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CRITICAL BLOW-UP AND EXTINCTION EXPONENTS
FOR NON-NEWTON POLYTROPIC FILTRATION EQUATION

WITH SOURCE

Jun Zhou and Chunlai Mu

Abstract. This paper deals with the critical blow-up and extinction ex-
ponents for the non-Newton polytropic filtration equation. We reveals a
fact that the equation admits two critical exponents q1, q2 ∈ (0, +∞)
with q1 < q2. In other words, when q belongs to different intervals
(0, q1), (q1, q2), (q2, +∞), the solution possesses complete different prop-
erties. More precisely speaking, as far as the blow-up exponent is con-
cerned, the global existence case consists of the interval (0, q2]. However,
when q ∈ (q2, +∞), there exist both global solutions and blow-up so-
lutions. As for the extinction exponent, the extinction case happens to
the interval (q1, +∞), while for q ∈ (0, q1), there exists a non-extinction
bounded solution for any nonnegative initial datum. Moreover, when the
critical case q = q1 is concerned, the other parameter λ will play an im-
portant role. In other words, when λ belongs to different interval (0, λ1)
or (λ1, +∞), where λ1 is the first eigenvalue of p-Laplacian equation
with zero boundary value condition, the solution has completely different
properties.

1. Introduction

In this paper, we consider the following doubly degenerate parabolic equation
with source

(1.1)
ut − div

(
|∇um|p−2∇um

)
= λuq, (x, t) ∈ Ω× (0, +∞),

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, +∞),
u(x, 0) = u0(x), x ∈ Ω,

where p > 1,m > 0, m(p − 1) < 1, λ > 0, q > 0,Ω ⊂ RN (N > p) is a bounded
domain with smooth boundary, and u0(x) ∈ C0(Ω) is a nonnegative function.
Throughout this paper, I denote Q = Ω× (0, +∞), QT = Ω× (0, T ), Q(t1,t2) =
Ω× (t1, t2).
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Parabolic equations like (1.1) appear in population dynamics, chemical re-
actions, heat transfer, and so on. In particular, equation (1.1) may be used to
describe the non-stationary flows in a porous medium of fluids under polytropic
conditions. In this case, equation (1.1) is called the non-Newtonian polytropic
filtration equations (see [5], [8], [11] and references therein).

The problem of determining critical exponent is an interesting one in the
general theory of blow-up or extinction solutions to different nonlinear evolu-
tion equations of mathematical physics (see [1], [3], [6], [7], [10] and references
therein). Recently, a lot of papers are devoted to discuss the following degen-
erate equation

(1.2)
ut =

(
|(um)x|p−2 (um)x

)
x

, x > 0, t > 0,

− |(um)x|p−2 (um)x(0, t) = uq(0, t), t > 0,
u(x, 0) = u0(x), x > 0.

In [9], Wang et. al. considered (1.2) with m > 1, p > 2, q ≥ 0. By constructing
various self-similar upper solutions and lower solutions, they obtain the critical
global existence exponent and critical Fujita exponent as q0 = (m + 1)(p −
1)/p, qc = (m+1)(p−1). In [4], Jin et. al. consider (1.2) with m > 0, 1+1/(m+
1) ≤ p < 1 + 1/m, q > 0. They also get the critical global existence exponent
and critical Fujita exponent as q0 = (m + 1)(p − 1)/p, qc = (m + 1)(p − 1).
Furthermore, they get if 0 < q < m(p − 1), then any nontrivial solution does
not go extinction for any nontrivial and nonnegative initial value.

The motivation of this paper is what happens if the problem (1.2) with
source and without boundary flux and to reveal the phenomena described as
[4], [9]. Following from [2], [8], [11], we can get the local existence of weak
solutions in the sense of the following definition.

Definition. A function u ∈ E is called to be a weak upper (lower) solution
of problem (1.1), provided for any T > 0 and any 0 ≤ ϕ ∈ Ẽ, the following
inequalities hold:

∫ ∫

QT

utϕdxdt +
∫ ∫

QT

|∇um|p−2∇um∇ϕdxdt ≥ (≤)λ
∫ ∫

QT

uqϕdxdt,

u|∂Ω×(0,T ) ≥ (≤)0, u(x, 0) ≥ (≤)u0(x), where

E =
{
u ∈ L2q(QT ) ∩ L2(QT ), ut ∈ L2(QT ),∇um ∈ Lp(QT )

}
,

Ẽ =
{
u ∈ L2(QT ), u|∂Ω×(0,T ) = 0, ut ∈ L2(QT ),∇u ∈ Lp(QT )

}
.

Furthermore, u is called a weak solution of (1.1) if it is both a weak upper and
a lower solution.

