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critical earthquake response of 
elastic–plastic structures under  
near-fault ground motions  
(Part 2: Forward-directivity input)
Kotaro Kojima  and Izuru Takewaki *

Department of Architecture and Architectural Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan

The triple impulse input is used as a simplified version of the forward-directivity near-fault 
ground motion and a closed-form solution of the elastic–plastic response of a structure 
by this triple input is obtained. It is noteworthy that only the free-vibration appears under 
such triple impulse input. An almost critical excitation is defined and its response is 
derived. The energy approach plays an important role in the derivation of the closed-form 
solution of a complicated elastic–plastic response. It is shown that the maximum inelastic 
deformation can occur after the second impulse or the third impulse depending on the 
input level. The validity and accuracy of the proposed theory are discussed through the 
comparison with the response analysis result to the corresponding three wavelets of 
sinusoidal waves as a representative of the forward-directivity near-fault ground motion.

Keywords: earthquake response, critical response, elastic–plastic response, ductility factor, near-fault ground 
motion, forward-directivity input, triple impulse

introduction

The near-fault ground motions have been investigated from various viewpoints (Bertero et al., 1978; 
Hall et  al., 1995; Sasani and Bertero, 2000; Alavi and Krawinkler, 2004; Mavroeidis et  al., 2004; 
Kalkan and Kunnath, 2006, 2007; Xu et al., 2007; Rupakhety and Sigbjörnsson, 2011; Yamamoto 
et al., 2011; Khaloo et al., 2015; Kojima and Takewaki, 2015b; Vafaei and Eskandari, 2015). Those 
ground motions are characterized by the well-known phenomena called fling-step and forward-
directivity (Mavroeidis and Papageorgiou, 2003; Bray and Rodriguez-Marek, 2004; Kalkan and 
Kunnath, 2006; Mukhopadhyay and Gupta, 2013a,b; Zhai et al., 2013; Hayden et al., 2014; Yang and 
Zhou, 2014; Kojima and Takewaki, 2015b).

As pointed out in the previous paper (Kojima and Takewaki, 2015b), the fling-step input is a 
fault-parallel input and the forward-directivity input are a fault-normal input. Those ground motions 
have been characterized by two or three wavelets and it is recognized that the forward-directivity 
input has larger effects on structures in general. Recently, some important research works have been 
conducted. Mavroeidis and Papageorgiou (2003) summarized the characteristics of this class of 
ground motions in detail and proposed some simple wavelet models (for example, Gabor wavelet 
and Berlage wavelet). Xu et al. (2007) employed the Berlage wavelet and applied it to the performance 
evaluation of passive energy dissipation systems. Takewaki and Tsujimoto (2011) used the Xu’s 
model and proposed a method for scaling ground motions from the viewpoints of drift and input 
energy demand. Takewaki et al. (2012) employed a sinusoidal wave for pulse-type waves. Kojima and 
Takewaki (2015b) introduced a simplified input model called “double impulse” (Kojima et al., 2015a) 
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and derived a closed-form solution of the critical elastic–plastic 
deformation of a single-degree-of-freedom (SDOF) model to 
the double impulse input. They clarified that (i) a closed-form 
solution of the critical elastic–plastic deformation can be derived 
based on a simple energy approach and (ii) the double impulse 
can be a good substitute of the fling-step input (one-cycle sinu-
soidal input) under the equivalence assumption of the maximum 
Fourier amplitude of accelerations. In this paper, the approach 
by Kojima and Takewaki (2015b) is extended to the forward-
directivity input and the intrinsic response characteristics by the 
forward-directivity are captured.

Most of the previous works on the near-fault ground motions 
deal with the elastic response because the number of parameters 
(e.g., duration and amplitude of pulse, ratio of pulse frequency 
to structure natural frequency, change of equivalent natural 
frequency for the increased input level) to be considered is tre-
mendous and the computation of elastic–plastic response itself is 
quite complicated.

In order to tackle such important but complicated problem, 
a simple input as the double impulse has been employed as 
a substitute of the fling-step near-fault ground motion in the 
previous paper (Kojima and Takewaki, 2015b) and a closed-form 
solution of the critical elastic–plastic response of a structure by 
this double impulse has been derived. Following the previous 
paper, the approach is extended to the forward-directivity input. 
It is shown that, since only the free-vibration appears under such 
triple impulse input, the energy approach plays an important role 
in the derivation of the closed-form solution of a complicated 
elastic–plastic response. An almost critical excitation is defined 
and its response is derived. It is also shown that the maximum 
inelastic deformation can occur either after the second impulse or 
after the third impulse depending on the input level. The validity 
and accuracy of the proposed theory are investigated through the 
comparison with the response analysis result to the correspond-
ing three wavelets of sinusoidal input as a representative of the 
forward-directivity near-fault ground motion. The amplitude 
of the triple impulse is modulated so that its maximum Fourier 
amplitude coincides with that of the corresponding three wavelets 
of sinusoidal input.

The closed-form solutions of the elastic–plastic response have 
been obtained so far only for the steady-state response to an 
extremely simple sinusoidal input (Caughey, 1960; Liu, 2000). In 
the previous paper (Kojima and Takewaki, 2015b) and this paper, 
the following motivation is posed. If a near-fault ground motion 
can be represented by double impulse or triple impulse, the critical 
elastic–plastic response (continuation of free-vibrations) can be 
derived by an energy approach. The input of impulse is expressed 
by the instantaneous change of velocity of the structural mass. 
The restriction of the response to an almost critical one, which 
may be interesting in the design stage for safety, enables a unique 
solution of such complicated elastic–plastic responses.

While the resonant equivalent frequency has to be computed 
for a specified input level by changing the excitation frequency in 
a parametric manner in dealing with a sinusoidal input (Caughey, 
1960; Liu, 2000), no iteration is required in the proposed method 
for the triple impulse. This is because the resonant equivalent fre-
quency (resonance can be proved by using energy investigation) 

can be obtained directly without the repetitive procedure (the 
timing of the second impulse can be characterized as the time 
with zero restoring force). In the triple impulse, the analysis can 
be conducted without the input frequency (timing of impulses) 
before the second impulse. The criticality is defined only for the 
response before the third impulse and it is shown that this restric-
tion is a reasonable condition for safety evaluation of structures. 
The maximum elastic–plastic response after impulse can be 
obtained by equating the initial kinetic energy computed by the 
initial velocity to the sum of hysteretic and elastic strain energies. 
It should be pointed out that only critical response (upper bound) 
is captured by the proposed method and the critical resonant 
frequency can be obtained automatically for the increasing input 
level of the triple impulse.

