
Critical Database Technologies for High Energy Physics 

David M. Malon 
Decision and Information Sciences Division 

Edward N. May 
High Energy Physics Division 

Argonne National Laboratory Argonne National Laboratory 
Argonne, IL 60439 Argonne, IL 60439 

malonQanl.gov may@anl.gov 

Abstract 

A number of large-scale high energy physics 
experiments loom on the horizon, several of 
which will generate many petabytes of scien- 
tific data annually. A variety of exploratory 
projects are underway within the physics com- 
puting community to investigate approaches 
to managing this data. There are conflicting 
views of this massive data problem: 

l there is far too much data to manage ef- 
fectively within a genuine database; 

a there is far too much data to manage ef- 
fectively without a genuine database; 

and many people hold both views. The pur- 
pose of this paper is to begin a dialog be- 
tween the computational physics and very 
large database communities on such problems, 
and to stimulate research in directions that 
will be of benefit to both groups. This paper 
will attempt to outline the nature and scope of 
these massive data problems, survey several of 
the approaches being explored by the physics 

The submitted manuscript has been authored by a contractor 
of the U.S. Government under contract No. W-31-109-Eng- 
38. Accordingly, the U.S. Government retains a nonexclusive, 
royalty-free license to publish OT reproduce the published form of 
this contribution, or allow others to do so, for U.S. Government 
purposes. 

Permission to copy without fee all or part of this material is 
granted provided that the copies are not made OT distributed for 
direct commercial advantage, the VLDB copyright notice and 
the title of the publication and its date appear, and notice is 
given that copying is by permission of the Very Large Data Base 
Endowment. To copy otherwise, 0~ to republish, requires a fee 
and/or special permission from the Endowment. 

Proceedings of the 23rd VLDB Conference 
Athens, Greece, 1997 

community, and suggest areas in which high 
energy physicists hope to look to the database 
community for assistance. 

1 Introduction 

When planning for the now-defunct Superconducting 
Super Collider began several years ago, its anticipated 
data rate-on the order of one petabyte (1,000 ter- 
abytes) of data per experiment per year-seemed ex- 
traordinary. Now the ATLAS collaboration at the 
Large Hadron Collider at CERN expects to oper- 
ate at a multipetabyte data scale, and several other 
experiments (at the Stanford Linear Accelerator, at 
Brookhaven National Laboratory, at the Thomas Jef- 
ferson National Accelerator Facility) will have roughly 
comparable data management needs. The calculation 
is straightforward-even at a sampling rate of only 100 
hertz and sample sizes of 1 megabyte, just lo7 opera- 
tional seconds per year will yield a petabyte of data. 
With data collected over a 5- to lo-year period (and 
2-4 concurrent experiments per accelerator facility), 
data samples in the tens of petabytes are expected to 
be the norm by 2010. 

1.1 Background 

High energy physics experiments have always gener- 
ated large amounts of data. Traditionally, raw data 
have been refined in a series of event reconstruction 
and analysis steps to produce a sequence of succes- 
sively smaller datasets used by the bulk of a collabo- 
rations’ physicists. 

A simplified view of the process is this. In high en- 
ergy physics experiments, particle collisions occur at 
a rate far too high to allow data capture from all of 
them. In such a context, an “event” is, roughly, that 
which causes the data acquisition system to save a data 
sample. Out of many millions of particle collisions per 
second (40 megahertz at ATLAS), hardware “triggers” 

580 



cull the candidates to some tens of thousands of po- 
tentially interesting events per second (75 kilohertz at 
ATLAS). A second-level software trigger further filters 
the sample to about 1 kilohertz. Another, more com- 
putationally demanding software filter is then applied; 
approximately 100 events per second will survive this 
third-level trigger. For each of these events, approx- 
imately 1 megabyte of data will be saved and passed 
to a series of reconstruction and analysis steps, which 
infer and calculate the identities and properties of sub- 
atomic particles present in the event, fit tracks, and 
more. ATLAS estimates that 100 KB of event sum- 
mary data, 10 KB of analysis object data, and 100 
bytes of event tag data will be generated per event 
by this process, in addition to the 1 MB of raw event 
data. 