To state our results, we introduce the following two functions:

F (u) =
1
p

∫

Ω

|∇um|p dx− mλ

q + m

∫

Ω

uq+mdx, H(u) =
1

m + 1

∫

Ω

um+1dx,
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and the following eigenvalue problem for p-Laplace equation in Ω′ ⊃ Ω

(1.3) −div
(
|∇u|p−2∇u

)
= λu, x ∈ Ω′,

u(x, t) = 0, x ∈ ∂Ω′.

Denote λ∗ and ϕ∗ be the first eigenvalue and its corresponding eigenfunction
of problem (1.3). It is obvious that λ∗ > 0 and ϕ∗ > 0 in Ω′, so ϕ∗ > 0 in Ω.
Let

M∗ = max
x∈Ω

ϕ∗(x) > 0, m∗ = max
x∈Ω

ϕ∗(x) > 0.

Theorem 1.1. Let u(x, t) be a weak solution of problem (1.1) :

(1) If 0 < q < 1, then u(x, t) exists globally, and is locally uniformly
bounded;

(2) If m(p−1) < q, F (u0) ≤ 0 and H(u0) > 0, then limt→+∞ ‖u(·, t)‖L∞(Ω)

= +∞;
(3) If q < m(p− 1), then u(x, t) is globally uniformly bounded;
(4) If q = m(p− 1), then u(x, t) is globally uniformly bounded if λ is small

enough such that λ∗m∗ ≥ λM∗q/m;
(5) If q > m(p − 1), then u(x, t) is globally uniformly bounded if the ini-

tial data u0 is small enough such that δϕ∗
1/m ≥ u0, where δ is some

constant such that λ∗m∗ ≥ λδq−m(p−1)M∗q/m;
(6) If q = 1, F (u0) ≤ 0 and H(u0) > 0, then limt→+∞H(u(t)) = +∞;
(7) If q > 1, F (u0) ≤ 0 and H(u0) > 0, then there exists T ∗ with 0 < T ∗ <

+∞ such that limt→T∗ H(u(t)) = +∞, i.e., u(x, t) blows up in finite
time;

(8) If q ≥ 1, then u(x, t) is globally uniformly bounded if the initial data u0

is small enough such that δϕ∗
1/m ≥ u0, where δ is some constant such

that λ∗m∗ ≥ λδq−m(p−1)M∗q/m.

Theorem 1.2. Let λ1 be the first eigenvalue of the p-Laplacian equation with
homogeneous Dirichlet boundary value condition. If q ≥ 1 or 1 > q > m(p−1),
then any bounded and nonnegative weak solution of problem (1.1) vanishes in
finite time for appropriate small initial datum u0(x). In addition, if q = m(p−
1) with λ < λ1, then any bounded and nonnegative weak solution of problem
(1.1) vanishes in the sense of ‖ · ‖Lm+1(Ω) as t → +∞, and in particular, if
p ≥ (mN + N)/(Nm + m + 1) or 1 < p < (mN + N)/(Nm + m + 1) with
λ < γλ1m

p−1 (p/(γ + m(p− 1)))p, where γ > max{0, (N +Nm−Nmp−p)/p},
then u vanishes in finite time too.

Remark 1.3. In fact, from the proof of Theorem 1.2, we see that when q = 1,
the boundness restriction on the solution of u is unnecessary.

Theorem 1.4. Let λ1 be the first eigenvalue of the p-Laplacian equation with
homogeneous Dirichlet boundary value condition. For any nonnegative initial
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datum u0(x), problem (1.1) admits at least one bounded nonnegative and non-
extinction weak solution for the case of q = m(p − 1) with λ > λ1 or 0 < q <
m(p− 1).

Remark 1.5. From Theorems 1.1, 1.2, 1.4, we get the q1, q2 in the abstract is
q1 = m(p− 1), q2 = 1.

Remark 1.6. Although we consider the case m(p−1) < 1, we prefer to give some
short note for the case of m(p − 1) > 1, which reveals a sharp difference from
the case we considered: let u be a nonnegative weak solution of the problem
(1.1) with m(p− 1) > 1, then u cannot vanish in finite time for any q > 0 (see
the note in Section 3). In particularly, without any change of the proof (3), (5)
about Theorem 1.1, we can get that: If q < m(p − 1), then u(x, t) is globally
uniformly bounded; If q > m(p − 1), F (u0) ≤ 0 and H(u0) > 0, then there
exists T ∗ with 0 < T ∗ < +∞ such that limt→T∗ H(u(t)) = +∞, i.e., u(x, t)
blows up in finite time.

This paper is organized as follows. In the next section, we give the critical
blow-up exponent and prove Theorem 1.1. In Section 3, we give the critical
extinction exponent and prove Theorems 1.2 and 1.4.

