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It is now well-established that intrinsic variations in human neural and behavioral activity tend to exhibit

scaling laws in their fluctuations and distributions. The meaning of these scaling laws is an ongoing

matter of debate between isolable causes versus pervasive causes. A spiking neural network model is

presented that self-tunes to critical branching and, in doing so, simulates observed scaling laws as

pervasive to neural and behavioral activity. These scaling laws are related to neural and cognitive

functions, in that critical branching is shown to yield spiking activity with maximal memory and

encoding capacities when analyzed using reservoir computing techniques. The model is also shown to

account for findings of pervasive 1/f scaling in speech and cued response behaviors that are difficult to

explain by isolable causes. Issues and questions raised by the model and its results are discussed from

the perspectives of physics, neuroscience, computer and information sciences, and psychological and

cognitive sciences.
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Variability is the essence of neural and behavioral activity, and

variability is what theories of cognition must ultimately account

for. Most theories of neural and behavioral activity focus on

explaining how variations are either caused by experimental ma-

nipulations, or coincident with external variations. This is not

surprising, given that observing how systems are affected by

external factors is a universal method of scientific inquiry. How-

ever, if one focuses on external factors exclusively, then much of

the story is left untold. Oftentimes, scientists can ascribe only

small amounts of neural and behavioral variation to experimental

manipulations and correlational factors.

In many neural and behavioral experiments, the lion’s share of

variability in measurements appears to be intrinsic to the biological

and cognitive systems being measured. Energy and matter con-

stantly flow through all biological systems, including nervous

systems (i.e., they are open, non-equilibrium thermodynamic sys-

tems; Hotton & Yoshimi, 2011; Katchalsky & Kedemo, 1962;

Swenson & Turvey, 1991). This flow produces variations best

ascribed to the structures and processes comprising the systems

being measured. Studying the nature of these intrinsic variations is

a complementary method of scientific inquiry that is also univer-

sal, yet not pursued as much as external factors in neural and

behavioral studies. One reason is that researchers often view

intrinsic variations as uninformative with regard to functions like

perception, attention, memory, and language. However, recent data

and theory suggest otherwise.

Intrinsic variations are defined empirically as variations ob-

served when experimental manipulations are minimized, for ex-

ample, when spontaneous neural activity is measured in cortical

slice preparations (Beggs & Plenz, 2003), or in brain images

during the wakeful resting state (Raichle & Gusnard, 2005), or

when behavioral acts are repeated with minimal variation in in-

tentions and measurement conditions (Beltz & Kello, 2006). If one

assumes that intrinsic variations are the sum of many unknown

effects that are largely independent of each other, then whatever

the nature of those individual effects might be, their sum will often

tend toward “white noise,” that is, random samples drawn from a

normal distribution (for an exception, see Granger, 1980; Granger

& Joyeux, 1980). Results, however, do not bear out this assump-

tion.

In many different studies of neural and behavioral activity,

intrinsic variations have been reported to resemble scaling laws

across a wide range of scales (Kello et al., 2010), which are

decidedly unlike white noise. Some are power law tails in distri-

butions of measured values, such as reaction times (Holden, Van

Orden, & Turvey, 2009) and bursts of neural activity (Poil, van

Ooyen, & Linkenkaer-Hansen, 2008). Others are long-range tem-

poral correlations in measured time series, that is, 1/f scaling, also

known as 1/f noise. 1/f fluctuations have been found in estimates

of length and duration intervals (Gilden, Thornton, & Mallon,

1995), for instance, and in electro- and magnetoencephalogram

spectra (EEG and MEG; Linkenkaer-Hansen, Nikouline, Palva, &

Ilmoniemi, 2001). These findings add to a vast literature on scaling

laws found throughout nature, but their general meaning is an

ongoing matter of debate (Gilden, 2001; Van Orden, Holden, &

Turvey, 2003; Wagenmakers, Farrell, & Ratcliff, 2004).
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Currently, no theory is widely accepted to explain scaling laws

in variations intrinsic to neural and behavioral activity, although

explanations have been offered for each given result. The more

general debate is between explanations that consider widespread

scaling laws as coincidences due to multifarious origins, versus

explanations that consider scaling laws as expressions of general

principles of cognitive function at both neural and behavioral

levels of analysis. The same basic debate between domain-specific

versus domain-general explanations of scaling laws has been un-

folding throughout the sciences for decades, suggestive of a deep

issue at stake.

If scaling laws are expressions of general principles, then those

principles may illuminate relations between neural and behavioral

scales of analysis. Relating these scales is a central issue in the

psychological and cognitive sciences, and connectionist theories

are perhaps the most explicit and formal in addressing this issue to

date. Connectionist models use networks of neuron-like processing

units to account for behavioral data using neural-like mechanisms

of learning, memory, and representation. Thus, neural principles

and mechanisms are explicitly related to behavioral phenomena,

but models are mostly silent with regard to intrinsic variations. The

reason can be traced back to a point made earlier—most theories

of cognition are empirically evaluated in terms of their ability to

explain and predict variations caused by external factors. For

instance, many connectionist models aim to simulate the effects of

stimulus or task manipulations on reaction times or response

errors. These manipulations cause extrinsic variations in behavior

and, by extension, in the underlying cognitive processes.

Connectionist models are designed to produce extrinsic varia-

tions in response to changing inputs and feedback (stimuli and task

conditions, respectively). Simulations are typically aimed at ag-

gregate data in which individual variations have been averaged

away. This level of theorizing is the foundation of connectionist

modeling, and the behavioral and cognitive sciences in general, but

it comes with an implicit disregard for intrinsic variations. This

disregard has a consequence that is made clear by asking, what do

models do when inputs and error signals are held constant, that is,

when a model’s intrinsic variations are expressed? Either imme-

diately or after a few simulation cycles, standard feed-forward

networks with sigmoidal or similar units will produce no variations

at all, because unit inputs and outputs are driven entirely by

external factors. A learning mechanism like back-propagation may

introduce some initial, transient variations until error is minimized,

but these variations would carry no theoretical weight. One could

impose “intrinsic” variability by injecting noise, but this would be

hollow without a noise mechanism and theoretical motivation for

it.

Recurrent and oscillatory networks have a more meaningful

capacity for intrinsic variations that settle on point or limit cycle

attractors (Cao & Wang, 2000; Ermentrout, 2001; Large & Kolen,

1994; Spivey, 2007). These models are either constrained to pro-

duce point or limit cycle attractors (e.g., Carpenter & Grossberg,

1987; Hopfield, 1982), or shaped by learning mechanisms to

produce them (e.g., Harm & Seidenberg, 1999; Hinton, 1989).

Attractors have proven powerful for simulating behavioral data

and theorizing cognitive processes, but they are ill-equipped to

handle intrinsic variations. The problem is that when extrinsic

sources of variability are held constant, point attractors produce no

variations and limit cycles produce only regular variations. By

contrast, biological and cognitive systems produce highly irregular

variations when extrinsic factors are minimized, sometimes as

fluctuations around more regular variations (e.g., variations in

EEG waves).

A smaller number of connectionist models have been designed

to produce more sustained, complex variations in the form of

learned trajectories through activation space, as in certain kinds of

simple recurrent networks (Elman, 1990) and continuous-time

recurrent networks (Pearlmutter, 1995). However, even for these

models, the emphasis is on variations in extrinsic factors and how

they cause variations in the learning and production of trajectories.

The capacity for intrinsic variation is left unexamined. Boltzmann

machines and related generative models provide an interesting

counterpoint to the above examples (Ackley, Hinton, & Sejnowski,

1985; Hinton, Osindero, & Teh, 2006), because stochastic, intrin-

sic variability is essential for learning and modeling distributions

over inputs and features. However, these stochastic variations

typically are not intended to simulate neural or behavioral varia-

tions.

In the present study, a spiking neural network model is devel-

oped to simulate the complex, irregular variations that manifest as

scaling laws in measures of intrinsic neural and behavioral activity.

The model relates these scaling laws to computational capacity

and, in doing so, provides a bridge for modeling cognitive perfor-

mances. There are three main features and principles of the model

to highlight up front:

• Spike dynamics. Connectionist models mostly use continuous

activation functions, mainly because they are differentiable. In-

stead of continuous activations, the present model uses discrete

events on neuron-like units at instantaneous points in time. Dis-

crete events are used mainly because they can be counted and

because tracking numbers of events is essential to theorizing

dynamics as a branching process (Harris, 1989). Also, neural

network activity can be modeled using discrete events correspond-

ing to postsynaptic potentials (PSPs) and action potentials (spikes).

A PSP may be followed by a spike, which may trigger further PSPs

and spikes. In the present model, these events are simulated

asynchronously with arbitrary precision in time (i.e., event-based

processing; Mattia & Del Giudice, 2000).

• Critical branching. In theorizing spike dynamics as a branch-

ing process, each spike may be “blamed” for branching into one or

more subsequent spikes. The branching ratio of a network is the

expected number of branches per spike, and a one-to-one ratio is

known as critical branching (Zapperi, Lauritsen, & Stanley, 1995).

The critical branching point is an attractor of the present model by

virtue of a simple, local mechanism that enables and disables

connections among units. Critical branching regulates spike prop-

agation, and spike dynamics exhibit scaling laws by virtue of

attraction to a critical point (Beggs & Plenz, 2003; Haldeman &

Beggs, 2005).

• Reservoir computing. Critical branching spike dynamics are

shown to support a generic capacity for computation that does not

rely on learning per se. The idea of using the generic capacity of

dynamics for computation goes by the name of reservoir comput-

ing and has been studied extensively in recent years (Jaeger,

Maass, & Principe, 2007; Maass, Natschlager, & Markram, 2002).

Reservoir computing techniques are used herein to assess the

computational capacities of self-tuned networks and show one way
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that critical branching networks may support neural and cognitive

functions.

The study begins with a review of empirical work on intrinsic

variations, first in neural activity and then behavioral activity.

Critical phenomena are then introduced as theoretical background,

followed by a formal description of the critical branching neural

network model. Three sets of simulations are reported that account

for scaling law observations across multiple measures of neural

and behavioral activity, including the pervasiveness of 1/f scaling

in human behavior (Kello, Anderson, Holden, & Van Orden, 2008;

Kello, Beltz, Holden, & Van Orden, 2007). Scaling laws are

simulated by virtue of the critical branching mechanism that is

formulated, which also results in maximal memory and encoding

capacities of spike dynamics. The study ends with a discussion of

issues and questions raised by the model, from the perspectives of

physics, neuroscience, computer and information sciences, and

psychological and cognitive sciences.

The Character and Meaning of Intrinsic Variations

The study of intrinsic variations has been underway in neuro-

science for many years. One reason why neuroscientists have paid

attention to intrinsic variations is simply because neurons and

neural systems tend to exhibit ongoing, spontaneous spiking ac-

tivity. This is true in vitro as well as in vivo, and it is true for

single-cell recordings (Stein, Gossen, & Jones, 2005), local field

potentials (LFPs; Arieli, Sterkin, Grinvald, & Aertsen, 1996),

EEGs (Laufs et al., 2003), MEGs (Z. Liu, Fukunaga, de Zwart, &

Duyn, 2010), and brain imaging (Raichle et al., 2001).

These measures of intrinsic neural activity are different in many

respects. As examples, single-cell recordings measure individual

spikes, LFPs measure extracellular changes in voltage due to PSPs

occurring within millimeters of an electrode, EEGs measure

summed PSPs of many thousands or millions of aligned neurons

near the scalp, and functional magnetic resonance imaging (fMRI)

measures correlates of hemodynamics. The neural mechanisms

responsible for variations observed in each of these measures are

complex and multifaceted, and their differences give rise to dif-

ferent kinds of variations.