The significance of using a one-cycle sinusoidal wave and 
three wavelets of sinusoidal wave as substitutes of fling-step and 
forward-directivity ground motion inputs have been explained 
by many researchers (Mavroeidis and Papageorgiou, 2003; 
Kalkan and Kunnath, 2006) and comparison with recorded 
ground motions has been conducted. On the other hand, the 
merit of the present paper is to derive a closed-form solution for 
even elastic–plastic responses under the critical input, which will 
reduce the computational load drastically and enhance the safety 
level of structures under such near-fault ground motions.

Triple impulse input

As pointed out in the previous paper (Kojima and Takewaki, 
2015b), it is well accepted that the fling-step input (fault-parallel) 
of the near-fault ground motion can be represented by a one-cycle 
sinusoidal wave and the forward-directivity input (fault-normal) 
of the near-fault ground motion can be expressed by three 
wavelets of sinusoidal input (see Figure 1). In the previous paper 
and this paper, it is intended to simplify these typical near-fault 
ground motions by double impulse (Kojima et al., 2015a) or triple 
impulse. This is because the double impulse and triple impulse 
have a simple characteristic and a straightforward expression of 
response can be expected even for elastic–plastic responses based 
on a simple energy approach to free vibrations. Furthermore, the 
double impulse and triple impulse enable us to describe directly 
the critical timing of impulses (resonant frequency), which is not 
possible for the sinusoidal and other inputs without a repetitive 
procedure.

Consider a ground motion acceleration u tg ( )  as triple impulse, 
as shown in Figure 1B, expressed by

 u t V t V t t V t tg ( ) . ( ) ( ) . ( )= − − + −0 5 0 5 20 0δ δ δ  (1)

where 0.5V is the given initial velocity and t0 is the time interval 
among three impulses. The comparison with the correspond-
ing three wavelets of sinusoidal waves as a representative of 
the forward-directivity input of the near-fault ground motion 
(Mavroeidis and Papageorgiou, 2003; Kalkan and Kunnath, 
2006) is also plotted in Figure  1B. The corresponding velocity 
and displacement of such triple impulse and three wavelets of 
sinusoidal waves are plotted in Figure 1B. The Fourier transform 
of u tg ( )  of the triple impulse input can be derived as
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sDOF system

Consider an undamped elastic-perfectly plastic SDOF system 
of mass m and stiffness k. The yield deformation and the yield 
force are denoted by dy and fy. Let ω1 = k m/ , u and f denote the 
undamped natural circular frequency, the displacement (defor-
mation) of the mass relative to the ground and the restoring force 
of the model, respectively. The time derivative is denoted by an 
over-dot.

Maximum elastic–Plastic Deformation of 
sDOF system subjected to Triple impulse

The elastic–plastic response to the triple impulse can be described 
by the continuation of free-vibrations. The maximum deforma-
tion after the first impulse is denoted by umax1, that after the second 
impulse is expressed by umax2 and that after the third impulse is 
described by umax3 as shown in Figure 2. The input of each impulse 
is expressed by the instantaneous change of velocity of the struc-
tural mass. Such response can be derived by the combination of a 
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FigUre 1 | (a) Fling-step input and double impulse, (B) Forward-directivity 
input and triple impulse (Kojima and Takewaki, 2015b).

simple energy approach and the solution of differential equations 
(equations of motion). The kinetic energy given at the initial 
stage (the time of the first impulse), that at the time of the second 
impulse, and the kinetic energy plus the elastic strain energy at 
the time of the third impulse are transformed into the sum of the 
hysteretic energy and the elastic strain energy corresponding to 
the yield deformation. Using this rule and incorporating the infor-
mation from the equations of motion, the maximum deformation 
can be obtained in a simple manner. It should be noted that, while 
a simple and clear concept of critical input was defined in the case 
of double impulse (Kojima and Takewaki, 2015b), the criticality 
can be used only before the third impulse in the present triple 
impulse. This is because the timing of the third impulse, deter-
mined already for the first and second impulses, decreases the 
maximum deformation umax2 after the second impulse and may 
increase the maximum deformation umax3 after the third impulse. 
However, it is shown that this treatment of setting of timing 
provides the true criticality in an input level of practical interest.

It should also be emphasized that, while the resonant equiva-
lent frequency has to be computed for a specified input level 
by changing the excitation frequency in a parametric or math-
ematical programing manner in dealing with the sinusoidal input 
(Caughey, 1960; Liu, 2000; Moustafa et  al., 2010), no iteration 
is required in the proposed method for the triple impulse. This 
is because the resonant equivalent frequency (resonance can be 
proved by using energy investigation: see Proof of Critical Timing 
in Appendix) can be obtained directly without the repetitive pro-
cedure (the timing of the second impulse can be characterized as 
the time with zero restoring force). It should be noted again that 
the resonance is defined before the third impulse.

Only critical response (upper bound) is captured by the pro-
posed method and the critical resonant frequency can be obtained 
automatically for the increasing input level of the triple impulse. 
One of the original points in this paper is the introduction of 
the concept of “critical excitation” in the elastic–plastic response 
(Drenick, 1970; Abbas and Manohar, 2002; Takewaki, 2004, 2007; 
Moustafa et  al., 2010; Kojima and Takewaki, 2015b). Once the 
frequency and amplitude of the critical triple impulse are com-
puted, the corresponding three wavelets of sinusoidal waves as a 
representative of the forward-directivity motion can be identified.

Let us explain the evaluation method of umax1, umax2, and umax3. 
The plastic deformation after the first impulse is expressed by up1, 
that after the second impulse is described by up2, and that after 
the third impulse is denoted by up3. There are four cases to be 
considered depending on the yielding stage.

Case 1:  elastic response during all response stages (umax3 is the 
largest).

Case 2:  yielding after the third impulse (umax3 is the largest).
Case 3:  yielding after the second impulse (umax2 or umax3 is the 

largest).

  1: the timing of the third impulse is in the unloading stage.
  2:  the timing of the third impulse is in the yielding (loading) 

stage.