2. Critical blow-up exponent

In this section, we consider the critical blow-up exponent to problem (1.1)
and prove Theorem 1.1.

Proof of Theorem 1.1. (1) Suppose u is a weak solution of problem (1.1), then
by the weak maximum principle (see [2], [8], [11], [13]), we conclude that

(2.1) ‖u‖L∞(Qt) ≤ ‖u0‖L∞(Ω) + tλ‖u‖q
L∞(Qt)

.

Since 0 < q < 1, then it is not difficult to see that u is locally uniformly
bounded.

(2) Note the definition of F (u) and H(u), and a simple calculation show
that

(2.2)
dF (u)

dt
= −m

∫

Ω

um−1(ut)2dx ≤ 0,

(2.3)
dH(u)

dt
= −

∫

Ω

|∇um|p dx+λ

∫

Ω

uq+mdx =
(

1− mp

q + m

) ∫

Ω

λuq+mdx−pF (u).

According to (2.2), we see that F (u0) ≤ 0 implies that F (u) ≤ 0. Therefore
we get

(2.4)
dH(u)

dt
≥ λ

(
1− mp

q + m

) ∫

Ω

uq+mdx.
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While for the case m(p − 1) < q < 1, if u is a weak solution of problem (1.1),
then by the weak maximum principle (see [2], [8], [11], [13]), we conclude that

(2.5) ‖u‖L∞(Qt) ≤ ‖u0‖L∞(Ω) + tλ‖u‖q
L∞(Qt)

,

which implies that u is bounded in any finite time. However, we have

(2.6) lim
t→+∞

‖u(·, t)‖L∞(Ω) = +∞.

Suppose to the contrary, there would exist a positive constant M , such that
‖u(·, t)‖L∞(Ω) ≤ M . Then

(2.7)
∫

Ω

u1+mdx ≤ M1−q

∫

Ω

uq+mdx.

From (2.4), we infer that

(2.8)
dH(u(t))

dt
≥ λ(m + 1)

(
1− mp

q + m

)
Mq−1H(u(t)).

Since q + m > mp, then limt→+∞H(u(t)) = +∞.
(3) Let ` = supx∈Ω u0(x) and define

K0 = max

{
`,

(
λm

λ1

(
pm + 1−m

pm

)p)1/(m(p−1)−q)
}

,

where λ1 is the first eigenvalue of the p-Laplacian equation with homogeneous
Dirichlet boundary value condition and denote Ah(t) = {x ∈ Ω; u(x, t) ≥ h}.
In the following, we shall show that

(2.9) ‖u(·, t)‖L∞(Ω) ≤ K0.

Multiplying equation (1.1) by (u−K0)+ yields
(2.10)
1
2

d

dt

∫

Ω

(u−K0)2+dx+
∫

Ω

|∇um|p−2∇um∇(u−K0)+dx = λ

∫

Ω

uq(u−K0)+dx.

A simple computation, we get

(2.11)

∫

Ω

|∇um|p−2∇um∇(u−K0)+dx

=
∫

AK0 (t)

|∇um|p−2∇um∇udx

=
1
m

∫

AK0 (t)

u1−m |∇um|p dx

=
1
m

(
pm

pm + 1−m

)p ∫

AK0 (t)

∣∣∣∇um+(1−m)/p
∣∣∣
p

dx.

Take

(2.12) ũ =
{

u, if u ≥ K0,
0, otherwise.
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By using the Poincare’s inequality, we get

(2.13)
∫

Ω

∣∣∣∇ũm+(1−m)/p
∣∣∣
p

dx ≥ λ1

∫

Ω

ũmp+1−mdx,

i.e.,

(2.14)
∫

AK0 (t)

∣∣∣∇um+(1−m)/p
∣∣∣
p

dx ≥ λ1

∫

AK0 (t)

ump+1−mdx.

Take (2.10) into account, we conclude that

(2.15)

1
2

d

dt

∫

Ω

(u−K0)2+dx +
λ1

m

(
pm

pm + 1−m

)p ∫

AK0 (t)

ump+1−mdx

≤ λ

∫

Ω

uq(u−K0)+dx.

Furthermore, we get
(2.16)

1
2

d

dt

∫

Ω

(u−K0)2+dx +
λ1

m

(
pm

pm + 1−m

)p ∫

Ω

um(p−1)(u−K0)+dx

≤ λ

∫

Ω

uq(u−K0)+dx.

Recalling the definition of K0, we arrive at

(2.17)

1
2

d

dt

∫

Ω

(u−K0)2+dx

≤
∫

Ω

uq(u−K0)+

(
λ− λ1

m

(
pm

pm + 1−m

)p

um(p−1)−q

)
dx ≤ 0 .

