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Abstract

Highly correlated brain dynamics produces synchronized states with no behavioral value, while
weakly correlated dynamics prevents information /ow. We discuss the idea put forward by Per
Bak that the working brain stays at an intermediate (critical) regime characterized by power-law
correlations.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The human brain is a large system, with no more than a hundred specialized mod-
ules with di;erent functions. At the smallest grain, the cerebral cortex consists of
about 1010 neurons that comprise of a highly interconnected network. Each cell re-
ceives continuously a few thousands of excitatory inputs from other neurons. One
of the simplest things we do not know about the brain is how the cortex, being a
mainly excitatory network, prevents the expected explosive propagation of activity and
still transmits information across areas. If the average number of neurons activated
by one neuron is too high (i.e., supercritical) this results in the massive activation
of the entire network, while if it is too low (i.e., subcritical), propagation dies out.
The critical regime is the one in which these opposing processes are balanced. It was
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Table 1
Complicated systems are not complex

Complicated systems Many linear pieces + a central supervisor + blueprint
= “whole” (example: tv set)

Complex systems Many nonlinear pieces + coupling + injected energy
= “emergent properties” (example: society)

Turing, about 50 years ago [1], the Jrst to speculate in these terms, arguing that brains
should be at a barely critical state. We review here the proposal [2] that most be-
haviorally relevant brain states, are associated with dynamics which is critical in this
sense. This perspective places the emphasis on understanding the brain’s large number
of dynamical nonlinear degrees of freedom, and in the dynamical attractors that are
expected to emerge from the interaction of these elements. Less emphasis is given to
some other aspects, including probable “computation” properties of the emergent cir-
cuits. It sees the brain as the solution of a very large dynamical system. It says nothing
about anything else.
The paper is dedicated to discuss recent experimental Jndings of critical correla-

tions in brain dynamics. The paper is organized as follows. The next section reminds
ourselves where the brain problem is in the general context of dynamical systems. In
Section 3 we discuss results from brain imaging experiments showing a broad distri-
bution of functional connectivity, implying that brain networks are scale-free. This is
contrasted with the known cortical connectivity. Section 4 contains recent experimental
evidence at the in vitro level indicating that cultured cortical networks are critical at
the neuronal level. The paper concludes with a comment on the ideas of our late friend
Per, who foresaw many of these results.

2. Brains in “DynamicsLand”

Brain activity happens in bursts, in which pauses, silence or boredom suddenly and
unpredictably are followed by brief activity. From a dynamical viewpoint, brain dy-
namics is not di;erent from other natural processes. Nature is clearly nonhomogeneous
and intermittent, the analysis of any natural object reveals an ever surprising amount of
details; there is no single relevant scale at which Nature becomes homogeneous. Com-
plexity is this lack of uniformity associated with the scale-free spatiotemporal feature.
The driving force in this Jeld continues to be the e;ort to understand what generates
complexity, and how many di;erent dynamical mechanisms can produce scale-free ob-
jects. It is now widely recognized that, under a variety of conditions, nonlinear systems
with many degrees of freedom tend to evolve towards complexity and criticality [2,3].
It is the interaction of many nonlinear degrees of freedom which produces emergent
dynamics we call complex. The latest “heavenly example” is the sun’s sudden bursts
of radiation emanating from quick re-arrangements of the magnetic Jeld network in
the corona [4]. This is di;erent from the dynamics arising in complicated systems
comprised of the simple addition of interconnected linear pieces (Table 1). Examples



758 D.R. Chialvo / Physica A 340 (2004) 756–765

Fig. 1. “DynamicsLand”: A cartoonish representation of the parameter space for various classes of dynamical
systems. The simplest ones “live” in the left-bottom corner, where analysis and formal proofs are the
techniques expected, but many fundamental problems in biology correspond to areas distant from that land.
Relatively simple dynamics gets sophisticated as the nonlinear term acquires relevance (moving upward in
the graph) or as the number of degrees of freedom increases (moving to the right). Pictorial examples
include: (1) the transition from one to many coupled pendulums, (2) few foraging ants to the entire swarm
[5], (3) from the chaotic dynamics of an isolated cardiac cell [6] to the spatiotemporal spiral waves in the
heart [7], (4) a sandpile and, of course, (5) the brain.