Case 4: yielding after the first impulse (umax2 is the largest).
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In comparison with the double impulse, the triple impulse is 
quite difficult to derive the critical timing in a general case. This 
is because the timing of three impulses is fixed and there exist 
many complicated situations. In this paper, a case is treated where 
the critical timing is defined only before the third impulse. This 
means that, if the third impulse does not exist, timing gives the 
maximum value of umax2.

case 1
Figures  2A–C show the maximum deformation after the first 
impulse, that after the second impulse, and that after the third 
impulse, respectively, for the elastic case (Case 1) during the whole 
stage. umax1 can be obtained from the energy conservation law.

 m V( . ) / /max0 5 2 22
1

2= ku  (3)

On the other hand, since it can be proved that the critical tim-
ing of the second impulse to produce the maximum deformation 
umax2 is the time of zero restoring force (the proof similar to the 
Section “Proof of Critical Timing” in Appendix), umax2 can be 
computed from another energy conservation law.

 m V V( . ) / /max0 5 2 22
2

2+ = ku  (4)

In the elastic case, the critical timing of the second impulse is 
the time of zero restoring force and the velocity – V by the second 
impulse is added to the velocity −0.5V induced by the first impulse 
(full recovery at the zero restoring force due to zero damping).

Furthermore, since the timing of the third impulse is the 
time of zero restoring force, umax3 can be computed from another 
energy conservation law.

 m V V V( . . ) / /max0 5 0 5 2 22
3

2+ + = ku  (5)

As explained above, the critical timing of the third impulse is the 
time of zero restoring force and the velocity 0.5V by the third impulse 
is added to the velocity 1.5V induced by the first and second impulses 
(full recovery at the zero restoring force due to zero damping).

It should be noted again that the critical timing t0 corresponds 
to the time of zero restoring force in Case 1 (see Proof of Critical 
Timing in Appendix). As a result, umax3 becomes the largest defor-
mation among umax1, umax2, and umax3.

case 2
Consider next the case (Case 2) where the model goes into the 
yielding stage after the third impulse. Figures  2D–F show the 
schematic response in this case. As in Case 1, umax1 can be obtained 
from the energy conservation law.

 m V( . ) / /max0 5 2 22
1

2= ku  (6)

On the other hand, umax2 can be computed from another energy 
conservation law.

 m V V( . ) / /max0 5 2 22
2

2+ = ku  (7)

As stated above, the velocity – V by the second impulse is added 
to the velocity − 0.5V induced by the first impulse. Furthermore, 
umax3 can be computed from another energy conservation law.

 m V V V f d f u d( . . ) / / ( )max0 5 0 5 2 22
3+ + = + −y y y y  (8)

As explained above, the velocity 0.5V by the third impulse 
is added to the velocity 1.5V induced by the first and second 
impulses. It should be noted that the critical timing t0 corresponds 
to the time of zero restoring force also in Case 2.

case 3
Consider next the case (Case 3) where the model goes into the 
yielding stage after the second impulse. Figures  2G–I show 
the schematic response in this case. umax1 can be obtained from 
the energy conservation law.

 m V( . ) / /max0 5 2 22
1

2= ku  (9)

As in Case 2, the critical timing of the second impulse is 
the time of zero restoring force. Although a more complicated 
discussion is needed to show this critical timing depending on 
the timing of the third impulse, it is omitted here. Case 3-1 and 
Case 3-2 (Figure 3) should be considered in Case 3. In Case 3-1, 
the timing of the third impulse is in the second unloading stage 
(Figures 2I and 3A).

Case 3-1
In this case (Case 3-1), umax2 can be computed from another 
energy conservation law.

 m V V f d f u d( . ) / / ( )max0 5 2 22
2+ = + −y y y y  (10a)

Then, umax2 can be expressed as

 u d m V d fmax {( . ) ( ) } / ( )2
2

1
21 5 2= + −y y yω  (10b)

On the other hand, umax3 can be computed from another energy 
conservation law.

 m v V k u f d f u( . ) / / /′ ′− + = +E E F y y y p30 5 2 2 22 ∆  (11)

where νE′(<0) is the velocity at the time of third impulse (point E′) 
and ΔuE′F = uE′–up2 (uE′ (> 0): deformation at E′). up2 is character-
ized by up2 = umax2–dy and up3 satisfies umax2 + umax3 = 2dy + up3. νE′ 
and uE′ are characterized by Eqs 12 and 13 by solving the equation 
of motion.

 v d tE′ ′ω ω= − 1 1y EEsin  (12)

 u d t u d t m V

d f
E y EE p2 y EE

y y

′ ′ ′ω ω

ω

= + = +

−

cos cos {( . )

( ) } / ( )
1 1

2

1
2

1 5

2

 

(13)

In these equations, tEE′  =  (T1/2)–(tCD  +  tDE) is the time 
interval between the first yielding termination point (E) and 
the third impulse (point E′), tCD  =  {Sin–1(2ω1dy/3V)}/ω1 is the 
time interval between the time of the second impulse and the 
time of the first yielding initiation (after the second impulse), 
and t m V d fDE y y= −( / ) ( ) /9 42

1
2ω  is the time interval between 

the time of the first yielding initiation (after the second impulse) 
and the time of the second unloading initiation. tCD and tDE are 
computed by solving the equations of motion and substituting 
the transition conditions (yielding and unloading conditions). In 
other words, umax3 can be obtained from

 
m v V k u f d

f u u d
( . ) / / /

)max max

′ ′− + =
+ + −

E E F y y

y y(
0 5 2 2 2

2

2

2 3

∆
 (14a)
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Then, umax3 can be expressed as

 u d m v v V V u fmax {( ) ( ) } / ( )3
2 2

1
22 2= + − − + ′y E E E F y′ ′ ω ∆  (14b)

If the maximum deformation after the third impulse 
(corresponding to umax3) is positive, up3 is characterized by 
umax2 − umax3 = 2dy + up3. In this case, umax3 can be computed from 
another energy conservation law.

 m v V k u f d
f u u d

( . ) / / /
( )max max

′ ′− + =
+ − −

E E F y y

y y

0 5 2 2 2
2

2

2 3

∆  
(14c)

Then, umax3 can be expressed by

 u d m v v V V u fmax ’ ’{( ) ( ) } / ( )3
2 2

1
22 2= − − − − + ′y E E E F yω ∆  (14d)

