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SAMENVATTING

Statistische methodes in de fysica (evenals in de chemie of bijv.
de sociologie) voor de beschrijving van 'macroscopische' systemen zijn
vaak nodig ten gevolge van de onmogelijkheid of onwenselijkheid van een
gedetailleerde 'microscopische’ beschrijving. Afgezien van de experimen-
tele of fundamentele onmogelijkheid, is niemand geinteresseerd in bij-
voorbeeld de precieze posities en snelheden van alle 10®® molekulen in
zijn huiskamer, terwijl aan de andere kant het aantal microscopische
objecten (zoals molekulen, photonen of mensen) vaak toch niet voldoende
groot is om tevreden te zijn met een zuiver deterministische (d.w.z.
niet-stochastische) beschrijving van het macroscopische systeem (bijv.
een reactie vat, laser of populatie}.

Statistische modellen zijn zelden exact oplosbaar. Daarom is het,
zeker in de fysica, zinvol te zoeken naar niet-exacte oplossingen
waarvan gegarandeerd kan worden dat ze de werkelijke oplossingen steeds
dichter zullen naderen naarmate het systeem meer macroscopisch wordt.
Dit laatste wordt uitgedrukt in een kLeine parameter, i.h.a. aangeduid
als het inverse volume van het systeem.

Laat nu een systeem stochastisch beschreven zijn d.m.v. de zogenaam-
de Markovse master vergelijking. En laat ons beginnen te veronderstelien
dat de toestand van het systeem in de macroscopische limiet stabiel is
in de lineaire benadering, d.w.z. onder zeer kleine verstoringen. Zo'n
toestand heet normaal. Indien er slechts &én normale deterministische
toestand bestaat, spreekt men van een moncstabiele faze van het systeem.
Indien er evenwel, als gevolg van het wijzigen van een externe grootheid
(de zogenaamde pomp-parameter, bijv. temperatuur, electrische stroom,
chemische concentratie of mechanische kracht) twéé normale determi-
nistische toestanden mogelijk zijn, spreekt men van een bistabiele faze.
De tot dusver bekende ontwikkeling van de master vergelijking is toepas-
baar op zowel de monostabiele toestand als op de twee separate toestan-
den van de bistabiele faze. Ze is evenwel ongeldig in het critische ge-
bied van de pomp-parameter, dat de normale monostabiliteit scheidt van
de normale bistabiliteit. De in dit proefschrift gegeven ontwikkeling is
wél geldig in het critische gebied.

Het wezenlijke idee van de theorie is de master vergelijking te
separeren in een niet verder te reduceren nulde onde deel en een
restant, dat steeds kleiner wordt naarmate het systeem groter wordt.
Deze separatie is mogelijk na een precieze quantificering van het



critische gebied. De nulde orde stochastische benadering is een tamelijk
eenvoudige Fokker-Planck vergelijking, die de essenti&le aspecten van het
proces bevat. De oplossingen (eigenfuncties) van deze diffusie vergeiij-
king worden besproken. Als zij eenmaal bekend zijn kunnen hogere orde
cornecties in de oorspronkelijke master vergelijking op systematische
wijze in rekening worden gebracht.

In het eerste deel van dit proefschrift'wordt het probleem van dif-
fusie in een externe potentiaal behandeld. De appendix van deel I bevat
een gedetailleerde discussie van de oplossingen van de irreducibele
Fokker-Planck vergelijking. In het tweede deel van dit proefschrift wordt
de ontwikkeling gegeven voor het meer algemene Markov proces. De appendix
van deel II is ter illustratie gewijd aan het magnetische ‘mean field'
Ising model.



SUMMARY

In this thesis it is shown how to solve the master equation for a
Markov process including a caitical point by means of successive approxi-
mations in terms of a small parameter. A critical point occurs if, by
adjusting an externally controlled quantity, the system shows a transi-
tion from normal monostable to bistabfe behaviour. Examples of the exter-
nal quantity (the pump parameter) are temperature, electric discharge
current, chemical concentrations and mechanical force. The appropriate
small parameter may be either the diffusion coefficient or the inverse
size of the system. The latter is usuaily given by the voiume or by the
total number of constituents such as spins, photons or molecules.

The fundamental idea of the theory is to separate the master equation
into its proper irreducible part and a corrective remainder. The iwredu-
cible on zeroth ondern stochastic approximation will be a relatively
simple Fokker-Planck equation that contains the essential features of
the process. Once the solution of this irreducible equation is known, the
highen onder conrections in the original master equation can be incorpo-
rated in a systematic manner.

In part I of this thesis we consider the probiem of diffusion in an
externally applied potential showing a monostable to bistable transition.

The appendix of part I presents a discussion of the irreducible solutions.
In part II we examine the general Markov process. The appendix of part II
is devoted to an example, namely the magnetic mean field Ising model.



PART I: DIFFUSION PROCESSES




CRITICAL DYNAMICS
THE EXPANSION OF THE MASTER EQUATION INCLUDING A CRITICAL POINT

PART I: DIFFUSION PROCESSES

ABSTRACT

The master equation for a diffusion process that takes place in an
external potential will be evaluated systematically in terms of a small
parameter, namely the diffusion coefficient. Contrary to the known
expansion the present solution is not only uniformly valid in the normal
monostable and bistable cases, but also applies at the cnitical point.
This has been achieved by using in zeroth order approximation the
complete set of eigenfunctions belonging to the appropriate irreducible
description of the process. Successive higher order corrections are
evaluated explicitly.

1. INTRODUCTION

One of the outstanding problems in theoretical physics remained the
proper description of the connection between a system's normal stochastic
features and its critical dynamical behaviour. In brief, the formidable
difficulties encountered are due to the occurrence of widely separated
scales in both space and time. This statement might well deserve some
further elaboration.

For that purpose we shall consider a diffusion process in one
dimension z with diffusion coefficient v, for example of ions in a
membrane, subject to an external potential U(z). The probability density
P(z,t) obeys the master equation [1, 2]

2
P(z,t) _ 3 U'(z)P+ é_g . (1.1)
ot 3z

where the prime denotes differentiation with respect to the argument.
Totally disregarding fluctuations would mean setting v=o. In that case
(1.1) reduces to the Liouville equation associated with the determinis-
tic equation of motion

z=-U'(z) . ) (1.2)
Normally, in order to find the correct stochastic description in terms
of v one should return to (1.1) and set [3] z=¢(t)+v%g; o(t) is a



solution of the deterministic equation (1.2). The leading part of (1.1)
becomes a linear Fokker-Planck equation of order »® in terms of £[3, 4]:

2
) - yrig) L gp + 2P 4 0¥y . (1.3)
at 9& 3g

Higher order corrections can in principle be calculated systematically
in powers of v%. Let us for clarity confine ourselves to the simple
potential

U(z)=doz®iz" (1.4)
which is shown in figure 1. This potential involves a so-called Landau
critical point for a=0[5]. If a>0, it has only one minimum, at z=o,
corresponding to the steady state solution of (1.2). Any solution p(t)
ends up in that equilibrium state, which is both locally and globally
(asymptotically) stable in the Tinear approximation (see e.g. [61). In
this monostable case the zeroth order approximation for the equilibrium
fluctuations is therefore indeed given by (1.3) with U"(¢)=U"(0)=a>0. So
the fluctuations are of order v% and there is one relevant time scale of
order unity.

The fundamental solution of (1.3) is a Gaussian. The Gaussian
property of the zeroth order propagates here over finite time intervals
because of the local linear stability of the deterministic state. Such
situations will be called noamal. Although the Gaussian propagation
property remains true for diffusion processes over sufficiently small
time lapses, it is lost for finite time intervals if the stability
properties of the system become more involved due to nonlinearities [7].

If a<o,U(z) develops one maximum at z=0, and two minima at z=¢(-a)%.
See figure 1, and e.g. [8]. That is, the previously stable equilibrium
state ¢,=0 becomes unstable. Clearly, the linear noise approximation
(1.3) at this unstable state breaks down after a time period of order
Knv'%, although several more or less ingeneous attempts have been made
to extend its validity [9-12]. After such a time period the initial local
fluctuations (of order v%) grow to global size (of order v°) and the
anharmonicity of U(z) becomes essential.

In the deterministic approximation the process terminates in one of
the two locally stable steady states ¢,, completely predestined by the
initial condition [8]. In a stochastic_description (disregarding initial
values in a small neighbourhood of order % of the unstable state $¢=0)
the system also tends first on the time scale t (of order v»°) to one of
these two minima. However, in the end it diffuses further partly into
the other well. This sluggish process takes place on a time scale which

-2 -



Figure 1. The potential U=Ua(z)
according to (1.4). Note that
Ua(z)EUK(x), the irreducible
potential (3.1). If o<o: depth
of wells (i.e. barrier height)

is 1|¢|®.

Figure 2. The Schrodinger
potential V(x) according to
(3.11). The x-axis has been
drawn at V=-lk. If cr-w:
depth of outer wells is |k]|;
barriers height becomes

1 3
§7|K| .



2
is essentially determined by the Arrhenius-Boltzmann factor e™® /4o

connected with the potential barrier height [8, 13-16]. If o is negative
of order v°, and one neglects this so-called Kramers' diffusion rate
[131, the system may be approximately described by two isolated local
Gaussians [10, 17) which are solutions of (1.3) with U"(¢)=U"(,)=-a>0.

The above-critical ncnostable case (o>0) and the below-cri tical
bistable case (a<o) are separated by the ciiZical point a=o. Here the
potential (1.4) has one single minimum at z=o, which is very broad. Again
consult figure 1. The potential is essentially anharmonic. Hence,
although ¢ =0 still is asymptotically stable, there is no stability in
the linear approximation. Obviously, (1.3) ceases to be valid as zeroth
order approximation: initial fluctuations would grow beyond bound. If we
set [4] z=v%n, we obtain the nonlinear Fokker-Planck equation

2
3P(n,1) = i(An+n3)P+9—£:- s (1.5)
3T an an
where A=v'%a. Clearly, in a range where the pump patameter o is small

of order v%, A is of order unity and (1.5) presents a correct zeroth
order. Note that this range of o includes the critical point a=0. The
time scale T=v%t reflects the slowing down of the critical dynamics. The
critical fluctuations are of order v% and therefore are much larger than
the normal fluctuations.
In summary, it should be clear that the normal Ansatz z=¢+v%5 cannot
lead to a systematic evaluation of the diffusion process (1.1) with
(1.4) for small », that will be uniformly valid for all o. The reasons
can be traced to the quite diverse scales both in space (z~u5 if u>o;vlz
if a=030% and v° if a<o) and time (t-v® if o>0; »7% if a=0; v° and e!/?
*if a<o), which will be subtly intertwined in a unified treatment. In

this article it will be shown how such a unified treatment of monostable,
critical and bistable behaviour can be achieved for more general poten-
tials than (1.4).