In earlier experiments with lower input rates, such 
derived data have been organized into compressed, 
self-describing data structures stored in flat files, and 
accessed by means of specialized I/O packages that 
can be linked to physicists’ analysis codes. Data have 
been organized variously into row-wise (by event) and 
column-wise (by attribute) n-tuples, placed on paral- 
lel data servers, and connected to integrated physics 
analysis, statistics, and visualization packages. 

Because it has never been feasible to store all data 
online, raw data, and data high in the analysis chain, 
are typically stored on tape. A priori judgments of 
what constitutes an interesting event, and what data 
from a given event are of greatest relevance, have dic- 
tated the physical organization and placement of data. 
This physical organization not only reflects, but also 
shapes, physicists’ queries-questions whose answers 
require mounting thousands of tapes, in general, go 
unasked. 

1.2 Current Investigations 

In preparation for the next generation of experi- 
ments, physicists have begun to explore alternative 
approaches to this massive data problem. Their code 
development has become increasingly object-oriented, 
and their approaches to data management have fol- 
lowed the same path. Data modeling efforts for a num- 
ber of physics experiments have concluded that object 
models describe experimental physics data quite well. 

A research and development project at CERN 
(RD45) proposes a very large federation of Objectivity 
databases-current plans suggest 10,000 loo-gigabyte 
databases per petabyte. When a query requires ac- 
cess to a database that happens to be on tape, the 
database would be imported in its entirety. Smart 
physical database organization would make it possible 
to keep the most frequently accessed data on many 
terabytes of disk. 

The Computing for Analysis Project (CAP) at Fer- 
milab, with somewhat nearer-term needs, has explored 
a different approach. Data are divided into “primary” 
and “secondary” classes in a persistent object store. 
In the current experiment,al implementation, primary 
data are partitioned across 8 nodes of an IBM SP 
PowerParallel system. Secondary data reside on tape. 
User queries run concurrently on 16 nodes of the same 
SP system, connected to the 8 data server nodes (and 
to each other) through a fast switch. Queries select 
events of interest on the basis of primary data only. 
For the events thus selected, requests for the corre- 
sponding secondary data are batched with those of 
other users so that tape access can be optimized. Data 
from this step are returned to the user in a format un- 
derstood by current-generation physics codes (largely 
FORTRAN) for additional analysis. 

The PASS project at Argonne National Laboratory 
has developed and implemented a flexible, lightweight 
object persistence manager that provides 

l transparent access to every persistent object from 
every query node, no matter where in secondary 
or tertiary storage it may reside; 

l support for efficient reorganization of data at the 
segment level, including striping and reclustering, 
without knowledge of object schemata; 

l extensible support for a variety of storage mecha- 
nisms, including local and remote disk, raw RAID, 
Unitree file systems, raw device access to DD2 and 
8 mm tape, parallel file systems such as IBM’s 
Vesta and PIOFS, and Internet data access via 
standard FTP and HTTP mechanisms or cgi-bin 
scripts; 

l support for data replication; 

l support for multiple access paths to data; 

l portability to heterogeneous distributed architec- 
tures. 

The system has been used to store data from the Fer- 
milab DO experimeit, and ISAJET simulation data 
for ATLAS. The system is intended to provide a tool 
to investigate approaches to data organization and 
clustering, caching and migration, replication, mul- 
tiple data access paths, nonuniform data access and 
multilevel storage, and parallelism, and to understand 
the roles of parallel file systems, mass storage archi- 
tectures, and non-dedicated parallel computing plat- 
forms. In order not to needlessly inhibit concurrent 
use of (and eventual migration to) commercial object- 
oriented databases, the user interface is compliant with 
a substantial subset of the C++binding in the Object 

581 



Database Management Group’s ODMG-93 Version 1.2 
specification. The PASS project has also investigated 
CORBAl-based approaches to distributed data access, 
including an internal implementation of a subset of the 
Object Management Group’s Persistent Object Ser- 
vice Specification, and a study of the Object Query 
Service Specification. 