However, with due respect to differences, scaling laws stand out

as a common finding throughout these measures of neural activity.

In single-cell recordings, a number of scaling laws have been

found in the variability of spike times, including interspike inter-

vals (ISIs; Baddeley et al., 1997), the coefficient of variation

(Usher, Stemmler, Koch, & Olami, 1994), and the temporal clus-

tering of spikes (Teich, Heneghan, Lowen, Ozaki, & Kaplan,

1997). In LFP, EEG, and MEG recordings, measurements of

bursting in activity have been found to be distributed in power

laws known as “neuronal avalanches” (for a recent review, see

Hahn et al., 2010), where the probability of observing a burst of

size S goes as P(S) � 1/S�, where � � 3/2. Temporal fluctuations

at all levels have been found to resemble 1/f scaling laws (see

Bédard & Destexhe, 2009), where spectral power is related to

frequency as S(f) � 1/f�, with � � 1. Measurement conditions in

these studies elicited intrinsic variations, because they were mostly

devoid of experimental manipulations across measurements. For in

vitro recordings (Beggs & Plenz, 2003), cortical slices are pre-

pared to elicit spontaneous bursts of activity. In single-cell record-

ings from awake animals (Hahn et al., 2010), stimuli are neutral

and unvaried. In recordings of human brain activity (Poil et al.,

2008), participants are instructed to simply hold still with their

eyes closed.

The study of intrinsic variations is not as well developed in

behavioral activity as it is for neural activity. One reason is that it

is unclear how to elicit intrinsic variations in behavior, because

behavioral activity is not spontaneous in the same way that neural

activity is. Kello and colleagues (Kello et al., 2008, 2007) have

endeavored to define the conditions for measuring intrinsic vari-

ations so they apply to both neural and behavioral activity. In

particular, intrinsic variations are elicited most clearly when min-

imizing external perturbations, manipulations, and contingencies

in measurements. One way to satisfy these conditions in behavior

is to instruct participants to minimize all movements, as is done

when participants stand still and measurements are taken of un-

avoidable sways in posture (Riley & Turvey, 2002). While pos-

tural sway has been used as an index of cognitive activity (Shock-

ley, Santana, & Fowler, 2003), minimization of movements is

generally limited as a measurement protocol for studying cognitive

functions. A broader way to elicit intrinsic variations is to consider

that repetitive behaviors also minimize external factors, specifi-

cally with respect to measurements taken equivalently across rep-

etitions. Thus, intrinsic variations can be elicited in any repeated

behavior and measured more clearly as repetitions are executed

more consistently from one to the next.

Ironically, repeated measures are commonly used to elicit subtle

extrinsic variations in relatively small changes to stimuli or re-

sponses across repetitions. For instance, repeated responses to

words or pictures are widely used in many areas of experimental

psychology, and at the level of stimulus or response category,

conditions do not change across trials. Subtle, within-category

changes appear to create only small extrinsic variations (typically

far less than half the variance), and variations due to measurement

error are also demonstrably small (e.g., Gilden, 2009; Kello &

Kawamoto, 1998). Thus, the largest portion of variance under

these conditions is intrinsic by this definition. This portion grows

even larger when stimulus and response conditions are held as

constant as possible across trials, for example, by repeating the

same particular movement or same particular utterance over and

over again.

Intrinsic variations in behavior have been examined in all the

conditions just reviewed, and as with neural activity, scaling laws

appear widespread in distributional and temporal measures of

behavioral activity. For instance, postural sway exhibits 1/f scaling

(Duarte & Zatsiorsky, 2001), and pole balancing exhibits power

law distributions in the amplitudes of excursions from the center

point (Cluff & Balasubramaniam, 2009). In more cognitive per-

formances, reaction times to words have been found to be well

modeled by mixtures of lognormal and power law distributions

(Holden et al., 2009), and fluctuations in naming latencies and

lexical decision times have both been found to follow 1/f scaling

laws (Van Orden et al., 2003). Fluctuations follow 1/f scaling laws

even more closely when behaviors are even more repetitive, for

example, when the same time or distance interval is estimated

repeatedly (Gilden et al., 1995) or when acoustic measures are

taken of the same word spoken repeatedly (Kello et al., 2008).

None of these data sets follow scaling laws perfectly, but they

comprise a body of findings that calls for explanation. Why do
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measures of intrinsic variations so often resemble scaling laws, and

why are those laws more closely followed when conditions are

better suited to measuring intrinsic variations? Some researchers

who examine scaling laws nonetheless put this question aside,

because they are more interested in formulating domain-specific

explanations. For instance, oscillatory timing models applied to

bimanual finger tapping have been modified to produce 1/f scaling

in their fluctuations (Torre & Wagenmakers, 2009), but the general

association between scaling laws and intrinsic variations in neural

and behavioral activity falls outside the purview of such domain-

specific models.

It has been argued that scaling laws are generally associated

with intrinsic variations because scaling laws are pervasive to

interactions among components of biological and cognitive sys-

tems (Kello et al., 2007). Pervasiveness in this sense is based on

two premises. First, all measures of biological and cognitive sys-

tems reflect interactions among components at some scale of

analysis, be they molecules, neurons, organs, organisms, or group-

ings of organisms (Simon, 1973). Second, all measures of intrinsic

variations reflect the general character of these interactions under

a relatively constant flow of matter and energy, due to the mini-

mization of extrinsic variations. Given these premises, the word

“pervasive” is used to denote the hypothesis that scaling laws are

not restricted or isolated to particular components of these systems.

Instead, all component interactions may exhibit scaling laws under

conditions of intrinsic variation, hence their hypothesized perva-

siveness.

Domain-specific hypotheses and the pervasive hypothesis are at

two different levels of analysis, and so do not compete directly.

However, domain-specific hypotheses often assume that scaling

laws originate from specific components and are therefore isolable

to those components. This broader hypothesis of isolability is at

the same level as pervasiveness, and these two hypotheses make

competing predictions that have been tested in two previous stud-

ies. First, Kello et al. (2007) found that intrinsic fluctuations in

simple and choice key-press response times were uncorrelated

with those in the very same key-press durations, yet both exhibited

1/f scaling. Parallel yet uncorrelated streams of 1/f fluctuations are

accommodated by the pervasive hypothesis, provided that mea-

sures reflect distinct degrees of freedom in movement. The isolable

hypothesis must posit an independent scaling law component for

each mutually independent stream of 1/f fluctuations—two in this

case.

Kello et al. (2008) argued that such isolable components would

be difficult to posit given the pattern of results, and a subsequent

study provided an even stronger test of the isolable hypothesis.

Many mutually independent streams of intrinsic variation were

elicited in the repetitions of a spoken word (“bucket”), and all

acoustic measurement series exhibited 1/f scaling. The exact num-

ber of independent streams is difficult to determine, but Kello et al.

estimated about 30 linearly separable streams using principal com-

ponents analysis. In a subsequent reanalysis, Moscoso del Prado

Martín (2011) applied information theoretic analyses to the data

and estimated about 12 mutually independent streams. By either

count, the isolable hypothesis requires a painfully ad hoc prolif-

eration of separate scaling law components, whereas the pervasive

hypothesis accommodates the results naturally: There are many

degrees of freedom in the speech articulators that are reflected in

speech acoustics, and each has the capacity to exhibit distinct

intrinsic variations (Kello, 2011).

Pervasive Scaling Laws and Criticality

Based on results discussed thus far, let us accept for now that

scaling laws of various kinds are widely associated with intrinsic

variations in neural and behavioral activity and are pervasive to

them. If intrinsic variations always reflect inherent component

interactions, then what kind of interactions would lead to pervasive

scaling laws? Physics provides us with a ready answer in critical

phenomena studied in statistical mechanics (Sornette, 2004; Stan-

ley, 1987).

The field of statistical mechanics describes how the macro-

scopic quantities of systems arise statistically from their micro-

scopic components and interactions among them. For some simple

systems, interactions can be disregarded because macroscopic

quantities are simple aggregates of component quantities, such as

heat being an aggregate of particle energies in a gas. In more

complex systems, however, microscopic interactions play an es-

sential role in macroscopic behavior, as in Rayleigh–Benárd pat-

terns of convection currents created by heat flow in liquids under

certain thermodynamic conditions. Specifically, critical points are

formal conditions under which macroscopic quantities may be

significantly affected by microscopic interactions. Criticality has

provided scientists of all kinds with a means of modeling orga-

nized patterns observed in nature, whose origins would otherwise

have no explanation. These patterns include pervasive scaling

laws.

So what kinds of interactions will yield critical points and

associated scaling laws? A comprehensive treatment of this ques-

tion is beyond the present scope (for reviews, see Bak & Paczuski,

1995; Jensen, 1998), but for the present purposes, critical points

occur when interactions are poised to take a system toward mul-

tiple possible macroscopic states (i.e., poised near a second-order

phase transition). Many illustrative examples can be drawn from

across the sciences, perhaps the most famous being the Ising model

of ferromagnetism (see Kello & Van Orden, 2009). A more per-

tinent illustration can be drawn from the interactions among spik-

ing neurons, particularly with respect to excitatory versus inhibi-

tory effects.

Signaling among neurons can be expressed in terms of three

types of voltages—membrane potentials, PSPs, and action poten-

tials. When the membrane potential of a given neuron exceeds

threshold, an action potential triggers PSPs over its axonal syn-

apses. PSPs from excitatory neurons increase the membrane po-

tentials of postsynaptic neurons, whereas PSPs from inhibitory

neurons decrease them. There also may be tonic effects on voltages

due to leakage and ambient concentrations of neurotransmitters,

for instance. In terms of statistical mechanics, neurons and syn-

apses are the microscopic components, and neuron interactions are

expressed as the interplay of excitatory and inhibitory voltage

signals among those components. The macroscopic variable of

interest is the net potential Vnet, and the network may head toward

two different macroscopic states depending on the long-term ex-

pected value of its derivative, dVnet/dt. If dVnet/dt � 0 on average,

then spike rate grows to a maximum that depends on refractory

periods and membrane resistances. If dVnet/dt � 0, then spike rate

diminishes to zero.
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Maximal and minimal spike rates are two possible macroscopic

states of spiking neural networks. Like ideal gases, the interactions

among neurons can be disregarded when networks converge to-

ward one of these two states. In order for neural networks to

behave differently from gases, they must stay near dVnet/dt � 0,

where Vnet is a moderate level of excitiation. When dVnet/dt � 0,

microscopic interactions may have effects on macroscopic patterns

of spiking over neurons. A mean excitatory voltage is maintained

between neurons and their extracellular environments, and a bal-

ance is struck between excitatory and inhibitory effects on mem-

brane potentials. Balancing excitation and inhibition is a well-

known concept studied in slice preparations of neural tissue

(Higley & Contreras, 2006; Shew, Yang, Petermann, Roy, &

Plenz, 2009; Shu, Hasenstaub, & McCormick, 2003) as well as

computational models of neural networks (Brunel, 2000; van

Vreeswijk & Sompolinsky, 1996), although this balance is not

always examined as a critical point. Excitatory and inhibitory

effects can be carefully balanced by the modeler, or homeostatic

mechanisms can be formulated to regulate this balance. If formu-

lated as a critical point, then spiking activity is theorized to exhibit

critical phenomena (Shin & Kim, 2006; Usher, Stemmler, &

Olami, 1995), including scaling laws.

Computational Capacity and Critical Branching

A spiking model that maintains dVnet/dt � 0, and in doing so

exhibits pervasive scaling laws in neural and behavioral activity,

would simulate a wide range of empirical results heretofore not

captured by one model. However, behavioral and cognitive scien-

tists might question the relevance of such a model to theories of

cognitive function. The model would be relevant to neural function

because, without this balance, spikes would become either useless

or unavailable for coding information. However, from a function-

alist point of view, balancing excitation and inhibition may only

provide the physical basis for cognitive function, without directly

informing theories of cognition.

