
Critical Dynamics in Genetic Regulatory Networks:
Examples from Four Kingdoms
Enrique Balleza1, Elena R. Alvarez-Buylla2, Alvaro Chaos2, Stuart Kauffman3, Ilya Shmulevich4, Maximino

Aldana1*
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Abstract

The coordinated expression of the different genes in an organism is essential to sustain functionality under the random
external perturbations to which the organism might be subjected. To cope with such external variability, the global
dynamics of the genetic network must possess two central properties. (a) It must be robust enough as to guarantee stability
under a broad range of external conditions, and (b) it must be flexible enough to recognize and integrate specific external
signals that may help the organism to change and adapt to different environments. This compromise between robustness
and adaptability has been observed in dynamical systems operating at the brink of a phase transition between order and
chaos. Such systems are termed critical. Thus, criticality, a precise, measurable, and well characterized property of dynamical
systems, makes it possible for robustness and adaptability to coexist in living organisms. In this work we investigate the
dynamical properties of the gene transcription networks reported for S. cerevisiae, E. coli, and B. subtilis, as well as the
network of segment polarity genes of D. melanogaster, and the network of flower development of A. thaliana. We use
hundreds of microarray experiments to infer the nature of the regulatory interactions among genes, and implement these
data into the Boolean models of the genetic networks. Our results show that, to the best of the current experimental data
available, the five networks under study indeed operate close to criticality. The generality of this result suggests that
criticality at the genetic level might constitute a fundamental evolutionary mechanism that generates the great diversity of
dynamically robust living forms that we observe around us.
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Introduction

There is evidence that many complex dynamical systems found in

nature are critical; namely, they operate close to a phase transition

between two different dynamical regimes [1]. Avalanches [2],

atmospheric phenomena [3,4], financial markets [5,6], earthquakes

[7,8], granular matter [9], and the brain [10–12], are typical

examples. Critical systems exhibit remarkable properties which

would be difficult to explain without the assumption of criticality.

For instance, they can integrate, process and transfer information

faster and more reliably than non critical systems [13]. Or they can

detect and respond to external stimuli whose intensities span several

orders of magnitude, like the brain [11]. These remarkable

properties are mainly a consequence of the long-range correlations

that emerge close to the critical point, producing collective

behaviors and coordinated responses of the entire system. Thus,

criticality confers on the system the ability to collectively respond

and adapt to an often rapidly changing environment.

In the context of genetic regulatory networks (GRN), which are

recognized as the main component in charge of cellular control

[14], recent theoretical studies have shown that robustness and

adaptability, two central properties of living organisms [15–20],

exist simultaneously with the highest probability only in GRN

operating at or close to criticality [21]. Thus, criticality is a property

that can help us understand how the coordinate expression of the

different genes in an organism is achieved under external

perturbations, either to sustain cell functionality or to generate

new phenotypes in order for the organisms to change and adapt to

new environments [15–21]. Therefore, it is important to determine

whether the GRN of real organisms are dynamically critical.

Although some attempts have recently been made in order to

answer this question [22–25], the definite answer has remained

elusive for several decades. Here we present direct evidence that the

GRN of five different organisms indeed exhibit critical dynamics.

We do so by simulating in the computer the avalanche of

perturbations in the gene expression profile of the genetic networks

of these organisms. This allows us to compute the Derrida mapping

M(x) for the five networks under consideration [26]. We will

formally introduce the Derrida map in a further section. For the

time being, it suffices to say that M(x) relates the size x(t) of the

perturbation avalanche at time t, with the size x(t+1) of the

avalanche at the next time step t+1. In other words: x(t+1) = M(x(t)).
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Therefore, M(x) contains all the information of the perturbation

dynamics and can be used to directly measure the dynamical regime

in which the network operates. Using this technique, we show that

the dynamics of these avalanches are critical within numerical

accuracy for the five different organisms studied.

However, in computing M(x) for the large networks of E. coli, S.

cerevisiae and B. subtilis, we face the problem that the overwhelming

majority of the regulatory functions (also termed regulatory phrases) that

determine the combined effect of the regulators on their target genes are

unknown. To circumvent this difficulty, we used random functions to

model the dynamics of these networks. Although random, these

functions were constructed in accordance with the fraction of positive

regulatory phrases inferred from real gene expression profiles. Thus,

the internal structure of the regulatory functions that we used for E.

coli, S. cerevisiae and B. subtilis is statistically consistent with the one

observed in microarray experiments.

Another important aspect that determines the dynamical regime

in which the network operates (ordered, critical or chaotic) is the

fraction of canalizing functions [27–31], which will be defined in a

further section. Intuitively, these functions take into account the

existence of dominant regulators such that, when present, override

the effect of the other regulators. From the microarray experiments

that we analyze it was not feasible to infer the fraction of canalizing

functions present in the regulatory networks of E. coli, S. cerevisiae and

B. subtilis. However, for these networks we varied in our simulations

the fraction of canalizing functions around the statistically expected

values. Interestingly, we observe a significant robustness of the

critical dynamics under the addition or elimination of canalizing

functions. This suggests that the critical behavior observed in the

dynamics of the genetic networks of the organisms under study, is

mainly produced by the network architecture rather than by the

specific nature of the regulatory functions.