of complicated systems are a television set, or a car. They do not “emerge”, they are
manufactured by following a blueprint given by the designer. Evolution to more com-
plicated designs requires always of the supervisor (or designer) intervention. Complex
systems such as species, ecologies, societies or brains do not arise from blueprints, they
are very robust emergent consequences of dynamical laws we still do not understand.
We can not replay the tape of evolution to investigate whether other ecologies will
arise or self-organize, but in the case of brains we witness the high percentage of brains
that end up well connected and, with few exceptions, working. This is a marvellous
thing, considering that during one year of development a brain is continuously adding
(or “connecting”) 105 news neurons per minute. What are the basis of the self-organizing
mechanism able to achieve such feats? One motivation for biologists to look at the
physical laws governing complex systems of all kinds is the hope that universality will
give us an edge. The rationale is that a good understanding of these universal laws will
provide a breakthrough and shed light on related biological problems. The considera-
tions in the cartoon of Fig. 1 remind us that the brain is at a region of parameter space
where complex dynamics can emerge. In that top-right corner, theory is scarce, but
some insight and numerical tools can be borrowed from related work in self-organized
criticality and complex networks, as discussed in the next section.

3. Functional networks are scale-free

Brain activity is eminently spatio-temporal, as such the monitoring of the compli-
cated cortical patterns have greatly beneJted from techniques developed in the context
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of functional magnetic resonance imaging (fMRI). However, the numerical analysis
of such spatiotemporal patterns is less developed, lacking mathematical tools and ap-
proaches speciJcally tailored to grasp the complexity of brain cortical activity. One
possibility is to get insight from recent work showing that disparate systems can be
described as complex networks, that is assemblies of nodes and links with nontrivial
topological properties [8–10].
The brain creates and reshapes continuously complex functional networks of cor-

related dynamics responding to the traNc between regions, during behavior or even
at rest. We have recently studied these networks, using functional magnetic resonance
imaging in humans (see methods in Ref. [15]). The data is analyzed in the context of
the current understanding of complex networks (for reviews see Refs. [8–13]). During
any given task the networks are constructed in the following way. Magnetic reso-
nance brain activity is measured, at each time step (typically 400 spaced 2:5 s), from
36 × 64 × 64 brain sites (so-called “voxels” of dimension 3 × 3:475 × 3:475 mm3).
The activity of voxel x at time t is denoted as V (x; t). To deJne the links, we denote
as functionally connected those brain sites whose temporal evolution are correlated
beyond a positive pre-established value rc, following an approach used previously in
Ref. [14]. (Networks can be built as well by deJning negative or positive correlations.)
SpeciJcally, we calculate the linear correlation coeNcient between any pair of voxels,
x1 and x2, as

r(x1; x2) =
〈V (x1; t)V (x2; t)〉 − 〈V (x1; t)〉〈V (x2; t)〉

�(V (x1))�(V (x2))
; (1)

where �2(V (x)) = 〈V (x; t)2〉 − 〈V (x; t)〉2, and 〈·〉 represent temporal averages.
In Fig. 2, we show a typical network extracted with this technique for one subject in

a Jnger tapping task [15]. The top panel shows the network’s nodes (only a portion for
illustration) colored according to its degree and the bottom panel the degree distribution
of the network. Degree is the mathematical term for each voxel connectivity, being
represented here as how many other voxels are temporally correlated with it. We
Jnd that the degree distribution has a skewed distribution with a tail approaching a
power-law distribution with an exponent around 2. As the threshold rc is decreased a
maximum appears which shifts to the right as rc is lowered. Other measures reveal
that the number of links as a function of distance also decays as a power law. This
is so, from one voxel, the smallest scale able to be measured with this technique, to
the largest, the size of the brain. When we looked how the connectivity was arranged
in the neighborhood of a node we found that highly connected nodes were connected,
on the average, with highly connected ones. This feature, only seen before in social
networks is inverse to what one expects from a hierarchical organization [16–18]. We
looked at two other statistical properties of these networks, path length and clustering.
The path length (L) between two voxels is the minimum number of links necessary
to connect both voxels. Clustering (C) is the fraction of connections between the
topological neighbors of a voxel with respect to the maximum possible. If voxel i has
degree ki, then the maximum number of links between the ki neighbors is ki(ki − 1)=2.
Thus, if Ei is the number of links connecting the neighbors then the clustering of voxel
i, Ci =2Ei=ki(ki − 1). The average clustering of a network is given by C =1=N