In planning for the next generation of experiments, 
physicists often think in terms of a multi-tier data en- 
vironment, with massive amounts of data at the ex- 
perimental site, terabytes of data cached or replicated 
at regional centers (e.g., one in Europe, one in North 
America, one in Japan), and gigabyte samples on indi- 
vidual physicists’ workstations. They aspire to a seam- 
less environment in which, from a physicist’s point of 
view, the system looks the same whether she/he is 
querying a 10 MB sample on a desktop workstation 
or a 10 TB sample on a massively parallel processor- 
the query and the physics code’s interface to the data 
should be identical (and, ideally, the physicist might 
not even be aware of where a query is running). 

For the ATLAS experiment, this distributed collab- 
orative environment will involve approximately 1700 
physicists at hundreds of institutes worldwide, with 
500 people involved in data analysis, and 150 of those 
using the primary data system concurrently. 

As of this writing, a new collaborative initiative in- 
volving a number of national laboratories and univer- 
sities across the United States to develop a common 
approach to large-scale data handling for high energy 
and nuclear physics has been approved for funding as a 
scientific Grand Challenge by the U.S. Department of 
Energy. Because of the near-term time scale of some of 
the participating nuclear physics experiments (STAR 
and PHENIX at Brookhaven National Laboratory’s 
Relativistic Heavy Ion Collider), the project’s initial 
emphasis is on efficient physical clustering, caching, 
and management of multilevel and distributed storage 
to deliver bits to applications as efficiently as possible, 
with an ODMG-compliant data model integrated into 
a CORBA-aware analysis framework. 

2 Special Problem Characteristics 

While the scale of these problems is daunting, a num- 
ber of factors serve to make data management and 
analysis simpler than in more general database set- 
tings; unfortunately, a number of other special prob- 
lem characteristics conspire to make matters more 
challenging. 

l Events are essentially independent of one another 
(or conditionally independent given experimental 
run conditions). This means that many queries 

‘Common Object Request Broker Architecture 

may be parallelized almost arbitrarily in principle, 
with each processor operating independently on a 
disjoint subset of a very large collection of events. 

Access patterns are write-seldom, read often. 
(One does not alter experimental data, but be- 
yond the writing done in adding 10 terabytes of 
new data per day, occasional updates are made, 
for example, to account for recalibrations, better 
track-fitting algorithms, and so on.) 

Queries are computationally intensive, and not 
readily expressible in standard query languages 
(SQL-x, O&L), unless those languages allow invo- 
cation of user-provided code. An example might 
be, “select all events E that contain at least two 
oppositely charged muons whose pairwise mass is 
greater than C, and for which myIntensiveCom- 
putation(E) yields TRUE.” It may be easy to se- 
lect all events with oppositely charged muons via 
the query language, and a query language expert 
might even be able to iterate over all distinct pairs 
of muons in the event to compute pairwise mass, 
but at some point, the partial selection must be 
turned over to user code. 

Collections may be very large, commonly on the 
order of 10s elements. The number of objects of a 
given type-the cardinality of an extent-may ex- 
ceed the range of 32-bit integers by several orders 
of magnitude. 

Complex queries may take months to complete (or 
seconds-the range is enormous). 

Needs and Wants 

The following is a brief wish list, gleaned from several 
experiments, of features the physics data community 
would like to see in database products. 

Address at least tens-eventually, hundreds-of 
petabytes of data. 

Support collections of 10’ or more elements effi- 
ciently. 

Support hundreds of simultaneous queries, some 
requiring seconds, some requiring months to com- 
plete. 

Support addition of 10 terabytes of data per 
day without making the system unavailable to 
queriers. 

Return partial results of queries in progress? and 
provide interactive query refinement. 

582 



Provide query cost estimates. (At least, warn if a 
query will mount a thousand tapes.) 

Manage data on both secondary and tertiary stor- 
age, and interact intelligently with emerging hier- 
archical mass storage subsystem archit,ectures for 
resource scheduling, query optimization, and data 
caching and migration. 