Case 3-2
In Case 3-2, the timing of the third impulse is in the yielding stage 
(Figure 3B). In this case (Case 3-2), umax2 is the deformation at the 
time of the third impulse (uE′) uE′ can be computed by solving the 
equation of motion and can be expressed by Eq. 15.

 u f m t V d t dE y DE y DE’ y’ ’( / ) ( / ) ( )= − + − +2 9 42 2
1

2ω  (15)

In this case, umax2 is given by

 u umax2 = E′  (16)

On the other hand, umax3 can be computed from another energy 
conservation law.

 m v V f d f d f u( . ) / / /E y y y y y p′ − + = +0 5 2 2 22
3  (17)

where νE′ is the velocity at the third impulse and up3 is character-
ized by umax2 − umax3 = 2dy + up3. νE′ is characterized by Eq. 18 by 
solving the equation of motion.

 v f m t V dE y DE y′ ′= − + −( / ) ( / ) ( )9 42
1

2ω  (18)

In these equations, tDE′=  (T1/2)–tCD is the time interval 
between the first yielding initiation and the third impulse and 
tCD = {Sin–1(2ω1dy/(3V))}/ω1 is the time interval between the time 
of the second impulse (zero restoring force) and the time of the 

first yielding initiation (after the second impulse). tCD is computed 
by solving the equation of motion and substituting the transition 
conditions (yielding and unloading conditions). In other words, 
umax3 can be obtained from

 m v V f d
f d f u u d

( . ) / /
/ ( )max max

E y y

y y y y

′ − +
= + − −

0 5 2 2
2 2

2

2 3

 
(19a)

Then, umax3 can be expressed by

 u d u m v V fmax ( . ) / (3
22 0 5 2= − + − −′y E E y )′  (19b)

case 4
Consider finally the case (Case 4) where the model goes into the 
yielding stage even after the first impulse. Figures 2J–L show the 
schematic response in this case. umax1 can be obtained from the 
energy conservation law.

 m V f d f u d( . ) / / ( )max0 5 2 22
1= + −y y y y  (20)

In this case (Case 4), umax2 is the deformation at the third 
impulse (uE′). uE′ can be computed by solving the equation of 
motion and uE′ can be obtained from Eq. 21.

 u f m t V d Vt d

m V d f
E y DE y DE y

y y

′ ′ ′ω

ω

= − + + +

− −

( / )

{( / ) ( ) } / ( )

2 2

4 2

2 2
1

2
1

2

 

(21)

In this case, umax2 is given by

 u umax ’2 = E  (22)

On the other hand, umax3 can be computed from another energy 
conservation law.

 m v V f d f d f u( . ) / / /’E y y y y y p− + = +0 5 2 2 22
3  (23)

where νE′ is the velocity at the third impulse and up3 is character-
ized by umax2 − umax3 = 2dy + up3. νE′ is characterized by Eq. 24 by 
solving the equation of motion.

 v f m t V d VE y DE y′ ′ ω= − + +( / ) 2
12  (24)

In these equations, tDE′  =  t0–tCD  =  (tOA  +  tAB  +  tBC)–tCD 
is the time interval between the second yielding initiation 
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and the third impulse and t0 is the time interval between the 
time of the first impulse and the time of the second impulse. 
tOA =  {Sin–1(2ω1dy/V)}/ω1 is the time interval between the time 
of the first impulse and the time of the first yielding initiation, 
t m V d fAB y y= −( / ) ( ) /2

1
24 ω  is the time interval between the 

time of the first yielding initiation and the time of the first unload-
ing initiation, tBC = T1/4 is the time interval between the time of 
the first unloading initiation and the time of the second impulse 
and tCD = {Sin–1(ω1dy/(ω1dy + V))}/ω1 is the time interval between 
the time of the second impulse and the time of the second yielding 
initiation. tOA, tAB, and tCD, are computed by solving the equation 
of motion and substituting the transition conditions (yielding and 
unloading conditions). In other words, umax3 can be obtained from

 m v V f d f d
f u u d

( . ) / / /
( )max max

E y y y y

y y

′ − + =
+ − −

0 5 2 2 2
2

2

2 3

 
(25a)

Then, umax3 can be expressed by

 u d u m v V fmax ( . ) / ( )3
22 0 5 2= − + − −′y E’ E y  (25b)

Figure  4 shows the plot of umax/dy  =  max (umax1/dy, umax2/dy, 
umax3/dy) with respect to the input level. 2Vy is the input level 
at which the maximum deformation after the first impulse just 
attain the yield deformation dy. Here, Vy is expressed by Vy = ω1dy. 
As stated before, there are four cases (Case 1–4).

Case 1:  elastic response during all response stages (umax3 is the 
largest).

Case 2:  yielding after the third impulse (umax3 is the largest).
Case 3:  yielding after the second impulse (umax2 or umax3 is the 

largest).
Case 4: yielding after the first impulse (umax2 is the largest).

In Case 1 and 2, umax3 is the largest. On the other hand, in Case 3,  
umax2 or umax3 is the largest and in Case 4, umax2 is the largest.

As observed in Figure  3, the timing of the third impulse 
sometimes decreases umax2. It may be useful to assume the timing 
of the third impulse at the zero restoring force in the unloading 
process as shown in Figure 5. In Case 1 and 2, this assumption 
is valid (see Figures 2C,F). Figure 6 presents the corresponding 
figure in which the timing of the third impulse is the time of zero 
restoring force after the attainment of umax2 (in the process of the 
second unloading). In Figure  6, four cases (Case 1*, Case 2*, 
Case 3*, Case 4*) are introduced corresponding to the previously 
defined four cases. Case 1* and Case 2* are Case 1 and Case 2 
themselves. It can be understood, because the timing of the third 
impulse defined as the same interval between the first and second 
impulses decreases umax2, umax/dy in Case 4 in Figure 4 becomes 
smaller than that in Figure  6. However, it is noteworthy that 
umax/dy in Figure 6 can be a good upper bound of that in Figure 4 
and umax/dy (umax2/dy) to any other timing t0 (except zero restoring 
force) does not become larger than that in Figure 6 (see Proof 
of Critical Timing and Upper Bound of Response Ductility via 
Relaxation of Timing of Third Impulse in Appendix).

