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and
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Résumé. 2014 Les fluctuations du paramètre d’ordre à une transition nématique-smectique A du
2e ordre créent des singularités de certaines viscosités et constantes élastiques en phase nématique.
Le comportement critique des constantes élastiques a déjà été calculé par P. G. de Gennes dans le
régime hydrodynamique q03BE ~ 1. En partant des mêmes hypothèses et en utilisant comme outil de
travail la théorie de la réponse linéaire et le théorème de fluctuation-dissipation, on montre que
certaines viscosités divergent comme (T - Tc)-0,33. Notre calcul s’applique aussi dans la région
critique q03BE ~ 1, où l’on trouve que la largeur du spectre des fluctuations du directeur est propor-
tionnelle à q3/2. Ce résultat confirme une prédiction récente de F. Brochard basée sur un argument
de similarité dynamique.

Abstraet. 2014 The fluctuations of the local order parameter above a second order nematic-smetic A

phase transition give rise to singularities in the elastic constants and the viscosities of a nematic.
In the hydrodynamic regime q03BE ~ 1, the critical behaviour of the elastic constants has already been
calculated by de Gennes. Based on the same assumptions, we derive a singularity of the critical
viscosities proportional to (T - Tc)-0.33. As theoretical framework we use linear response theory
and the fluctuation-dissipation theorem. We treat also the general case of arbitrary wave numbers.
In the critical regime q03BE ~ 1, we find a critical spectrum of the director modes 03C9S ~ q3/2, in agree-
ment with a recent suggestion of F. Brochard based on a dynamical scaling argument.
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1. Introduction. - Recently there has been consi-
derable interest in the nematic-smectic A [N-A] phase
transition as it may occur as a transition of second
order. In this case the fluctuations of the order

parameter show up in strong pretransitional effects
just above the transition temperature Tc. Since the
smectic A phase does not accept twist and bend
deformations one expects the associated Frank elastic
constants K2 and K3 to show a critical behaviour.
A divergence K2 - K3 - (T - Tc)-o.66waspredicted
theoretically by de Gennes [1] and confirmed recently
by three independent measurements [2]-[4]. De Gennes
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chen, Germany.

(**) Associated with Centre national de la Recherche scienti-
fique.

started with a definition of the order parameter of
the smectic A phase as a complex quantity r(r),
the modulus of which determines the density of the
layers and the phase determines the position of the
layers. For a given configuration of g/(r) the free

energy of the system is given by a Ginzburg-Landau
type expression, i. e. the coupling of the director

field n(r) to the order parameter has been taken into
account in analogy to the coupling of the magnetic
field to the order parameter in a superconductor.
Calculating the unrestricted free energy as an average
over all configurations of y5(r) due to static fluctuations
one obtains the critical contributions to the elastic

constants, in full analogy to the critical diamagnetic
susceptibility above the superconducting transi-
tion [5].
The onset of superconductivity is marked in addition

by a critical increase of the electrical conductivity.
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The reason for this critical dissipation lies in the

dynamic fluctuations of the order parameter which
slow down if Tc is approached. Somewhat similarly,
above a nematic-smectic A transition the slowing
down of the order parameter fluctuations leads to a
critical contribution to viscosities. This contribution
is the main aim of the present paper. We calculate
it using linear response theory as it was applied to
superconductors by H. Schmidt [6]. The response
functions are related to the dynamical fluctuations
by means of the fluctuation-dissipation theorem.

We start in section 2 with a presentation of the
free energy and the dynamical fluctuations of the
order parameter. For the critical exponents entering
we take the values suggested by de Gennes [1] and
F. Brochard [7] on assuming that the N-A transition
is thermodynamically similar to the Â-transition in
helium, rather.than to the critical point of a super-
conductor where mean field theory holds. In section 3,
following the Orsay Liquid Crystal Group [8], we
introduce the nematic molecular field h(r, t) as the

variable conjugate to the director n(r, t). We are
interested in the thermal average ( h(r, t) ) as a

response to a small external perturbation bneXt(r’, t’).
Using linear response theory and the fluctuation-

dissipation theorem we derive the corresponding
director response function in terms of the fluctuations
of the order parameter. In section 4 we show that
this expression fulfils the general conditions imposed
by the invariance properties of the system. We then
apply, in section 5, the result obtained for the response
function to the determination of the critical part of
the Frank elastic constants, not only in the hydro-
dynamic regime where we recover de Gennes’ results
but also in the critical regime. The critical part of
the twist viscosity y 1 is calculated in section 6. The
other viscosities of an incompressible nematic are
treated in section 7 by relating them to y 1 using
standard Kubo relations.