In the sections that follow we first present the Boolean network

model that we use to implement the dynamics of the genetic

networks, and the well known mean-field results that predict the

existence of a phase transition from ordered to chaotic dynamics in

this model. Then, we go beyond the mean-field theory by

implementing the Boolean approach in the networks of real

organisms, and show that in all the cases the Derrida map M(x) is

consistent with critical dynamics. We then analyze how this map

changes under the addition and removal of canalizing functions.

In the last section we summarize and discuss our results.

Results

Boolean Models of Genetic Networks
Several models have been proposed to analyze the dynamics of

GRN [32–35]. Although the details of the dynamics might change

from one description (e.g. continuous) to another (e.g. discrete), we

expect the general properties of the dynamics, such as criticality, to

be model independent. In fact, recent work shows that continuous

and discrete descriptions of GRN exhibit similar dynamical

properties under very general conditions [36]. Here we use the

Boolean approach [37–39], in which every gene is represented by

a discrete variable g that can take two values: g = 1 if the gene is

expressed and g = 0 otherwise. The genome is thus represented by

a set of N binary variables, g1, g2, …, gN. The expression of each

gene gn changes in time according to the equation

gn tz1ð Þ~Fn gn1
tð Þ,gn2

tð Þ, . . . ,gnkn
tð Þ

� �
, ð1Þ

where gn1
,gn2

, . . . ,gnkn

� �
are the kn regulators of gn, and Fn is a

Boolean function (also known as a logical rule), which is

constructed according to the inhibitory or activatory nature of

the regulators. The value acquired by the Boolean function for

each configuration of the regulators is termed a regulatory phrase. For

instance, if F(g1, g2) is a function of the two regulators g1 and g2

such that F(1,1) = 1, F(1,0) = 1, F(0,1) = 0, and F(0,0) = 0, then this

function consists of the four regulatory phrases {1,1}R1,

{1,0}R1, {0,1}R0, and {0,0}R0. We will refer to the regulatory

phrases for which F = 1 as activatory, and those for which F = 0 as

inhibitory. The fraction p of activatory phrases in the entire network,

called the gene expression probability, is an important parameter that

controls the dynamical regime in which the network operates (i.e.

ordered, critical or chaotic). Recent work shows that the Boolean

approach does capture the main aspects of the gene regulation

dynamics, for it is able to reproduce gene expression patterns

observed experimentally for several organisms [35,40–43].

Phase Transition in the Boolean Network Model
In this section we present the mean-field theory results that show

the existence of a dynamical phase transition from ordered to chaotic

dynamics in the Boolean network model [26,38,44]. This allows us to

introduce the tools that we use to characterize the dynamical regime

in which the network operates. Although the phase transition was first

obtained within the context of the mean-field approximation, we will

show in the next section the remarkable result that the phase

transition also occurs, almost identically, in networks with realistic

topologies, for which the mean-field assumption does not necessarily

apply. The phase transition is characterized by the temporal

evolution of the Hamming distance x(t) between two different

dynamical trajectories produced by two slightly different initial

conditions. From a biological point of view, the Hamming distance

x(t) is the average normalized size at time t of the avalanche of

perturbations in the gene expression profile, produced by the

perturbation (e.g. gene knockout or gene over expression) of a small

fraction x(0) of genes at time t = 0. The temporal evolution of x(t) is

given by a dynamical mapping x(t+1) = M(x(t)) which relates the size of

the perturbation avalanche at two consecutive time steps [26,38,44].

Given an initial perturbation x(0) at time t = 0, successive iterations of

this mapping will eventually converge to a stable fixed point

x?~ lim
t??

x tð Þ, which is the final size of the perturbation avalanche.

The value x‘ is the order parameter that characterizes the dynamical

regime in which the network operates. Thus, if x‘ = 0 (ordered

regime), all the initial perturbations die out over time. On the

contrary, if x‘.0 (chaotic regime), the initial perturbation of even a

small fraction of genes propagates across the entire system, finally

altering the expression of a finite fraction x‘ of genes in the genome. It

turns out that M(x) is a continuous convex monotonically increasing

function of x (in the mean field theory M(x) is a polynomial), with the

property that M(0) = 0 and M(1),1. Therefore, there is only one

parameter that controls the phase transition, the so-called average

network sensitivity S, which is given by S = [dM(x)/dx]x = 0. If S,1

then the only fixed point is x‘ = 0, whereas if S.1 then x‘.0. The

phase transition occurs at S = 1, for which the fixed point x‘ = 0 is

only marginally stable. In general, S depends on p and on the

topology of the network. The dynamical mapping M(x) contains all

the information about the dynamical regime in which the network

operates. This is true even if M(x) cannot be obtained through a

mean-field computation, which is the case for real networks. In the

Supporting Information (Text S1) we provide a Java applet with the

animation of the perturbation dynamics in networks with homoge-

neous random topology.