Figure 7 presents the normalized timing t0/T1 (T1 = 2π/ω1) of 
the second impulse with respect to the input level. As stated before, 

this timing coincides with the time of zero restoring force after the 
first unloading (see Figure 2). It can be observed that the timing 
is delayed as the input level increases. It seems noteworthy to state 
again that only critical response giving the maximum value of 
umax2/dy (in case of the timing of the third impulse after the second 
unloading) is sought by the proposed method and the critical 
resonant frequency is obtained automatically for the increasing 
input level of the triple impulse. One of the original points in this 
paper is the tracking of the critical elastic–plastic response.

accuracy check by Time–history 
response analysis subjected to the 
corresponding Three Wavelets of 
sinusoidal Waves

In order to investigate the accuracy of using the triple impulse as a 
substitute of the corresponding three wavelets of sinusoidal waves 
(representative of the forward-directivity input), the time–his-
tory response analysis of the elastic–plastic SDOF model under 
the three wavelets of sinusoidal waves has been conducted.

In the evaluation procedure, it is important to adjust the input 
level of the triple impulse and the corresponding three wavelets 
of sinusoidal waves based on the equivalence of the Fourier 
amplitude. Figure  8 shows one example for the input level 
V/Vy = 3. Figures 9A,B illustrate the comparison of the ground 
displacement and velocity between the triple impulse and the cor-
responding three wavelets of sinusoidal waves for the input level 
V/Vy = 3. Only in Figures 8 and 9A,B, ω1 = 2π (rad/s)(T1 = 1.0 s) 
and dy = 0.16(m) are used.

Figure 10 presents the comparison of the ductility (maximum 
normalized deformation) of the elastic–plastic structure under 
the triple impulse and the corresponding three wavelets of sinu-
soidal waves with respect to the input level. It can be seen that the 
triple impulse provides a good substitute of the three wavelets of 
sinusoidal waves in the evaluation of the maximum deformation 
if the maximum Fourier amplitude is adjusted appropriately.
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Figure 11 shows the comparison of the earthquake input ener-
gies by the triple impulse and the corresponding three wavelets 
of sinusoidal waves. An extremely accurate correspondence can 
be observed. This supports the validity of the triple impulse as a 
substitute of the forward-directivity near-fault ground motion.

Figure 12 illustrates the comparison of response time histo-
ries (normalized deformation and restoring force) under triple 
impulse and those under the corresponding three wavelets of 
sinusoidal waves. The parameters ω1 =  2π (rad/s) (T1 =  1.0  s), 
dy = 0.16(m) are used here. While a rather good correspondence 
can be seen in general, the amplitude of deformation after the 
third impulse exhibits a slight difference resulting from the differ-
ence in timing of the third impulse. At the same time, a difference 
in phase can be observed both in the deformation and restoring 
force. This may also result from the difference in timing of the 
third impulse. The difference in the amount of energy input at the 
third impulse seems influence the later response.

Figure  13 presents the comparison of the restoring force 
characteristic under the triple impulse and that under the 

corresponding three wavelets of sinusoidal wave. The parameters 
ω1 = 2π (rad/s)(T1 = 1.0 s), dy = 0.16(m) are also used here. As 
seen in Figure  12, while the maximum deformations after the 
first and second impulses exhibit a rather good correspondence, 
the deformation response after the third impulse exhibits an 
unnegligible difference. However, since the deformation response 
after the third impulse does not affect the maximum deformation 
in an overall time range, this difference may not be significant.

Design of stiffness and strength for 
specified Velocity and Period of Forward-
Directivity near-Fault ground Motion input 
and response Ductility

As in the case of the double impulse as a substitute of the near-
fault fling-step input, it may be meaningful to present a flowchart 
for design of stiffness and strength for the specified velocity and 
period of the near-fault forward-directivity input and response 
ductility. This design concept is based on the philosophy that, 
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if we focus on the worst case of resonance, the safety for other 
non-resonant cases is guaranteed (Takewaki, 2002). This fact will 
be explained in the following section.

Since Figures 4 and 7 are non-dimensional ones, they can be 
used for such design. Figure 14 shows the flowchart for design 
of stiffness and strength. One example can be drawn as follows:

[Specified conditions]V = 2.00(m/s), t0 = 0.500(s), umax/dy = 4.00, 
m = 4.00 × 106(kg)

[Design results]V/Vy  =  1.70, Vy  =  1.18(m/s), T1  =  1.00(s), 
dy = 0.188(m), k = 1.58 × 108(N/m), fy = 2.97 × 107(N)

From Figure  4, V/Vy  =  1.70 can be obtained for the speci-
fied ductility umax/dy = 4.0. Then, Vy = 1.18(m/s) is derived from 
the specified condition V =  2.00(m/s) and V/Vy =  1.70. In the 
next step, T1 = 1.00(s) is found from Figure 7 for V/Vy = 1.70 
and t0 = 0.5(s). In this model, dy = 0.188(m) is determined from 
Vy = ω1dy and T1 = (2π/ω1) = 1.00(s). Finally, k = 1.58 × 108(N/m) 
is obtained from k m= ω1

2  and fy = 2.97 × 107(N) is derived by 
fy = kdy.

approximate Prediction of response 
Ductility for specified Design of stiffness 
and strength and specified Velocity and 
Period of near-Fault ground Motion input

Until Section “Accuracy Check by Time–History Response 
Analysis Subjected to the Corresponding Three Wavelets of 
Sinusoidal Waves,” only the critical set of velocity and period of 

http://www.frontiersin.org/Built_Environment/archive
http://www.frontiersin.org/Built_Environment/
www.frontiersin.org


-2
-1.5

-1
-0.5

0
0.5

1
1.5

2

-2 0 2 4 6 8

V/Vy=3

triple impulse
forward directivity

f/f
y

u/dy

FigUre 13 | comparison of restoring force characteristic under triple 
impulse and that under the corresponding three wavelets of 
sinusoidal waves.

-2

0

2

4

6

8

0 0.5 1 1.5 2 2.5 3 3.5 4

V/Vy=3

triple impulse
forward-directivity

u 
/ d

y

time [s]

A

-2
-1.5

-1
-0.5

0
0.5

1
1.5

2

0 0.5 1 1.5 2 2.5 3 3.5 4

V/Vy=3

triple impulse
forward directivity

f/f
y

time [s]

B

FigUre 12 | comparison of response time history under triple 
impulse and that under the corresponding three wavelets of 
sinusoidal waves: (a) normalized deformation, (B) normalized 
restoring force.