The essential point is the recognition of the proper critical range,
where a is of order v%, z is of order v% and t is of order v's. Using
the appropriate scale transformaticns one then separates the master
equation into its {areducible zenoth onder part and a corrective
remainder (section 2). The irreducible part will be of the form (1.5).
Having obtained complete knowledge of the eigensolutions of the irre-
ducible problem (section 3 & appendix), one knows its propagator (Green's
function) and can proceed to the inclusion of successive higher order
connections (section 4).

-4 -



2. REDUCTION OF THE PROBLEM

Let us investigate a diffusion process described by (1.1). Consider
the general symmetric potential

U(z)=3a' V2 a2 44 2 (2.1)

a(l) changes sign at the critical point and u(s) is assumed to be

positive. The coefficients do not depend on v. Obviously, the potential
(2.1) has one minimum at z=o0 if aMso. It changes into a maximum when
a(1)<o. In that case U(z) has two minima at z=9,, where P_==0, . Throughout
it is presumed that there exist no other minima along the real z-axis.
For example, the deterministic equation (1.2) with (2.1) has the follow-
ing stable stationary states if o'’ =a,a(*?=a!®)<1 and a1l other
coefficients are zero:

9p=0 if a0

q;(m) = (2.2)

¢+=£V 3(Vi-do-1) if ago

2.1 The cnitical region and above: monositability

Here a(1)>o or negative of order v%. If one introduces the scale
transformations
2%, t=v 7, oM /0P ¥ (2.3)
into (1.1) with the potential (2.1) one finds
2
ann,T! (a)n(A'H] )_H)li (5) 5+___]P+_3_E . (2_4)
9T an an

Considering formally n,t and A as quantities of order unity, and
disregarding terms in (2.4) that vanish as v+o, one obtains the
irreducible part of the equation, namely

QP!X,SE ? (KX+X )|:>,|,a P , (2-5)
9s X Bx
where we have set
5
xenfa 1%, s=rial® 1%, ceala!®1” (2.6)

in order to have the equation available in standard notation; « is the
standard pump parameter. Eq. (2.5) shows that the irreducible part
represents in fact a one parameter problem. Higher order corrections
come in successive powers of »%. In section 4 we will show that these
corrections indeed remain small in terms of » for all k»o0, that is for
all o0

-5 -



2.2 The ernditical point and below: bistability

Here (a(‘)go) the situation is complicated by the existence of two
stable states. In order to find the correct irreducible description
of the equilibrium fluctuations we shall need a certain recrdering of
coefficients in the potential, as will be shown below. For that purpose
we must explicitly introduce the deterministic states ¢, , which
correspond to the precise positions of the minima of U(z), that means to
the zeroes of U'(z). Since the force also has the unstable zero ¢,=0,
we may formally write it as

U'(2)=2la"®) (z-9,) (z-p_)+=~~+a" ™) (29, ) z-9_)P+---1 . (2.7)

Using =0, and the identity zz=(zz-¢i)+¢i in the original form (2.1)
of U(z), and invoking the binomial theorem, one obtains the relation

a(zm+1)= s (;)a(2k+1)¢i(k"m) s m=1,2,--- (2.8)
k=m -

*) can be easily

between the new and old coefficients. Incidentally, al
cast into closed form, either from an algebraic manipulation with (2.8)

or directly from (2.7). This yields

ey (o,) /29, (2.9)

(3) o (5)

For the special case (2.2) o =0,0 =1, while all other coeffi-

cients are zero, so that the only nonzero renormalized coefficients may
be given explicity as

oM al420?s/ T80’ , a!P=1 . (2.10)
In general, if orie now introduces the scale transformations
]»’ -
z=v*n, t=v %T, ¢i=-v%v (2.11)

into (1.1) with the renormalized potential according to (2.7) and (2.8),
one finds

" 2
apfn’T!=ji{a(3)n(v+n2)+v%a(s)n(V+n2)ﬁ+"']P+§—; . (2.12)
T 3n |

Considering formally n,t and V as quantities of order unity implies by
virtue of (2.11) that wi is of order v¥. In view of (2.8) the

(2m+1) _ (2m+1) T 0 . . .
a =0 +0(v?) remain of order »°. Disregarding then in (2.12)
terms that explicity vanish if vyo, one obtains the irreducible part of
the equation below the critical point. This result is readily transformed
into the standard form (2.5) if we set

(3) % (3)4F (3) %
x=nfa‘"’1", s=tla'*’'] , k=V[a''] . (2.13)
-6 -



In section 4 it will be shown how the above renormalization guarantees
the higher order corrections in (2.12) to remain small in terms of v for
all kgo, that is for all a<o.

2.3 Some. comments

We have seen how the master equation (1.1) with the potential (2.1)
reduces in the limit vto to the standard form (2.5). Note that the
transformations relating the original variables and coefficients to x,s
and « are different above and below the critical point (although (2.3)
applies to the whole critical range). Nevertheless, the irreducible part
of U(z) is given for any ot by a quartic form. This is the form of
potential used in the introduction to illustrate the essential features
of monostable, bistable and critical dynamics.

Well above the critical point in the normal regime alPis positive
and of order unity, so that by (2.6} and (2.3) the pump parameter
KEAEU-% af?) tends to plus infinity. Rescaling then in (2.5) according
to x=[K/a(l)]'%E, which in effect amounts to z=u%£, one easily retrieves
the normal linear noise approximation (1.3) with ¢=¢,=0 as the leading
part of (2.5).

On the other hand, in the normal regime well below the critical point
ot s negative and of order unity, so that ¢, are of order »%. Hence, by
(2.13) and (2.11) «= =-v'%¢i tends to minus in;inity. Setting then
x[a(3)]'%=i(-v)%+v%£, which in effect corresponds to z=¢++v%£, one
readily obtains in leading order (1.3) with y=¢,, which gs the correct
Gaussian linear noise description locally arouna these stable steady
states. Further it is not difficult to see that the above-critical and
below critical formulae indeed smoothly connect at the critical point

(1) _
a "'=0.
In contrast with the normal linear noise approximation [3, 4], the

irreducible problem (2.5) does not allow the computation of moments
explicitly in successive higher orders of v% directly from the differen-

tial equation due to its nonlinear drift term (see also [18]). Therefore
one must know the solution of (2.5). Of course, it suffices to know its
Green's function, also called transition probability or propagator.



3. THE IRREDUCIBLE PROBLEM

Let us repeat (2.5) here as

(o) 25(0)
BP -X,S! =iUé(X)P(0)+B Pz .
s X X (3.1)

UK(x)=§Kx2+§x“

Eq. (3.1) has been used occasionally as a model for the single mode
laser (see e.g. [191), although a physically realistic description would
involve not only intensity but also phase diffusion [20-23].

The propagator of (3.1) will be written in terms of the eigen-
solutions of the equation, which has the natural boundary condition
P (x,8)+0 if x>te, as follows (also see [8, 15, 24-291):

P(o)(x,s|x ,0)= ; P(°)(x)Q(°)(x )e'”(:)l)S . (3.2)

K 0 n=o n n 0

Here Q(;)(x) is the adjoint eigenfunction of P(;)(x) defined by
(0) /yy_pl0) (o)
Pry (X)=P77(x)Q° " (x) (3.3)
(0) oy -
P o (x)=N expl UK(x)] . (3.4)

N, is the normalization factor of the stationary solution, corresponding
to the Towest (zeroth) eigenfunction (because it has no zeroes). The
0y (x) obey
2,(0) (0)
4Q_ 0t (094, 000 ()20 . (3.5)
dx* K7 dx

=u(o)

Clearly, if pto o SO we have Q(g)(x)=1, which by (3.3) indeed belongs

to the stationary solution. The P(;)(x) and the Q(;)(x) form a biortho-
gonal and presumably complete set (see e.g. [24]):

J POV ()" (x)ax=s (3.6)
o p(0) ()
nzo PEl()Q' ) (x)=8(4x,) . (3.7)

Equilibrium quantities now take on relatively simple forms. For example,
the correlation function becomes

oAy (0) (0)
T(s)= _e{ dx_o{ dx xx P (x,slxo,o)P o (%) (3.8)
o (0)
= I <x>2e-u ns , (3.9)
n=0 n

where

-8 -



<= f PUY (x)xdx (3.10)

-0

represents the first moment of the n-th probability eigenfunction.

Rapid insight into the eigenspectrum can be obtained by transforming
the original eigenvalue problem to its selfadjoint representation. Put-
ting Pn=P:§sn one obtains the Schrédinger-iike equation (seealso [8, 24,
26-28, 30-331)

2,(0)
9—§;— +[u(°)-V(x)]S(°)(x)=o
dx (3.11)

V(x)=3U2 730 =B (B -3) X rhex 4]

The potential V(x) is shown in figure 2. As V(x)++x if x>+ there
will be a pure point spectrum (see also [24, 34-36]). The properties of
the eigenfunctions S(;) are useful to gain insight in the higher order
corrections in the full master equation ((2.4) or (2.12)), because in
perturbation theory the pertinent matrix elements involve in effect the
products P(;)Q(;)ES(;)S(;). See section 4. However, as can be seen for
example from (3.10), the original probability eigenfunctions (and their
higher order corrections) will be the ultimate relevant ones in the
equilibrium quantities. Presently merely a description of the properties
of the eigensolutions will be given, sufficient to proceed to higher
orders in the master equation. More details can be found in the appendix.
See also figure 3, and [27, 33].

3.1 well above the critical point

Here k »«; both UK(x) and V(x) have only one minimum at x=o. Resca-
Ting to the asymptotic local variable p=XK%, one readily shows that the
eigenfunctions S(°)(p) neatly tend to the quantal harmonic oscillator
eigenfunctions, the Weber-Hermite functions. This implies that x will
be of order K-%. The eigenvalues are u(;)EnK, with n=0, 1, 2,---.

3.2 The cnitical negion

Here k=o; both UK(x) and V(x) become relatively broad, which reflects
the large critical fluctuations, so that x will be of the order of one.
If ©>6%22.45 V(x) stilt has one minimum; if |K{<6% it has one maximum
at x=o0 and two shallow minima (at x=+2%21.19 if k=0); and if k<-67 it
attains its typical below-critical structure with three minima separated
by two barriers. At the critical point no known special functions of

-9 -



=5

m=4

m=3

m=2

m=1

m=0

Figure 3. Eigenvalues Hry of irreducible problem for m=o through 5.
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mathematical physics exist to describe this system. Even a WKB-analysis
will not be very accurate, in particular not for the dynamically
important low lying eigenvalues. Such analysis for k=0 results in

(0)—2 %(nﬂ%) =]. 66n3'2 (see also [371). Further, using the simplest
po1ynom1a1 trial functions for the lower Q( )( x) in the pertinent
variational principle (see the appendix, and e.g. [24, 27, 34, 38], one
obtains for example u(i)=2r(%¢/F(%J ¥]1.48. Detailed numerical anal-
ysis [33] reveals that the correct values for some of the lower
eigensolutions at k=0 are u( )—1 37, u(°)—4 45; and u(°)—8 26. The
important facet here is that the eigenvalues are of the order of one, in
contrast with being very large (of order ) outside the critical range.
This represents the critical slowing down.