The alternative point of view is that, as a critical point, this

balance confers computational properties that are adaptive and

relevant to cognitive functions. This alternative has its roots in

work on cellular automata showing that, with an appropriate set of

update rules, the inherent dynamics at critical points between

order-disorder transitions have a generic capacity for transmission,

storage, and modification of information (Crutchfield & Young,

1990; Langton, 1990; Packard, 1988). Subsequent studies have

further explicated this hypothesis (Mitchell, Hraber, & Crutchfield,

1999) and have developed other so-called “edge of chaos” models

more akin to neural networks (Bertschinger & Natschlager, 2004;

Kwok & Smith, 2005).

One way to conceptualize the relationship between criticality

and cognitive function is to consider the property of metastability

(Bressler & Kelso, 2001; Kello & Van Orden, 2009; Kelso, 1995;

Rabinovich, Huerta, Varona, & Afraimovich, 2008). Recall that in

near-critical systems, interactions among microscopic components

may cascade across scales to have macroscopic effects. Thus, the

effects of external perturbations extend forward in time and de-

pend on the history of activity leading up the perturbations in

question. That is, dynamics are context-dependent (Van Orden,

Kello, & Holden, 2010). Moreover, multiplicative interactions

near critical points mean that macroscopic patterns reflect con-

junctions and contingencies among microscopic activities. The

consequence is that metastability may support targeted, nonlinear

computations based in spatially and temporally extended inputs

(for an optimization example, see Kwok & Smith, 2005).

The mathematical and computational studies reviewed thus far

suggest that critical points could be central to cognitive function,

and also provide a comprehensive explanation of pervasive scaling

laws in neural and behavioral activity. However, these studies

focused on the analytic properties of models, and they formulated

critical points in terms that may be difficult to relate to brain and

bodily functions. By contrast, balancing excitation and inhibition

is general to brain and bodily functions and may be expressed in

mechanisms that are at least consistent with biological evidence.

The main goal of the present study is to formulate one such

mechanism and demonstrate its ability to explain pervasive scaling

laws in neural and behavioral activity.

Recent work leading up to the present model began by charac-

terizing spike dynamics as a branching process (Kello & Kerster,

2011; Kello, Kerster, & Johnson, 2011; Kello & Mayberry, 2010).

In any given network, an ancestor spike occurring on neuron i at

time t may subsequently “branch” into some number of descendant

spikes at times t � �k, where descendant spikes occur on neurons

directly connected via axonal synapses, indexed by k. Thus, sub-

sequent spikes triggered downstream do not count as descendants

of neuron i, but rather as descendants of their directly connected

neurons.

The expected number of descendants for each given ancestor

spike is defined as the branching ratio, �	 
Npost�, where Npost is

counted for each given ancestor spike (the denominator is implic-

itly one). The branching ratio of a spiking network reflects its

proportion of excitation versus inhibition, taking into account other

factors such as leakage and sources of voltage input to the network.

This relation between branching ratio and dVnet/dt holds for the

following reasons. If dVnet/dt � 0, then spike rates must decrease

on average over time, which will cause � � 1. If dVnet/dt � 0, then

rates must increase, which will cause � � 1. Excitatory and

inhibitory effects are balanced near the critical branching ratio,

� � 1.

The correspondence between � � 1 and a critical point at

dVnet/dt � 0 is supported by analyses showing that critical points

can in fact exist at critical branching (Lübeck, 2004). Critical

branching dynamics have been examined in recent studies and

have been found to have computational properties adaptive and

relevant to cognitive function (de Arcangelis & Herrmann, 2010;

Haldeman & Beggs, 2005; Kinouchi & Copelli, 2006), as they

should if the corresponding critical point yields “edge of chaos”

properties reviewed earlier. Moreover, critical branching processes

have been shown to produce neuronal avalanche scaling law

dynamics (Benayoun, Cowan, van Drongelen, & Wallace, 2010),

as well as 1/f scaling law dynamics (Ihlen & Vereijken, 2010), as

they should if critical points are generally associated with scaling

laws.

These studies indicate that scaling laws and computational ca-

pacity may be associated with critical branching spike dynamics.

However, they do not demonstrate pervasive scaling laws in both

neural and behavioral activity, and they do not demonstrate a

connection between critical branching, scaling laws, and compu-

tational capacity that can be used to model cognitive functions.

Also, most of them do not explain how neural networks might
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grow and maintain themselves near critical branching. de Arcan-

gelis and colleagues (de Arcangelis & Herrmann, 2010; de Arcan-

gelis, Perrone-Capano, & Herrmann, 2006) have addressed these

aims, to some degree, with spiking network models that incorpo-

rate membrane and synaptic update rules tailored to achieve crit-

ical branching. Collectively, they found avalanche and 1/f scaling

law dynamics at a neural level of analysis, although criticality may

not be necessary to obtain their results. They also found neuron

spike patterns to be nonlinear functions of input patterns, such as

the XOR function that has similarly been used to examine the

computational capacity of back-propagation in connectionist mod-

els (Rumelhart, Hinton, & Williams, 1986).

Spiking Network Model With Self-Tuned Critical

Branching

The present work builds upon previous efforts to formulate a

simple spiking network model. The model is simple in that it uses

canonical leaky integrate-and-fire (LIF) neurons with standard

synaptic weights. The canonical LIF network is extended by as-

sociating one binary state with each neuron’s set of axonal syn-

apses, and a second binary state with each individual synapse.

These two binary states are switched according to simple rules that

are local to each neuron and its synapses. The rules make the

critical branching point an attractor of network dynamics, which

has a homeostatic effect on spike activity.

One binary switch is associated with each individual synapse,

such that each synapse can be in either an enabled or disabled

state. Enabled synapses allow PSPs to be generated according to

their synaptic strengths (as in the canonical model), while disabled

synapses do not generate PSPs. Enabled and disabled states are

consistent with evidence that, at least for some neurons, each

synapse may switch between only two levels of strength, where

one level is low enough to effectively generate no PSP (O’Connor,

Wittenberg, & Wang, 2005; Petersen, Malenka, Nicoll, & Hop-

field, 1998). In the present model, synapses are enabled and

disabled in order to increase and decrease the estimated branching

ratio �i local to each neuron i—the more enabled axonal synapses

for a given neuron, the greater the expected branching ratio 
��.

This relation is straightforwardly true for excitatory neurons with

excitatory axonal synapses, because excitatory PSPs may trigger

spikes. Although less straightforward, this relation also holds true

for the enabling and disabling of inhibitory synapses.

To see why the enabled/disabled switch works the same for both

excitatory and inhibitory synapses, the second binary switch must

be introduced. The second switch is associated with each neuron’s

axonal tree of synapses and can be in either an unblamed or

blamed state. At the time when a neuron spikes, its axonal tree of

synapses is set to the unblamed state. That is, the spike has not yet

been blamed for branching into one or more spikes. Subsequently,

each time a spike occurs on the other side of one of its enabled

axonal synapses, there is a chance that the axonal tree will be set

to its blamed state. Importantly, assignment of blame does not

depend on whether a neuron is excitatory or inhibitory—an excit-

atory neuron can be blamed directly for helping to trigger a spike,

or an inhibitory neuron can be blamed indirectly for not inhibiting

a spike. The critical branching mechanism uses the unblamed/

blamed status of an axonal tree as a local estimate �i that holds

during each ISI. This estimate is used probabilistically to disable

synapses when �i � 1, and enable when �i � 1.

A formal description of the model centers on the membrane

potential update event that occurs for each input j to each neuron

i (see Figure 1 for equations in pseudocode format). Inputs may be

PSPs from neurons projecting into neuron i via its dendritic syn-

apses, or inputs may come from external sources. The update event

starts with adding the input to the membrane potential and apply-

ing exponential decay that has occurred since neuron i’s previous

update event:

Vi,t ¢ Vi,t’e
��i(t � t’) � Ij,t

where V is the membrane potential, � is the leak rate, t is the

current time, t= is the last time that neuron i was updated, I is the

input, and all variables except indices can be real-valued. This

update rule is asynchronous in that each input may occur at any

time t, and V is updated instantaneously, with a floor at zero. If

V � i, a neuron-specific threshold, then an action potential (spike)

is generated. At the same time, V is instantaneously reset to �i, a

neuron-specific reset value, and neuron i is set to a refractory state

for one unit time interval, during which no action potential can

occur. The spike spawns a new PSP event Ik for each enabled

axonal synapse k of neuron i, after a synapse-specific delay �k. The

value Ik corresponds to �k, the weight on synapse k. �k � 0 for

excitatory neurons, and �k � 0 for inhibitory neurons.

Each spike also triggers two local processes that comprise the

critical branching self-tuning mechanism (see Figure 2). The ax-

onal process begins by choosing one disabled axonal synapse, and

the dendritic process begins by choosing one enabled dendritic

synapse. There may be multiple disabled axonal synapses and

PSPj,t : Ij,t = ωj

PSPk,t+τk

?, itiV θ>

itiV κ←,

tj

tt

titi IeVV i

,

)'(

',, +←
−−λ

PSPk,t+τk

τk

Incoming PSP

Update Membrane
(and floor at zero)

Crossed Threshold?
(and not in refractory)

Reset Membrane

Outgoing PSPs for

enabled synapses
ωk

τk

ωk

Figure 1. Pseudocode diagram for one membrane potential update, for

one dendritic synapse of a neuron. In this example, the postsynaptic

potential (PSP) causes the corresponding membrane potential to cross

threshold, thereby triggering a membrane potential reset, along with two

subsequent PSPs over two enabled axonal synapses. Operations up to the

membrane reset happen instantaneously at time t but are executed in order

from bottom to top. Outgoing PSPs trigger additional membrane potential

updates at times t � �k.
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multiple enabled dendritic synapses, but only one is chosen from

each set. The choice is arbitrary with respect to the self-tuning

mechanism, but for sake of clarity, suppose each synapse is chosen

at random from each set (an alternate method is discussed and used

below). If the chosen axonal synapse is in its unblamed state, as all

synapses are initially, then the synapse is enabled with probability

�. If the chosen dendritic synapse is in its blamed state, it is

disabled with probability �. Finally, the axonal process ends by

setting neuron i’s axonal synapses to their unblamed states, and the

dendritic process ends by setting neuron j’s axonal synapses to

their blamed states. Neuron j is the sending neuron of the chosen

dendritic synapse. Note that every synapse is axonal with respect

to its sending neuron and is dendritic with respect to its receiving

neuron.

These local processes serve to make critical branching, 
�� � 1,

an attractor of synaptic dynamics. They do so because the un-

blamed/blamed switch serves to code whether a spike on neuron i

is blamed for 0, 1, or �1 spikes during each ISI, that subsequently

occur on the receiving end of its enabled axonal synapses. If

neuron i spikes twice without receiving blame, then �i � 0 for that

ISI. To move up toward �i � 1, one axonal synapse is enabled

with probability �. By contrast, if neuron i receives blame more

than once during an ISI, then �i � 1. To move down toward �i �

1, one axonal synapse is disabled with probability �, for each

blame event after the first. The choice of which axonal synapse to

enable or disable does not matter with respect to convergence

toward critical branching, as long as 
�� is increased and decreased

by the same amount, on average.

For the present simulations, a simple pair of choice rules was

formulated to sample broadly from sets of eligible synapses and to

evoke a “rich get richer” dynamic that drives some synapses to

become permanently enabled. Specifically, (1) the axonal synapse

disabled for the longest time was chosen to be enabled, and (2) the

synapse enabled for the shortest time was chosen to be disabled.