Beyond the mean-field theory: Existence of the Phase
Transitions in Networks with Realistic Topologies

The mean-field theory that predicts the existence of the phase

transition controlled by the average network sensitivity S, is based

Criticality in Genetic Nets
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on the assumption that all the genes in the network are statistically

independent and statistically equivalent [26,44]. However, this

assumption is certainly not true for real GRN, due to the existence

of global regulators which correlate the expression of a large

fraction of genes. Indeed, recent large-scale analysis [21] of the

transcription regulatory networks of E. coli, S. cerevisiae, and B.

subtilis indicate that these networks exhibit a Poisson-like input

topology and a scale-free output topology (see Figure 1a). The

output scale-free topology correlates the expression of a large

fraction of the genes, and the assumption of statistical indepen-

dence is not longer satisfied. Therefore, we do not expect the

mean-field theory to be applicable for real networks because of

their topological characteristics. Nonetheless, the phase transition

predicted by the mean-field theory is identical to the one observed

in randomly constructed Boolean networks with topologies

statistically equivalent to the ones observed in real GRN. This is

shown for the first time in Figure 1b. This result is quite

remarkable, for we know that in many other systems the phase

transition strongly depends on the network topology, and can even

disappear for topologies that induce strong correlations between

the elements (such as the scale-free topology, [45]).

Critical Dynamics in Real Genetic Networks
To determine the dynamical regime in which the genetic network

of a real organism operates, we have to compute the dynamical

mapping M(x) directly from experimental data, without any mean-

field assumptions. The actual form of M(x) depends on both the

network topology and the particular set of Boolean functions. We

computed numerically M(x) for five genetic networks: The network

of flower morphogenesis in A. thaliana (15 genes; [41]); the network

of segment polarity genes in D. melanogaster (60 genes; [42]); and the

gene transcription networks of E. coli (1481 genes; [46]), S. cerevisiae

(3459 genes; [47]), and B. subtillis (830 genes; [48]). In the first two

cases the Boolean functions are already known. However, the

overwhelming majority of regulatory phrases for the gene

transcription networks of E. coli, S. cerevisiae and B. subtilis are still

unknown. Due to this lack of information, to implement the

Boolean dynamics on the GRN of these three organisms we used

biased random Boolean functions generated with a gene expression

probability p inferred from microarray experiments. (In the next

section we show that the map M(x) does not change significantly for

networks with a large fraction of canalizing functions.) Given the

network topology, p can be estimated from microarray experiments

by standard Bayessian parametric inference with two states (see

Methods). Using 223 microarrays to sample the gene expression

space in S. cerevisiae [49], 152 microarrays for E. coli [49–51], and 69

microarrays for B. subtillis [52], we inferred several regulatory

phrases for each of these organisms. All the experiments used for this

analysis are listed in the Supporting Information accompanying this

article (Text S1). We only used regulatory phrases for which the

average of the a posteriori probability distribution was greater than

70% (activatory phrase) or smaller than 30% (inhibitory phrase).

The inference technique is explained below in the Materials and

Methods section. With this technique, we obtained the following

gene expression probabilities: p = 0.57660.038 for E. coli (from 264

inferred phrases), p = 0.49560.055 for S. cerevisiae (from 196

phrases), and p = 0.053160.035 for B. subtilis (from 307 phrases).

We then constructed random Boolean functions with internal bias

given by these probabilities.

We report in Figure 2 the Derrida curves (i.e. the graphs of M(x))

for the five genetic networks under consideration. It is apparent

from this figure that in all five cases the Derrida curves arrive

almost tangent to the identity close to the origin. The above is

consistent with critical behavior at the genetic level. A polynomial

regression analysis allows us to estimate the average network

sensitivity S = [dM(x)/dx]x = 0 by computing the slope at the origin

of the best-fit polynomial with a degree equal to the maximum

number of regulators per gene in each case (this is the polynomial

predicted by the mean-field theory). In all five cases the Regression

Sum of Squares is below 1024, and the average network

sensitivities obtained in this way are: S = 1.028 for E. coli;

S = 1.036 for S. cerevisiae; S = 0.826 for B. subtilis; S = 0.914 for D.

melanogaster; and S = 1.127 for A. thaliana. Within numerical

accuracy, these sensitivities show that the dynamics of these

Figure 1. Order-chaos phase transition in Boolean networks
with realistic topologies. (a) Graphic representation of the gene
transcription network of E. coli K-12. For this network the probability for
a given gene to have K regulators is P(K) = e2zzK/K! (Poisson input
topology), whereas the probability to be a regulator to n other genes is
P(n) = Cn2c (scale-free output topology). (b) Phase transition diagram
showing x‘ as a function of S. The solid line in black is the theoretical
result predicted by the mean-field theory. The dashed line in red was
computed numerically for randomly constructed Boolean networks
with N = 1000, Poisson input topology and scale-free output topology.
The Boolean functions were randomly generated with a probability of
gene expression p = 0.5. Remarkably, the phase transition predicted by
the mean field theory is identical to the one obtained for random
Boolean networks with topologies statistically equivalent to the real
ones.
doi:10.1371/journal.pone.0002456.g001
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networks are very close to criticality. Note that this is particularly

true for the two largest and most complete networks of E. coli and

S. cerevisiae.

Criticality and its robustness revealed by varying the
degree of canalization

We have used random Boolean functions in our simulations

because the overwhelming majority of the logical rules for E. coli,

S. cerevisiae and B. subtilis, are still unknown. The caveat is that real

biological functions are not random. It has been pointed out that

canalizing functions are more realistic from a biological point of

view [27,28]. A formal definition of canalizing functions can be

found in Ref. [31]. Here, it suffices to define a canalizing function

as follows. Let F(g1, g2, …, gk) be a Boolean function of k

arguments. We will say that F is canalizing on one of its arguments

gi, if the value of F is determined by fixing the value of gi either to 0

or to 1. To illustrate this concept, Table 1 shows a function F(g1, g2,

g3) that depends on three arguments. In this example, F = 0

whenever g2 = 1, regardless of the values of g1 and g3. Therefore, F

is canalizing on g2. The biological significance of canalizing

functions is based on the existence of dominant regulators. Thus,

in the example shown in Table 1, g2 could represent a dominant

repressor (like crp in E. coli) which, when present, blocks the

transcription of the target gene regardless of the presence or

absence of the activators.