3.3 Well below the cnitical point

Here k+-=;V(x) takes on the typical shape shown in figure 2. Three
deep local minima, one inner at x=0 and two outer at X+;(-K)%, are
separated by two high barriers. The outer minima a]mosi coincide with
those of U (x) See also figure 1. Transforming in each of the local
wells of V(x) to the appropriate local variable (p= X('K)% or
p—(X'Xt)(-ZK)%), one sees that there exist asymptotic eigensolutions
S(°)(p) which are locally given again by the harmonic oscillator Weber-
Hermite functions. Therefore, although x is globally of order (-K)%, it
will locally be of order ('K)—%. The local eigenvalues become
u(o)é(n+1)lK| for the inner well and u(o)EZniK| for the outer wells,
with n=0, 1, 2,---. In view of the global symmetry of V(x) the outer-
solutions of course combine in even and odd pairs. The spectrum may then
be described as follows.

First comes one doubfet, formed by the even and odd paired outer
functions with u(°)~o The even function with u( )20 of course is the
stationary solution. It can be shown [8, 14, 15, 26-28] that the odd
one has an extremely small but nonzero eigenvalue u(°)~ /4, vhere
K /4—UK(o) UK(xi) represents the height of the potential barrier in
(3.1). This corresponds to Kramers' diffusion rate between the two
metastable states x_ (-K) . Further, due to the normalization (3.6) one
has in (3.4) that N %™ /4,

Seccnd, there exists a set of singlets, namely the even inner
solutions with () ,(2n-1) k|, where n=1, 2,---. In view of the

4n—2
norma11zat1on (3.6) the inner functions s are of order unity in terms
of e /4 Regarding their definition this implies, however, that the
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Pnix) Spix)

Figure 4. Irreducible eigenfunctions far below the critical point; n=o
represents the stationary solution; n=2 is the lowest singlet solution.

S3(X)
14
) X+
e 91_{'__,; /
/ 2> X
X~
14
{
i
1 +1

X+ X+

/YX —3 X
L A

Figwie 5. Asymptotic (k+-«) odd eigenfunctions S,(x) and S (x) of
lowest triplet. Upper sketches: weak degeneracy (weak coupling). Lower
sketches: strong degeneracy (strong coupling).
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inner probability eigenfunctions P are of the order of [P(z)]!E 5N?
which means very small of order e'KZ/S. See figure 4.

Third, one observed a set of triplets, consisting of an odd inner
solution and two (even and odd paired) outer solutions with

u(zz_lau(ziéu(:;+152n|K{, where n=1, 2,---. The odd members of the
asymptotic triplets may mix, of course. There are two possibilities.
Either the higher order corrections in terms of «~' to the local eigen-
values are different for the inner and outer wells. In case of such weak
degeneracy it can be shown that the true eigenfunctions are indeed
essentially confined either to the inner or to the outer well (see the
appendix). Or the degeneracy is 1ifted only by ever present exponentially
small differences (due to the finiteness of the exponential barriers).

In case of such strong degeneracy it can likewise be shown that the inner
and outer odd triplet members combine on equal footing. See figure 5.
Curiously, so far we have not been able to show which case actually

occurs. Nevertheless, in any case the probability eggenfunctions p(o)

2
near x=o will be asymptotically small of order e™ /80r e ™ /4 if
k+-, Therefore, with reference to (3.10), ultimately the actual inner

functions do not contribute anymore in equilibrium quantities.

Combining the above mentioned features of the eigenspectrum of (3.1)
one arrives at figure 3, that has been obtained from extensive numerical
calculations [33].
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4. HIGHER GRDER CORRECTIONS

Equations (2.4) and (2.12) may be written in a single formula,

P(x,s) _ ji{ XX )P+a i v%V(jiux)P s (4.1)
3s X ax’ ax
where )
9 oy, 8 %,(2), 3 .
V(sy,x)—v (ax,x)+v v (ax,x)+ . (4.2)

Below the critical point the perturbational operators are given by

23, 2
V(!)(aa_x’x)=_a(5)[a(3)] /2‘§“X(K+X2) ,
(4.3)

V(Z)(3

x>X)=-a a1 X

X(K+X ) ’

and so forth. Above the critical point the perturbational operators are
obtained from (4.3) simply setting x=0 and replacing the renormalized

(

a k) by the original u(k). One obtains the general eigenvalue problem as
2
&P+ Ay (x)pap () = V(L) p(x) (4.4)
dx®  dx dx

It will be convenient to cast (4.4) in matrix form. Let
P(x)=z c PN (x) (4.5)
n=o "

where the P(;’(x) are the eigenfunctions of the irreducible probiem.
Inserting (4.5) into (4.4), muitiplying with the adjoint eigenfunction
Q(E)(x) and integrating over all x, leads to
(o
e (Y )0 £y epm0 (4.6)

where we have used (3.6) and introduced the matrix elements
. d (
sz=_£ 08) (x)W(ex)P ') (x)dx (4.7)

Eq. (4.6) is equivalent to (4.4). It is the starting point for our ap-
proximation scheme.

4.1 The even solutions
We insert (4 2) and

- (1) (2) 4. —
c '5kn (1-8, ) )Hve, )’ (1-8, )+ . (4.8)

u= u(°)+v%u(1)+vu -, (4.9)
into (4.6) and collect coefficients of equal powers of v%. Defining
u;°) u(;) (°) , this yields:
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TR (4.10)

(1) (1) (o)
Cen =Vn /¥ . (4.11)
(2) (2) (1) (1)

= +XV s (4.12)
n nn 7oL g Con
(2) (2) (1) (1) (1) (1) (0)

n =Vn'* z Ver Sen ¥ p Ckn 1opi” o (4.13)

°) are of order

and so on. From section 3.2 one infers that both x and u nk
v’ at the critical point, so that the validity of the above scheme is
obvious in that case. It remains to demonstrate that (4.8) and (4.9)
retain their significance as systematic perturbation series even in the

normal regimes well above and well below the critical point.

4.1.1 Well above the critical point
From section 3.1 it is seen that here X~K_%, which will be of order

v (0)

%, while RS is of order v';E Hence, the matrix element Vﬁi), with
p=1, 2,--- def1ned by (4.7) and (4.2), becomes of order 22 (P | gee

below {4.3). Then it is not difficult to see that u(p) becomes of order
%(P+1l and ¢‘P) of order »3(P*2) 5o, if we define u P)—va(P+1)#P+1)and
¢! k =y3 (P¥2) (p+1) , the A(ﬁ)and éﬁ) will be of order v°. Insert1ng this

into (4.8) and (4.9), one finds
a,=8, v ac ) (1-5, ) +0%a ) (1-6, )+--- (4.14)

_a(0) 2.(2) 3,(3)
A=A p 1A n A 0t s (4.15)

where we have set a =c,, >\=uv;é and A(:)=u(:)v%, which are of order »°
here. Clearly, also well above the critical point the higher order
corrections come in successive powers of v. The actual perturbation
parameter becomes here v itself, instead of the critical v%. Note
further that the expansion is not a true power series as both the zeroth
order and the matrix elements also contain higher orders as well. Final-
1y, one easily convinces one self of the correctness of the absence of
the first order term in (4.14) and (4.15). This correction of order v

is here fully contained already in the irreducible solution.

4.1.2 Well below the eritical point
We infer from section 353 that due to (3.6) the inner solutions are
of the very small order e™® /8 near x=0 as the outer solutions are of

the order of unity near x, . Also see again figure 4. Hence, in any
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pertinent equilibrium quantity, that means moments Tike (3.10), we can
dispense with the even inner solutions*. In order to investigate the be-
haviour of the Viq for the outer eigensolutions we set according to
section 3.3 again X‘+(—K)%+p( -2k) % into (4.7) with (4.2) and (4.3). This
yields that Vép) will scale up to order v %, independent of p=1, 2,---.
One then easily observes that p(p) becomes of order v %, while c(p)
remains of order v°. Therefore, setting u(ﬁ)-u *A(p) and 1ntroduc1ng

again the order unity quantities A-m);i and A(;) (°) % one obtains here:

B pntvicit) (18, ) wel) (1o, J4==- (4.16)

(2)

A= A‘°’+ufx“’+ux fome (4.17)

Hence, also well below the critical point the scheme retains its validi-
ty. The corrections come in successive powers of v%, instead of v as
above the critical point, because the original potential U(z), ie. (2.1},
is symmetrical about z=0 but not about z=¢p,. As in section 4.1.1, note
that the expansion is not a genuine power series.

4.2 The odd solutions

The preceding nondegenerate calculation scheme for the even solutions
also applies to the Towest odd solution P, that is the odd member of
the below-critical doublet. See section 3.3. However, in view of the
symmetry of the original problem and the presence of two odd eigen-
solutions of the irreducible problem within each tripiet far below the
critical point, we must now turn to pseudo-degenerate perturbation
theory for a unified treatment (i.e. valid for any a(l)). Following
Davydov [34] we now first set

=(0) (0) I 1 €
= snk+c 5mk+ T TR . (4.18)

Here n and m are the indices of two odd triplet solutions. Inserting
(4.18) into (4.6) and collecting terms up to and including order v!5
leads to a set of two homogeneous linear equations, which in matrix
notation takes the form

*06 counse, if the system were far out of equilibrium near the unstable
state ¢ =0, tuly in the imen Schnidinger-well, £t would be convenient
2o expand Locally in terms of the inner functions. See also [28] and
figune 4.
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(0) __(0), X,(1) %,(1)
Wyt Yan "Vm

=0 . (4.19)
5,(1) (0) _=(o) %, (1)
" Vin Wi TH
The solvabi]ity condition of (4.19) yields
9 3u (°)+u(°)+v;i(V(1) Vé“;))]
Vit (©) (0 iy () D)y 0 ) (4.20)
u mm nm ‘mn e

Substitution of these values into (4.19) gives the required relations

between c(°) and ¢ '(;)

4,2.1 Well above the critieal point
Here u(°) (°)-ué;) is of order kv %, while the first order matrix
elements are of order v, as can be inferred from section 4.1.1. Hence,

in (4.20) one may safely expand the square root so as to give

ﬁ(;)=u(o)+v%v(1)+___ ,

(4.21)

c(o) —(0)_% (1) (0) e
nn =1, Con =¥ V /u +

and a similar result with m and n interchanged. As expected, this agrees
with the purely nondegenerate case discussed for the even solutions.

4.2.2 The cnitical regdon

(0)

S1nce here both Hp and the first order matrix elements are of

order »°, (4.20) again 1eads to the nondegenerate results, as it should.

4.2.3 Well below the critical point

As noted at the end of section 3.3 there are two possibilities of a-
symptotic degeneracy. Consequently, we distinguish these two cases here.
See also again figure 5, and the appendix.