This choice was local in that longest and shortest times were

relative to other axonal and dendritic synapses of a given neuron,

respectively. Rule 1 ensures that the mechanism cycles through

eligible synapses to be enabled, and Rule 2 creates a “backbone”

of permanently enabled synapses. Some synapses are never dis-

abled because there are always more recently enabled synapses to

disable.

The creation of backbone synapses may help to minimize inter-

ference between homeostatic mechanisms like critical branching,

and learning mechanisms like long-term potentiation and depres-

sion. In particular, the strengths of backbone synapses can be

adjusted by learning mechanisms without being disabled by the

critical branching mechanism. Note that the above choice rules

require local timers to track how long each synapse has been in its

current state. The timer and max/min choice mechanisms could be

implemented, for example, by constant decay in the concentration

of some chemical at each synapse, plus a parallel race process

where the winner tends to be the synapse with the greatest or least

concentration. As simple as this rule is, one might prefer an even

simpler one, such as choosing at random from eligible synapses.

Choosing at random had no substantive effect on results, so it is

not reported here.

Critical branching is generic enough to be implemented with

any kind of asynchronous spiking neuron, in any given network.

The general action of the proposed mechanism is to approach

critical branching by altering a network’s effective connectivity

(the set of enabled synapses) within the bounds of its potential

connectivity (the set of all synapses). For the mechanism to work,

critical branching must be attainable given potential connectivity,

network parameters, and inputs. For instance, branching will re-

main subcritical if a network has overly weak synapses relative to

its spike thresholds, or too few synapses, or too little net excitation.

This is true even if all excitatory are enabled, and all inhibitory

synapses are disabled.

Perhaps less obviously, branching will go supercritical if spikes

introduced by external source inputs have no way to “exit” the

network via “sink” neurons. Sink neurons are those whose spikes

do not trigger the critical branching mechanism and, hence, are not

blamed for subsequent effects on network activity. These spikes

may propagate to a different network or they may simply dissipate

away. Without sink neurons, a network would be effectively a

closed system, like a pool with an inflow of water but no outflow.

Critical branching would lead to the accumulation of spikes gen-

erated from input sources, to the point of maxing out the spike

rates of neurons. Thus, the architecture of a critical branching

network must support a flow of spikes from source to sink,

statistically speaking.

To make this statistical flow transparent, networks were struc-

tured to have distinct groups of source, reservoir, and sink neurons

(see Figure 3). Source neurons were excitatory and had no incom-

ing connections. They received all inputs from sources external to

the network in question and projected to reservoir neurons. All

projections were random and relatively sparse, for sake of sim-

plicity and size. Reservoir neurons were either excitatory or inhib-

itory, received projections from input neurons and other reservoir

neurons, and projected to other reservoir and sink neurons. Sink

neurons received projections from reservoir neurons and had no

projections back to the network. Thus, their status as excitatory or

inhibitory is irrelevant to the network in question.

= Disabled synapse = Unblamed syapses

= Enabled synapse = Blamed synapses

1. Choose a disabled synapse

2. If       , enable with probability ρ

3. Set to

B

B?

U?

itiV θ>,

U

U

1. Choose an enabled synapse

2. If       , disable with probability ρ

3. Set to

B

B

Spike triggers axonal & dendritic processes

U

Figure 2. Pseudocode diagram of critical branching mechanism. Axonal

and dendritic processes unfold independently, in orders listed. Unblamed/

blamed states are switched uniformly for each set of axonal synapses.
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This network architecture is similar in appearance to a multi-

layer perceptron with hidden unit recurrence, but there are impor-

tant differences. Source neurons are similar to input units in

standard connectionist models, but reservoir and sink neurons are

not like hidden units and output units, respectively. Sink units do

not receive targets, and reservoir units do not learn mediating

representations between inputs and outputs. Rather than map in-

puts onto outputs, the present architecture describes a voltage

source that creates a flow of spikes from source to sink via

reservoir neurons. Recurrent connections allow spikes to circulate

in the reservoir before leaving via the sink. Perfect critical branch-

ing corresponds to a perfectly conserved flow of spikes, in that

they enter only via the source, and exit only via the sink. Subcriti-

cal branching means that spikes “leak” out of the reservoir,

whereas supercritical branching means that spikes multiply as they

flow through the reservoir.

Another important difference is that, in the present model, there

is no mapping to learn from source to sink. The model is designed

to engage homeostatic actions of the critical branching mechanism

and to examine the resulting variations in spike activity (Simula-

tion 1), the effects on computational capacity (Simulation 2), and

the ability to simulate behavioral data (Simulation 3). Learning

falls outside the present scope, but in Simulation 1, the compati-

bility of critical branching is tested with respect to a mechanism of

stable Hebbian plasticity known as spike timing dependent plas-

ticity (STDP; Dan & Poo, 2004; Markram, Lübke, Frotscher, &

Sakmann, 1997). Critical branching and STDP are engaged for a

common set of neurons and synapses to test whether STDP might

interfere with convergence toward critical branching.

Another possible way that homeostatic and learning mecha-

nisms may avoid interfering with each other is that they may

operate on distinct sets of neurons and synapses. Critical branching

networks may regulate flows of spikes into other networks whose

patterns of activity are shaped by task demands. Separating the

actions of these mechanisms should help minimize any possible

interference between them, but the idea of homeostatic, unlearned

networks is foreign to connectionist models like multi-layer per-

ceptrons. What would be the function of networks that just regulate

their flows of spikes?

One possible answer is that such networks may provide generic

computational capacity for other networks to draw upon (Jaeger et

al., 2007; Maass et al., 2002). The rationale is that recurrent spike

dynamics are inherently nonlinear, and nonlinear dynamics are

inherently difficult to adapt via learning mechanisms. Thus, non-

linear dynamics may unfold in unlearned circuits, and learned

circuits may need to only implement linear transformations of

unlearned, nonlinear dynamics. This approach goes by the name of

reservoir computing, and critical branching may serve to enhance

the generic capacity of unlearned, computational reservoirs

(Bertschinger & Natschlager, 2004). This possible function of

critical branching is tested in Simulation 2.

Finally, critical branching networks are different from connec-

tionist networks in how they relate to neural and behavioral levels

of analysis. Most generally, critical branching is based on event

propagation through networks, rather than propagation of activa-

tions, error signals, or derivatives. Homeostatic regulation of event

propagation is applied to spikes herein, but it may also be applied

percepts, decisions, and any other kinds of neural, cognitive, and

behavioral events situated in networks. The present focus on spike

events and spike propagation contrasts with connectionist models

based on mean-field approaches, which average over spikes and

reintroduce them only as additional details, rather than essential

features.

One might also assume that spike-based modeling is truer to

neural mechanisms compared with mean-field approaches taken

by most connectionist models. However, the present model was

designed only to make fewer demands on neural mechanisms

compared with propagating error signals and derivatives in con-

nectionist models. The critical branching mechanism comprises

two spike-driven processes with binary signals and switches local

to each neuron and its synapses, plus extensions to axonal neigh-

bors of dendritic synapses. Evidence for spike-driven, switch-like

mechanisms is widespread (Lisman & McIntyre, 2001; McClung

et al., 2004), and binary-valued synaptic strengths are simpler than

those that can vary continuously over time. Also, synapses appear

to have many molecular switches associated with them (Hayer &

Bhalla, 2005; Micheva, Busse, Weiler, O’Rourke, & Smith, 2010),

and neighboring synapses appear to communicate via glial signal-

ing (Abraham, 2008; Stellwagen & Malenka, 2006). Thus, the

proposed mechanism of switching between blamed and unblamed

states is at least possible given the evidence.

Simulation 1: Critical Branching and Scaling Laws

Simulation 1 was designed to test whether (1) the model

achieves critical branching under conditions of intrinsic variation,

(2) critical branching spiking activity accounts for scaling laws

observed at multiple levels of analysis, (3) scaling laws are main-

tained when STDP is included, and (4) scaling laws depend on

engagement of the critical branching mechanism.

The network architecture shown in Figure 3 was used, with 40

source neurons, 1,000 reservoir neurons, and 100 sink neurons.

This network size was large enough to average out idiosyncrasies

of parameter initialization, yet was small enough to afford rapid

Source Neurons

External Excita�on

Reservoir Neurons

Sink Neurons

To Other Networks / Systems

Figure 3. Architecture of critical branching networks used in Simulations

1–3. The pattern of connectivity (denoted by solid arrows) makes trans-

parent the flow of spikes from source neurons to sink neurons via reservoir

neurons. Dashed arrows denote external voltage sources (bottom) and spike

dissipation (top).
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simulation and analysis. All source and sink neurons were excit-

atory, whereas 25% of the reservoir neurons were inhibitory. This

ratio is based on the general observation that excitatory neurons

outnumber inhibitory neurons by about 3 or 4 to 1 in cortex

(Maass, 1997). Synaptic projections between and within groups

were sparse at 10%—each neuron in the sending group projected

to each neuron in the receiving group with 0.1 probability (self-

projections were not allowed).

These architectural details determine the network’s capacity to

propagate spikes from source to sink. The mean rate of spike

propagation is further determined by the remaining free parameters

of the network, and the average source voltage per unit time. If

critical branching is a critical point between phases of decreasing

versus increasing spike rates, then with respect to the aims of

Simulation 1, these parameter settings should matter only insofar

as they co-determine a mean flow of spikes. This claim is based on

analyses from statistical mechanics showing that scaling laws

become “universal” as systems approach given critical points. That

is, the exponents of particular scaling laws approach theoretically

derived values that do not depend on mechanistic details of the

systems in question. Supporting this claim for the present model

would require mathematical analyses and/or extensive sampling of

the parameter space, both of which are beyond the present scope.

Instead, only two sets of parameter values were examined in

Simulation 1, chosen to sample two distinct regions of the param-

eter space. One set was chosen to embody the broad assumption

that neurons and synapses are heterogeneous, in that their param-

eter values vary considerably across neurons and synapses (Marder

& Goaillard, 2006). Generic ranges for parameter values were

chosen as defaults, and their values were initialized by sampling

randomly from either uniform or exponential distributions. The

other set was chosen to be homogenous, with variations only in the

axonal delays, which are required for asynchronous dynamics.

For the heterogeneous set, membrane leak rate, spike threshold,

and spike reset values were initialized randomly and uniformly in

the ranges 0.1 � � � 1.0, 1.0 �  � 2.0,

0.5 � � � 1.0, and 0.5 � � � 2.0. These variables were then fixed

during simulation runs, and informal tests indicated that results are

robust to moderate variations their ranges. Refractory periods were

held constant at one, and axonal delays �i were drawn randomly

from an exponential distribution with a mean of 3.0. The expo-

nential was used to simulate a wide range of delays, with fewer

longer connections (i.e., longer delays) due to space constraints

(Chklovskii, Schikorski, & Stevens, 2002). The probability � of

enabling and disabling synapses was set to 0.05. This probability

must be low to make the timescale of connectivity dynamics

substantially slower than that of voltage dynamics. A separation of

interacting timescales is an essential feature of self-organized

criticality (Jensen, 1998), and it was necessary to obtain the results

herein. For the homogeneous set, � � 0.1,  � 1.0, � � 0.5, � �

0.75, 0.5 � � � 1.0, and � � 0.05. The upcoming results for

heterogeneous parameters were not significantly different for the

homogeneous set (not reported).

Source voltages were implemented as externally driven spikes

on source neurons, and two source conditions were examined. In

the sequenced input condition, source neurons were driven to fire

in a precise order (neuron 1–40), cycling through all 40 neurons

every two unit time intervals, with even spacing (0.05 time units)

between successive source spikes. In the Poisson input condition,

source neurons were driven to fire at random, with intervals

between source spikes drawn randomly from an exponential dis-

tribution with a mean of 0.05. The sequenced condition is deter-

ministic, and the Poisson condition is stochastic, but variations in

the latter are restricted to timescales far below the predicted

scaling laws, which should extend over thousands of time intervals

and spikes. Therefore, for all but the smallest scales, extrinsic

variations are absent under both source conditions, which means

that scaling laws should be exhibited in the model’s intrinsic

variations.