2. Thermal fluctuations. - The free energy for a

system with a nematic and a smectic A phase may
be expressed [1] ] in terms of the local smectic order
parameter y5(r, t) and the local director

with

and

The smectic energy contribution Fs has the Ginzburg-
Landau form, familiar for charged superfluids. The
signs parallel and perpendicular are defined with

respect to the preferred axis no, which in the follow-
ing is taken as the z direction, therefore ônz = 0.
The constant qs is related to the interlayer distance d
by qs = 2 nld, the Kl,2,3 are the Frank elastic cons-
tants for splay, twist, and bend deformations, respec-
tively.

Fourier transformation of eq. (2.2) and applica-
tion of the equipartition theorem yield for the static
fluctuations of the order parameter, for T &#x3E; Tc,

with (we shall use Boltzmann’s constant as unit,
KB = 1)

The coherence lengths ç Il and ç 1. are defined by

As mentioned above, it was supposed by de Gennes [ 1 ]
that the N-A transition is thermodynamically similar
to the Â-transition in helium, an uncharged superfluid.
Therefore he suggested that

and we shall follow this assumption, which holds
on static scaling theory.
We keep the assumption of an Ornstein-Zernike

form for the static fluctuations of the order parameter,
as the deviations seem to be very small (q = 0.04).
To obtain the dynamical fluctuations we assume a

simple relaxation behaviour of the order parameter.
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In Fourier space with

we write

with the following expression for the frequency
factor r (K)

Applying dynamical scaling arguments F. Bro-
chard [7] found for the relaxation time Lm of the
order parameter

and

Eq. (2. 9) is constructed to give a temperature inde-
pendent expression in the critical limit K » 1

The frequency spectrum of the order parameter
fluctuations is easily obtained from eq. (2.8) as

It should be mentioned that in the critical region,
there may be a propagating contribution to this

spectrum. As this would only modify slightly the
numerical constants of our results, we neglect it in
the following.

3. The response function. - The molecular field h

acting on the director has been introduced by the
Orsay Liquid Crystal Group [8]. The formal defini-
tion of h is obtained from the variation of the free

energy F with respect to the director

The fluctuating part h of ht = h + h results from
the smectic part Fs of the free energy as

We now want to determine ( h(r, t) B g, the thermal
average of the fluctuating molecular field if a small
external perturbation c5next(r’, t’l is applied to the

system. According to the general lines of linear

response theory we obtain in Fourier space

The response function Q,,o is the sum of two essentially
différent terms

The static term

arising from the second term of h, eq. (3.2), is deter-
mined by the mean value in space and time of the
thermal fluctuations of the order parameter. The
second term Q:p arises from the dynamical fluctua-
tions of the order parameter in equilibrium. Using
the fluctuation-dissipation theorem (for classical sys-
tems) the imaginary part of Q’ is given by

According to the dispersion relations the real part
can be obtained as

Neglecting the fluctuations of the director we can
identify bo with boext. Then only the first term of h,
eq. (3.2), contributes to the response function Q:p

which yields
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We now apply a decoupling approximation between the real and the imaginary part of the order parameter.
This has been successfully introduced by Ferrell [17] in the case of superfluid He, ferro- and antiferromagnets,
and binary mixtures. For these systems, mean field theory does not hold (but 11 has to be negligible).

Using eq. (2.4) and (2.12) we arrive at the following expression

By means of the dispersion relation eq. (3. 7) we finally obtain the full response function

The part h(r, t) of the total molecular field, eq. (3.1), resulting from the variation of FN, eq. (2 .1 ), is the noncritical
hydrodynamic response. Generalization to the case with dissipation (due to rotational motion only) yields

yl being the twist viscosity.
The total response ( h B g + h may be written

in the form of the purely hydrodynamic eq. (3.13)
on substituting the Ki’s and yi by

where Ki and y 1 represent the critical contributions
to the hydrodynamic parameters of the nematic

phase due to thermal fluctuations of the smectic
order parameter above the N-A transition.