)

i) Weak degenenacy: u( is of the order of u§E to some power*, while the

irreducible odd e1genso]utions of the triplet almost completely separate

and S =g, Hence, the off-

spatially, i.e. for example SnESouter inner-

*e know that if such a difference does exist, it must be at Least o4
onder v% . See the appendix.
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diagonal elements V;;)and Vé;) are exponentially small, so that (4.20)
directly reduces to the nondegenerate case. Clearly, if one could prove
that the irreducible problem is really only weakly degenerate well below
the critical point, then the calculation of the higher order corrections
in the original master equation (1.1) with (2.1) could proceed entirely
be nondegenerate theory for any alt), Unfortunately, such a proof has
not been found yet. Therefore, we must also consider:

i1) Strong degeneracy: ué;’ is exponentially small and the irreducible
odd triplet members do not separate spatially. In stead, they are almost
identical everywhere except for a change of sign in either the inner or
the outer well of the Schrddinger potential V(x), i.e. for example
Sn=souter+s1'nner and Sm=souter'sinner‘
vil) and Vé;), only differ by exponentially small terms. Therefore,
(4.20) leads to:

(1) (1)
Hence, Vnn and me » as well as

a(o)=u(0)+v%(vé;)ivél)) , (4.22)

m
which clearly 1ifts the degeneracy. The ¢(*)

that the thus obtained zeroth order eigenfunctions, say Sn and Sm’

are =1, which simply implies
separate spatially. As usual [34], using now these new nondegenerate odd

solutions one may further treat the problem by the standard perturbation
theory as discussed in section 4.1.
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5. SOME FINAL REMARKS

In conclusion, we have shown how to set up a systematic expansion
for the equilibrium solutions of a Fokker-Planck master equation
describing a diffusion process with a small diffusion coefficient v in a
potential U(x) showing a transition from mono to bistability. The expan-
sion is valid uniformly for all values of the pertinent pump parameter
oM, including the critical point alP=o.

In the introduction we have briefly indicated the features of mono-
stability, bistability and critical behaviour. In section 2 we have shown
how to separate the general problem into its irreducible part and a
corrective remainder, which is small in terms of ». Section 3 has been
devoted to a description of the relevant properties of the solutions of
the irreducible problem, while in section 4 it has been shown explicity
that the higher order corrections indeed remain small for any AR

The unified description becomes possible for the following reasons.
First of all, it depends on a proper recognition of the critical region.
Second, because the critical fluctuations are larger than the normal
ones (but see e.g. [39] for an exception), at least the connection with
the above-critical monostable regime presents no serious difficulties.
Third, the extension to the below-critical bistable case, however, could
be effectuated only after renormalising the original potential so as to
collect all relevant information for the local normal equilibrium fluc-
tuations into the irreducible potential. This renormalization makes the
global large scale fluctuations (of size vo) ineffective in spoiling the
expansion. In more technical terms, it prevents the upscaling of the
perturbational matrix elements.

If in any formula in section 3 we drop the superscript (o) and nor-
malize the corrected eigenfunctions according to (3.6): the propagator

*Thene 48 an alternative wherne one can get around the explicit normali-
zation procedure (3.6). Namely, i§ one dirnectly uses the corrected
elgengunctions Pn(x) as obtained in section 4, i.e. with céﬁ)=0 fon
p>1, one should in (3.2) dnop the superscaipt (o) on the P-function
only. However, since PnsPOQ”¥P0Q(°), the connelation function for
example will not be given by the elegant formula (3.9) 4in This case.
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will be represented by (3.2) while for example the correlation function
remains given by (3.9) . Finally, in terms of the original variables one
explicitly has P(z,tlzo ,o)a-»PK(x,sixo »0), where:

above-critical below-critical
a“)}o a(l)so
X= U-%[Q(S)]%Z u'%[a(s)]%z
s= | v %[a(a)]%t » %[a‘s)];ﬁt
K= u-%[a(a)]_ga(l) -v-%[a(s)]%(p;
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APPENDIX: THE IRREDUCIBLE SOLUTIONS

In this appendix we examine the eigensolutions of the irreducible
problem (3.1) in some more detail. The three regions, well above the
critical point (monostable case; k), near the critical point (k=) and
well below the critical point (bistable case; x>-=) will be discussed
separately. For a numerical analysis we refer to [33]. The spectrum is
shown in figure 3.

Al. Well above the crnitical point

In this case one applies perturbation theory in terms of ™% to the
adjoint equation of (3.1), obeyed by the Q(x). Introducing the appro-
priately scaled variable p=X(K/2)% and v=p/c (u being the standard
eigenvalue), one finds

Q" (p)-20Q" (p)+2v0(p)=4c*0°Q"(p) . (A1.1)
Throughout the appendix we suppress the superscript (o) for typographical
reasons. If k==, (Al.1l) is satisfied by Hermite polynomials Q(p)=H, (p),
i.e. v=n=0, 1,---. Therefore, for large « we set

0

Qp)= = c H, (o) » (A1.2)
n=0

and cast (Al.l) as usual into matrix form

ck(k-v)+ Zsz2c2=o s (A1.3)

_=2n(1) .
where Bkz—K Bkz s with

(1)

B, o =3(k-2)8

2 2
k-2,2+3k6kﬂf6(k+2)(k+l) 6k+2’2

+4(k+4) (k+3) (k+2) (k+1)8,,, o . (A1.4)

Using the "modified iteration-perturbation” formulae of Morse and
Feshbach [24] (which have an improved radius of convergence over the
usual Rayleigh-Schrodinger formulae) one finds for the eigenvalues

_ 3n 3 (m1)*(n+2) _ (n-1)%(n-2)

wo=nk{1+= - —[ - 1+---} . (A1.5)
n T 1 (ne2) 3k 1-3(n-2) K

For example,

U, =03 Wy =H3k T e ey =204 12T - Py=3kH27K T mmem (A1.6)

Note that all eigenvalues lie above the asymptote u =nc. The correlation
function I'(s), given in (3.9), reduces effectively to the normal single
exponential, expressing ordinary Debeye-relaxation.

-21 -



A2. The cnitical region
A2.1 Simple variational considerations

Insight into the dynamically important low lying eigenvalues may be
obtained from the variational principle (see e.g. [27, 34, 38, 40, 411).
That is, the stationary value of the functional

u{Q(x)}= fwPo(x)Q'(x)zdx (A2.1)

should be a good approximation to the true eigenvalue. In (A2.1) we
implicitly assume normalization according to (3.6). Obviously, Q (x)=1
corresponds to be stationary solution Wo=0. Let us further consider

0, (x)=N% :

0,(x)=N(1-c,x?) , (A2.2)

Qs(x)=N?(x-c3x3)
Using e.g. Gradshteyn's [42] formula (3.462.1) in normalizing Q,(x), one
obtains

= K L A2.3

N VD_ () D4 () s (A2.3)
where Dp(z) is a Weber-Hermite (parabolic cylinder) function. The factors
N2 and N3 are readily expressed in terms of N1’ once the coefficients
c,= N, and c,=(N,~«)~" have been determined by orthogonality according
to (3.6). Substituting the obtained functions into (A2.1) results in

=N i, (1, <) A2.4
= v“zu_(T-?F’“a(“zK’W- (h2.4)

Hence, at the critical point k=0 the values are u1(0)=2r(%h)/r(%a)51.48;
H,(0)=24.97 and u;(0)%9.49. For comparison, the numerical results from
[33] read u,(0)=1.37; u,(0)=4.45 and u,(0)=8.26. Incidentally, using the
appropriate asymptotic formula for the parabolic cylinder functions as
k> (see e.g. [35]; or [42], form. (9.246.1)), one obtains from (A2.4)
the eigenvalues (Al.6) well above the critical point, including the pro-
per first order correction. Well below the critical point (A2.2) and
(A2.4) are in error, as will become clear in due course.

A2.2 Turning points analysis
A turning points or improved WKB-analysis is relevant in particular
for the higher eigenvalues which follow from (see e.g. [24, 34, 43, 44])
X
1,2 X 1
1 Iu=V(x)1dx=n+iso(s) . (A2.5)

Xy
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The potential V(x) is given in (3.11) and is shown in figure 2. The
range of integration in (A2.5) is determined by the real turning points
which follow from the equation u=V(x,)=V(x,). We only consider the case
of two turning points* and define x,=x,(=-x,). The potential (3.11) is
now inserted into (A2.5) and a new variable z=(x/xo)2 is introduced.
Defining v=u+§K one obtains

Loy [ z)%H+B 32 ZJ%dzn+yﬂ(H . (A2.6)

2r ® -z’ 1 -2

- %
where v°=x:, B=2|<\)°"3 and Y=(K2-6)V *. In view of the nature of the

WKB-approximation, we expand (A2.6) in terms of Vo -4 (see also [45, 46],
and™* ). The leading terms yield v, b, which is assumed to be Tlarge.
As the r.h.s. of (A2.6) is in fact correct only through ogger n’ [44,
45], the expansion of the integral is stopped at order v;' . In the
evaluation one encounters several integrals which can all be related to
the beta function. Next one determines the expansion of v , that means
of the turning point Xy in terms of v - to sufficient accuracy. The
result reads
% %

a,(4v) “+a,(4v) =2mn , (A2.7)
where a1=-|<(1r3%/4a2), a2=§B(1/5 2% )=i1r%1"(1/6)/r‘(2,g )Ew%. This is a quadra-
tic equation in (4v) . It leads to

bt e ks B (A2.8)

Hence, at the critical point these eigenvalues beco:e
-~ 1 % %
un(o)-vﬁinV?) =1.66 n ", (A2.9)

so that u, (0)%1.665 u,(0)34.70 and u;(0)=8.63. We mention again that
the numerical results from [33] are resp. 1.37; 4.45 and 8.26. Clearly,
while the variational method is superior for u, , the WKB-method becomes
rapidly better at the higher eigenvalues. Nevertheless, in particular

*ThLA is8 connect forakll n=0, 1,--- 4§ 1<>—6;i (V has one or two minima).
2
1§ k<<-6% (V has three minima), it hokds if nnz(x/2)

kK
The convergence wiltzbe neasonable under the approximate condition

max |8,y|<1. Using vJEEZWn%, this ylelds noughly the same nestrictions
as in the previous 5oqtnote*: only Lf «>>1 it adds the requirement

2
nk .
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for the important lower eigenvalues these results are guantitatively
insufficient and one must resort to numerical analysis [33]. Finally it
is noted that both (A2.4) and (A2.8) confirm the earlier finding that
the critical slowing down continues somewhat below k=0 [33].

A3. Uell below the crnitical point

Rapid insight into the spectrum as x»-~ is obtained from the
Schrddinger-Tike equation (3.11). In this limit V(x) develops three
minima separated by high barriers (of order [K|3). Asymptotically the
three wells become isolated local harmonic oscillator potentials with
eigenvalues p=(m+l1)|k| resp. 2n|k| for the inner resp. outer minima
(n,m=0, 1, 2,---). The corresponding asymptotic local eigenfunctions
Sn(x) are the usual Weber-Hermite or parabolic cylinder functions.
Clearly, there is a twofold degeneracy for n=o (giobally even and odd
combinations of outer solutions) and a triple degeneracy for odd m, viz.
m=2n-1. See also [27, 28, 33].