Specified V

Sp
ec

ifi
ed

 t 0

A Cµ µ<

A C (cri�cal response)

V

t0

FigUre 15 | schematic diagram of approximate prediction method of 
response ductility for specified design of stiffness and strength and 
specified velocity and period of near-fault ground motion input.

Specify ( is determined from velocity amplitude of three wavelets 
of sinusoidal waves based on equivalence of Fourier amplitude 

of input accelera�on)

Specify in Figure 4

Determine from Figure 4

Determine from Figure 4

Determine from Figure 7 for specified 

Determine 

S�ffness and strength are designed

FigUre 14 | Flowchart for design of stiffness and strength.

August 2015 | Volume 1 | Article 1310

Kojima and Takewaki Forward-directivity elastic–plastic response

Frontiers in Built Environment | www.frontiersin.org

near-fault ground motion input and the corresponding critical 
response have been treated for a specified design of stiffness and 
strength. On the other hand, in Section “Design of Stiffness and 
Strength for Specified Velocity and Period of Forward-Directivity 
Near-Fault Ground Motion Input and Response Ductility,” 
the design flowchart of stiffness and strength for the specified 
velocity and period of the near-fault ground motion input and 
specified response ductility has been presented. In this section, 
an approximate prediction method of response ductility for 
specified design of stiffness and strength and specified velocity 

and period of near-fault ground motion input is explained. If a 
more exact response is desired then the response analysis for 
an arbitrary timing of impulses and an arbitrary input level can 
be done.

Figure  15 shows a schematic diagram of the approximate 
prediction method (only prediction of upper bound) of response 
ductility μ = umax/dy for a specified design of stiffness and strength 
and a specified velocity and period of near-fault ground motion 
input using the corresponding critical response. Generally, the 
specified set of velocity and period of near-fault ground motion 
input is not the critical set for a given structure. In such case, 
consider the critical set (point C) of velocity and period of input 
corresponding to the specified set of velocity. Let μA and μC denote 
the response ductilities corresponding to point A and C. From 
the Section “Proof of Critical Timing” in Appendix, μA  <  μC 
can be drawn directly. This enables an approximate prediction 
of response ductility (only upper bound) for a specified design 
of stiffness and strength and a specified velocity and period of 
near-fault ground motion input.
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conclusion

The conclusions may be summarized as follows:

 (1) The triple impulse input has been introduced as a simplified 
version of the forward-directivity near-fault ground motion 
and a closed-form solution of the critical elastic–plastic 
response of a structure by this triple impulse input has been 
derived.

 (2) It has been shown that, since only the free-vibration appears 
under such triple impulse input, the energy approach plays 
an important role in the derivation of the closed-form 
solution of a complicated elastic–plastic response. In other 
words, the energy approach enables the derivation of the 
maximum elastic–plastic seismic response. In this process, 
the input of impulse is expressed by the instantaneous 
change of velocity of the structural mass. The maximum 
elastic–plastic response after impulse can be obtained by 
equating the initial kinetic energy computed by the initial 
velocity to the sum of hysteretic and elastic strain energies. 
It has been shown that the maximum inelastic deformation 
can occur after either the second or third impulse depending 
on the input level.

 (3) The validity and accuracy of the proposed theory have been 
investigated through the comparison with the response anal-
ysis result to the corresponding three wavelets of sinusoidal 
input as a representative of the forward-directivity near-fault 
ground motion. It has been made clear that, if the level of the 
triple impulse is adjusted so that its maximum Fourier ampli-
tude coincides with that of the corresponding three wavelets 
of sinusoidal input, the maximum elastic–plastic deforma-
tion to the triple impulse exhibits a good correspondence 
with that to the three wavelets of sinusoidal wave.

 (4) While the resonant equivalent frequency has to be computed 
for a specified input level by changing the excitation frequency 
in a parametric manner in dealing with the sinusoidal input, 
no iteration is required in the proposed method for the triple 
impulse. This is because the resonant equivalent frequency 
(resonance can be proved by using energy investigation) 
can be obtained directly without the repetitive procedure 

(the timing of the second impulse can be characterized as 
the time with zero restoring force). In the triple impulse, 
the analysis can be conducted without the input frequency 
(timing of impulses) before the second impulse. It should 
be noted that, while a simple and clear concept of critical 
input was defined in the case of double impulse (Kojima and 
Takewaki, 2015b), the criticality can be used only before the 
third impulse in the present triple impulse. This is because 
the timing of the third impulse, determined already for the 
first and second impulses, decreases the maximum defor-
mation umax2 after the second impulse and may increase the 
maximum deformation umax3 after the third impulse.

 (5) Only critical response (upper bound) is captured by the 
proposed method and the critical resonant frequency can 
be obtained automatically for the increasing input level of 
the triple impulse. Once the frequency and amplitude of 
the critical triple impulse are computed, the corresponding 
three wavelets of sinusoidal motion as a representative of the 
forward-directivity motion can be identified.

 (6) A flowchart for design of stiffness and strength for the speci-
fied velocity and period of the near-fault ground motion 
input and response ductility has been proposed using the 
newly derived non-dimensional relations among response 
ductility, input velocity, and input period. It has been dem-
onstrated that this flowchart can provide a useful result for 
such design.

 (7) An approximate prediction method of response ductility 
(only prediction of upper bound) using the corresponding 
critical response can be developed for a specified design of 
stiffness and strength and a specified velocity and period of 
near-fault ground motion input.

acknowledgments

Part of the present work is supported by the Grant-in-Aid for 
Scientific Research of Japan Society for the Promotion of Science 
(No. 24246095, No. 15H04079) and the 2013-MEXT-Supported 
Program for the Strategic Research Foundation at Private 
Universities in Japan (No. S1312006). This support is greatly 
appreciated.

references

Abbas, A. M., and Manohar, C. S. (2002). Investigations into critical earthquake 
load models within deterministic and probabilistic frameworks. Earthq. Eng. 
Struct. Dyn. 31, 813–832. doi:10.1002/eqe.124.abs 

Alavi, B., and Krawinkler, H. (2004). Behaviour of moment resisting frame 
structures subjected to near-fault ground motions. Earthq. Eng. Struct. Dyn. 
33, 687–706. doi:10.1002/eqe.370 

Bertero, V. V., Mahin, S. A., and Herrera, R. A. (1978). Aseismic design implications 
of near-fault San Fernando earthquake records. Earthq. Eng. Struct. Dyn. 6, 
31–42. doi:10.1002/eqe.4290060105 

Bray, J. D., and Rodriguez-Marek, A. (2004). Characterization of forward- 
directivity ground motions in the near-fault region. Soil Dyn. Earthq. Eng. 24, 
815–828. doi:10.1016/j.soildyn.2004.05.001 

Caughey, T. K. (1960). Sinusoidal excitation of a system with bilinear hysteresis. 
J. Appl. Mech. 27, 640–643. doi:10.1115/1.3644077 

Drenick, R. F. (1970). Model-free design of aseismic structures. J. Eng. Mech. Div. 
96, 483–493. 