Finally, STDP was implemented in a third, Poisson � STDP

network by updating the weight on each enabled synapse of each

neuron that spikes at each time t, using the following rules. For

each enabled dendritic synapse, �t ¢ �t’ � �e � �t � tpre�, where t=

is time of last weight update, tpre is time of last spike on the

presynaptic neuron, and � is a rate scale set to 0.01 herein. The

second term is added for excitatory neurons (standard STDP) and

is subtracted for inhibitory neurons (anti-STDP). For each enabled

axonal synapse, �t ¢ �t’ � �e � �t � tpost�, where tpost is time of last

spike on the postsynaptic neuron, and the � term is opposite the

dendritic side. The use of anti-STDP for inhibitory neurons serves

to strengthen inhibition when it comes shortly after spiking and is

supported by studies of inhibitory interneurons (Holmgren & Zil-

berter, 2001).

Critical Branching Results

One million source spikes were input for each simulation. Crit-

ical branching was engaged for the first 700,000 source spikes and

was disengaged thereafter. For the Poisson � STDP network,

STDP was engaged for the entire simulation. Local �i estimates

were tracked over the course of simulation by counting the number

of spikes attributed to each neuron i (i.e., number of times its
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Figure 4. Time series of local branching ratio estimates (averaged over

10 unit time intervals per data point) for Simulation 1. Solid lines show

ideal critical branching for each condition, and the dashed line shows when

the critical branching mechanism was disengaged (spike timing dependent

plasticity [STDP] remained engaged throughout).
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axonal synapses were blamed) during each of its ISIs. 
�� is shown

in Figure 4 for every 10 unit time intervals. 
�� starts at zero

because synapses were initially disabled, and then gradually ap-

proaches and remains near one while the critical branching mech-

anism was engaged. After the mechanism was disengaged, 
��

dropped slightly (but still remained near one), and its variance

increased substantially. These time series show that effective con-

nectivity was set and maintained such that 
�� � 1 while the

critical branching mechanism was engaged, and after it was dis-

engaged.

Evidence of 
�� � 1 indicates that excitatory and inhibitory

influences on spiking were balanced. To examine how this balance

was struck, numbers and weights of enabled excitatory versus

inhibitory synapses were examined after 700,000 source spikes.

The results, shown in Table 1, indicate that the tuning mechanism

worked consistently across the three network conditions. About 10

axonal synapses per excitatory neuron were enabled, and about

three times as many were enabled per inhibitory neuron. The sum

total of excitatory weight was less than half that of inhibitory

weight. Greater inhibitory weight was needed to strike a balance

between inhibitory and excitatory effects on spike propagation

because of the disproportionate number of excitatory versus inhib-

itory units (about 3 to 1), coupled with roughly equal firing rates

across units.

The excitatory/inhibitory balance was nearly perfect for excit-

atory units, as seen in � estimates near one for excitatory units.

However, spike propagation from inhibitory units was slightly

subcritical, and the effect on spike propagation can be seen by

comparing the rate of source spikes versus sink spikes. Perfect

critical branching should perfectly preserve the flow of spikes

from source to sink, thereby equalizing source and sink spike rates.

The mean rate of source spikes in all conditions was 20 per unit

time interval, but the mean rates of sink spikes were between 16

and 17 per unit time interval. These differences are accounted for

by the fact that inhibitory units were slightly subcritical, which

causes a small loss in spike propagation like an additional sink.

The percentage below 
�� � 1 roughly corresponds to the size of

this small loss, which can be attributed to the rule for choosing

synapses, because there is no loss when the rule is simply to

choose synapses at random (not reported).

The three networks in Simulation 1 are roughly equivalent with

regard to the measures presented thus far, despite different initial

parameter values and input conditions, and despite the use of

STDP in one network but not the others. While STDP did not

affect net amounts of enabled excitation versus inhibition, it did

affect the distributions of synaptic strengths, as can be seen in

Figure 5. The sequence and Poisson conditions yielded similar

patterns: There was a graded bias toward enabling smaller excit-

atory weights, given that weights were uniformly distributed over

all synapses, but no such bias for inhibitory weights. This bias was

due to the increased likelihood of going supercritical by triggering

more spikes when synapses with larger excitatory weights are

enabled, versus smaller weights.

The increased likelihood of going supercritical means that larger

synapses are more likely to be disabled shortly after being enabled.

No such bias occurs for inhibitory neurons because they do not

trigger spikes. This bias can also be seen with STDP, but STDP

caused weight values to move toward their minimum or maximum

(for further explanation of this effect, see Song, Miller, & Abbott, T
ab

le
1

N
et

w
o
rk

S
ta

ti
st

ic
s

fo
r

th
e

R
es

er
vo

ir
a
t

C
ri

ti
ca

l
B

ra
n
ch

in
g

in
th

e
T

h
re

e
S
o
u
rc

e
In

p
u
t

C
o
n
d
it

io
n
s

E
xa

m
in

ed
in

S
im

u
la

ti
o
n

1

S
eq

u
en

ce
P

o
is

so
n

P
o
is

so
n

�
S

T
D

P

N
et

w
o
rk

m
ea

su
re

E
x
ci

ta
to

ry
7
5
%

In
h
ib

it
o
ry

2
5
%

E
x
ci

ta
to

ry
7
5
%

In
h
ib

it
o
ry

2
5
%

E
x
ci

ta
to

ry
7
5
%

In
h
ib

it
o
ry

2
5
%

E
n
ab

le
d

sy
n
ap

se
s

p
er

ax
o
n

1
2
.4

3
2
.3

1
0
.6

3
2
.1

1
1
.8

2
7
.6

S
u
m

w
ei

g
h
t

en
ab

le
d

4
,3

2
3
.2

9
,7

3
3
.3

4
,6

0
1
.4

1
0
,0

0
2
.2

4
,5

7
8
.7

9
,3

3
0
.0

S
p
ik

es
p
er

u
n
it

ti
m

e
1
4
3
.7

re
se

rv
o
ir

4
5
.0

re
se

rv
o
ir

1
4
7
.7

re
se

rv
o
ir

4
9
.0

re
se

rv
o
ir

1
3
9
.1

re
se

rv
o
ir

4
9
.3

re
se

rv
o
ir

1
6
.3

si
n
k

1
7
.1

si
n
k

1
7
.1

si
n
k

M
ea

n
fi

ri
n
g

ra
te

0
.1

9
0

re
se

rv
o
ir

0
.1

8
5

re
se

rv
o
ir

0
.1

9
7

re
se

rv
o
ir

0
.1

9
6

re
se

rv
o
ir

0
.1

8
6

re
se

rv
o
ir

0
.1

9
6

re
se

rv
o
ir

0
.1

6
3

si
n
k

0
.1

7
1

si
n
k

0
.1

7
1

si
n
k

B
ra

n
ch

in
g

ra
ti

o
0
.9

8
8

0
.9

2
1

0
.9

9
4

0
.9

3
1

0
.9

9
6

0
.9

4
4

N
o
te

.
S

T
D

P
�

sp
ik

e
ti

m
in

g
d
ep

en
d
en

t
p
la

st
ic

it
y
.

239CRITICAL BRANCHING MODELS



2000). Given that STDP was applied additively, consistent move-

ment toward the boundaries caused weights to be concentrated at

the boundaries. This distributional effect may be interesting in its

own right, but for the present purposes, the effect serves to illus-

trate that critical branching is maintained under varying synaptic

weight distributions by maintaining comparable numbers of excit-

atory and inhibitory synapses. These numbers yield comparable

summed totals of excitatory and inhibitory weights.

Scaling Law Results

The results graphed in Figure 4 show that spike dynamics were

actively maintained near their critical point, indicating that the

critical branching mechanism contributed to variations in spiking.

To test whether these contributions resulted in scaling laws, indi-

vidual spike trains were examined first, examples of which are

shown in Figure 6. One can readily see the heterogeneity of

variation present in reservoir spikes that cannot be attributed to

source variations. ISIs varied over a wide range of scales, and

spikes clustered at multiple scales. The range of ISI variations can

be expressed and analyzed via their probability distribution, and

spike clustering can be expressed and analyzed via Allan factor

analysis.

In Figure 7, ISI distributions are shown for one reservoir neuron

in each condition, chosen to be representative of ISI distributions

for other neurons in each condition. Each plotted neuron spiked at

least once every 10 time intervals over a period of 10,000 time

intervals. When the critical branching mechanism was engaged,

distributions in all three conditions closely followed scaling laws

roughly of the form P(ISI) � 1/ISI�, with � � 2.5, regardless of

source variability and STDP. Thus, tuning to critical branching

produces ISI power law distributions similar to those reported for

cat V1 and macaque IT recordings (Baddeley et al., 1997) and rat

midbrain recordings (Bershadskii, Dremencov, Fukayama, & Ya-

did, 2001).

When the critical branching mechanism was disengaged, ISI

distributions deviated from a power law and instead followed

exponential-like distributions. ISIs have been associated with ex-

ponential probability distributions (Shadlen & Newsome, 1998) as

well as power law distributions. However, relating the simulated

results to empirical observations is complicated by other reports

associating ISIs with bimodal (see Rowat, 2007), bi-exponential

(Mazzoni et al., 2007), lognormal (Bershadskii et al., 2001), in-

verse Gaussian (Iyengar & Liao, 1997), and gamma (Robin et al.,

2009) probability distributions. To simulate this range of results

would require a level of model complexity beyond the present

scope. The more general conclusion is that engaging the critical
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branching mechanism results in high ISI variability, for example,

in terms of heavy-tailed distributions and coefficients of

variation � 1. Such high ISI variability is commonly found in

single-cell recording studies (Softky & Koch, 1993; Troyer &

Miller, 1997).

Going beyond ISI distributions, one can ask whether there are

dependencies across sequences of ISIs. Studies of temporal depen-

dencies in spike trains have consistently found long-range corre-

lations spanning multiple timescales (Bhattacharya, Edwards,

Mamelak, & Schuman, 2005; Gerstein & Mandelbrot, 1964; Jack-

son, 2004; Rasouli et al., 2006; Teich et al., 1997). An established

method for examining temporal correlations in spike trains is the

Allan factor, which has advantages over similar methods like the

Fano factor (Teich & Lowen, 1994). The Allan factor, A(T),

measures a scaling relation between window size and deviations in

spike counts within adjacent time windows. In particular,

A�T� �
��Ni�T� � Ni � 1�T��2�

2�Ni�T��
,

where 
Ni(T)� is expected spike count in each window i of size T

(sampled in powers of 2), and i indexes adjacent windows tiled

over a given spike train. Teich and colleagues (Teich et al., 1997;

Teich & Lowen, 1994) found that spike trains from both auditory

and visual systems of the cat exhibit two regimes of effect. At the

shortest timescales, spike trains are well-described by a Poisson

process, for which A(T) � 1, and no scaling relation holds.

However, at longer scales, A(T) goes as A(T) � T, which is the

point process equivalent of 1/f scaling in spectral analysis (see

below).

Allan factor analyses are shown in Figure 8. All three model

conditions exhibited the same basic pattern of results: Model spike

trains exhibited the two regimes observed empirically, where

spikes were Poisson-like at smaller scales and were scaled with T

at larger scales. Engagement of the critical branching mechanism

was necessary for this result, because spike trains were Poisson-

like over all scales when the mechanism was disengaged. To show

that this result was not purely due to power law distributed ISIs,

spike trains were shuffled randomly so as to preserve their ISI

distributions, and Allan factor analyses of the resulting surrogates

showed a more unitary scaling relation with an exponent roughly

half that of the unshuffled spike trains.