A3.1 Innern solutions

Introducing the appropriate local variable p=x(-|</2);i and v=(-u/x)-1
into the equation for the adjoint eigenfunctions, and setting
Q(p)=e'sz(p), one obtains

23 n2 -p2
R"(p)-20R' (p)+2vR(p)=4k o eP e R(p)1"' . (A3.1)
If k==, (A3.1) is solved by R(p)=Hm(p), i.e. v=m=0, 1,---, For Targe
negative x we expend R(p) in terms of these Hermite polynomials like in
(Al.2) and cast (A3.1) into matrix form as usual. This leads to (Al.3)
with

(V__ 2
B g = &[Gk_l"2+6k6k_2,2+12(k+1) Gk,2+8(k+3)(k+2)(k+1)6 1 . (A3.2)

k+2, %
Using standard perturbation thecry (see e.g. section 4.1) through third
order in ™, we have obtained

u=(m+1)[K|{1—5%(m+1)—J%{Z(m+1)2+1]-i%(m+1)[35(m+1)2+52]+-—-} +(A3.3)
K K K

A3.2 The doublet

If k=-= and v=-1, (A3.1) allows for solutions corresponding to
Q,(p)=1 and Q,(p)=erf(p). Although they are not contained in the Hilbert
space of local inner solutions, these functions do belong to the Hilbert
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space of global. solutions, Note that they asymptotically connect with
the exact stationary solution at the outer wells and beyond. Using the
above Ql(p) for the first excited state into the original irreducible
adjoint equation and invoking the global Hitbert norm (3.6), one may
calculate the first order correction to v=-1 (corresponding to u( )= o).
It leads to

(1_ 2
e L v LR v YA (A3.4)

By means of the appropriate asymptotic expression for the parabolic

u

cylinder function this gives
\/—'lKle iK +___) . (A3.5)
2|<

This corresponds to Kramer's diffusion rate [13, 471; k2/4 is the height
of the barrier in the irreducible potential UK(x). The result (A3.5)
agrees with that obtained from using Q,(p)=erf(p) into the variational
principle and has been confirmed numerically {27]. It also agrees with
Kramers' original analysis [13, 151 if the pertinent integrals are
handled carefully [16]. Finally, the leading part in (A3.5) coincides
with the result from a WKB-type analysis [28].

A3.3 Outer solutions

Introducing x=(—;<)!5+p(—|<)';5 and v=(-p/2¢) into the irreducible
problem, one finds for the adjoint eigensolutions

Q" (p)-20Q" (p)+290(p)=( -3¢ 0"+ "*0")Q" (p) . (A3.6)
If k=-», (A3.6) yields Q(p)=Hn(p), i.e. v=n=0, 1,---. Again expanding

Q(p) in general in terms of these polynomials like in (Al.2), the matrix
form of (A3.6) leads to (Al.3), where presently B ‘K B(l) B(Z) with

kg k&
.
By, = ISy, (L 1) (k41005 o] (A3.7)
(a) 1 2
By B8, _, p#6ksy +12(k+1)26,  48(K#3) (ks2) (ke1)6yy, o]

Using standard perturbation theory through sixth order in k', we have
found

u=2n||<|{1-6 (8n +1) 24n
K

(35n +13)+---} . (A3.8)
It is surprising to see that this is identical to the result for the odd
inner solutions, viz. (A3.3) with m=2n-1. It leads to the conclusion that
the degeneracy within each triplet is nét 1ifted by power series terms,
at least not up to the shown order in K-2. Of course, there are always
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exponentially small differences between the degenerate eigenvalues due
to the finite potential barrier (sections A3.2&4, and [28])-*

A3.4 Tniplet degeneracy
In view of the outcome for the local eigenvalues, we briefly examine
the relation between the nature of the degeneracy and the pertinent odd
triplet eigenfunctions. Suppose we have determined the local solutions
to any desired accuracy (in terms of K_l). Within one triplet, let
Qout(x) denote the odd combination of the left and right outer solutions,
and let Qin(x) be the corresponding odd inner solution. For convenience,
let these functions be appropriately normalized locally. Write the glob-
al solutions as Q(x) =Cqthout(X)+cinQin(x) and insert this into the
variational expression (A2.1). Taking derivatives with respect to ¢

out

resp. c. _according to [41], one obtains two linear homogeneous equations,

in
which may be nresented as

EOU’C'U ° '“e} [COUt} 0 . ' (A3.9)
b -ué Hin™ Cin

2
Disregarding terms of order e™ /4, the Hin and Moyt 3re the local

eigenvalues (A3.3) and (A3.8). The offdiagonal P1ements 6,6' are related
to overlap integrals** and found to be of order e~ /8 The solvability

condition of {A3.9) gives
L Z oo . 21
Fé(“out’f“ﬁn)fVZ('*out"“in) L R TN SO L) R (A3.10)

where we have disregarded some irrelevant small terms for ease of

exposition.

Weak degeneracy
Let the observed equality of local e1genva1ues be v1o]ated in higher

orders of « z. That is, Sout™H is of order o’ , with B.e K /8. In this
Uins sett1ng C; -1 one finds Cout to be of

case (A3. 10) yields: (i) w=
; with Cout =1 one finds Cin to be of order

order 5.e™ */8, 3 (1) =

“out

*For example, such Lifjting would occun immediately once we replace the
quartic term in the iweducible potential by x°FP, with p=3, 4,---.

SLchtKy speaking, the Locak eLgenﬁunctLonA are not valdid £in the over-
tap region. Nonetheless, 6~6'~ ~«<"/8 aghees with nesults that can be
obtained 4nom a global WKB- Iype analysis [28].
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2
g™ /8. Hence, in case of weak degeneracy there exists only an expo-

nentially weak coupling between the local eigenfunctions. See figure 5,

Strong degenenracy
Let the local eigenvalues be exactly equal, that is Uout=Hins In
this case (A3.10) leads to “=“10ca1i‘el'“10calel' Inserting this back

into (A3.9) gives Cip=tC Hence, in the case of exponentially strong

nout”
degeneracy there exists a stong one-one coupling between the local eigen-
functions. See figure 5.
These conclusions have been used in section 4.2.3. As yet it remains

an open problem which type of degeneracy actually occurs.
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CRITICAL DYNAMICS
THE EXPANSION OF THE MASTER EQUATION INCLUDING A CRITICAL POINT

PART II: GENERAL MARKOV PROCESSES

ABSTRACT

The master equation for a general Markov process that shows a
transition from monostabfe to bistable behaviour will be evaluated
systematically in terms of a small parameter, namely the reciprocal size
of the system. The expansion is uniformly valid also at the cnitical
point. The fundamental idea is to separate the master equation into its
irreducible part and a corrective remainder. The irreducible or zeroth
order approximation is a relatively simple Fokker-Planck equation con-
taining the essential features of the process. Having achieved complete
knowledge of the eigensolutions of the irreducible equation the higher
order corrections are computed explicitly.

1. INTRODUCTION

In a previous article [1] we have shown how to solve the problem of
a simple diffusion process involving a mono-to bistable transition by
means of a systematic approximation method valid also in the transition
(or critical) region. Thereto it is crucial to recognize the correct
irreducible stochastic description. Having solved this relatively easy
irreducible problem, one can calculate higher order corrections in terms
of successive (fractional) powers of a small parameter, namely the dif-
fusion coefficient v.

Presently we embark on the problem of solving the (integral)
Markovian master equation by essentially the same techniques. The appro-
priate small parameter will be the reciprocal system size e=1/Q. The
irreducible description is again given by the Fokker-Planck equation
describing in effect a diffusion process in a quartic potential. Well
above the critical point (monostable case) and well below it (bistable
case), it involves the Tinear noise approximation at the stable mac-
roscopic states [2], where the fluctuations are of relative order a%.
Near the critical point the linear noise description fails. Here the
fluctuations scale up to order s% [3, 4]. Nevertheless, the corrections
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to the irreducible approximation always remain small in terms of ¢ and
can be incorporated into the solution in a systematic manner.

In section 2 the irreducible part will be extracted from the general
master equation. In section 3 we briefly outline the properties of the
eigensolutions of this Fokker-Planck equation. The calculation of the
higher order corrections is discussed in section 4, while section 5
contains some final remarks. In the appendix we examine the dynamical
mean field Ising model as a typical example.
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2. REDUCTION OF THE PROBLEM

The probability density P(n,t) of a general Markov process obeys the
master equation [2-5]

ﬁ(n,t)=sn.[w(nln‘)P(n',t)-W(n'|n)P(n,t)] , (2.1)

where n is the physical extensive variable; n may be continuous or
discrete, Sn' representing integration (with the appropriate measure) or
summation respectively. In terms of the intensive variable z=n/Q=en, the
transition kernels in (2.1) are assumed to have the property of exten-
sivity [3, 4]
W(n'[n)=0w(z,n'-n) . (2.2)
Setting v=n-n' and introducing the operator [6]
E=expeﬁ—=1+e-:—a—+§eza—22+--- , ‘ (2.3)
3z 9z dz
one transforms (2.1) into

(2.0 S IE™-1Iw(z,0)P(2,t) (2.4)
Defining the intensive jump moments (n=1, 2,---)

o, (2)=§, Viw(z,v) (2.5)
one obtains [2-4, 7-9]

ﬂﬁﬁ=;iwﬂeb%wwmn. (2.6)

ot n=1 n! 3z

In order to find its expansion one normally sets z=¢(t)+e%g fz, 3, 101,
which transforms (2.6) into an equation in terms of £. Terms of order
s_% vanish as the macroscopic part ¢(t) is a solution of the determinis-
tic equation of motion

=0 (z)=-U'(z) . (2.7)
Here we have defined a macroscopic potential U(z), the prime indicating
differentiation with respect to the argument. The part of order e’ of
the master equation becomes a linear Fokker-Planck equation in terms of
£. Higher order corrections can be calculated systematically in powers
of s%. However, this method fails at critical points where the macroscop-
ic solution lacks stability in the linear approximation.

Let us examine the macroscopic equation (2.7) in some more detail.
Suitably choosing the origin, we consider the gener: symmetric macro-
scopic potential

U(z)=-3a 22-4a P 2410 20, 2.8
1 1 1

so that n! a(?)=dnu1(z)/dzn at z=o0. See figure 1 of [1]. It is assumed
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(1 )

that o . changes sign at the critical point, while a is negative (at
least at the critical point). The coefficients do not depend on €. Along
the real Tine (2.7) has one stable macroscopic steady state solution
p,=0 if all )<o, and two stable stationary solutions ¢ #o if a(i)>o.
Furthermore, the symmetry property an(-z)=(-1)nan(z) ;upposed]y holds
(about the appropriately chosen origin) for any n=1, 2,---, so that

(@) (3) _3, (s5) _s5
Y= ———
0tzn—l(z’ O"zn—lz'mzn—lz +uzn 12t ? (2.9)
<4
(2) =u(n) (2)zz+u(“)zk+___
2n 2n 2n

Throughout we take a(z) to be nonzero [11].