4. Smectic gauge invariance. - Before applying
eq. (3.12) to the calculation of the critical contribu-
tion to the elastic and viscous parameters we want
to discuss a general constraint on the response
function. Our system is invariant, for T &#x3E; Tc, under
a simultaneous local rotation of the layers and the
director (except for the noncritical splay term in FN).
This property corresponds to the invariance under
a gauge transformation of a superconductor, above
the superconducting transition, and will therefore

be called smectic gauge invariance. The transforma-
tion is represented by

and

The invariance of the free energy or the molecular
field expressions, eq. (2.2) or (3.2), under this trans-
formation imposes the condition

We see that this transformation may be used to

eliminate the longitudinal part of the director ôn

from the coupling term in Fs. We separate

with

(The condition bnz = bnzz + bntz = 0 fixes the direc-
tion of bnt in the plane 1q, so bn still has two degrees
of freedom). Then eq. (4.1) yields 

Fs may therefore be expressed in terms of gl’(r) and the
transverse part of the director bnlr). This turns out
to be important for the calculation of the resporlse
function including thermal fluctuations of the director.

In the ordered phase, we may set 0(r) = qs uZ(r),
where u, is the displacement of the layers in the z
direction, and take t/J’(r) as real. Then the smectic
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gauge invariance condition eq. (4.2) is

This condition may be used to transform the splay
term in FN into the second order elastic term

The smectic gauge invariance has also to be fulfilled

by the static response h(q, 0) B g. The transfor-
mation eq. (4. 1) applied to eq. (3.3) yields

or

where Q means the longitudinal part of the response
function. This condition states that the static res-

ponse is transverse.

Above Tc, in the limit q - 0, this yields also

Our response function actually fulfils this condition.
As shown in Appendix A, the dynamical part Q â
(q, 0), eq. (3.12), of the response function yields
in the static limit

and thereforee eq. (4.4) is fulfilled.

5. The elastic constants. - To calculate the critical

part of the Frank elastic constants we derive the real

part of the response function Q d in the static limit
from eq. (3.12). We treat only the case a = f3 = x,
as the other cases do not yield any further informa-
tion, and get

Inserting eq. (2.5) we obtain

where we have substituted

First we want to treat the hydrodynamic regime
q « 1, where we have to determine the lowest order
term of Q dx(q, 0) in an expansion in powers of q.
As QI (0, 0) is compensated by Q ", eq. (4. 5), we
are left with a term quadratic in q

The integration can easily be done to give

Comparing the corresponding response ( hx(q, cv) &#x3E;n.e.
with eq. (3.13) and using the definitions eq. (3.14)
we find the following result for the critical part of
the elastic constants

The noncritical behaviour of Kl expresses the’ fact
that the static response due to fluctuations is trans-
verse. The result for 91 and e3 agrees with de Gen-
nes’ [1] (except for a factor 1/,/i which is missing in
his expressions)

The noncritical behaviour of the splay elastic

constant Kl, eq. (5 .5a), has been verified by Cheung,
Meyer, and Gruler [2]. The critical température
dependence of the twist elastic constant K2, eq. (5 . 6),
has been confirmed by Delaye, Ribotta, and Durand [4]
using quasielastic light scattering, and the critical

behaviour of the bend elastic constant K3 has been
verified by Cheung et al. [2], and by Léger [3] applying
the magnetic field induced Frederiks transition.
Next we want to treat the general case of arbitrary

values of qç. As static scaling holds for our expressions
for the static fluctuations of the order parameter,
eq. (2.5), eq. (5.2) for the static response function
can still be used. The integration in the general case
is a little tricky, we give it in Appendix B. The result is
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where we have put qx = 0 as we know already that
the static response is transverse, and therefore

The q dependence of Qxx(q, 0) is shown in figure 1.

pjG l. - Wave number dependence of the static response function.

In the hydrodynamic limit q  1, eq. (5.7) yields
the above result, eq. (5.4). In the critical limit

q &#x3E; 1, eq. (5.7) yields

This expression shows no critical temperature depen-
dence as required by static scaling. If one wants to

keep the definition of an elastic constant in the critical

limit, either for qy = 0 or q., = 0, e. g.

this constant then depends on the wave vector

The transition from the hydrodynamic limit to the

temperature independent critical limit has already
been observed experimentally by Delaye, Ribotta,
and Durand [4] for the twist elastic constant K2,
with qZ = 0.