Noticing that
∫
Ω
(u−K0)2+dx = 0, and combining with (2.17) we conclude that∫

Ω
(u−K0)2+dx = 0, which implies (2.9) holds.
(4) It is easy to see u = δϕ∗

1/m

is an upper solution of (1.1), where δ is
large enough such that δϕ∗

1/m ≥ u0(x). The conclusion follows by comparison
principle.

(5) Similar to (4), we can see u = δϕ∗
1/m

is an upper solution of (1.1), where δ
is some constant such that λ∗m∗ ≥ λδq−m(p−1)M∗q/m. The conclusion follows
by comparison principle.

(6) When q = 1, it follows from (2.4) that

(2.18)
dH(u(t))

dt
≥ λ(m + 1)

(
1− mp

1 + m

)
H(u(t)).

By a direct calculation, we obtain

(2.19) H(u(t)) ≥ H(u0)e((m+1)λ(1−mp/(1+m)))t.

Since 1 + m > mp, we have limt→+∞H(u(t)) = +∞.
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(7) If q > 1, recalling Höder’s inequality, we get

(2.20)
∫

Ω

uq+mdx ≥ C

(
1

m + 1

∫

Ω

um+1dx

)(q+m)/(m+1)

.

Thus, we get from (2.4) that

(2.21)
dH(u(t))

dt
≥ Cλ

(
1− mp

q + m
(H(u))

)(q+m)/(m+1)

.

Since q + m > mp and q > 1, there must exists a positive constant T ∗ < +∞
such that limt→T∗ H(u(t)) = +∞.

(8) Similar to (4), we can see u = δϕ∗
1/m

is an upper solution of (1.1), where δ
is some constant such that λ∗m∗ ≥ λδq−m(p−1)M∗q/m. The conclusion follows
by comparison principle. The proof of Theorem 1.1 is complete. ¤

3. Critical extinction exponent

Now, we characterize the critical extinction exponent of problem (1.1) and
prove Theorems 1.2 and 1.4.

Proof of Theorem 1.2. We divide the proof into three cases:
Case 1. q ≥ 1. Let M = ‖u‖L∞(Q). Multiplying equation (1.1) by uγ(γ >

m(1− p)), and integrating over Ω, we get

(3.1)

1
γ + 1

d

dt

∫

Ω

uγ+1dx + γmp−1

(
p

γ + m(p− 1)

)p ∫

Ω

∣∣∣∇u
γ+m(p−1)

p

∣∣∣
p

dx

= λ

∫

Ω

uγ+qdx ≤ λ

∫

Ω

Mq−1uγ+1dx.

It is clear that the inequality is valid for q = 1 even if u is unbounded. Since
N > p, recalling the imbedding theorem, we have

(3.2)

∫

Ω

∣∣∣∇u
γ+m(p−1)

p

∣∣∣
p

dx

≥ C

(∫

Ω

u
N(γ+m(p−1))

N−p dx

)(N−p)/N

≥ C

(∫

Ω

uγ+1dx

)(γ+m(p−1))/(γ+1)

,

where γ > max {0,m(1− p), (N + Nm−Nmp− p)/p} . To simplify, we denote

(3.3) f(t) =
∫

Ω

uγ+1dx, α = (γ + m(p− 1))/(γ + 1) < 1.

Hence, we have

(3.4) f ′(t) + Cfα(t) ≤ λ(γ + 1)Mq−1f(t).
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If there exists a t0 > 0, such that f(t0) = 0, then

(3.5) f(t) ≤ λ(γ + 1)Mq−1

∫ t

t0

f(τ)dτ.

Recalling Gronwall’s inequality, we obtain

(3.6) f(t) ≡ 0 for any t > t0.

Otherwise, f(t) > 0 holds for all t. Then we get

(3.7)
(
f1−α

)′ − λ(1− α)(γ + 1)Mq−1f1−α ≤ −C(1− α).

By a simple calculation, we arrive at
(3.8)

f1−α(t)

≤ f1−α(0)eλ(1−α)(γ+1)Mq−1t − C

λ(γ + 1)Mq−1

(
eλ(1−α)(γ+1)Mq−1t − 1

)

≤
((∫

Ω

uγ+1
0 dx

)1−α

− C

λ(γ + 1)Mq−1

)
eλ(1−α)(γ+1)Mq−1t +

C

λ(γ + 1)Mq−1
.

Let u0(x) be sufficiently small such that

(3.9)
(∫

Ω

uγ+1
0 dx

)1−α

≤ C

2λ(γ + 1)Mq−1
.

The two inequalities above give

(3.10) f1−α(t) ≤ − C

2λ(γ + 1)Mq−1

(
eλ(1−α)(γ+1)Mq−1t − 2

)
.