Next, let us consider temporal correlations over summations of

spikes across neurons. Summations are indirectly related to local

field potentials, electrophysiological recordings, and behavioral

movements. Intrinsic variations in these measures are expressed as

time series of measurements that either directly or indirectly reflect

spike counts over adjacent time windows, and such time series

have been found to exhibit long-range temporal correlations (for a

review, see Kello et al., 2010). There are numerous methods for

analyzing such correlations (see Farrell, Wagenmakers, & Ratcliff,

2006; Rangarajan & Ding, 2000), but the present study only aims

to establish that the critical branching mechanism yields a 1/f-like

scaling relation similar to those observed empirically.

Time was sliced into unit time intervals and spikes per interval

were counted over all reservoir neurons. The resulting time series

for each model are shown in Figure 9. Spike counts ramped up as

the networks approached critical branching and exhibited fluctu-

ations over a wide range of temporal scales while the critical

branching mechanism was engaged. Wide-range fluctuations dis-

appeared once the mechanism was disengaged. Spectral analysis

was applied to two segments of each spike count series, as shown

in Figure 10, where each segment was 213 counts in length. The

first segment of each series ended just prior to the disengagement

of critical branching, which was after reaching asymptote. The
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second segment of each series started 5,000 time intervals after

disengagement.

For all network conditions when critical branching was engaged,

the spectra show a clearly lawful 1/f scaling relation in the lower

frequencies, where the lion’s share of spike count variance resides.

Higher frequencies were characterized by uncorrelated fluctua-

tions. This combination of 1/f-like and uncorrelated fluctuations is

the typical finding in studies of intrinsic neural activity (Mazzoni

et al., 2007). When critical branching was disengaged, the low

frequency 1/f scaling relations were replaced by uncorrelated pla-

teaus, plus steeper, 1/f2-like scaling relations in the mid-range

frequencies. Most empirical studies of 1/f-like scaling in neural
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activity do not use sophisticated methods for comparing data

against 1/f scaling versus alternate statistical models (e.g., see

Thornton & Gilden, 2005). The present claim is only that simula-

tion results resemble empirical results. As alternate models are

proposed in the future, it will be important to use model testing

methods to determine which provide best explanations of the data.

The Allan factor and spectral analyses show clearly that engage-

ment of the critical branching mechanism was necessary to pro-

duce scaling laws in spike dynamics, whereas its engagement was

not necessary to produce the ISI power law distributions. The

fourth and final scaling law to be examined is the neuronal ava-

lanche, which is a power law distribution at the network scale,

instead of the individual spike train. The avalanche is generally a

burst of neural activity, such as a contiguous time period during

which LFPs are above some threshold (Beggs & Plenz, 2003), and

avalanche size is essentially the sum of activity within a given

above-threshold period. Avalanche analysis is typically applied

when activity is inherently composed of bursts (but see Montez et

al., 2009), and results show that avalanche sizes go as P(S) � S��,

where � � 3/2. The particular exponent value is predicted for

critical branching processes and is related to generic aspects of

information transmission and storage in network activity (Beggs,

2008).

The spiking model parameters used thus far are not well-suited

to bursts of spiking activity because the source spike rate is high

enough to generate a flow of spikes that fluctuates around a mean

well above zero. To simulate bursts of spiking activity off a floor

near zero, the rate of source spikes was decreased to only 5% of the

rate used in simulations presented thus far. To compensate for

fewer tuning/learning opportunities, the tuning and STDP learning

rates were multiplied tenfold. All other parameters were un-

changed. The resulting bursts of spiking in reservoir neurons are

evident in the example series shown in Figure 11. The start of each

burst was defined by crossing a threshold of � 1 reservoir spike

per time interval, and each burst ended when spikes per interval

fell back below threshold. Burst sizes were gathered over 10,000

intervals of bursting activity after networks asymptoted near crit-

ical branching.

The distributions of burst sizes for each network condition are

plotted in Figure 12 in logarithmic coordinates, separated by when

critical branching was engaged versus disengaged. The graph

shows that most burst distributions closely followed a scaling

relation with the predicted and observed 3/2 exponent (see Maz-

zoni et al., 2007). The inclusion of STDP caused the distribution to

bend slightly away from a power law and toward and exponential

distribution, and a slighter bend was observed when the critical

branching mechanism was disengaged (the range of burst sizes

was more restricted in this case as well). This bend is present in

some empirical studies of neuronal bursting (e.g., Beggs & Plenz,

2003) and is at least partly due to mundane limitations in record-

ings and model size. The general conclusion is that burst sizes

resembled the observed distributions known as neuronal ava-

lanches. This was most true when the critical branching mecha-

nism was engaged, suggesting that results were obtained by virtue

of being near a critical point.

In summary, Simulation 1 results established the effectiveness

of the critical branching mechanism and accounted for a wide

range of observed scaling laws in spiking activity. Estimated

exponents of model scaling laws were consistent with those of

empirical data—3/2 for neuronal avalanches and 1 for temporal

correlations in Allan factor and spectral analyses—as predicted for

systems near order/disorder critical points. Other neuronal models

of 1/f scaling not based on criticality, like Davidsen and Schuster’s

(2002) model, do not readily explain observed exponents, have not

been shown to exhibit neuronal avalanches, and have not been

related to cognitive function (Simulation 2) or behavior (Simula-

tion 3).

Scaling laws in ISI distributions and temporal correlations oc-

curred only while the critical branching mechanism was engaged,

including the Sequenced condition in which the only source of

noise was the stochastic enabling and disabling of spikes. Thus, 1/f
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scaling did not emerge from explicit brown noise, as in some

models (e.g., Davidsen & Paczuski, 2002). For neuronal ava-

lanches, scaling law distributions occurred regardless of whether

the critical branching mechanism was engaged or disengaged, once

branching ratios had asymptoted near critical. This result suggests

that the pattern of connectivity determined by critical branching

was a factor in generating neuronal avalanches, but it may be that

more generic connectivity patterns would also produce these dis-

tributions. This ambiguity was addressed by examining spike

activity for two kinds of generic, surrogate connectivity patterns.

For one kind of surrogate, critical branching connections were

scrambled such that the numbers and weights of outgoing connec-

tions were preserved for each excitatory and inhibitory neuron, but

the neurons they projected to were randomized. These scrambled

networks became supercritical and did not exhibit power law

distributions, despite preserving the total amounts of excitatory

and inhibitory inputs. Therefore the observed power law distribu-

tions arose from the particular pattern of projections determined by

critical branching, which governed the timing of excitatory and

inhibitory inputs to neurons. For the other kind of surrogate con-

nectivity, networks were connected randomly with mean numbers

of enabled synapses equal to those found in critical branching

networks. Connections weights were then randomized to values

that resulted in spiking rates roughly equal to those in critical

branching networks. These surrogate networks also failed to ex-

hibit neuronal avalanches, exhibiting exponential-like distributions

instead. Thus, a randomized, rough balance of excitation and

inhibition does not appear to be sufficient to account for neuronal

avalanches—along with the other scaling laws, simulated neuronal

avalanches can be attributed specifically to the critical branching

mechanism.

Simulation 2: Critical Branching and Computational

Capacity

Results of Simulation 1 indicate that homeostatic tuning toward

critical branching can explain a range of scaling laws observed in

neural activity. The critical branching mechanism promoted a

dynamic balance of excitation and inhibition such that each spike

was blamed on average for one spike moving forward in time,

except for spikes on sink neurons. This balance is adaptive in terms

of conserving spikes, but what is the role of critical branching in

perceptual and cognitive functions, broadly speaking? It may max-

imize information transmission in terms of spike propagation (Hsu

& Beggs, 2006), but functions of learning, memory, and percep-

tion require encoding and transformation of information over time.

Homeostatic tuning is not learning, in that the objective is not to

represent or associate spike inputs over long timescales. However,

recurrent networks can naturally and inherently encode spike in-

puts over short to mid-range timescales, in the range of millisec-

onds to seconds and minutes. Even randomly connected networks

may have memory in the sense that a pattern of spike activity at

one instant will carry information about past inputs. If network

dynamics are nonlinear, inputs may be richly encoded such that

nonlinear classifications are possible on the basis of linear sepa-

rations of spike patterns. If these memory and encoding capacities

are enhanced by critical branching, then the principle may directly

support cognitive functions without explicitly representing or as-

sociating spike inputs. Information could be extracted by “readout”

networks that learn to decode the spike dynamics of generic

recurrent networks tuned to critical branching.

As mentioned earlier, this approach to analyzing and theorizing

neural networks is known as reservoir computing. Reservoir com-

puting studies have shown that fading memory and nonlinear

separability properties of reservoirs are maximized when tuned to

a critical point between ordered and chaotic dynamics, as gauged

by linear readout functions (Bertschinger & Natschlager, 2004).

Critical branching strikes the same kind of balance with respect to

spike dynamics, instead of threshold gate dynamics as examined

previously. If being near this critical point is similarly adaptive,

then critical branching should have the same maximizing effect.

Note that such maximization does not entail optimization of any

particular objective function, although it may support balanced

performance across a wide range of objective functions (there is no

free lunch in optimization; Wolpert & Macready, 1997).

The computational properties of critical branching reservoir

dynamics were tested by adopting techniques used in previous

reservoir computing studies. Spiking network models were built

as in Simulation 1, with the main difference being in the distribu-

tions of source inputs. The sequence condition used previously was

modified so that, instead of one repeated sequence of spikes, there

were two possible sequences that represented the two possible

values of a “bit” input (see Figure 13). One sequence, say bit value

0, was presented over source neurons 1–20, and the other was

presented over source neurons 21–40. Each sequence consisted of

20 spikes evenly spaced over one unit time interval. For each time

interval, a bit sequence was chosen at random to be presented to

the network. Over time these random bit inputs created a flow of

spikes from source to sink via the reservoir. Tuning was engaged

as before, and LIF parameters were adjusted to encourage sparse

effective connectivity. Previous investigations (Kello & Mayberry,

2010) showed that memory and encoding capacities are generally

greater for sparse networks, presumably because of reduced vari-

ability in spike pattern trajectories. These parameter changes had

no appreciable effects on scaling laws (not reported).

Memory and encoding properties of the reservoir were assessed

by taking a snapshot of the reservoir spike pattern at each unit

interval t, and using reservoir patterns as the predictor variables for
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linear regression equations. The variables being predicted were

nonlinear functions of past input bits at times, that is, XOR

functions of bits at times t-N and t-N-1. The memory capacity of

the reservoir was thus assessed by the encoding of past bits in each

current spike pattern, and the encoding capacity was assessed by

the ability to perform nonlinear computations on past bits using

only a linear separation of reservoir spike patterns. These capaci-

ties were assessed after disengaging the tuning mechanism in order

to hold connectivity constant. Given that refractory periods were

one unit interval in length, each reservoir spike pattern could be

represented as a binary vector indicating the presence or absence

of a spike for each reservoir neuron. Spikes were actually timed

more precisely, but this precision was discarded to more closely

mimic prior reservoir computing methods. Ordinary least squares

linear regression was then used to compute the XOR function on

adjacent bits N and N-1 time intervals in the past, with a separate

set of coefficients computed for each N.

The general pattern of results replicated prior work on reservoir

computing with spiking neuron models, often referred to as liquid

state machines (Maass et al., 2002). XOR accuracy was near

perfect for the most recent bits and fell off gradually over time till

reaching chance performance (see Figure 14). Thus, reservoir

spike dynamics had a fading memory that projected inputs into

higher dimensional spaces useful for nonlinear functions like

XOR, analogous to nonlinear support vector machines. However,

more to the point, critical branching maximized memory and

encoding capacities, as measured by mean accuracy over time.