If the deviations bn of the director from the preferred
axis no are not identified with external perturbations,
the fluctuations of the director lead to corrections

to the above results. As shown in Appendix C for
the hydrodynamic limit, the correction term has the
same critical temperature dependence as the above
result, eq. (5.5). In view of the present experimental
situation it seems unnecessary to calculate these

corrections exactly.

6. The twist viscosity. - From the definition of

the twist viscosity y 1, eq. (3.13), we find directly

and with eq. (3.8)

This relation may be regarded as the Kubo formula
for the twist viscosity. In the hydrodynamic limit
q ---&#x3E; 0 and OJ ---&#x3E; 0, we get with eq. (3.11), and the
definition Yi(0, 0) =-  1,

and with eq. (2.5) and (2.9)

This result already shows the critical temperature
dependence of )1 1

We calculated the numerical factor by approximating
the exponent 4 in T (K) by 1. This leads to the result

This expression is the exact analogue of the critical part
of the static electrical conductivity in superconduc-
tors [6].
For a numerical estimate one may use [7]

where p is the mass density, to give

taking K, ,z 10-6 dyn, d  20 À, p N 1 g cm-3.
This effect can only be observed in a temperature

region very close to Tc. A value of yi 1 = 0.1 poise
corresponds to AT" = 0.3 °C.
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In the mean field approximation, eq. (6.6) still

holds but with

In the general case of arbitrary q values, eq. (6. 1)
together with eq. (3,11) can still be used as dynamical
scaling holds for the dynamical fluctuations of the
order parameter,’ eq. (2.12) and (2.9). But the inte-
gration is more difficult here than in the case of the
elastic constants. We restrict ourselves to the critical

limit q &#x3E; 1, where we find

Substituting P = q Q and q = qn leads us to

The integral is independent of q. Therefore we get

This result corresponds to eq. (5.10) for elastic

constants, and shows also no critical temperature
dependence. Combined with eq. (5.10) it yields
for the critical spectrum of the director modes cos

This result justifies the extension of dynamical scaling
to the director modes, as supposed by F. Brochard [7].
The case of finite frequencies go, but q - 0, may

also be of some interest. In the approximation of a q
independent relaxation time r- 1(K) = Tm the result
of eq. (6. 1) and (3 .11 ) is simply

which shows the usual Landau-Khalatnikov behaviour
for viscosities due to slowly relaxing internal pro-
cesses.

As in the case of the elastic constants the fluctua-

tions of the director can be shown to give corrections
which do not alter the critical behaviour of Yi (see
Appendix C).

7. Other viscosities. - As a complete set of visco-
sities for an incompressible nematic we use the Leslie-
Parodi coefficients, called oci and yi in the notation
of the Orsay Liquid Crystal Group [8]. We repeat
their definition by giving the relations between the
forces and fluxes. The forces in this case are the

dissipative part (J;j of the stress tensor (J ij defined by

and the dissipative part h’ of the molecular field h.
The fluxes are

and

where v is the local velocity. Then we have

and

1

with

In the special case v = 0, eq. (7.4) reduce to the
dissipative part of eq. (3. 13) used above.
Kubo formulas for the ai’s are easily derived using

the results of either linear response theory as done
above, or the Landau-Lifshitz theory of fluctuations
as done by Jâhnig and H. Schmidt [9] for another
set of nematic viscosities. The result is, in the hydro-
dynamic limit q --+ 0 and co -+- 0,
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In order to apply these relations we need the fluctuat-
ing part &#x26;ij of the stress tensor. According to the
definition of the stress tensor, eq. (7.1), it is obtained
from a variation of the free energy with respect to
a small translation bu in space

To carry out the variation of our free energy, eq. (2.1),
we notice that the density p’(r + bu) after the trans-
lation is equal to the density p(r) before. Using the
relation between the density and the order para-
meter [1 ]

we get

or

The first term on the rhs is due to the smectic layered
structure. The second term gives a negligible contri-
bution to the critical elastic constants and viscosities,
and will therefore be neglected. Using eq. (7.9) the
variation of the free energy is straightforward and
yields, with oc = (x, y),

A nonfluctuating contribution does not exist as we
have restricted ourselves to an incompressible fluid.
On comparison with eq. (3.2) we see that

These relations permit us to evaluate the Kubo

formulas without any further calculation. With

eq. (7.12) we find

and therefore, eq. (7. 5),

with l given by the above result eq. (6.6). Finally,
comparing the Kubo formula eq. (7t6e) with the
hydrodynamic limit of eq. (6.2) we obtain

or

A look at the viscosities which enter simple flow
experiments may shed some insight on these results.
In these measurements first done by Miesowitz [10]
three different geometries are possible, as shown

in figure 2. The corresponding viscosities are

FIG. 2. - The three possible geometries for simple shear noBB

corresponding to Miesowicz’ notation.
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Inserting our results, eq. (7.14) and (7.15), we get

These relations express the fact that only in case 1

the fluctuating layer structure is disturbed by the
flow of the molecules.