2.1 Above and at the crnitical point
In this monostable case (a(i)go) one introduces the scale transfor-
mations
Z=e%n, t=ﬂ%'r, 0.(1)/0.(3)=€%A (2.10)
into (2.€). Using (2.9) one finds
Bpgn,TZ (3) an(A+n )P+%a(o)8 p
oT an an
2
-e%[a(f)—ansP-—la(:)-a—znzP]
an 2! Bn

€ [a(z)irfP 1 (:) ch P+1u“) aanP]

an 2! Bn 3! an
2 3 4
_E%[a(?)insp__l_a(z)a_zn py L. (z) 3 - p_ 1 (z)g_%]
on 2! an 3! an’ 4! an
+--- . (2.11)

Formally treating n,t and A as quantities of order unity and omitting
terms in (2.11) that vanish as Yo, one extracts the irreducible part

AP(X55) L By (ax?)psd P LA (2.12)
as ax ax
where we have set
5 5
P AR ¥ - L7, (2.13)
\/0.( ) 30 2
with af =-§a(f)a(g), in order to have (2.12) in standard notation; « is

the pump parameter, here »0. In section 4 it will be seen that the
higher order corrections in (2.11) do remain small in terms of ¢ for all

k30, i.e. for all a( )
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2.2 Below and at the crnitical point

In this case (a‘i’;o) one must explicitly account for the existence
of the two stable macroscopic steady states Pys which are the nontrivial
solutions of Z=u,(z)=0. That is,

a0 o gt s o (2.14)

The correct below-critical irreducible description is obtained only
after a certain reordering of coefficients in the master equation (2.6).
The procedure is a generalized version of the one presented in [1]1. The
jump moments (2.9) are rewritten as

_ (1 (3) (ZM+1) —
% ey (207208 4 (Z ¢+)+ %2n-1 (z° Py Rl (2.15)
(0, (22 2y (om) 2 — )
o, (2) =a ‘+a (* ¢¢)+ +a, (2* ¢i) +
Comparison of (2.15) and (2.9) yields
(2m+1) _ = (2k+1) 2(k-m)
%on-1 T kEm ( m%n- 9t .
(2.186)
(zm) _ (2k) 2 (k-m)
aZn = kz ( ) (P+

By (2.14) one readily checks that a(i)

the closed form

a3 =) (e,)/20% . (2.17)
Clearly, (i) is connected with the Tocal stability in the linear
(0 )-a2(¢+). Inserting now

* . (3) .
=0 , while a'}’ may be cast into

approximation at Py Further, one notes that a
the scale transformations

z=e!5n s t=$2%'r, ¢i=-s—:%v : (2.18)
into (2.6) with the renormalized jump moments according to (2.15) and
(2.16), one obtains

3P(n,t)__ (3)0 2 (4 )P+£a(°)3 %p

9T an an
BUACEIERCIE WK et
on 2. 31’1
an 2 Bn
e”[a( )an(V+n2)“P— (6) N (V+n ) P
an 2. an’
y
+ 108 2% (gun®)p-La 2P (2.19)
3: >’ 4. an

* ()

For one sfep processes a, ' =0 for all n=1, 2,---
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Considering now formally n,t and V as quantities of order unity and
omitting terms in (2.19) that vanish explicitly as evo, one gets the
irreducible part of the master equation below the critical point. Setting

1
x=——~”—c{a(3)1%, s=tfa® 1", K=—Yo—)[a(3) : (2.20)
Viald) ja’,
where a(3)=-§a(i)a(g), it is readily written in the standard form (2.12)

with k<o. In section 4 we will show how the above renormalization helps
in keeping the higher order corrections (2.19) small in terms of e for

all k<o, i.e. for all a'}so.

2.3 Some comments

Thus it has been shown how the irreducible standard form (2.12)
arises from the master equation in the limit {»~. Note that the relations
between the standard variables x,s and « and the original ones z,t and
a(i) are essentially different above and below the critical point u(i)=

Well abaove the critical point in the normal regime a(i) is negative
and of order unity, so that by (2.10) and (2.13) k tends to plus infini-
ty as Q%. Appropriately rescaling in (2.12) such that effectively

z=a%£, one easily obtains

0.

2
BPLEY), (1) B ppyya (2P (2.21)
3t 2% ot

as the dominant part of order €°, which provides the normal Tinear
noise approximation at the single stable state ¢,=0.

In the normal regime well below the critical point a is positive
and of order unity, so that by (2.18) and (2.20) k here tends to minus
infinity as Q%. Appropriately rescaling in (2.12) about X=i(—K)%, such
that effectively Z=¢i+€%£’ and using (2.17) and a(g)=a2(¢i), one easily
retrieves the linear noise descriptions at the two stable states 9, as
the leading parts of order ¢’.

In the critical range, where by definition a
is of order unity and the irreducible nonlinear Fokker-Planck equation
(2.12) can not be simplified any further. One should note that (2.12)
does not allow the computation of moments explicitly in successive
orders of s:;j directly from the differential equation itself due to the
nonlinear drift function [2, 3, 9, 12, 13]. Therefore, contrary to the
normal cases where the linear noise approximation always holds, we must
know the solutions of (2.12) explicitly.

(1)

1
1

1
(i) is of order €2, «
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3. THE IRREDUCIBLE PROBLEM
Let us repeat (2.12) here as

BP(°)gx,5?=3_U.(X)P(o)+32p(0) ’
3s ax © ax’ (3.1)

U_(x)=hex’4x"
which formally represents a diffusion process in a simple potential
showing the mono- to bistable transition (see e.g. [14-21]1). As such it
has been mentioned as a model for the single mode laser [22], disregar-
ding phase diffusion [23-27].

The Green's function solution or propagator of (3.1) will be written
as [1]

PO (x,s1x 40)= = PO ()0 (x )e"‘(fl)s (3.2)

K 1% nmo B n ‘"o ’ .

where Q(;)(x) is the adjoint eigenfunction of P(;)(x)
0 0
PO x)=P 0 (x)0' ) (x) . (3.3)

The P(;)(x) and Q(;)(x) form a presumably complete biorthogonal set:

jwp‘;’(x)o‘;’(x)dx=snm ) (3.4)

-0
Equilibrium (or rather, steady state) quantities become relatively
simple in this format. For example, the dynamical susceptibility

becomes [28, 297 . )
1]
X(w)=-X{0) I Psje sas =MoLy T o (3.5)
T(O) F(o)n=° u( )+1w

where we have invoked the pertinent expression [1] for the correlation
function T'(s); <x> represents the first moment of the n-th probability
eigenfunction, and X(o) can in principle be computed (at least at zero
bias of the external ‘force' [28]) from the stationary distribution
P(g)(x).

The eigenvalue spectrum of (3.1) is shown in figure 3 of [1]1. More
details may be found in [1, 16, 21].

Well above the critical point x+«; the adjoint eigenfunctions tend
to become Hermite polynomials about x=o (note that the Gaussian propa-
gator of the Tinear noise approximation (2.21) can be expanded in terms
of these polynomials ; see e.g. [30] form. 10.13(22)); x is effectively
of order K_%, the eigenvalues are u(n)~nK with n=0, 1, 2,---

In the critical negion x=0; both x and u(°) are of order one, e.g.

(o)-l 37 (see also [4]).
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Well below the critical point -3 x is globally of order (-K)%,
but is locally (near the origin and X=+(—K)%) of order (-K)-%' there is
one low lying doublet, consisting of the stat1onary solution with u( )2
and the first excited state with u(o)" -<*/4 {(corresponding to Kramers'
diffusion rate [31-33]); further there is a set of singlets with

po) z(2n-1)|«|, where n=1, 2,--- (and where all eigenfunctions are

evzﬁ and completely conf1ned to the region x~{-k) % near the origin);
finally, there is a set of triplets with u(zi_ (°)”u(°;+152n|K|,
again with n=1, 2,--- (hence, each triplet consists of one even and two
odd eigenfunctions); for a discussion of the possible nature of this

degeneracy the reader is referred to [1].
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4, HIGHER ORDER CORRECTIONS

The higher order corrections in the original master equation will be
calculated in terms of the standard variables x,s and «. If one were
interested only in the true critical region, the calculation could pro-
ceed by definition directly from the standard version of (2.11) and
(2.19) as they stand. However, in a systematic unified treatment of
above-critical, critical and below-critical cases, one must define the
perturbational terms still more carefully. Fortunately it is not too
difficult to arrive at the following scheme handling (2.11) and (2.19)
simultaneously:

2
QEL§l§l=leé(x)P+§—§'—E%V(jlux)P , (4.1)
9s ax X X
where
3 1=y (8 gy By (2 — (4.2
V(§;=X)-V (5xox)+e™V ( ,x)+ . {4.2)

The correct below-critical perturbational operators are

2
V(2 =130 1Bea D% D) 2, (K+X2)2-—1-¢1(§)Ai{(l<+xzﬂ

X X 2. X
3 L3
+—1€%a(;)A%—§—3—X -—l-ea(g)AziT o
3 X 4! ax
2
v 0=03a 01 1-a D177 (2D Bx(eax®) - 2a P A2 (i) }(4.3)
9X ) 9X 21 X
s Le% (3% 2 x(|<+x )-Lea? ’A“’ (kx”)
3. ax’ 4. ax’
5 5 2 06
+—15%a(;)A/z—a-?x -—1€2a(Z)Aa—G o,
5. X 6. 9X J

and so on, where A=-a (3)/§a(°). Above the critical point the perturba-
tional operators are obtained from (4.3) simply setting k=0 and re-
placing the renormalized a(m) by the original a(m) The terms (4.3)
may be gleaned from (2.11) and (2.19) as follows. In order to construct
V(P{ one takes the first and second derivative terms of critical order
eP/2 and adds the third derivative term of the next order and the fourth
derivative term of the second next order, and so forth until the series
terminates.