It is known that the amount of canalizing functions in the system

can change the dynamical regime in which the network operates

[29,30]. Therefore, it is important to determine if the dynamics of

the large networks of E. coli, S. cerevisiae and B. subtilis are still

critical when more realistic Boolean functions are used. However,

from the microarray experiments that we analyzed it is impossible

to know the fraction of canalizing functions present in these

organisms, or if such functions have one, two or more canalizing

inputs. For instance, according to the regulonDB, which gives the

topology of the transcription regulatory network of E. coli [46],

Figure 2. Critical dynamics in networks of real organisms. Derrida curves exhibiting critical dynamical behavior in the genetic networks of five
different organisms spanning four kingdoms of life: E. coli [46], S. cerevisiae [47], and B. subtilis [48], D. melanogaster [42] and A. thaliana [41]. Each
point in the Derrida curve is the average over 20000 initial perturbations and the error bars indicate one standard deviation around this average.
Additionally, the error bars in the curves of E. coli, B. subtilis and S. cerevisiae incorporate the uncertainty in the estimation of the p bias inferred from
the microarray experiments. For comparison we show in the upper left corner three Derrida curves of randomly constructed networks with Poisson
input topology operating in three dynamical regimes: Ordered (green), critical (black) and chaotic (blue). Note that criticality is characterized by the
tangency of the Derrida curve to the identity close to x = 0.
doi:10.1371/journal.pone.0002456.g002

Table 1. Example of canalizing function.

g1 g2 g3 F(g1, g2, g3)

1 1 1 0

1 1 0 0

1 0 1 1

1 0 0 1

0 1 1 0

0 1 0 0

0 0 1 1

0 0 0 0

Example of a Boolean function of three arguments that is canalizing on one of
them. Note that F = 0 whenever g2 = 1, regardless of the values of the other two
arguments.
doi:10.1371/journal.pone.0002456.t001

Criticality in Genetic Nets
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there are at least 817 genes with two or more regulators. These

817 genes are all regulated by a subset of 160 genes. Therefore, to

determine whether or not the Boolean functions associated with

these genes are canalizing, one would have to analyze microarray

experiments probing at least 2160 different configurations for these

genes. This is impossible for many reasons, but mainly because not

all the 2160 configurations of the regulators are biologically

attainable. (Consider for instance the configuration 00000….00 in

which all the regulators are ‘‘off’’, or the configuration 11111…11

in which all the regulators are ‘‘on’’. Clearly, these two

configurations are not attainable under any biological condi-

tion—without killing the organism.) Therefore, the 152 micro-

arrays used to sample the gene expression space in E. coli represent

a very tiny fraction of all the possible configurations necessary to

determine the whole set of Boolean functions. However, these 152

experiments are absolutely relevant because they represent the

observable and biologically attainable gene expression configurations of

the organism. Thus, it might be irrelevant if the whole Boolean

function of a given gene is canalizing because neither us nor the

organism are sampling its whole set of (mathematically possible)

configurations. For this reason, we do believe that the important

quantity is the observed gene expression probability for the

biologically attainable configurations.

Nonetheless, Random Boolean functions already contain

canalizing functions. Table 2 gives the probability Pc(K) for a

randomly generated Boolean function with K inputs to be

canalizing on at least one of its inputs (data taken from [31]). As

we can see from Table 2, the probability for a randomly generated

Boolean function to be canalizing is high for K = 1, 2 and 3

(Boolean functions with K = 1 are canalizing, by definition). On the

other hand, Table 3 shows the distribution PE(K) of the number of

genes with K inputs in the genetic network of E. coli, according to

the last update of the regulonDB [46].

From Tables 2 and 3 we obtain that, if the Boolean functions for

E. coli are generated at random, just by chance about

1036~
P10

K~1

Pc Kð ÞPE Kð Þ functions out of 1482 (70%) would be

canalizing on at least one input. If we do not consider the 615

genes with only one regulator (because for such genes the Boolean

function is trivially canalizing), and the 50 genes with no inputs,

then there are 817 genes with two or more regulators. From the

data listed in Tables 2 and 3 one obtains that, for the genes with

K$2, about 421~
P10

K~2

Pc Kð ÞPE Kð Þ out of 817 of the randomly

generated functions would be canalizing just by chance. It is

important to note that these 421 canalizing functions mostly come

from the genes with K = 2 and K = 3. Thus, combining the results

presented in Tables 2 and 3 we obtain that the fraction fc of

canalizing functions present just by chance for the genes with K$2

is given by fc<421/817<0.51.

Therefore, in the simulations with random Boolean functions

there is already a large fraction of canalizing functions. To further

investigate the effect that canalizing functions might have on the

dynamics of the genetic networks, we have added and removed

canalizing functions to and from the ones already present just by

chance. Our results indicate that the critical behavior observed in

the genetic dynamics still exists even when the fraction of

canalizing functions substantially deviates from the value expected

for fully random functions.