Hall, J. F., Heaton, T. H., Halling, M. W., and Wald, D. J. (1995). Near-source 
ground motion and its effects on flexible buildings. Earthq. Spectra 11, 569–605. 
doi:10.1193/1.1585828 

Hayden, C. P., Bray, J. D., and Abrahamson, N. A. (2014). Selection of near-fault 
pulse motions. J. Geotech. Geoenviron. Eng. 140:04014030. doi:10.1061/(ASCE)
GT.1943-5606.0001129 

Kalkan, E., and Kunnath, S. K. (2006). Effects of fling step and forward 
directivity on seismic response of buildings. Earthq. Spectra 22, 367–390. 
doi:10.1193/1.2192560 

Kalkan, E., and Kunnath, S. K. (2007). Effective cyclic energy as a measure of 
seismic demand. J. Earthq. Eng. 11, 725–751. doi:10.1080/13632460601033827 

Khaloo, A. R., Khosravi1, H., and Hamidi Jamnani, H. (2015). Nonlinear inter-
story drift contours for idealized forward directivity pulses using “Modified 
Fish-Bone” models. Adv. Struct. Eng. 18, 603–627. doi:10.1260/1369-4332. 
18.5.603 

Kojima, K., Fujita, K., and Takewaki, I. (2015a). Critical double impulse input and 
bound of earthquake input energy to building structure. Front. Built Environ. 
1:5. doi:10.3389/fbuil.2015.00005 

http://www.frontiersin.org/Built_Environment/archive
http://www.frontiersin.org/Built_Environment/
www.frontiersin.org
http://dx.doi.org/10.1002/eqe.124.abs
http://dx.doi.org/10.1002/eqe.370
http://dx.doi.org/10.1002/eqe.4290060105
http://dx.doi.org/10.1016/j.soildyn.2004.05.001
http://dx.doi.org/10.1115/1.3644077
http://dx.doi.org/10.1193/1.1585828
http://dx.doi.org/10.1061/(ASCE)GT.1943-5606.0001129
http://dx.doi.org/10.1061/(ASCE)GT.1943-5606.0001129
http://dx.doi.org/10.1193/1.2192560
http://dx.doi.org/10.1080/13632460601033827
http://dx.doi.org/10.1260/1369-4332.18.5.603
http://dx.doi.org/10.1260/1369-4332.18.5.603
http://dx.doi.org/10.3389/fbuil.2015.00005


August 2015 | Volume 1 | Article 1312

Kojima and Takewaki Forward-directivity elastic–plastic response

Frontiers in Built Environment | www.frontiersin.org

Kojima, K., and Takewaki, I. (2015b). Critical earthquake response of elastic-plastic 
structures under near-fault ground motions (Part 1: Fling-step input). Front. 
Built Environ. 1:12. doi:10.3389/fbuil.2015.00012

Liu, C.-S. (2000). The steady loops of SDOF perfectly elastoplastic structures under 
sinusoidal loadings. J. Mar. Sci. Technol. 8, 50–60. 

Mavroeidis, G. P., Dong, G., and Papageorgiou, A. S. (2004). Near-fault ground 
motions, and the response of elastic and inelastic single-degree-freedom 
(SDOF) systems. Earthq. Eng. Struct. Dyn. 33, 1023–1049. doi:10.1002/eqe.391 

Mavroeidis, G. P., and Papageorgiou, A. S. (2003). A mathematical representa-
tion of near-fault ground motions. Bull. Seismol. Soc. Am. 93, 1099–1131. 
doi:10.1785/0120020100 

Moustafa, A., Ueno, K., and Takewaki, I. (2010). Critical earthquake loads for 
SDOF inelastic structures considering evolution of seismic waves. Earthq. 
Struct. 1, 147–162. doi:10.12989/eas.2010.1.2.147 

Mukhopadhyay, S., and Gupta, V. K. (2013a). Directivity pulses in near-fault 
ground motions – I: identification, extraction and modeling. Soil Dyn. Earthq. 
Eng. 50, 1–15. doi:10.1016/j.soildyn.2013.02.017 

Mukhopadhyay, S., and Gupta, V. K. (2013b). Directivity pulses in near-fault 
ground motions – II: estimation of pulse parameters. Soil Dyn. Earthq. Eng. 50, 
38–52. doi:10.1016/j.soildyn.2013.02.019 

Rupakhety, R., and Sigbjörnsson, R. (2011). Can simple pulses adequately represent 
near-fault ground motions? J. Earthq. Eng. 15, 1260–1272. doi:10.1080/136324
69.2011.565863 

Sasani, M., and Bertero, V. V. (2000). “Importance of severe pulse-type ground 
motions in performance-based engineering: historical and critical review,” in 
Proceedings of the Twelfth World Conference on Earthquake Engineering 
(Auckland).

Takewaki, I. (2002). Robust building stiffness design for variable critical exci-
tations. J. Struct. Eng. ASCE 128, 1565–1574. doi:10.1061/(ASCE)0733-9445 
(2002)128:12(1565) 

Takewaki, I. (2004). Bound of earthquake input energy. J. Struct. Eng. ASCE 130, 
1289–1297. doi:10.1061/(ASCE)0733-9445(2004)130:9(1289) 

Takewaki, I. (2007). Critical Excitation Methods in Earthquake Engineering, 2nd 
Edn. Oxford: Elsevier, 2013.

Takewaki, I., Moustafa, A., and Fujita, K. (2012). Improving the Earthquake 
Resilience of Buildings: The Worst Case Approach. London: Springer.