∑
i Ci,
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Fig. 2. A typical brain network extracted from functional magnetic resonance imaging. Top panel shows
a pictorial representation of the network where the nodes are colored according to its degree: yellow =
1, green = 2, red = 3, blue=4, etc. The bottom panel shows the degree distribution for two correlation
thresholds. The inset depicts the degree distribution for an equivalent randomly connected network. Data
re-plotted from Ref. [15].

Table 2
Statistical properties of human fMRI functional networks [15] and macaque cerebral cortex connectivity [21]

Networks N C L 〈k〉 � Crand Lrand

fMRI network 4891 0.15 6.0 4.12 2.2 8:9 × 10−4 6.0
Macaque C.C. 71 0.46 2.3 10.6 NA 0.15 2.0

where N is the number of voxels. The results are presented in Table 2 (average values
for n = 22 datasets, rc = 0:8). From left to right are listed N , (number of nodes) C
(clustering coeNcient), L (shortest path length), the average degree 〈k〉, and � the
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exponent of the degree distribution. The clustering (Crand) and path length (Lrand)
values of an equivalent random network are also included for comparison. In all cases,
the coeNcient C remains four orders of magnitude larger than Crand, the clustering of a
random network. This feature, together with the similarity of path length of the original
network and their randomized controls (L and Lrand), is indicative of a small-world
structure.
In this approach we deJne two voxels as “linked” if they are temporally correlated

beyond some value. This, of course, does not mean they are mutually connected (via
chemical or neuro-transmitter or anatomical paths). The simplest counter-example is the
case of a common input activating both sites. Further analysis will clarify if this is the
case for the networks we are studying. In this regard it is relevant to look at work done
over the last decade on the cortical connectivity (now “linked” is used in the strong
sense of being mutually connected) by Sporns et al. [19–21], Hilgetag et al. [22],
Young et al. [23] and Scannel et al. [24]. The analysis of connectivity matrix of these
data sets reveals that although the networks are highly clustered and exhibit relatively
short path lengths (see Table 2) as in small world networks, they exhibit a rather
homogeneous degree distribution. In Fig. 3 the macaque cerebral cortex connectivity
matrix [23] is plotted in the top panel. Because of the small statistics (only 71 nodes),
its degree distribution is computed as the cumulative density, plotted in the bottom
panel of the same Jgure. It can be seen that the degree distribution is not a power
law, instead one sees that no area has less than four links and that the majority are
linked with about ten other areas. The scale-free features illustrated in Fig. 2 re/ects
underlying long range correlations, i.e., brain activity on a given area can be correlated
with far away and apparently unrelated regions, something already documented with
other technology [25]. In qualitative terms this means that, for instance, a concurrent
sound or simply imagery can in/uence thoughts or pain perception. Using the network
approach here described, various dynamical brain behavioral states can be studied in
the future.

4. Neuronal avalanches are critical

What are the neuronal mechanisms responsible for the correlations described in
the previous section? From a top-down approach, Varela was among the Jrst to be
concerned with the brain large scale dynamical properties (reviewed in Ref. [26]).
Varela assumed that “For every cognitive act, there is a singular and speciJc large
cell assembly that underlies its emergence and operation” [27]. E;orts are underway
to formulate in neuronal terms this working hypothesis, also termed “dynamic core”
[28]. Other bottom-up complementary, approaches involve sophisticated recording in
cortical structures with multielectrode arrays (see a review in Ref. [29]). A recent
study [30] deserves special mention, because it provides quantitative estimations of
the dynamical properties and characteristic exponents opening the possibility to model
the neural mechanisms. Beggs and Plenz [30] studied the spontaneous neuronal activ-
ity of cultured and acute slices of rat cortex using 60-channel multielectrode arrays.
They documented that during spontaneous activity the cortex typical activity shows