As has been done in [1] we cast the eigenvalue problem of (4.1) into
matrix form. With

_ - (0}
P(x)=£c P (x) (4.4)
n=o
this leads to
(0)_ -
ck( u)+e szkzcz'° s (4.5)
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where
sz=_£ 02 (U P D (x)dx (4.6)

4.1 The even solutions

In view of the degeneracies in the irreducible eigenspectrum well
below the critical point (see e.g. [1], figure 3), a unified treatment
valid for all values of the pump parameter calls for a separate examina-
tion of even and odd solutions. Even solutions are either singlets or
the single even member of triplets. They can be treated by nondegenerate
perturbation theory, which also applies to the Kramers' doublet. Putting

ck-Gkn+e ckn (1- skn)+sc )(l-Gkn)+-—- s

(4.7)
(0)+E%u(1) (2)+ ,
and defining “(OL (°) u(ﬁ), one obtains (see [1]):
(1)=V(1) ,
(1) (1) (0)
kn Vkn /M ? (4.8)
ut2 (2) (1) (1) .
=V +zT V ’
nn Codn n% San
&) rpl2) (1) (1) _ (1) e (0)
“n *Vkn ¥ 5 Yka Can Hn Ckn Vonic”
etcetera. In the critical region both x and u( ). and hence each V(p)

nk*
are of order €°. The above scheme is obviously correct in that case

4.1.1 Well above the cnitical point
Here X~K_% which will be of order s%; ué°)~K is of order Q%. Using

(4.6) and (4.3) with x=0, it is not so difficult to see that the matrix
element® Véz) (with p=1, 2,---) becomes of order e P~/2, and that

(p) is of order ¢P/? . Therefaore, if we define u(p)—e P12y (p) and

(P)-eplz ép) the A(p) and b(P) are of order un1ty Inserting th1s into
(4 7) and defining the order e quantities b 1(0)-e%u(°) and A—e%u,
one gets

K~k

*

To be. explicit, the operator VP! may be given as:

+2
(p) (2p+3) d 2p+3 AR {2p+2-n) _(n-2)/2_d \n _2pt2-n
v ( T] ) = a—— nzz T € ( atﬂ—) n .
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2 2
b =8 tebin (1-8yn) e bl (1-8, )+~

@ (4.9)

A= A(°)+8A(1)+e A geen

Clearly the presented scheme remains valid. However, the higher order
corrections now come in succesive powers of € instead of the critical
e%. Note that, contrary to the diffusion process treated in [1],
presently the first order normal correction does occur in (4.9): it is
not fully contained here in the irreducible part of the solution.

4,1.2 Well below the critical point

It has been discussed in detail in [1] that the singlet solutions
lead to exponentially small contributions (of order e'g) in any equilib-
rium quantity. Hence, they can not be seen in an asymptotic power series
expansion. On the other hand, the even triplet solutions are significant
precisely near the macroscopic steady states y . Shifting to x=i(-|<)!5
and rescaling to the appropriate Tocal variab]g one then finds that

éz) scales up to order Q*, independent of p. Consequently u(p) becomes
of order Q%, while cép) remains of order unity. Therefore, setting
‘ﬁ’=n*x‘ﬁ’ one finds
CSien*e . (1-Sp)tecyn (18 p)+===

Ao Ok (M2 o (4.10)

n n n

where we have once more introduced the order e quantities A(“)-a%p(°)

and A=s%u. Eq. (4.10) shows that the presented scheme remains valid a]so
in the normal regime well below the critical point.

4.2 The odd solutions

Apart from the first excited state, the odd eigensolutions of the
irreducible problem combine within triplets well below the critical point.
Their treatment in the higher order corrections in the master equation
requires pseudo-degenerate perturbation theory in order to sufficiently
1ift the degeneracy. The appropriate lowest order coefficients and
eigenvalues follow from [1, 34]

u(;)'ﬁ(°)+€%vé;) E%Vé;)

=0 . (4.11)

%,(1) (0)_=(o), %, (1)
€Van Lt S

Hence, the eigenvalues read
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=(0) _ (0),, (o), %/, (1), (1)
n =3 p tHp TE (Vnn +Vnm )1

2 |
t\/%[u‘;’-u‘,‘;’+e”(vr‘];’-vr;;’ T A ASL (4.12)

Substitution of these values into (4.11) yields the sought linear
combinations of P(;)(x) and P(&)(x).

4.2.1 Well above the crnitical point
In this case the first order matrix elements remain of order unity,
while u;;) will be of order K~Q% (see section 4.1.1). Expanding then the
square root in (4.12), one finds
ﬁ(O)zu(°)+€%V(1)+___
n n nn
(4.13)
clo)
nn
and a similar result for the m-th eigensolution. As it should, this

1 =to)_ %, (1), (o), ___
=1, Con =€ an /“nm + s

reproduces the purely nondegenerate outcome through first order.

4.2.2 The cnitical region
Here both the first order matrix elements and u;;)

so that (4.12) again properly leads to the nondegenerate results.

0.
are of order e,

4.2.3 Well below the crnitical point

As discussed in more detail in [1], we must in this case examine two
possibilities for the asymptotic degeneracy. The somewhat subtle consi-
derations are identical to those presented in [1] and will therefore be
omitted here. The simple outcome is that in either case (4.11) provides
us with two linear combinations of the original eigenfunctions, such
that the new solutions are nondegenerate and significant only near the
steady states ¢, . As usual, subsequent higher order corrections can be
handled further_along the lines of the nondegenerate theory of section
4.1.
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5. SOME FINAL REMARKS

In conclusion, we have shown how to set up a systematic expansion
for the equilibrium solutions of the master equation describing a Markov
process that shows a transition from monostable to bistable behaviour.
The expansion proceeds in successive fractional powers of the inverse

size of the system (e=1/Q) and is valid uniformly for all values of the

(1)

, » including the critical

pertinent parameter (e.g. temperature) a
point oM =o.

In the introduction we briefly stated the problem and outlined its
solution, making reference to our similar treatment of diffusion proces-
ses [1]. In section 2 we have been concerned with the separation of the
master equation into its irreducible part and a corrective remainder.
The irreducible part is a relatively simple nonlinear Fokker-Planck
equation. Some relevant properties of its eigensolutions have been
mentioned in section 3. The corrective remainder car be written as a
sum of terms that remain small in successive powers of e;i for any a(i),
as has been shown in section 4.

The unified treatment heavily leans on the following notions. To
begin with, it crucially depends on a proper recognition of the critical
region (a(l) of order e%). This allows for the separation of irreducible
(zeroth order) part and corrective remainder. Further, a certain
reshuffling of the critical corrective terms is required for the succes-
sive corrections to remain small of the correct order outside the criti-
cal region. At least, this suffices in the normal (monostable) regime
well above the critical point. Last, but not least, the extension into
the normal (bistable) regime well below the critical point could be
realized only after a certain renormalization of the original jump
moments. This procedure effectively eliminates the global large scale
fluctuations (n of order ) that would spoil the ‘expansion.

Dropping the superscript (o) and normalizing the corrected eigen-
functions following (3.4), the propagator remains given by (3.2). For
processes with the property of detailed balance [3, 35] (or with an
equivalent property, such as all one-step processes), the relation (3.3)
between the probability eigensolutions and their adjoints persists
through all orders of the corrections®. In that case equilibrium quanti-

*Fon processes without detailed balance there still exist adfoint
solutions, but (3.3) ceases to be valid beyond the inreducible approx-
imation. For such processes one can not even always guarantee the
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ties like the dynamical susceptibility remain given by such simple
formulae as (3.5). Finally, in terms of the original variables one has
explicitly P(n,t[n;,0)e=P (x,s]x,,0), where:

above-critical below-critical
a V<o a0
X= E%[_a(i)/éa(g)]%n 8%[_a(i)/£a(°2) ]%n
5= a;‘[-éa(i)q(g’];’t e300 af®) 1%
- 2
K= 9%[_5(!(?)“(2)] %(_a(i’)) _Q%[_a(i)/éa(‘;)]%q)i

completeness of the eigenspectrum of the oniginal masiern equation. None-
theless, the set of irnneducible eigensolutions is complete, independent
of detailed balance. Therefore it is gformally possible to proceed with
the expansion even in such cases (see footnote in [1], section 5), but
one can not be sure in general that this procedure converges o the twe
solutions.

- 42 -



APPENDIX: MEAN FIELD ISING MODEL

In the mean field Ising model short range interactions between
constituent spins are smeared out effectively over the entire system.
Physically the model's pump parameter (i.e. u(i), or k) is a tempera-
ture®. To be more precise, it is the difference between the actual
temperature and its critical value. Above the critical temperature there
is no spontaneous macroscopic magnetization (monostable case). Below the
critical temperature the nonzero spontaneous macroscopic magnetization
may be either plus or minus (spin up or down; bistable case). The model
has been studied previously in the critical region only numerically [29].
Presently we briefly discuss the correct Towest order of the stochastic
description including the critical point.

Al. The master equation .

Let us consider a system of N spins and denote the number of down-
spins by n,, the number of up-spins by n,. Trivially, n;+n,=N. The system
will be described by the bivariate master equation

ﬁ(nl,nzgt)=w(nl,n2|n1+1,n2-1)P(n1+1,nz-l;t)

+(n,,n,|n, -1,n,+1)P(n,-1,n,+15t)
“W(n -1,n,+1n,,n,)P(n, ,n,;t)
“W(n,+1,n,-1{n, ,n,)P(n, ,n,;t) (Al.1)

which is of the one step type. The spin flip transition rates are taken
to be [29]

W(n,~1,n,+1[n,,n,)=nexp[-B8(n,-n,)/N] ,

W(n,+1.n,-1|n ,n,)=nexpl-8(n,-n, }/N]
The parameter 8 defines a dimensionless temperature T=1/8. As N is kept
fixed it is convenient to introduce the nett magnetization m=n,-n,. That
is, m=N means all spins up, m=-N all down. In terms of m the equation
describes a two step process,

B(m,t)=W(m|m-2)P(m-2,t)+W(m|m+2)P(m+2,t)

-{W(m+2|m)+W(m-2|m) IP(m,t) , (A1.3)

y

(A1.2)

where
W(m+2]m)=§(N-m)e+Bm/N s

Ai.4
W(m-Z’|m)=5(N+m)e_Bm/N (A1-8)

*
The model has been used occasionally also to describe nonphysical
systems, in particulan in considering social phenomena [35-37].
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Figure Al. The macroscopic potential U(¢) of the mean field Ising model
according to (Al.8).
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Figutre A2. Solving (Al.7) for the stationary macroscopic state.
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The first and second extensive jump moment are obtained from

a (m)=x (m'-m)*u(m’|m) (A1.5)
mI

with k=1 resp. 2. See also (2.5). For the corresponding intensive jump
moments ak(¢)=ak(N¢)/N one thus finds

., (9)=2(sinhBe-pcoshBe) (AL.6)

o,(9)=4(coshBe-psinhBe) .
For the pure one step process higher moments are simply multiples of
(Al.6). In view of the macroscopic evolution equation (2.7), the sta-
tionary solutions follow from

tanhBo=p . (A1.7)
The stable solutions correspond to the minima of the macroscopic
potential (see (2.8))

U(o)=&(1+d) (1-coshBe)Zosinnse (A1.8)
which is shown in figure Al. The transcendental equation (Al.7) is
i1lustrated in figure A2. Obviously, if gl there is just one solution
¢,=0. However, if B>1 there exist two nonzero solutions ¢,, tending from
zero for B8=1 to x1 for g+>w. See figure A3. )

From (Al.6) and the definition (2.9) one obtains the relevant
coefficients

ol =2(p-1); o!¥=3(8-3)8%; oY= . (A1.9)

Note that a(i)<o at the critical point B=1, which guarantees stability.
The mean field Ising model clearly falls within the framework of the
general theory presented in the main text. The irreducible, zeroth order
description including the critical point is given by the standard quartic
potential Fokker-Planck equation (3.1).

Figure A3.

The stationary
macroscopic magnetic
moment ¢, of the
mean field Ising
model as a function
of temperature
T(=1/8).