From (3.10) above, we see that there must exist a T > 0 such that f1−α(t) ≤ 0
for t ≥ T . Obviously, it is a contradiction. In conclusion, there exists a positive
constant T ∗ such that

(3.11)
∫

Ω

uγ+1dx ≡ 0 for any t ≥ T ∗.

Case 2. 1 > q > m(p− 1). Multiplying equation (1.1) by uγ(γ > m(1− p)),
and integrating over Ω, we get
(3.12)

1
γ + 1

d

dt

∫

Ω

uγ+1dx + γmp−1

(
p

γ + m(p− 1)

)p ∫

Ω

∣∣∣∇u
γ+m(p−1)

p

∣∣∣
p

dx

= λ

∫

Ω

uγ+qdx ≤ λ|Ω|(1−q)/(γ+1)

(∫

Ω

u1+γdx

)(γ+q)/(γ+1)

.

Choosing γ > max {0,m(1− p), (N + Nm−Nmp− p)/p} . Then, according
to the imbedding theorem (N > p), we have

(3.13)
∫

Ω

∣∣∣∇u
γ+m(p−1)

p

∣∣∣
p

dx ≥ C1

(∫

Ω

uγ+1dx

)(γ+m(p−1))/(γ+1)

.
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Substituting (3.13) into (3.12), we obtain
(3.14)

1
γ + 1

d

dt

∫

Ω

uγ+1dx + γC1m
p−1

(
p

γ + m(p− 1)

)p (∫

Ω

uγ+1dx

)(γ+m(p−1))/(γ+1)

≤ λ|Ω|(1−q)/(γ+1)

(∫

Ω

u1+γdx

)(γ+q)/(γ+1)

.

By a direct calculation, we further have
(3.15)

1
1−m(p− 1)

d

dt

(∫

Ω

u1+γdx

)(1−m(p−1))/(γ+1)

≤ λ|Ω|(1−q)/(γ+1)

(∫

Ω

u1+γdx

)(q−m(p−1))/(γ+1)

− γC1m
p−1

(
p

γ + m(p− 1)

)p

.

To simplify, we denote
(3.16)

µ(u(t))

= λ|Ω|(1−q)/(γ+1)

(∫

Ω

u1+γdx

)(q−m(p−1))/(γ+1)

− γC1m
p−1

(
p

γ + m(p− 1)

)p

.

If µ(u0) < 0, we claim that µ(u(t)) is decreasing with t. To see this, we
assume there exists some time T > 0, such that d

dtµ(u(t)) | t=T ≥ 0 and make
a contradiction. Since µ(u0) < 0, it is easy to see that d

dt

(∫
Ω

u1+γdx
) | t=0 < 0

from (3.15). So d
dtµ(u(t)) | t=0 < 0. Then there exist first positive time T ′ ≤ T

such that µ(u(T ′)) < µ(u0) < 0 and d
dtµ(u(t)) | t=T ′ = 0, i.e.,

λ|Ω| 1−q
γ+1

q −m(p− 1)
γ + 1

(∫

Ω

u1+γdx

) q−m(p−1)−γ−1
γ+1 d

dt

(∫

Ω

u1+γdx

) ∣∣∣∣∣∣
t=T ′

= 0.

If u(x, T ′) ≡ 0, we complete our proof. If u(x, T ′) 6≡ 0, we get

d

dt

(∫

Ω

u1+γdx

) ∣∣∣∣
t=T ′

= 0.

Then, using (3.15), we get

0 =
1

1−m(p− 1)
d

dt

(∫

Ω

u1+γdx

)(1−m(p−1))/(γ+1)
∣∣∣∣∣
t=T ′

≤ µ(u(T ′)) < 0.

We can get a contradiction, so the claim is correct.
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We further get 1
1−m(p−1)

d
dt

(∫
Ω

u1+γdx
)(1−m(p−1))/(γ+1) ≤ µ(u0) from (3.15),

i.e.,

(3.17)

(∫

Ω

u1+γdx

)(1−m(p−1))/(γ+1)

≤ (1−m(p− 1))µ(u0)t +
(∫

Ω

u1+γ
0 dx

)(1−m(p−1))/(γ+1)

.

It is evident that there exists a positive constant T ∗ > T ′ such that

(3.18)
∫

Ω

u1+γdx ≡ 0 for all t ≥ T ∗.

Case 3. q = m(p − 1), λ < λ1. Multiplying equation (1.1) by um and
integrating over Ω, we conclude

(3.19)
1

m + 1
d

dt

∫

Ω

um+1dx +
∫

Ω

|∇um|p dx ≤ λ

∫

Ω

umpdx.

Note that λ1

∫
Ω

umpdx ≤ ∫
Ω
|∇um|p dx, then we have

(3.20)
1

m + 1
d

dt

∫

Ω

um+1dx ≤ − (λ1 − λ)
∫

Ω

umpdx.