762 D.R. Chialvo / Physica A 340 (2004) 756–765

Cortical Areas

100 101 102
100

101

102

C
ou

nt
s 

(k
)

Cum. Degree k 

ER

V1

TPT

V1 ER TPT

Fig. 3. Top panel: Connectivity matrix of the macaque cortex [23]. A black square denotes a connection
between the 71 cortical areas: V1, V2, V3, VP, V3A, V4, VOT, V4T, MT, MSTD, MSTL, FST, PITD,
PITV, CITD, CITV, AITD, AITV, STPP, STPA, TF, TH, PO, PIP, LIP, VIP, DP, A7A, FEF, A46, TGV,
ER, HIPP, A3A, A3B, A1, A2, A5, R1, S2, A7B, IG, ID, A35, A4, A6, SMA, A3, A23, A24, A9, A32, A25,
A10, A45, A12, A11, A13, G, PAAR, PAAL, PAAC, KA, PAL, PROA, REIT, TGD, TS1, TS2, TS3, TPT
(top to bottom, left to right). For reference are labelled visual (V1), enthorinal (ER) and temporoparietal
(TPT) cortices. Bottom panel: Cumulative degree distribution for the same data in the top panel. In contrast
with the data plotted in Fig. 2, here there is no scale-free connectivity. Matrix data from Ref. [21] (available
from website http://www.indiana.edu/∼cortex/connectivity).

intermittent avalanches. After computing the statistics of several days worth of contin-
uous cortical activity with a few millions of events, they showed that the avalanche
size distributions, expressed as total number of electrodes activated per run, demon-
strates the existence of a power law, with exponent � ∼ 1:5 as shown in Fig. 4. They

http://www.indiana.edu/~cortex/connectivity
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Fig. 4. The size distribution of neuronal avalanches in mature cortical cultured networks follows a power
law with an exponent ∼ 3

2 (dashed line). The data, re-plotted from Fig. 4 of Ref. [30], shows the probability
of observing an avalanche covering a given number of electrodes for three sets of grid sizes shown in the
insets with n=15, 30 or 60 sensing electrodes (equally spaced at 200 �m). The statistics is taken from data
collected from 7 cultures in recordings lasting a total of 70 h and accumulating 58000 (± 55000) avalanches
per hour (mean ± SD).

also computed an average branching activation ratio close to unity (calculated as the
ratio between the current and future number of excited electrodes). The authors showed
that this branching ratio optimizes information transmission in feedforward networks
models. These aspects demonstrating criticality should be quantitatively accounted for
by futures theories of cortical dynamics.

5. Per foresaw it

“Is biology too diNcult for biologists? And what can physics, dealing with the sim-
ple and lawful, contribute to biology, which deals with the complex and diverse?”. In
such challenging terms Per Bak encouraged colleagues to look at biology. Much be-
fore mainstream physics embraced biology, Per Bak was already convinced that “The
big targets for physics theorists are biological evolution and the brain. These com-
plex many-body problems might have similarities to problems studied in particle- and
solid-state physics.” [31]. In an attempt to shake the stagnating state of these Jelds, by
way of models and provocative metaphora, he suggested useful ways to re-think the
most important issues in these areas. At the same time, he often insisted, in his unfor-
giving way, that mainstream ideas about neural models were an “example of physicists
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leading a whole Jeld astray”, because it was “hard to imagine a biological foundation
for the complicated procedures for updating the synaptic strengths in those models”
[31]. It was fun, in a way, to witness him, a physicist, reminding biologists and every-
body else about the biological unplausibility of current brain models and the need to re-
consider the constraints of self-organization as designing principle [32–35]. In his opin-
ion, it was absolutely obvious that self-organization is the driving mechanism designing
Nature around us, regardless if it was a human society, millions of neurons or an ant
swarm. It is, in this view, mandatory to understand Jrst the general laws before attempt-
ing to proceed with anything else. Per used to joke that, working out the further details
will be just as easy (and boring) as the “cleaning after the party”. It is fascinating to see
that a decade later, self-organization issues are newsworthy even to engineering [36].
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