This maximum is by comparison with two methods for deviating

from critical branching.

One method of deviation was to engage the tuning mechanism

but bias the probability � of enabling versus disabling synapses. In

particular, synapses were enabled and disabled with probability ��

and �/�, respectively, where � � 1 led to 
�� � 1, and � � 1 led

to 
�� � 1. As shown in Figure 14, mean accuracy was maximal

at critical branching, that is, unbiased � � 1. The other method of

deviation was to enable excitatory and inhibitory synapses at

random, without use of the tuning mechanism, such that the mean

rate of reservoir spikes was approximately equal to that during

critical branching. Again, mean accuracy was well below critical

branching.

In summary, the reservoir computing analyses show how critical

branching can be beneficial to cognitive functions, broadly speak-

ing. Spikes are fleeting in comparison with the multiple timescales

of perception, action, and cognition. For instance, while most

stimuli and movements have behaviorally relevant dynamics on

the order of milliseconds, their dynamics also exhibit structured

patterns over seconds, minutes, and much longer timescales. Spike

dynamics must have memory if they are to encode sensory and

motor patterns over longer timescales, and this encoding must be

rich enough to support nonlinear mappings among different pattern

domains. Reservoir analyses show that critical branching can en-

hance this kind of memory and encoding capacity in recurrent

networks of LIF neurons.

Simulation 3: Critical Branching and Behavioral

Fluctuations

To model specific perceptual and cognitive functions, one needs

to go beyond the generic reservoir computing results presented in

Simulation 2. The most incremental step would be to incorporate

linear classification as a spiking “readout network” that uses

learning mechanisms to make linear discriminations among reser-

voir patterns, or associate them with target patterns. Readout

networks could be useful constructs, but random, generic reser-

voirs may be limited in their ability to explain neural and cognitive

function. It may be necessary for learning to shape recurrent

networks to fit observed distributions over sensory inputs, for

instance, or to make associations between actions and rewards (see

Friston, 2010).

Simulation 1 demonstrated the efficacy of critical branching

while synaptic weights are adjusted by STDP, but it remains to be

seen whether critical branching would interfere with learning or

memory processes supported by STDP or other Hebbian-like

mechanisms. Assuming that interference could be avoided, how

would actions of the critical branching mechanism manifest in

behavior? The answer is that critical branching should yield scal-

ing laws in the intrinsic variations of behavioral activity, as it does

in neural activity. The means by which neural and behavioral

variations are linked is an ongoing area of investigation, but a

general prediction can be made: If critical branching pervades

neural activity, then 1/f scaling laws should pervade measures of

intrinsic fluctuations in behavior. Consider the following two

studies on pervasive 1/f scaling in behavior, and how critical

branching can account for their results.

In one study, participants repeated the word “bucket” and fluc-

tuations in acoustic energy across repetitions were analyzed as a

function of acoustic frequency (Kello et al., 2008). Results showed

numerous 1/f fluctuation series that were mutually uncorrelated,

and ran in parallel through the repetitions of each syllable (Kello,

2011; Moscoso del Prado Martín, 2011). It was argued that these

results required too many isolable sources of 1/f scaling for them
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to be plausible, because one would need a new source for each

distinct 1/f series. The preferred alternative is that 1/f scaling is

general and pervasive to intrinsic fluctuations, in that the same

explanation applies to all measured sources.

Critical branching is one such explanation, because scaling laws

are explained by a mechanism that affects interactions among

neurons through enabling and disabling synapses. Thus, 1/f scaling

caused by homeostatic tuning to critical branching is explicitly

predicted to be pervasive, on the premise that such tuning is

widespread throughout nervous systems. How would homeostatic

tuning be reflected in behavior to yield pervasive 1/f scaling in

behavioral measurements? One answer is readily available in a

simple, behavioral interpretation of results from Simulation 1.

Recall that 1/f fluctuations were found in spike count time

series, where spikes were counted across reservoir neurons per unit

time interval. If these neural networks were shaped to drive the

articulatory motor system, then one could relate the strength of

muscle contraction to spike rates across motor neurons. Evidence

for a rate code relation between motor neural activity and move-

ment is well-established (Brooks, 1986), even if spike timing also

plays a role (Rieke, Warland, van Steveninck, & Bialek, 1996;

Stein et al., 2005). This evidence supports a link between neural

and behavioral 1/f fluctuations via critical branching, but how can

this link explain parallel, distinct 1/f fluctuations in behavior?

Two answers to this question are offered. For acoustic fluctua-

tions in spoken word repetitions, the most straightforward answer

is that different articulatory degrees of freedom are served by

different neural networks. In order to account for the results,

networks must be sufficiently distinct such that neural activity in

one network is independent or only loosely coupled to activity in

other networks (e.g., only partially overlapping). Spike rate fluc-

tuations driven by homeostatic tuning to critical branching would

then yield parallel, distinct 1/f fluctuations in the acoustic mani-

festations of articulatory degrees of freedom. It is beyond the

present scope to build a neural network model of spoken word

production that can simulate articulatory trajectories like “bucket,”

and it would be gratuitous to simply build a set of independent or

loosely coupled reservoir networks—Simulation 1 already estab-

lishes an outcome of parallel, distinct 1/f fluctuations. Therefore

critical branching provides a firm basis for building models of

speech production that would account for Kello et al.’s (2008)

results.

The second way to explain parallel, distinct 1/f fluctuations in

behavior is illustrated by the second study of pervasive 1/f scaling

mentioned earlier. Kello et al. (2007) investigated the effects of

cue predictability on 1/f scaling in series of simple and choice

responses. To test for pervasiveness, they measured not only series

of response times, but also series of time intervals between each

key-press and key-release, that is, key-contact durations. Response

times and key-contact durations each exhibited distinct 1/f fluctu-

ations that were uncorrelated with each other. Moreover, the

predictability of response cues decreased the estimated 1/f expo-

nents in response times toward random, white noise fluctuations.

By contrast, 1/f exponents in key-contact durations were unaf-

fected by cue predictability. These key-press data add another

dimension to testing pervasiveness because the effects of stimulus

predictability were dissociated between response times and key-

contact durations.

For Simulation 3, two measures of spiking activity were formu-

lated under conditions that abstractly simulate receiving and re-

sponding to stimuli. The stimuli are pulses of source spikes in-

tended to simulate the response cues from Experiment 1 of Kello

et al. (2007). Two dependent measures were formulated to be

distinct from each other, and analogous to key-press response

times and durations. These measures captured the essential feature

that response times and durations are defined relative to stimulus

onset, but otherwise they did not simulate motor processes or

kinematics. The aim was to investigate whether a critical branch-

ing network could simulate two parallel series of response mea-

sures that exhibit independent, dissociable 1/f fluctuations.

In the experiment, a series of key-presses were elicited in

response to series of simple visual cues—repeated appearances of

“X” on a blank screen. Cue intervals were constant in one condi-

tion and were drawn randomly from an exponential distribution in

another condition. Thus, cues were either predictable or unpredict-

able, respectively. In the simulation, the Poisson source condition

from Simulation 1 was modified to alternate between a back-

ground mean rate of 10 spikes per unit time interval, and a cue rate

of 100 spikes per time interval. Each cue was one time interval in

duration, and a cue was presented once every 50 time intervals in

the predictable cue condition. In the unpredictable condition, inter-

cue intervals were sampled randomly from an exponential distri-

bution with a mean of 50 and a minimum of 20. Example series of

source pulses are shown in Figure 15, along with corresponding

fluctuations in reservoir and sink spikes. Network parameters were

as in Simulation 1, except 100 source units were used instead of

40.

A simulated response was triggered when the reservoir spike

rate increased beyond a given threshold. This method of linking

neural activity with reaction times is based on previous studies

associating spike rates with accumulation of noisy stimulus infor-

mation (Smith & Ratcliff, 2004). In particular, changes in spike

rate were measured by tracking two ISI running averages at two

different timescales, each one calculated as ISIavg � �ISIi � (1 –

�)ISIavg, where �long � 0.0005, and �short � 0.005 for the longer

and shorter timescales, respectively. When ISIratio � ISIlong_avg/

ISIshort_avg exceeded 1.5, a stimulus was detected. A response was

then simulated as being detected when ISIratio fell below 1.4, and

response time was the time of response detection minus the time of

stimulus onset. Response duration was simulated by a measure of

the time needed for a set number of spikes to flow through the

network after response initiation. In particular, the time it takes for

100 spikes to flow to the sink after 400 spikes have flown through

the reservoir post stimulus-detection. These parameters were the

best found in accounting for the data, but moderate variations

yielded the same basic pattern of results.

Ten models were run for 100,000 time intervals with predictable

cues, and 10 models with unpredictable cues. Critical branching

tuning remained engaged throughout, and the last 1,024 responses

were analyzed for each model, well after branching ratios had

asymptoted near one. Distributions for simulated response times

and durations were both Gaussian with positive skew, as with

empirical data. Correlation analyses showed that response times

and durations were only weakly correlated, mean r � .21 and .26

for predictable and unpredictable cues, respectively. Weak, unre-

liable correlations were found in the empirical data, consistent with

evidence of dissociations in their spectra. The same dissociation
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was exhibited by the model, as shown by the averaged spectra in

Figure 16—cue predictability affected the 1/f scaling relation in

response times but not response durations. This dissociation was

examined the same way as in Kello et al. (2007), that is, by fitting

regression lines to the lower 50% of the individual model spectra,

and then performing t tests on the slopes. Slopes for response times

to predictable cues were steeper than those to unpredictable cues,

M � –0.64 versus –0.40, t(9) � 7.3, p � .0001, whereas cue

predictability had no reliable effect on slopes, M � –0.73 and

–0.68, t(9) � 1. Also, overall slope values were approximately the

same between simulation and empirical data.

In summary, critical branching can account for pervasive 1/f

scaling in the intrinsic fluctuations of human behavior, as ex-

pressed in spoken word repetitions and key-press responses. With

regard to the latter, Simulation 3 went beyond Simulation 1 in

demonstrating 1/f scaling in two additional measures of spiking

activity, and a 1/f dissociation in the effect of cue predictability.

This dissociation was simulated not because of dissociable mech-

anisms, but because of pervasive 1/f fluctuations. Pervasiveness

means that dissociations are predicted for any mutually indepen-

dent measures of intrinsic fluctuations. More detailed accounts

require more detailed behavioral models, for example, for simple

and choice response tasks. Simulation 3 is proof-of-concept that

critical branching networks may provide a basis for such models.

General Discussion

The present study began with the aim of modeling scaling laws

in the intrinsic variations of neural and behavioral activity. This

aim was motivated by the ubiquity and pervasiveness of scaling

laws, but also by previous studies suggesting links between scaling

law variations, and neural and cognitive functions. Some of these

previous studies were theoretical, in that they related computa-

tional capacity with critical points near second-order transitions

between ordered and disordered phases (Bertschinger &

Natschlager, 2004; Kwok & Smith, 2005; Langton, 1990; Packard,

1988). Other previous studies demonstrated empirical associations

between effects on perceptual and cognitive processing, and cor-
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Figure 15. Example spike count series from Simulation 3, for source and reservoir spikes in both predictable

and unpredictable cue conditions.
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responding effects on scaling laws in neural and behavioral activ-

ity (Ding, Chen, & Kelso, 2002; He, Zempel, Snyder, & Raichle,

2010; Holden, Choi, Amazeen, & Van Orden, 2011; Kello et al.,

2007; Linkenkaer-Hansen, Nikulin, Palva, Kaila, & Ilmoniemi,

2004). Still other studies have demonstrated relations between

breakdowns in scaling laws, and breakdowns in neural and cog-

nitive function (Gilden & Hancock, 2007; Hobbs, Smith, & Beggs,

2010; Linkenkaer-Hansen et al., 2005; Montez et al., 2009).