Let `0 = ‖u‖L∞(Q), v = u/`0, so, 0 ≤ v ≤ 1. Then we have vmp ≥ vm+1 for
mp < m + 1(since m(p− 1) < 1) and

(3.21)

d

dt

∫

Ω

vm+1dx ≤ −(m + 1)`mp−m−1
0 (λ1 − λ)

∫

Ω

vmpdx

≤ −(m + 1)`mp−m−1
0 (λ1 − λ)

∫

Ω

vm+1dx,

which implies that

(3.22)
∫

Ω

vm+1dx ≤ e−(m+1)`mp−m−1
0 (λ1−λ)t

∫

Ω

vm+1
0 dx.

Therefore, we conclude that ‖u(·, t)‖Lm+1(Ω) → 0 as t → +∞. In addition, by
(3.19), we have

(3.23)
1

m + 1
d

dt

∫

Ω

um+1dx +
∫

Ω

|∇um|p dx ≤ λ

λ1

∫

Ω

|∇um|p dx.

Using the imbedding theorem, we obtain if p ≥ (mN + N)/(Nm + m + 1)

(3.24)

1
m + 1

d

dt

∫

Ω

um+1dx ≤ −
(

1− λ

λ1

) ∫

Ω

|∇um|p dx

≤ −C0

(
1− λ

λ1

)(∫

Ω

um+1dx

)mp/(m+1)
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i.e.,

(3.25)

(∫

Ω

um+1dx

)(m+1−mp)/(m+1)

≤
(∫

Ω

um+1
0 dx

)(m+1−mp)/(m+1)

− C0(m + 1−mp)
(

1− λ

λ1

)
t.

So there exists a positive constant T ∗, such that

(3.26)
∫

Ω

um+1dx ≡ 0 for any t ≥ T ∗,

which implies u vanishes in finite time.
The following argument is devoted to the discussion of the case of 1 < p <

(mN + N)/(Nm + m + 1). Similar to (3.1), we obtain
(3.27)

1
γ + 1

d

dt

∫

Ω

uγ+1dx + γmp−1

(
p

γ + m(p− 1)

)p ∫

Ω

∣∣∣∇u
γ+m(p−1)

p

∣∣∣
p

dx

= λ

∫

Ω

uγ+m(p−1)dx ≤ λ

λ1

∫

Ω

∣∣∣∇u
γ+m(p−1)

p

∣∣∣
p

dx,

i.e.,

(3.28)

1
γ + 1

d

dt

∫

Ω

uγ+1dx

≤ −
(

γmp−1

(
p

γ + m(p− 1)

)p

− λ

λ1

) ∫

Ω

∣∣∣∇u
γ+m(p−1)

p

∣∣∣
p

dx.

Since λ < γλ1m
p−1

(
p

γ+m(p−1)

)p

and γ > max{0, (N + Nm − Nmp − p)/p},
then according to the imbedding theorem, we further have
(3.29)

1
γ + 1

d

dt

∫

Ω

uγ+1dx

≤ − C

(
γmp−1

(
p

γ + m(p− 1)

)p

− λ

λ1

)(∫

Ω

uγ+1dx

)(γ+m(p−1))/(γ+1)

.

Since (γ + m(p− 1))/(γ + 1) < 1, then a similar argument as before gives that
there exists a T ∗ > 0 such that

(3.30)
∫

Ω

uγ+1dx ≡ 0 for any t ≥ T ∗.

The proof of Theorem 1.2 is complete. ¤

Proof of Theorem 1.4. The main method of the proof of Theorem 1.4 is con-
structing a pair of ordered upper and lower solution (u(x, t), u(x, t)) (u(x, t) ≥
u(x, t)) with u(x, t) is non-extinction, then the problem exists a weak solution
u(x, t) satisfying u(x, t) ≤ u(x, t) ≤ u(x, t) (see [2], [8], [11]) and we get the
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results. Firstly, we construct weak lower non-extinction solution of problem
(1.1).

Case 1. q = m(p− 1), λ > λ1, let ϕ1(x) is the corresponding eigenfunction
with ‖ϕ1(x)‖L∞(Ω) = 1. Take u(x, t) = g(t)ϕ1(x), where g(t) satisfies

(3.31) g′(t) = (λ− λ1)gm(p−1), g(t) > 0 for t > 0, g(0) = 0.

Hence, we get

(3.32)
ut = (λ− λ1)ϕ1g

m(p−1) ≤ (λ− λ1)ϕ
m(p−1)
1 gm(p−1)

≤ div
(
|∇um|p−2∇um

)
+ λvm(p−1).