Figure 3 shows the map M(x) for the E. coli network for several

values of the fraction fc of genes with K$2 regulated by canalizing

functions. Figure 3a corresponds to the case in which there are

more canalizing functions than the ones present just by chance,

whereas Figure 3b shows the opposite case in which there are less

canalizing functions. To compute fc we have ignored the genes

with only one regulator, taking into account only the 817 genes

with two or more regulators. We have already mentioned that in

the E. coli network, fc = 0.51 for fully random Boolean functions.

Additionally, from Table 2 we also see that for K = 2 and K = 3 the

probability Pc(K) for a random Boolean function to be canalizing is

relatively high (Pc(2) = 0.875 and Pc(3) = 0.468), whereas for K$4

the probability is extremely low. Therefore, what we did to

increase the value of fc was to add canalizing functions only to the

genes with K$4 in such a way as to preserve the overall value

p = 0.57660.038 of the gene expression probability observed in

microarray experiments. There are 230 genes with K$4, and we

can consider that none of them are regulated by canalizing

functions just by chance (the probability is very low). Therefore, to

increase fc we forced a fraction q of these 230 genes to be regulated

by canalizing functions. In Figure 3a we present the Derrida maps

for q = 0.1, 0.3, 0.5, 0.7 and 0.9. When considering the other 421

genes already regulated by canalizing functions just by chance,

these values of q correspond to fc = 0.544, 0.600, 0.656, 0.712, and

0.768, respectively. (We computed fc as fc = (421+2306q)/816). As

we can see from Figure 3a, the map M(x) is practically the same

even for fc = 0.656, namely, even when two thirds of the genes with

Table 2. Fraction of canalizing functions.

K Pc(K)

1 1

2 0.875

3 0.468

4 0.0536

5 3.061024

6 5.561029

7 1.6610218

8 6.7610238

9 3.1610276

10 2.96102153

Probability Pc(K) for a randomly generated Boolean function with K inputs to be
canalizing. Data taken from [31].
doi:10.1371/journal.pone.0002456.t002

Table 3. Distribution of regulators per gene in E. coli.

K PE(K)

0 50

1 615

2 347

3 240

4 100

5 85

6 22

7 11

8 8

9 3

10 1

Distribution PE(K) of the number of genes with K regulators in the E. coli
network according to the last update of the regulonDB [46].
doi:10.1371/journal.pone.0002456.t003

Criticality in Genetic Nets
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two or more inputs are regulated by canalizing functions. Only for

fc.0.7 significant deviations from criticality are observed (dotted-

dashed curves in Figure 3).

Analogously, to decrease the value of fc we removed a fraction q

of the canalizing functions from the 421 genes which originally are

regulated by canalizing functions just by chance. In other words,

we forced a fraction q of these 421 genes to be regulated by non-

canalizing functions. In this case, fc is given by fc = 421(12q).

Figure 3b shows the Derrida maps for q = 0.1, 0.3, 0.5, 0.7 and 0.9.

From Figure 3 it is clear that the Derrida map is less robust to

the removal than to the addition of canalizing functions. However,

in the region 0.4#fc#0.66 the Derrida map does not seem to

change substantially.

To indicate the significance of the above results we present in

Figure 4 the map M(x) for homogeneous random networks with

different fractions fc of canalizing functions. In these networks each

gene has exactly K = 2 regulators chosen randomly from anywhere

in the system, and the bias p of the Boolean functions is p = 0.5. With

fully random functions the network operates in the critical regime.

Figure 4(a) corresponds to the addition and Figure 4(b) to the

removal of canalizing functions. In both cases we used networks

with N = 1481 (the same number of genes as in the E. coli network).

In a homogeneous random network with N genes and connectivity

K, just by chance there are Nc = N6Pc(K) genes regulated by

canalizing functions, and Nnc = N6(12Pc(K)) genes regulated by

non-canalizing functions. By forcing a fraction q of these Nnc genes to

be regulated by canalizing functions, the overall fraction fc of

canalizing functions in the network increases according to

fc = (Nc+q6Nnc)/N. Analogously, by removing a fraction q of the Nc

canalizing functions present just by chance, the fraction fc of

remaining canalizing functions is fc = Nc(12q). In Figures 4(a) and

4(b) we present results for q = 0.1, 0.3, 0.5, 0.7 and 0.9, which

produce the corresponding values of fc displayed in the Figure. As

we can see from Figure 4, for homogeneous random networks the

addition or removal of even a small fraction of canalizing functions,

on top of the ones that are already present by chance, has a much

bigger effect on the dynamics than for the E. coli network.

