense set of fields, but the fraction of the field range in which the linear polarizability

is affected by the divergences goes to zero as the system size approaches infinity. The dotted line

indicates an envelope function, which, in the infinite volume limit, gives χ0(F ) with probability

one.

FIG. 10. Plot of the derivative of the linear polarizability, dχ0(f)/dF , vs. reduced field f for

two-dimensional systems of various sizes, for the reversible approach to threshold. The fit indicated

by the slope of the dashed line gives dχ0(f)/dF ∼ f−γR
ℓ
−1 with γR

ℓ = −0.42 ± 0.05.

FIG. 11. Plot of χT − χ0(f) for reversible (open symbols) and irreversible (closed symbols)

approaches to threshold in two dimensions. The threshold polarizability χT is calculated from

the data for dχ0/dF along the reversible path. Straight lines show fits to cusp-like behavior

χ0(f) ≃ χT − A(R,I)f−γ
(R,I)
ℓ , where the reversible path exponent, γR

ℓ , is found to be −0.42 ± 0.05

and the irreversible path exponent γI
ℓ = −0.40 ± 0.12. Error bars indicate statistical uncertainties

for the reversible path and the uncertainty in χT for data on the irreversible path; statistical errors

for the irreversible path are of the order of the fluctuations about the fit.

FIG. 12. Plot of the square of the linear eigenvalues, Λ2
m, vs. reduced field f for the lowest

eigenmodes m = 0, 1, 2, in d = 2 on the reversible approach to threshold. The straight lines show

fits Λ2
m ∼ (f c

m − f). The extrapolations shown for f > 0, which determine f c
m, are not physical, as

once the lowest mode becomes unstable (Λ0 = 0), the CDW is in the sliding state.
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FIG. 13. Scaling picture of the density of states ρ(Λ). The dashed line shows the density

of states for the threshold configuration, which behaves as a power law ρ ∼ |Λ|α for small Λ.

The upper curve, diverging at finite Λ and vanishing for smaller Λ, gives the density of states

for the reversible path, while the lower curve, linear at the origin, shows the density of states for

the irreversible path. Though the distributions for the two histories differ in shape, they share

a common scaling form, ρ(Λ) ∼ Λαρ̂(Λ/fµ), with the characteristic scale fµ (indicated by the

vertical dotted line) the same for both histories.

FIG. 14. Average threshold field, FT , as a function of linear size, L, in one and two dimensions.

The error bars show the statistical error in the average of the threshold field; the width of the

distribution of threshold fields at each size is larger (see Fig. 16.)

FIG. 15. Distribution of threshold fields calculated for 128 samples of linear size L = 32 in

two dimensions (solid line). For comparison, a Gaussian fit is shown (dotted line).

FIG. 16. A plot of the width of the threshold-field distribution, ∆FT (L), vs. linear size, L, in

one and two dimensions. Lines show least square fits to the data for L ≥ 16. From the slopes of

these lines, we find values for the finite-size-scaling exponent νT of 2.01 ± 0.02 and 1.01 ± 0.03 in

one and two dimensions, respectively.

FIG. 17. Scaling plot of P |f |γ−1vs. L |f |νn for the polarization of two-dimensional systems,

for best fit values of νn = 1.0 ± 0.1 and γ = 1.8 ± 0.1. The deviations apparent at large L |f |νn

occur for large reduced fields 1.0 > |f | > 0.2, where corrections to scaling are pronounced.

FIG. 18. Plot of P |f |γ vs. L |f |νn for the one-dimensional lattice CDW model, with exponents

νn = 2.0 and γ = 3.5. No choice for these exponents gives a single curve which fits all of the data.
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FIG. 19. Individual avalanche events, indicated by avalanche size ∆P on a logarithmic scale

and the field F at which the avalanche occurs, for a system of size 2562 on the path {ϕ↑
i F}; each

point corresponds to a single event. The solid line indicates a size dependence ∼ (F+
T − F )−dν ,

with ν = 1.0. The region outlined by the dashed line indicates the events used to determine the

near-critical avalanche size distribution in Fig. 20.

FIG. 20. Logarithmically binned distribution N(∆P ) of avalanche sizes ∆P for the events

in the near-critical region indicated by the dashed line in Fig. 19. The solid line shows the fit

N(∆P ) ∼ ∆P−κ/d, for κ = 0.34 ± 0.10.

FIG. 21. Scaled plot of dχ0(f)/dF for the reversible path in two-dimensional systems, using

the best-fit finite-size scaling exponent νℓ = 0.44. Representative error bars show the statistical

uncertainty in the scaled dχ0(f)/dF ; for |f |L1/νℓ > 100, the error bars are smaller than the symbol

size.
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