Optimize tertiary storage access for simultane- 
ous queries. Determine the data needs of concur- 
rent queries and sort (or have the storage system 
sort) their tape retrievals into ordered per tape 
requests. (Apart from serious I/O speed degra- 
dation, tapes are not random access devices-they 
break under such utilization.) 

Support data access and analysis over an interna- 
tional wide-area network. 

Support invocation of user code from the query 
language, and/or allow piping of events selected 
by an OQL/SQL query-in-progress into user code. 

Provide a very flexible object model, with support 
for schema evolution and versioning. 

Provide flexible facilities for physical storage man- 
agement and optimization and object data reclus- 
tering. 

Support statistical selection mechanisms (uniform 
random samples with and without replacement, 
query language support for quantile-based se- 
lection on indexed attributes without iterating 
through the entire collection, and so on). These 
are not uniquely problems of scale. 

Provide a data analysis environment that is iden- 
tical on desktop workstations and centralized data 
repositories. 

Provide straightforward means to “check out” 
samples from the primary database and operate 
on them offline (from the perspective of the pri- 
mary database), with implicit support, for smart 
deep-copy operations. 

Take scalability issues into account in the devel- 
opment of database standards. 

The last point requires explanation. A crit,ical re- 
view of such welcome efforts as the Object Database 
Management Group’s ODMG-93 Version 1.2 specifi- 
cation is beyond the scope of this paper, but there 
are several areas in which the current specification (in 
its C++binding) poses potential scalability concerns. 
Examples include lifetimes of object references (too 

long to accommodat,e very large-scale data access), it,- 
erators that must be bidirectional, even for unordered 
collections, insufficiently articulated support for data 
clust,ering, and transaction execution models that in- 
hibit large-scale data access and concurrency. 

3.1 Some Comments on Tertiary Storage 
Management 

Tertiary storage management introduces a number of 
challenges. If my query touches 1% of a collection of 
10’ events, and data are cached and clustered so effec- 
tively that 99% of the relevant, events reside on disk, 
how many tapes will I need to mount in order to re- 
trieve the final 1% of my sample (1% of 1% of the total 
data-lo5 events)? Under realistic assumptions about 
tape capacity and event size, the answer is (almost) all 
of them, with probability (almost) one. 

The same problems arise with multidimensional in- 
dexing schemes. If data are indexed and clustered so 
effectively in anticipation of my query that 99.9% of 
the data I want reside contiguously, either on disk or 
on a small number of tapes, the remaining 0.1% will 
require mounting essentially every tape anyway. 

While the hope is that systems may be tuned so 
that satisfying most queries does not require touching 
petabytes of data, querying the entire petabyte-scale 
database should nonetheless be possible for data min- 
ing agents and for physicists willing to incur the wait. 

3.2 Some Comments on Parallelism 

It is clear that any system capable of supporting 
queries against petabytes of data must take advan- 
tage of parallel processing. Such parallelism should 
be transparent to users, who should not need to care 
whether their queries are running on one processor 
or a thousand. Efficient parallelism, though, may re- 
quire addressing a variety of interface issues. It may 
be important, for example, to provide collections and 
iterators that support nondeterminism in the order in 
which elements are returned; without this, there are 
serialization problems that significantly impede scal- 
ability, or else queries must run essentially in batch 
mode, with a substantial sorting task remaining as a 
postprocessing step. A physicist iterating over an un- 
ordered collection (or possibly even an ordered collec- 
tion whose order is not germane to the query) should 
receive data as fast as possible, and the underlying sys- 
tem should support the potential for nondeterminism- 
which 1,000 events are returned first, may vary from 
run to run depending on such factors as processor 
workload, and this is perfectly acceptable. (Related 
concerns about the ODMG-93 requirement of Stan- 
dard Template Library-style bidirectionality in its it- 
erators were noted above.) Support for queries of the 

583 



form, “return ANY 1,000 events satisfying.. .” is also 
desirable. 