Figure 4. Dynamics of random networks using canalizing
functions. Derrida map M(x) for homogeneous random networks with
N = 1481, K = 2, p = 0.5 and different fractions fc of canalizing functions.
For fully random functions the networks operate in the critical regime
and fc = 0.875. Panel (a) shows the results when more canalizing
functions are added on top of the ones already present just by chance,
whereas panel (b) corresponds to removing canalizing functions from
the ones already present. Note that the addition or removal of even a
small fraction of canalizing functions in homogeneous random
networks has a considerably bigger impact on the dynamics than for
the E. coli network. Each point in the curves is the average over 5000
initial conditions randomly chosen.
doi:10.1371/journal.pone.0002456.g004

Figure 3. Critical dynamics in E. coli using canalizing functions.
Derrida map M(x) for the E. coli network with different fractions fc of
canalizing functions. To compute fc we took into consideration only the
genes for which K$2. For fully random Boolean functions fc = 0.51. (a)
We increased the value of fc by adding canalizing functions to the 230
genes with K$4. Note that M(x) remains critical even for fc<0.66, but it
starts to deviate from criticality towards the ordered region for fc.0.7
(dotted dashed curves). (b) We decreased the value of fc by removing
canalizing functions from the 421 genes which originally are regulated
by canalizing functions just by chance (most of them with K = 2 and
K = 3). In this case the curve deviates from criticality towards the chaotic
region only for fc,0.4. Each point in the curves is the average over 5000
initial conditions randomly chosen.
doi:10.1371/journal.pone.0002456.g003
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These results strongly suggest that the critical behavior observed

in the dynamics of the genetic networks of real organisms, and its

robustness to changes in the fraction of canalizing functions, are

most probably due to the network architecture rather than to the

logical rules that regulate the expression of the genes. If, for

instance, there were a large fraction of genes with 5 inputs in the E.

coli network, then the presence of canalizing functions would

certainly affect the dynamical regime in which the network

operates. But given that most of the genes have 1, 2 or 3 inputs,

there is already a large fraction of canalizing functions just by

chance. Adding more does not substantially affect the dynamical

behavior.

Discussion

Our results show that, to the best of the current experimental

data available, and within numerical accuracy, the Boolean

dynamics of the GRN of five organisms from four different

kingdoms are critical. We have used two small well documented

networks for specific patterning processes in plants (A. thaliana) and

animals (D. melanogaster), for which both the topology and the

Boolean functions are known and correspond to thoroughly

studied processes at the molecular level. We also tested larger

GRN for unicellular organisms (E. coli, B. subtilis and S. cerevisiae) in

which the logical rules are not known. Thus, in the absence of

other knowledge, we used random regulatory phrases constructed

with gene expression probabilities inferred from microarray

experiments. How ever, the results are essentially the same when

the fraction of canalizing functions with the same gene expression

probabilities varies considerably. The fact that all these GRN,

constructed with completely different approaches, for distinct

organisms and of different sizes exhibit critical Boolean dynamics

is of outmost interest and strongly suggest that this might be a

generic characteristic with far reaching consequences. For there is

evidence that criticality confers clear evolutionary advantages to

living organisms, because it is only close to criticality that

robustness and adaptability can coexist. It remains an open

problem to determine how criticality has emerged throughout

evolution, i.e. to devise biologically relevant models of network

growth that generate critical dynamics. Such models must take

into account not only the evolution of the network topology, but

also the emergence of the regulatory phrases through which the

genes interact. If this critical behavior is corroborated as more and

better experimental data become available, and with more

detailed dynamic models, criticality at the genetic level may

become a fundamental evolutionary mechanism that renders the

stability and diversity that we observe in living organisms.

Materials and Methods

Phase transition in networks with realistic topology
We computed the phase transition displayed in Fig. 2(b) by

implementing the Boolean dynamics in networks with scale-free

output topology and Poisson input topology. Such networks are

easily generated in the computer by firs assigning to each gene gn

its number of outputs ln, taken from a scale-free probability

distribution Po(l) = Cl2c, where C is the normalization constant and

c is the scale-free exponent. Once every gene has been assigned

with a number of outputs, the ln outputs of each gene gn are chosen

randomly from anywhere in the network. By this process, the

inputs of each gene are automatically set with a Poisson

distribution Pi kð Þ~e{z zk

k!
whose average z depends on the scale

free exponent c. There is a fraction Pi(0) = e2z of genes which do

not have inputs and hence remain frozen throughout the temporal

evolution of the system. Those genes were not perturbed. Only

genes with a nonzero number of inputs were perturbed. We used

networks with N = 1000 genes since this is the order of magnitude

of the gene transcription networks available in the databases. We

run the dynamics for 1000 time steps, starting out from two initial

conditions differing in 20 genes (2%). After these 1000 time steps

we computed the Hamming distance between the resulting states.

Each point in Fig. 2(b) is the average of this Hamming distance

over 10000 different pairs of initial conditions.

Once we know the regulators of every gene in the network, the

Boolean functions are assigned as follows. A Boolean function of k

inputs has 2k values, one for each of the 2k configurations of the k

inputs. For each of these 2k configurations we generate a random

number z uniformly distributed in the interval [0,1]. If z#p we set

the value of the Boolean function equal to 1 for the corresponding

configuration of the inputs. If z.p, we set the value of the Boolean

function equal to 0. We repeat this process for all the

configurations of the Boolean function and for all the Boolean

functions in the network. In this algorithm the parameter p is the

gene expression probability inferred from microarray experiments.

Microarray Data
For E. coli all available microarray experiments in the Stanford

Microarray Database (SMD, see http://genome-www5.stanford.

edu) were incorporated in the inference algorithm, except by

experiments that increased the number of false positives (see

Assessing Inference Success below); 107 experiments were selected

in total from SMD. Also, 45 microarray experiments were

incorporated from Gosset et al, 2004 and Zhang et al, 2005. For

B. subtilis all the available microarray experiments in the KEGG

Expression Database (www.genome.jp/kegg/expression) were

incorporated except experiments that increased the number of

false positives; 69 experiments in total. For S. cerevisiae basically all

the data form the three experimenters were retrieved from SMD.