That is u is a weak lower solution of problem (1.1).
Case 2. q < m(p − 1), let u(x, t) = µg(t)ϕ1(x), where g(t) is a solution of

the following problem

(3.33) g′(t) = −λ1g
m(p−1) + λgq, g(t) > 0 for t > 0, g(0) = 0.

Then we have

(3.34) ut =
(
−λ1g

m(p−1) + λgq
)

µϕ1,

(3.35) div
(
|∇um|p−2∇um

)
+ λuq = −λ1µ

m(p−1)gm(p−1)ϕ
m(p−1)
1 + λµqgqϕq

1.

Then we can choose a µ > 0 small enough such that

(3.36) λ1g
m(p−1)

(
µm(p−1)ϕ

m(p−1)
1 − µϕ1

)
≤ λgq (µqϕq

1 − µϕ1) .

In fact, from (3.33), it is not difficult to see that g(t) is a nondecreasing and
bounded function. Let M = maxλ>0 λ/λ1g

m(p−1)−q. In addition, let F (x) =
(xq − x)/(xm(p−1) − x), it is easy to check that F (x) is decreasing in (0, 1)
and limx→0+ F (x) = +∞, limx→1− F (x) = q(1− q)/(m(p− 1)(1−m(p− 1))).
Thus we can choose µ > 0 small enough to satisfy (3.36). Next we construct
an upper weak solution of problem (1.1). Let u(x, t) be the solution of the
following problem
(3.37)

ut − div
(
|∇um|p−2∇um

)
= λ(u+ + 1)q, (x, t) ∈ Ω× (0, +∞),

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, +∞),
u(x, 0) = u0(x) ≥ 0, x ∈ Ω.

From [2], [8], [11], we know that problem (3.37) admits at least one weak
solution. In addition, the weak solution u(x, t) is also a weak upper solution
of problem (1.1). The following is devoted to prove u(x, t) ≤ u(x, t). From the
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definition of u(x, t) and u(x, t), we deduce
(3.38)∫ ∫

Qt

(u− u)tϕdxdτ +
∫ ∫

Qt

(
|∇um|p−2∇um − |∇um|p−2∇um

)
∇ϕdxdτ

≤ λ

∫ ∫

Qt

(uq − (u+ + 1)q)ϕdxdτ for all 0 ≤ ϕ ∈ Ẽ.

Take ϕ = (u− u)+, then we arrive at

1
2

∫

Ω

(u− u)2+dx +
∫ ∫

Qt

(
|∇um|p−2∇um−|∇um|p−2∇um

)
∇(u− u)+dxdτ

(3.39)

≤ λ

∫ ∫

Qt

(uq − (u+ + 1)q) (u− u)+dxdτ

≤ λq

∫ ∫

Qt

(u− (u+ + 1)) (u− u)+dxdτ

≤ λq

∫ ∫

Qt

(u− u)2+dxdτ.

Recalling Gronwall’s inequality, we get

(3.40)
∫

Ω

(u− u)2+dx = 0 for all t > 0

which implies that u ≤ u a.e. in Q. Hence problem (1.1) admits a weak solution
u ≤ u ≤ u. Since u does not vanish, so does u. The proof of Theorem 1.4 is
complete. ¤

Note. We give the proof of Remark 1.6 in this note. The basic idea follows
from [12]. If u is a weak solution of (1.1), then u is also a weak upper solution
of the following problem

(3.41)
vt = div

(
|∇vm|p−2∇vm

)
, (x, t) ∈ Ω× (0, +∞),

v(x, t) = 0, (x, t) ∈ ∂Ω× (0, +∞),
v(x, 0) = u0(x), x ∈ Ω.

The we can get the following property about v(x, t).

Lemma 3.1. Let v be a weak solution of problem (3.41). Then we have
(1) If m(p− 1) > 1, then

(3.42)
∂v

∂t
≥ − v

(m(p− 1)− 1)t

in the sense of distributions.
(2) If 0 < m(p− 1) < 1, then

(3.43)
∂v

∂t
≤ v

(1−m(p− 1))t
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in the sense of distributions.

Proof. Denote

(3.44) vr(t) = rv
(
x, rm(p−1)−1t

)

for all (x, t) ∈ Q and all r ∈ (1/2, 1). Clearly, vr is a weak solution of equation
(3.41) with the following initial-boundary condition

(3.45) vr(x, t)|∂Ω×(0,+∞) = 0, vr(x, 0) = ru0(x), ∀x ∈ Ω.

Noting r ∈ (1/2, 1) and using (3.41) and (3.45) we get

(3.46) vr(x, t)|∂Ω×(0,+∞) = v(x, t)|∂Ω×(0,+∞) = 0, vr(x, 0) ≤ u0(x), ∀x ∈ Ω.

Applying the comparison principle (see [2], [8], [11]) we have

(3.47) vr(x, t) ≤ v(x, t), ∀(x, t) ∈ Q.