0 05 10 —sT 15
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Al.1 Above and at the critical point

Here T>1, i.e. B<l. From (AL.9) o'l<o and a3 <0. Denoting by A the
eigenvalues belonging to the original time scale t (so that At=us),
defining the ratio A/u=z, and using (Al.9) into (2.10) and (2.13), one
obtains explicitly

e=(T-1)[2N/(1-381%

i (A1.10
n=28[2N/(1-18)17% . )

Al.2 Below and at the critical point
In this case T<1, i.e.B>l. Using the pertinent renormalized coeffi-
cients belonging to (Al.6) into (2.18) and (2.20) one finds
k=-¢,[(N/2)(cosh’ge,-B)1 ,

1 i (A1.11)
,l=—q;_+C0—ShB(pTi_[ (2/N)(cosh B(pi_s)]

A2. Discussion
A2.1 Macroscopic magnetization

The solutions of the macroscopic equation (A1.7) are shown in
figure A3. Near the critical point one has

0,%[3(1-T)1%, as THI(B41) . (A2.1)
Well below the critical point one finds
0,2:(1-2¢"), as Tvo(gre) . (A2.2)

A2.2 Pump parameter and time scaling
Well above the critical point one infers from (Al.10) that

K ~
—=T a\/E= » as T»=(B+0) . A2.3
Approaching the critical point from above one gets

K 2 . -~
— =T-1, r3—=, if T=1(B%l) . A2.4
er e (B%1) .4

The same result is obtained slightly below the critical point from
{(A1.11), appropriately expanding the cosh and using (A2.1). Well below
the critical point the cosh in (Al.1l) becomes progressively dominant
and one obtains

K =18 rﬁ'e- -28
Vﬁﬁ_ je , kvz 1-48

» as TYo(B+=) . (A2.5)
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A2.3 Eigenvalues and susceptibility

One now easily obtains the curves A(T), which are distorted versions
of the standard u(k). See [1] figure 3, and [21]. Well above the critical
point uznk (n=0, 1,---), so that A=pnZnkx. By means of (A2.3) one finds

A=2n, as T»=(BY0) . (A2.6)
Near the critical point nzu(o) is of order one. Using (A2.4) one gets
A=2u(0) V3N, if T=B=1 . (A2.7)

Well below the critical point uz-nk (n=0, 1,---). By (A2.5) one obtains

az3ne, as Tvo(gre) . (A2.8)
As a typical illustration of the above analysis, the third eigenvalue
of the irreducible problem (corresponding to n=3 in (AZ.6) and n=2 in
(B2.8)) is sketched in figure A4 for the unrealistic total spin number
N=50. Note from figure 3 of [1] that the true critical region where
substantial deviations from the asymptotic values u=n|k| occur, is given
roughly by |k|<10. By (A2.4) this implies a critical temperature range
ATElON'%TC. Hence, with a critical temperature TCE300°K, one requires
at least 10'® spins for the critical range to be of the order of a
milliKelvin [29, 33].

Let us examine the eigenvalues as N>« Above the critical point the
standard asymptotes are u=nc, and (Al1.10) Teads to A=2n{1-g). The below-
critical standard asymptotes are p=-nk. Using (Al.11) and a simple
hyperbolic relation, one finds

A=nl(1-o?) %-8(1-92) %1 . (A2.9)
With ¢, =0 this includes the above-critical result. With n=2, (A2.9)
agrees_with the result (4.11) of [29]. This case corresponds to the first
excited state of the outer solutions of the irreducible problem (3.1).

Using the above discussed irreducible description. one can cal-
culate the lowest order approximations of (dynamical) equilibrium
quantities such as the correlation function, spectral density and suscep-

tibility. For example, the static susceptibility (see (3.5)) above the
critical point becomes

X(0)=0g,D_s (I VED 4 () (A2.10)
where ¢  =dp,/dh at h=o0, h being the external magnetic field; ¢;0=1/(1-BL
see [29]. Well above the critical point (A2.10) reduces to the normal
Curie-Weiss law. By means of (A2.4) at the critical point (A2.10) leads

to
Xc(0)=VaNT (%)/2r (%)=1. 1V . (A2.11)
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Figure Ada. General
eigenvalue u,; as
function of pump
parameter k.

Figure Adb. Eigen-
vaiue A, for Ising
model with N=50
spins, as function
of temperature T.
The value k=100 in
fig. 4a corresponds
to T=10, while
=.100 corresponds
to T=0.27. Dotted
lines represent
asymptotic values,

N=o.



Further, using the standard results of the irreducible eigenspectrum
[1, 21], it is not difficult to compute the dynamical susceptibility
(3.5). Defining x=x'-ix", for the mean field Ising model one obtains at
the critical point

0.9844 0.0152 0.0004

X {w)=X (o)[ —+ —+ — +—--] s (A2.12)
T 140.4016°  140.0116°  1+0.0020°

0.6230a_, 0.0016d +___] , (A2.13)

X (w)=x_{o [ +
¢ ¢ )1+o.401a,2 1+40.0115°

where i=w/N. See figure A5. Contributions from higher eigensolutions
than shown are zero at the displayed numerical accuracy. Higher order
corrections in terms of N';i can be calculated systematically as discus-
sed in section 4,

MINF —— — oseNEFF———— —— 2

Xt P

0(N°)

oin}

O -

$=160N"% —w

Figure A5. Real and imaginary part of dynamical susceptibility x=x'-ix"
as functions of the frequency w at the critical point T=1 for the mean

field Ising model. See (A2.12 & 13). Curves have been drawn using N=50
spins.
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STELLINGEN

100 De wijd verbreide idee dat het niet mogelijk zou zijn een systema-
tische ontwikkeling van de master vergelijking te geven welke geldig
blijft in een critisch punt, is met dit proefschrift definitief weerlegd.

201 In tegenstelling tot hetgeen Larson en Kostin beweren, is Van Kampen's
correctie op Kramers' diffusie formule niet van de orde exp(-AU), maar

wel degelijk van de orde 1/AU.

N.G. van Kampen, J.Stat.Phys.17(1977)71.

R.S. Lanson & M.D. Kostin, J.Chem.Phys.69(1978)4821,

301 In bepaalde gevallen dient Van Kampen's formule voor de critische
schaling te worden gegeneraliseerd.

N.G. van Kampen, Adv.Chem.Phys.34(1976)245.

fl. Dekker, J.Chem.Phys.72(1980)189.

41 Een uniform geldige ontwikkeling van de master vergelijking voor de
relaxatie van een normale instabiele toestand is nog niet bekend.

M. Suzuki, J.Stat.Phys.16(1977)11.

F. Haake, Phys.Rev.Lett.41(1978)1685.

50 Het beschrijven van critische fluctuaties in diffusie processen met
behulp van de 'meest waarschijnlijke paden' is onjuist.
D. Dinr & A. Bach, 1.Phys.B32(1979)413.

6 1 Berekening van padintegralen met behulp van alleen het ‘meest
waarschijnlijk pad over korte tijdintervallen' behelst een ad-hoc
voorschrift, dat slechts in vlakke ruimtes achteraf kunnen worden
gerechtvaardigd.

H. Dekken, in Proc.Int.Workshop on Funct.Int.(PLenum, New York, 1980).



7 O Een eenvoudig model van een niet single-mode laser, geldig in de buurt
van het critische punt, is ten onrechte vrijwel onopgemerkt gebleven.

H. Dekker, Optics Comm.10(1974)114.

R.L. Stratonovdich, Sov.J.Qu.ELectr.7(1977)1225.

8 O De beschrijving van de quantum mechanica van dissiperende systemen
met behulp van tijdafhankelijke Hamiltonianen en afzonderlijke toe-
gevoegde ruisbronnen (ten einde de onzekerheids relaties te waarborgen)
leidt tot resultaten welke dusdanig afhangen van speciale begincondities,
dat zij als onjuist moet worden beschouwd.

1,R. Svin'in, Teon.Mat.Fiz.27(1976}270.

J. Messern, Acta Phys.Austrn.50(1977)75.

9 C1De bewering dat in het waterstof atoom 'banen' met gelijk hoofd-
quantum getal door de letters s, p, d, f, g, ... in volgorde van
afnemende excentriciteit zijn aangegeven, is gebaseerd op de oude
quantum theorie en om die reden onjuist voor de s-'baan' (%=0).

J.A. Prins, Grondbeginselen van de hedendaagse natuurkunde

(Woltens, Groningen, 1963).

D. ter Haar, The 0&d Quantum Theory (Pergamon, Oxfond, 1967}.

1000De relatie tussen de quantum-electrodynamische interactie Ham-
iltoniaan in de dipool benadering in termen van de vector potentiaal

en in termen van de electrische veldsterkte is, hoewel eenvoudig, aan-
leiding geweest tot verwarring. Een correcte behandeling is te vinden in
C.W. Lambents & H. Dekker, Phys.Lab.TNO Rept. PHL 1975-49.

110Een foton fiw is het kleinste energie quantum dat &n Fourier
component (met frequentie w) van het electromagnetisch veld kan
bevatten. Dynamische verschijnselen behoeven noodzakelijkerwijs meer
dan één Fourier component. De gebruikelijke aanduiding 'emissie van een
foton' is dan ook semantisch bezien onjuist, evenals de in de quantum
electronica ingeburgerde zegswijze 'fotonentellen'. Een correct
alternatief voor dit laatste is 'foto-electronen tellen'.



120Verder onderzoek naar de eigenschappen, zoals fading en interne
excitatie, van thermoluminescente dosimeters blijft gewenst.

Z. Spwiny & J. Kvasnibka, Int.Conf.Llum.Dos. Krakéw, Poland, 1974)255.
H. Dekken, Health Physics 3011976}399.

1300Supergeleidende objectief lenzen voor electronen microscopie, en de
Faraday methode ter bepaling van hun kwaliteiten, zijn ten onrechte
ondergewaardeerd.

H. Dekker, J.Phys.E 5(1972)368.

P.W. Hawkes & U. ValdnZ, J.Phys.E 10(1977)309.

140Bij het ontwerpen van conferentie- en concertzalen wordt het
effectief dissipatieve randeffect gewoonlijk ten onrechte niet in
beschouwing genomen.

H. Dekker, J.Sound & Vibn.32(1974)199.

15[0Het invoeren van veel niet goed bekende parameters in wiskundige
modellen, zoals gebruik voor bijvoorbeeld economische voorspellingen,
geeft hun uitkomsten een ruisachtig karakter. Deze stochastiek zou

- ten eerste - op de juiste wijze behandeld, en - ten tweede - niet in
het eindresultaat verbloemd moeten worden.

16(JDe negatieve invioed van de Nederlandse vertaling van een boek van
de Franse katholiek Venette aan het eind van de zeventiende eeuw op

de maatschappelijke waardering van de vrouw in de daaropvolgende eeuwen
dient nader te worden onderzocht.

N. Venette, Venus Minsicke Gasthuis (Amstendam, 1687).

N.F. Noondam, Spiegel HisZoniael 12(1979)650.

170Het gezegde 'als de nood het hoogst is, is redding nabij' moet op
logische gronden als ofwel onjuist ofwel triviaal worden beschouwd.