The name of the experimenter and the number of microarrays are

as follows: Gasch, 138; DeRisi, 29; Spellman, 56. Only the cell

cycle experiments from Spellman were rejected because they do

not conform to the hypothesis of the Bayesian inference algorithm,

which requires the absence of oscillating variables. See the

Supporting Information (Text S1) for a complete relation of ID’s

of the incorporated experiments for the three organisms.

Data Normalization
The data were retrieved from SMD as Log Ratios (base 2).

These data were already background corrected and mean

normalized by SMD itself. Only features with no flags were

selected. Data from (Gosset et al, 2004; Zhang et al, 2005) were

background corrected and normalized by Affymetrix Microarray

Suite 5.0. Log Ratios (base 2) were then calculated between the

wild type experiments and the mutants with and without glucose.

The data from the KEGG Expression Database were already

normalized when retrieved. They were only background corrected

by us; Log ratios (base 2) were obtained.

Inference Algorithm
Only Log Ratios greater than a certain threshold T0 were

considered (see Assessing Inference Success). With the filtered data

we performed standard Bayesian parametric inference with

variables of two states, inhibited (repressed) and induced

(activated). The Equivalent Sample Size was set equal to 4. The

induction or repression of a gene were established if the average of

the a posteriori distribution was equal to or greater than 70% for

induction, and equal to or lower than 30% for repression. A

detailed example of the inference algorithm is presented below.
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Assessing inference success
The nature of the regulation (activation or repression) of many

of the established regulations in the networks of E. coli and B.

subtilis is reported in the corresponding databases (Salgado et al,

2006; Makita et al, 2004). From this information it is possible to

generate regulatory phrases only for those genes with one

regulator. Thus we compared the one-regulator phrases already

reported with our inferred one-regulator phrases. The inference

success was established as the percentage of coincidences between

our inferred phrases and the reported ones. The inference success

increases as the threshold T0 increases. However, the total number

of phrases that can be inferred diminishes as T0 increases. A good

compromise between low percentage of false positives (high

inference success) and a good statistics was achieved at T0 = 1.50

for E. coli, and T0 = 1.30 for B. subtilis. From these results we found

that a good threshold for S. cerevisiae, for which the nature of the

regulations is not reported, is T0 = 1.50. Note that a threshold of

1.5 in Log2 Ratios is equivalent to almost a three fold change in

expression intensities.

Example of inference
We illustrate the inference technique to obtain the value of the

parameter p from microarray experiments with a specific example.

Suppose that gene A is regulated by genes B and C, and that we

want to determine the regulatory phrases, i.e. how A changes its

expression due to the joint combinatorial changes of B and C. In

order to do so, we need a set of microarray experiments in

different conditions that have been already normalized and their

background noise subtracted. We use the data shown in Table 4

for the gene expression level of three genes (log ratios base 2),

obtained from two color spotted microarrays. In this table,

‘‘Condi’’ refers to one microarray experiment in the ith condition

(not necessarily all the conditions have to be different). For

instance, Cond1 may be the wild type condition, whereas Cond2

may be a condition in which a global regulator has been knocked

out. In general, the level of expression of a given gene is different

from one condition to another. Namely, there may be over

expressions or under expressions across the different conditions.

To filter out only the biggest changes in the level of expression of

the genes we use a threshold T0, and indicate the positive changes

(those greater than the threshold) with an arrow pointing upwards.

Analogously, we indicate the negative changes (those lower than

the threshold) with an arrow pointing downwards. When no

change is detected we use the symbol (—). Using the data shown in

Table 4 and setting the threshold value to T0 = 1.5, we get the

discrete representation shown in Table 5.

By counting how many times A changes for the different

combinations of B and C given in Table 5, we obtain the data

shown in Table 6. Some table entries are equal to zero, indicating

that there are no data for that particular combination of B and C.

Note that we have considered all the cases with three symbols

(Q,—,q), and two regulators (B and C). Now we reduce Table 6

by considering only the entries where a change can be detected

(i.e., we eliminate all entries with ‘‘—’’). This gives the results

displayed in Table 7. For reasons that will be clear in a moment, it

is necessary to add one unit of a priori evidence to every entry of

Table 7. After this unit has been added, we obtain Table 8.

Observe from this last table that, for the first combinatorial change

Table 4. Gene expression data.

Cond1 Cond2 Cond3 Cond4 Cond5 Cond6 Cond7

A 2.34 1.56 2.05 2.56 0.65 23.45 22.55

B 1.76 1.95 2.86 2.67 21.89 22.06 21.79

C 3.36 1.45 1.35 1.97 21.78 21.67 21.99

Typical example of the gene expression data obtained from microarray
experiments. Each number represents the change (increase or decrease) of the
gene expression level of the corresponding gene in Condition i (Condi), relative
to its level of expression in a given reference condition. This change is measure
as a log ratio in base 2. Thus, a positive number corresponds to an increase in
the level of expression, whereas a negative number represents a decrease.
doi:10.1371/journal.pone.0002456.t004

Table 5. Discretization of the gene expression change.