Collection constructs and their implementations 
may be designed with a particular emphasis on scala- 
bility and potential for parallelism. Some approaches, 
such as ParSets, which explicitly declare the dis- 
joint nature of set contents, have appeared in recent 
database literature, although there may be some static 
dependence on how data are allocated. Other high- 
level approaches are also possible. For example, the 
ODMG specification allows one to say A is the union of 
B and C, but this is an assignment, not a definition-if 
one later adds an element to B, it does not become an 
element of A. Collection constructs that allow A to be 
defined as the union of B and C enhance scalability. 
(Imagine a collection AllEvents, and what may hap- 
pen to queries if, in a transaction-based architecture, 
an exclusive lock must be acquired on AllEvents every 
time an event is added to the database.) 

There are many subtleties involved in efficient par- 
allelism, and an example of the potential for subtle 
dependence on how databases are populated might be 
in order here. A physicist might run a large-scale sim- 
ulation by replicating it, with different random num- 
ber seeds, on each of P parallel processors. It is likely 
that, to achieve reasonable scalability, these processes 
will attempt to fill disjoint pieces of persistent storage. 
The effective consequence may be physical clustering 
into at least P clusters, where P is entirely an artifact- 
an accident of the number of processors available when 
the simulation is run. That artifact will, however, per- 
sist in the physical layout of the database, and affect 
optimal storage access for subsequent queries, no mat- 
ter which or how many processors those queries may 
utilize. 

4 Conclusion 

There is a vast difference between being able to store 
and retrieve massive amounts of data, and managing 
such data effectively. At petabyte scales, where the 
storage problem alone is daunting, physicists hope the 
database community will provide some of the tools 
necessary to derive new knowledge and understanding 
from the large-scale physics experiments of tomorrow. 

References 

[BIN951 Pave1 Binko, Dirk Duellmann, Jamie Shiers, 
“CERN RD45 status report-a persistent object 
manager for HEP,” Proceedings of the Interna- 

tional Conference on Computing in High Energy 
Physics ‘95, World Scientific, 1996, pp 334-338. 

[FID95] K. Fidler et al, “The Computing for Analy- 
sis Project-a high performance physics analysis 

system,” Proceedings of th,e International Confer- 

ence on Computing in High Energy Physics ‘95, 
World Scientific, 1996, pp 304-308. 

[MAL95a] David M a on 1 et al, “Object database stan- 
dards, persistence specifications, and physics 
data,” Proceedings of the International Confer- 
ence on Computing in High, Energy Physics ‘95, 
World Scientific, 1996, pp 319-323. 

[MAL95b] David Malon et al, “Data analysis in an 
object request broker environment,” Proceedings 
of the Internatiomxl Conference on Computirxg in 

High Energy Physic.s ‘95, World Scientific, 1996, 
pp 329-333. 

[MAL97] David Malon and Edward May, “An 
ODMG-compatible testbed architecture for scal- 
able management, and analysis of physics data,” 
Proceekgs of th,e Internation& Conference on 
Computing in High Energy Physics ‘97, to appear 
April 1997. 

[CAT961 R.G.G. Cattell et al, Th,e Object Database 
Standard: ODMG-93 Release 1.2 (Morgan Kauf- 
mann, San Francisco, 1996). 

[OBJ93] Object Management Group, The Common 
Object Request Broker: Arch,itecture and Speci- 
fication, Revision, 1.2 (OMG, Draft 29 December 
1993). 

[SIE94] Jon Siegel et al, Persistent Object Service 
Specification, OMG Document Numbers 94-l-l 
and 94-10-7 (Object Management Group, 1994). 

[IBM951 IBM et al, Joint Suhmission: Object Query 
Service Specification, OMG TC Document 95-l-l 
(Object Management Group, 1995). 

[DEW941 D.J. Dewitt, J.F. Naughton, J.C. Schafer, 
S. Venkataraman, “ParSets for parallelizing 
OODBMS traversals: implementation and per- 
formance,” Computer Sciences Depnrtm,ent Tech)- 
nkxd Report, University of Wisconsin, Madison,, 
1994. 

584 