Critical branching neural networks provide a basis for tying

together these and other previous studies, and relating them to

homeostatic and computational functions. Previous studies have

demonstrated relations between critical branching and neuronal

avalanches, and between criticality and computational capacity.

The model and simulations herein goes beyond previous studies by

drawing explicit connections between critical branching, a more

diverse range of scaling laws, computational capacity, and behav-

ioral data. To the author’s knowledge, no single model has here-

tofore simultaneously accounted for fractal spike train clustering,

neuronal avalanches, and 1/f scaling. Nor has prior research related

all these scaling laws in spike dynamics to maximal computational

capacity. In providing the first simulation of dissociable 1/f scaling

in behavior, the present work may help spur further dialog between

models and observed manipulations of power laws in behavior.

Individual power laws may always find multiple alternative expla-

nations, but observed pervasiveness and experimental effects con-

strain the number of possible explanations. To date, only critical

branching has demonstrably satisfied these constraints.

The contribution of critical branching to our understanding of

power laws in neural and behavioral activity can be expressed in

terms of Marr’s (1982) three levels of analysis. At the computa-

tional level, critical branching is a homeostatic goal that research-

ers have hypothesized to exist as a principle of neural and cogni-

tive function. This principle is couched within the broader

framework of self-organized criticality (Bak, Tang, & Wiesenfeld,

1987), which states that critical points are attractors of many

complex systems. At the algorithmic level, the homeostatic tuning

mechanism was designed to work with neural network models

where spikes flow from source to sink. This conceptualization of

spiking networks is unique in cognitive science, and general

enough that one could apply it to any model where events prop-

agate among nodes, and propagation needs to be regulated by

adjusting connectivity. At the implementational level, the tuning

mechanism was built with as little neural machinery as possible,

and as consistently as possible with current neuroscience evidence.

The present results raise many questions and issues, from mul-

tiple perspectives. The remainder of this article considers a number

of perspectives from various disciplines, along with the questions

and issues they raise. These perspectives place the model in a

broader context for interpreting results thus far, and they help

illuminate the model’s limits and potentials.

From the perspective of physics, it would help to show more

rigorously the model parameterizations that yield critical branch-

ing and the associated scaling laws. The claim is that parameters

need only support a flow of spikes from source to reservoir to sink,

where low versus high flow rates yield bursts versus fluctuations in

spike activity. The timescale of synaptic enabling and disabling (as

governed by the probability �) need only be substantially slower

than that of membrane and action potentials. These claims of

generality derive from work on critical points and their associated

scaling laws, and further analyses are needed to support them.

Another question from physics is whether the flow from source

to sink means that thermodynamic principles can be applied (Sw-

enson & Turvey, 1991). This flow has at least a surface similarity

to heat transport in non-equilibrium thermodynamics, as illustrated

by the Rayleigh–Bénard preparation. Oil molecules move from the

heat source (bottom of the pan) to its sink (oil surface at top) to

dissipate their energy, thereby increasing entropy according to

Boltzmann’s second law of thermodynamics. Similarly, spikes

dissipate excitation by propagating from source to sink via the

reservoir, although it not clear whether entropy can be defined in

a thermodynamic sense. Also, when a critical temperature differ-

ence between source and sink is obtained, oil molecules self-

organize into Rayleigh–Bénard convection cells that more quickly

dissipate heat. In the model, spikes circulate in “eddies” of sorts,

and dissipate in bursts or fluctuations as source excitation is

increased. Further work is needed to investigate the roles of source

excitation and sink dissipation on scaling law pattern formation in

spike dynamics.

From the perspectives of computer and information sciences,

one would like to know how model parameters interact with

critical branching to affect the computational capacities of spike

dynamics. It was mentioned earlier that these capacities are gen-

erally increased when synapses are only sparsely enabled. The

critical branching mechanism yields sparsely enabled synapses

when there is a high probability that each excitatory PSP will

trigger a spike. Therefore, model parameters will enhance compu-

tational capacities to the extent that they afford high “spike trig-

ger” probabilities. Further work is needed to investigate other

factors that might affect computational capacity, such as the struc-

ture of potential connectivity and the pattern of source excitation.

Another question from computer and information sciences is

whether the memory and encoding capacities of spike dynamics

might approach an information theoretic limit. Poisson distributed

ISIs have maximal Shannon entropy and hence maximize the

possible bits of information carried by an individual spike train

(Rieke et al., 1996). Model spike trains approached this limit after

spike propagation asymptoted near critical branching and the tun-

ing mechanism was disengaged. Spike timing was uncorrelated as

shown by Allan factor analyses, and ISI distributions were expo-

nential. However, the tuning mechanism caused spike trains to

exhibit lower Shannon entropy due to the statistical, nested regu-

larities of scaling laws. It would be interesting to investigate

whether memory and encoding capacities might be associated with

maximizing such regularities across scales, rather than approach-

ing an information theoretic limit.

With respect to the information capacity of spike patterns across

neurons, Fisher information analyses of linear reservoir models

with Gaussian inputs suggest that there may be significant limits

on reservoir capacities (Ganguli, Huh, & Sompolinsky, 2008),

although sparse input conditions and nonlinear reconstruction may

allow networks to go beyond these limits (Ganguli & Sompolin-

sky, 2010). The limits of reservoir computing models stem from

their fading memory property, but it has been shown that recurrent

connections from learned outputs back to the reservoir can over-

come these limits (Maass, Joshi, & Sontag, 2007). Thus, compu-

tational properties and limits of reservoir computing models con-

tinue to be investigated.
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From the perspective of neuroscience, further work is needed to

determine whether a homeostatic mechanism like the one proposed

herein is operative in nervous systems. Findings of neuronal ava-

lanches have been cited as prior evidence for critical branching in

neural circuits (Beggs & Plenz, 2003; Petermann et al., 2009),

although alternative explanations have been offered (Touboul &

Destexhe, 2010). More recent analyses of LFP data argue against

these alternatives (Friedman et al., 2012), and the present results

bolster the case for critical branching in neural systems. Fractal

spike trains and 1/f scaling now stand alongside neuronal ava-

lanches as convergent evidence for critical branching.

This evidence does not shed light on neural processes that might

give rise to critical branching, but the proposed tuning mechanism

was essential for simulating the temporal scaling laws. This mech-

anism is different than most homeostatic tuning mechanisms hy-

pothesized to operate on presynaptic inputs, rather than postsyn-

aptic outputs (Turrigiano & Nelson, 2004). It is unclear whether

presynaptic mechanisms could maintain critical branching or pro-

duce scaling laws, but there is evidence for postsynaptic tuning

(Ibata, Sun, & Turrigiano, 2008). Thus, the currently formulated

mechanism is at least consistent with the evidence.

Other neuroscience evidence, as well as behavioral evidence,

indicates that intrinsic variations exhibit more than just scaling

laws. A recent study showed that fluctuations in electrocortico-

graphic activity not only exhibit scaling laws, but also the phase of

fluctuations at lower frequencies has a modulatory effect on the

amplitude of higher frequency fluctuations (He et al., 2010). This

nesting of timescales is also consistent with findings of multifrac-

tal dynamics in spike trains (Baptista, Grebogi, & Köberle, 2006;

Zheng, Gao, Sanchez, Principe, & Okun, 2005) as well as behav-

ioral fluctuations (Ihlen & Vereijken, 2010; Stephen & Dixon,

2011). Multifractal dynamics have been associated with self-

organized criticality (Turcotte, Malamud, Guzzetti, & Reichen-

bach, 2002), and multiplicative cascades that exhibit multifractal

dynamics have been associated with branching processes (Q. Liu,

2000). Models like the one herein will need to address these and

other findings that go beyond scaling laws, as evidence is gathered

on conditions that yield multifractal fluctuations and other more

complex phenomena.

Finally, let us end with the broadest perspectives from psychol-

ogy and cognitive science. What does critical branching tell us

about relations between neural and behavioral activity? Simon

(1973) famously described hierarchical structures that appear uni-

versal to all natural and artificial systems of sufficient complexity.

Cognitive systems are complex in this sense because, for example,

neural and other physiological activities at lower levels hierarchi-

cally combine to form behaviors and functions at higher levels.

Critical branching networks exhibited this kind of complexity, in

that spikes formed spike patterns that were directly compared with

network and behavioral activities.

However, the relation between hierarchical levels in critical

branching models is importantly different from Simon’s (1973)

levels. Simon argued that levels are “nearly decomposable,” mean-

ing that interactions across components are weak relative to the

stronger interactions holding each component together. While this

is true to some extent, the property of metastability associated with

criticality leads one to emphasize the “loosely composable” nature

of cognitive systems as complex systems (see also Anderson,

2000). Synaptic connectivity composes neurons into networks, and

critical branching allows spikes (fast timescale) to trigger changes

in connectivity (slow timescale), which in turn change spike pat-

terns, and so on between many slower and faster interacting

timescales. These interactions result in multiscale dynamics that

compose themselves into tenuously stable—metastable—shifting

patterns (Hu et al., 2004; Usher et al., 1995). The balanced inter-

play between slower and faster timescales means that levels are

less decomposable than suggested by Simon.

Metastability may be an appealing concept, but one must ex-

plain how specific perceptual and cognitive functions are formed

and supported by metastable patterns. The reservoir computing

analyses reported herein serve as preliminary work toward ad-

dressing this question, because they demonstrate one way that

spike dynamics shaped by critical branching can be used for

classification functions. Other studies have applied reservoir com-

puting to a number of perceptual and cognitive functions, includ-

ing speech recognition (Verstraeten, Schrauwen, Stroobandt, &

Van Campenhout, 2005), syntactic processing (Tong, Bickett,

Christiansen, & Cottrell, 2007), visual object motion tracking

(Burgsteiner, Kröll, Leopold, & Steinbauer, 2007), motor control

(Joshi & Maass, 2005), and navigation (Antonelo, Schrauwen, &

Stroobandt, 2008). In fact, a precursor to the present model was

applied to predicting directions and locations of various movement

patterns (Szary & Kello, 2011).

An issue with all the above studies, and Simulation 2 herein, is

that the readout functions were not used to classify metastable

patterns per se. Metastability in the critical branching model is

driven by engagement of the tuning mechanism, but the readout

functions in Simulation 2 were applied to reservoir spikes after the

mechanism was disengaged. Thus, connectivity was held constant

for the readout function, so that relations between source inputs

and reservoir spike patterns were held constant. By contrast, the

tuning mechanism makes these relations dynamic, which requires

a dynamic readout function in order to apply reservoir computing.

More generally, integrating learning mechanisms into critical

branching neural networks would result in a spike-based,

connectionist-like modeling framework (see also Aisa, Mingus, &

O’Reilly, 2008). Critical branching models of cognitive functions

would inherently explain scaling laws that are general and perva-

sive to cognitive performances. These models would also have

inherent computational capacities on behaviorally relevant time-

scales, which would be generally useful for functions that unfold

on the timescale of conscious performance and experience. Fi-

nally, the intrinsic variations produced near critical branching

points may serve as a mechanism for sampling from generative

models. It was mentioned at the outset that Boltzmann machines

use stochastic variations to sample over probability distributions of

features. The tuning mechanism herein was not designed to pro-

duce variations for sampling over distributions, although long-

range memories of weakly chaotic network dynamics have been

applied for this purpose (Welling & Chen, 2010), and a recent

spiking network model was developed for this purpose (Buesing,

Bill, Nessler, & Maass, 2011). It remains to be seen whether

critical branching dynamics may be similarly applied.
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