Cond1 Cond2 Cond3 Cond4 Cond5 Cond6 Cond7

A q q q q — Q Q

B q q q q Q Q Q

C q — — q Q Q Q

If the change of the level of expression reported in Table 4 is larger than a given
threshold T0, we write an arrow pointing upwards (q), whereas if the change of
the level of expression is smaller than 2T0 then we write an arrow pointing
downwards (Q). The symbol (—) indicates that no significant change was
detected. In this example we used a threshold T0 = 1.5 to discretize the numbers
given in Table 4.
doi:10.1371/journal.pone.0002456.t005

Table 6. Occurrence count of evidences.

B C A

Q — q

Q Q 2 1 0

— Q 0 0 0

q Q 0 0 0

Q — 1 0 0

— — 0 0 0

q — 0 1 2

Q q 0 0 0

— q 0 0 0

q q 0 0 2

Counting of how many times A changes positively (q), negatively (Q), or it
does not change (—) for every combined instance of changes of B and C,
according to the results displayed in Table 5.
doi:10.1371/journal.pone.0002456.t006

Table 7. A priori and a posteriori evidence I.

B C A

Q q

Q Q 2 0

q Q 0 0

Q q 0 0

q q 0 2

After removing all the instances in Table 6 where there is no change, we end up
with the data shown in this table. Note that there are some configurations of B
and C for which there is no evidence for a corresponding change in A.
doi:10.1371/journal.pone.0002456.t007
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of B and C (first row), there are three evidences where the level of

expression of A decreases and one in which it increases. If these

were all the evidences, we could say that from 100% of the cases

(3+1), in 75% of them the expression level of A increases and in

25% of them it decreases. Thus, the a priori evidence that we have

added has the effect of changing the importance the a posteriori

evidence. There are several ways of distributing the a priori

evidence; in this work we have used an Equivalent Sample Size

S = 4, which means that the 4 units of a priori evidence are

distributed equally among all the possibilities.

Finally, given the a posteriori evidence, in order to decide whether

the expression level of A increases or decreases we use a second

threshold T1. If the percentage of a posteriori evidence is greater or

equal than T1, then a regulatory phrase has been established.

Using a threshold T1 = 75% we obtain the results shown in

Table 9. We have used the symbol ‘‘—’’ to state that the evidence

does not support a decision. To infer the regulatory phrases from

the microarray experiments analyzed in this work we used the

value T1 = 75%.

Once a set of phrases has been successfully established, we

determine the probability of gene expression as the quotient of

activatory phrases between the total of inferred phrases. In the

case shown in Table 9, two phrases have been successfully

established, one activatory and the other inhibitory. Thus, the

estimated probability of gene expression in this example would be

p = K.

To validate our methodology for inferring regulatory phrases we

use the nature of the regulation already reported in the data bases

for the case of simple regulations, namely, when only one regulator

determines the expression of the regulated gene (gene A is only

regulated by gene B). For example, in E. coli the gene alaW is

regulated (positively) only by fis. In the Regulon Data Base this

regulation is represented as:

Fis?AlaWz

The plus sign at the end indicates that alaW is positively retulated

by fis. The table with the two phrases follows immediately:

fis alaW

Q Q

q q

Note that this information in the RegulonDB cannot be used to

validate our methodology for genes with more than one regulator.

This is because the regulation is combinatorial. To validate our

methodology we compared only the inferred phrases for simple

regulations with the ones reported in the RegulonDB or the

DBTBS. Figure 5 shows the inference success (the fraction of

regulatory phrases form simple regulations that matched the

phrases obtained from the curated databases) as a function of the

threshold T0. In the same graphs we have plotted the total number

of inferred phrases (including the phrases from simple regulations).

As we can see, the inference becomes better as the threshold T0

increases. However, the total number of inferred phrases decreases

with the threshold. In order to have a good statistics (more than

Table 8. A priori and a posteriori evidence II.

B C A

Q q

Q Q 3 1

q Q 1 1

Q q 1 1

q q 1 3

To every instance of A shown in the previous table, we add an a priori evidence
of 1, which results in the data displayed here. This has the effect of changing
the importance of the a posteriori evidence.
doi:10.1371/journal.pone.0002456.t008

Table 9. Inferred table of regulation.

B C A

Q Q Q

q Q —

Q q —

q q q

With a threshold T1 = 75% for the a posteriori evidence in Table 8, we inferred
the most probable effect of the combined changes of B and C on the
expression of A. With the information available, only two regulatory phrases
could be inferred in this example.
doi:10.1371/journal.pone.0002456.t009

Figure 5. Inference success. This figure shows the compromise
between the inference success (solid line), and the total number of
inferred phrases (dashed line) as functions of the threshold T0 for (a) E.
coli and (b) B. subtilis. Note that increasing the inference success
decreases the number of inferred phrases. A compromise has to be
established by adequately choosing T0. We have chosen T0 = 1.5 for E.
coli and T0 = 1.3 for B. subtilis.
doi:10.1371/journal.pone.0002456.g005
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250 inferred phrases) and a high inference success (around 90%),

in this work we have chosen T0 = 1.5 in E. coli and T0 = 1.3 in B.

subtilis.

Supporting Information

Text S1 Java Applet of the dynamics and list of ID numbers for

the microarray experiments used in this work.

Found at: doi:10.1371/journal.pone.0002456.s001 (0.05 MB

DOC)
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