Takewaki, I., and Tsujimoto, H. (2011). Scaling of design earthquake ground 
motions for tall buildings based on drift and input energy demands. Earthq. 
Struct. 2, 171–187. doi:10.12989/eas.2011.2.2.171 

Vafaei, D., and Eskandari, R. (2015). Seismic response of mega buckling-restrained 
braces subjected to fling-step and forward-directivity near-fault ground 
motions. Struct. Des. Tall Spec. Build. 24, 672–686. doi:10.1002/tal.1205 

Xu, Z., Agrawal, A. K., He, W.-L., and Tan, P. (2007). Performance of passive energy 
dissipation systems during near-field ground motion type pulses. Eng. Struct. 
29, 224–236. doi:10.1016/j.engstruct.2006.04.020 

Yamamoto, K., Fujita, K., and Takewaki, I. (2011). Instantaneous earthquake input 
energy and sensitivity in base-isolated building. Struct. Des. Tall Spec. Build. 20, 
631–648. doi:10.1002/tal.539 

Yang, D., and Zhou, J. (2014). A stochastic model and synthesis for near-fault impul-
sive ground motions. Earthq. Eng. Struct. Dyn. 44, 243–264. doi:10.1002/eqe.2468 

Zhai, C., Chang, Z., Li, S., Chen, Z.-Q., and Xie, L. (2013). Quantitative identifica-
tion of near-fault pulse-like ground motions based on energy. Bull. Seismol. Soc. 
Am. 103, 2591–2603. doi:10.1785/0120120320 

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Copyright © 2015 Kojima and Takewaki. This is an open-access article distributed 
under the terms of the Creative Commons Attribution License (CC BY). The use, 
distribution or reproduction in other forums is permitted, provided the original 
author(s) or licensor are credited and that the original publication in this journal 
is cited, in accordance with accepted academic practice. No use, distribution or 
reproduction is permitted which does not comply with these terms.

http://www.frontiersin.org/Built_Environment/archive
http://www.frontiersin.org/Built_Environment/
www.frontiersin.org
http://dx.doi.org/10.3389/fbuil.2015.00012
http://dx.doi.org/10.1002/eqe.391
http://dx.doi.org/10.1785/0120020100
http://dx.doi.org/10.12989/eas.2010.1.2.147
http://dx.doi.org/10.1016/j.soildyn.2013.02.017
http://dx.doi.org/10.1016/j.soildyn.2013.02.019
http://dx.doi.org/10.1080/13632469.2011.565863
http://dx.doi.org/10.1080/13632469.2011.565863
http://dx.doi.org/10.1061/(ASCE)0733-9445(2002)128:12(1565)
http://dx.doi.org/10.1061/(ASCE)0733-9445(2002)128:12(1565)
http://dx.doi.org/10.1061/(ASCE)0733-9445(2004)130:9(1289)
http://dx.doi.org/10.12989/eas.2011.2.2.171
http://dx.doi.org/10.1002/tal.1205
http://dx.doi.org/10.1016/j.engstruct.2006.04.020
http://dx.doi.org/10.1002/tal.539
http://dx.doi.org/10.1002/eqe.2468
http://dx.doi.org/10.1785/0120120320
http://creativecommons.org/licenses/by/4.0/


August 2015 | Volume 1 | Article 1313

Kojima and Takewaki Forward-directivity elastic–plastic response

Frontiers in Built Environment | www.frontiersin.org

appendix

Proof of critical Timing

In comparison with the double impulse, the triple impulse is 
quite difficult to derive the critical timing in a general case. 
This is because the timing of three impulses is fixed and 
there exist many complicated situations. In this paper, a case 
is treated where the critical timing is defined only before the 
third impulse. This means that, if the third impulse does not 
exist, timing gives the maximum value of umax2. The following 
explanation is the same as in the previous paper for the double 
impulse.

Consider the critical timing of the second impulse. Let νc 
denote the velocity of the mass passing the zero restoring force 
(zero elastic strain energy) after the first unloading and ν*, u* 
denote the velocity and the elastic deformation component at 
an arbitrary point between the first unloading and the second 
yielding. Since the first unloading starts from the state with 
zero velocity and the elastic strain energy fydy/2, the relation 
mv f dc y y

2 2 2/ /=  holds. From the energy conservation law 
between the first unloading and the second yielding, the rela-
tion mν*2/2 + ku*2/2 = fydy/2 holds. Consider the second impulse 
at the same time of the state of ν*,u*. The total mechanical 
energy can be expressed by m(ν* + V)2/2 + ku*2/2. Since the 
relation m(ν*  +  V)2/2  +  ku*2/2  =  mν*2/2  +  ku*2/2  + mν*V  + 
mV2/2 = fydy/2 + mν*V + mV2/2 holds and the maximum defor-
mation after the second yielding is caused by the maximum 
total mechanical energy, the maximum velocity ν* causes the 
maximum deformation after the second yielding. This timing is 
the zero restoring force after the first unloading. This completes 
the proof.

Upper Bound of response Ductility via 
relaxation of Timing of Third impulse

The case is treated here where the third impulse acts at the 
timing of zero restoring force in the second unloading process. 
It can be shown that this case provides the larger maximum 
deformation umax2 than the case treated before (the same timing 
between the first and second impulses).

Consider the case where the model goes into the yielding stage 
even after the first impulse. The case where the model goes into 
the yielding stage after the second impulse (elastic after the first 
impulse) can be explained in almost the same manner. Figure 5B 
shows the schematic response in this case. umax1 can be obtained 
from the energy conservation law.

 m V f d f u f d f u d( . ) / / / ( )max0 5 2 2 22
1= + = + −y y y p1 y y y y  (A1)

On the other hand, umax2 can be computed from another energy 
conservation law.

 m v V f d f u( ) / /c y y y p2+ = +2 2 2  (A2)

where νc is characterized by mv f dc y y
2 2 2/ /=  and up2 is charac-

terized by umax2 + (umax1–dy) = dy + up2. In other words, umax2 can 
be obtained from

 m v V f d f u u d( ) / / ( )max maxc y y y y+ = + + −2
1 22 2 2  (A3)

Furthermore, umax3 can be computed from another energy 
conservation law.

 m v V f d f u( . ) / /c y y y p3+ = +0 5 2 22  (A4)

where up3 is characterized by −umax3 + (umax2 – dy) = dy + up3. In 
other words, umax3 can be obtained from

 m v V f d f u u d( . ) / / ( )max maxc y y y y+ = + − −0 5 2 2 22
2 3  (A5)
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