(i) For m(p− 1) > 1, by (3.47), we get

(3.48)
(v(x, %t))m(p−1)−1 − (v(x, t))m(p−1)−1

%t− t
≥ (1/%− 1)(v(x, t))m(p−1)−1

%t− t
,

where % = rm(p−1)−1. Letting % → 1−, we get

(3.49)
∂

∂t
(v(x, t))m(p−1)−1 ≥ −1

t
(v(x, t))m(p−1)−1

in distribution, which implies that (1) holds.
(ii) For 0 < m(p− 1) < 1, by (3.47), we have

(3.50)
(v(x, %t))1−m(p−1) − (v(x, t))1−m(p−1)

%t− t
≤ (%− 1)(v(x, t))1−m(p−1)

%t− t
,

where % = rm(p−1)−1. Letting % → 1+, we get

(3.51)
∂

∂t
(v(x, t))1−m(p−1) ≤ 1

t
(v(x, t))1−m(p−1)

in distribution, which implies that (2) holds. The proof of Lemma 3.1 is com-
plete. ¤

Now we can demonstrate the weak solution of (1.1) can not vanish in finite

time if m(p− 1) > 1. The (1) of Lemma 3.1 tells us that
∂(t1/(m(p−1)−1)v)

∂t ≥ 0,
which means that

(3.52) suppv(·, s) ⊂ suppv(·, t) for all s, t with 0 < s < t.

Since u is a weak upper solution of problem (3.41), then by the comparison
principle (see [2], [8], [11], [13]), we have u(x, t) ≥ v(x, t), which implies that
u(x, t) does not vanish in finite time.

Acknowledgments. We would thank the referees for their valuable comments
and suggestions. The first author is supported by Natural Science Foundation
Project of China SWU, SWU208029, the second author is supported by NNSF



CRITICAL BLOW-UP AND EXTINCTION EXPONENTS 1173

of China (10771226) and in part by Natural Science Foundation Project of CQ
CSTC (2007BB0124).

References

[1] K. Deng and H. A. Levine, The role of critical exponents in blow-up theorems: the
sequel, J. Math. Anal. Appl. 243 (2000), no. 1, 85–126.

[2] E. DiBenedetto, Degenerate Parabolic Equations, Springer-Verlag, New York, 1993.
[3] H. Fujita, On the blowing up of solutions to the cauchy problems for ut = ∆u + u1+α,

Journal of the Faculty of Science University of Tokyo Section 1Mathematics Astronomy
Physics Chemistry 13 (1996), 109–124.

[4] C. H. Jin and J. X. Yin, Critical exponents and non-extinction for a fast diffusive poly-
tropic filtration equation with nonlinear boundary sources, Nonlinear Anal. 67 (2007),
no. 7, 2217–2223.

[5] A. S. Kalashnikov, Some problems of the qualitative theory of second-order nonlinear
degenerate parabolic equations, Uspekhi Mat. Nauk 42 (1987), no. 2, 135–176.

[6] Y. C. Kwong, Boundary behavior of the fast diffusion equation, Trans. Amer. Math.
Soc. 322 (1990), no. 1, 263–283.

[7] H. A. Levine, The role of critical exponents in blowup theorems, SIAM Rev. 32 (1990),
no. 2, 262–288.

[8] J. L. Vázquez, The Porous Medium Equations: Mathematical Theory, Oxford Univ.
Press, 2007.

[9] Z. J. Wang, J. X. Yin, and C. P. Wang, Critical exponents of the non-Newtonian
polytropic filtration equation with nonlinear boundary condition, Appl. Math. Lett. 20
(2007), no. 2, 142–147.

[10] M. Winkler, A strongly degenerate diffusion equation with strong absorption, Math.
Nachr. 277 (2004), 83–101.

[11] Z. Q. Wu, J. N. Zhao, J. X. Yin, and H. L. Li, Nonlinear Diffusion Equations, World
Scientific Publishing Co., Inc., River Edge, NJ, 2001.

[12] H. J. Yuan, Extinction and positivity for the evolution p-Laplacian equation, J. Math.
Anal. Appl. 196 (1995), no. 2, 754–763.

[13] H. J. Yuan, S. Z. Lian, W. J. Gao, X. J. Xu, and C. L. Cao, Extinction and positivity for
the evolution p-Laplace equation in RN , Nonlinear Anal. 60 (2005), no. 6, 1085–1091.

Jun Zhou
School of mathematics and statistics
Southwest University
Chongqing, 400715, P. R. China
E-mail address: zhoujun math@hotmail.com

Chunlai Mu
College of mathematics and physics
Chongqing University
Chongqing, 400044, P. R. China
E-mail address: Chunlaimu@yahoo.com.cn