8. Conclusion. - We have investigated the critical
1 contribution to the elastic constants and the viscosities

of a nematic above a nematic-smectic A transition of
second order. We started from two distinct assump-
tions, which have already been introduced by de
Gennes [1] to calculate the critical behaviour of the
elastic constants : i) The fluctuations of the smectic
order parameter are coupled to the director by means
of a free energy expression of the Ginzburg-Landau
type, in analogy to the case of charged superfluids,
and ii) the nematic-smectic A transition is thermo-

dynamically similar to the À-transition in He4, an
uncharged superfluid for which mean field theory
does not hold ; therefore the critical exponents for
the dynamical fluctuations of the order parameter
have to be taken according to the general lines of
scaling theory [7].
Assumption i) implies the invariance of the system

under a simultaneous local rotation of the director

and the smectic , layers in the cybotactic groups
(except for splay terms). As a consequence of this
smectic gauge invariance the director response func-

tion has to be transverse. In our calculation we

worked only in lowest order of the (scaling invariant)
order parameter fluctuations, but ensured that our
director response function is transverse. As scaling
holds for the order parameter fluctuations we are
able to treat the general case of arbitrary wave num-

bers. In the hydrodynamic limit we find again de
Gennes’ [1] ] result £2 - K3 (T - Tc)-o.66 which

has been verified recently [2]-[4], and for the critical
viscosities l, 2, à1, and â3 we predict a divergence
(T - Tc)-O.33. The latter result may be investigated
experimentally by the same methods which have

been successfully used to determine ordinary viscosities
in nematics :

i) classical flow measurements [10],
ii) determination of flow-alignment angle [11],
iii) rotating magnetic field [12],
iv) dynamical Frederiks transition [13],
v) quasielastic scattering of light [14], and
vi) shear wave reflection [15].
In the transition region from the hydrodynamic

to the critical regime we derived ,, a temperature
dependence of the static response function which
fits well the experimental result [4]. In the critical
regime the wave number dependent elastic constants
and viscosities behave like q-l and q-l/2, respectively.
The critical spectrum of the director modes is given
by cvs - q 3/2 . As the critical spectrum of the order
paramater fluctuations shows the same q depen-
dence [7] this result means that the director modes
obey dynamical scaling, as already proposed by
F. Brochard. In contrast to He, the q dependence of
the critical spectrum may be measured by light
scattering experiments, as it was observed for planar
antiferromagnets . .by neutron scattering [16].
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APPENDIX A. 

SMECTIC GAUGE INVARIANCE AND tHE STATIC RESPONSE. - The static response function is according to

eq. (3. 12)

where we have introducéd

To show that the longitudinal part of Qap(q, 0) vanishes we calculate
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kiZ - k 2z 2
If we add to the fractional term the term 2 M , whose contribution is zero, we can perform a fractional2My
analysis using eq. (2.5) 

As

and analogously for the other part of the integral, we find the result

With eq. (3.4) and (3. 5), this yields

APPENDIX B.

THE STATIC RESPONSE FUNCTION. - We want to calculate the elastic response Qxx(q, 0) for qx = 0. From
eq. (4.6) follows

Q " (q, 0) is given by eq. (5. 2)

with

To evaluate this integral analytically we use a trick introduced in field theory by Feynman

Application of this formula to J(4) yields
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because of qx = 0. To eliminate the divergence of the integral in the expression (B. 1) we use the following
relation

which can easily be verified. On the rhs the divergence is contained in the first term, which is q independent.
On the other hand, the relation between the expression on the lhs and J(q) is found, again using eq. (B. 4), to be

Combining eq. (B. 6) and (B. 7) we get

The momentum integration in the q dependent terms can now easily be done, and we obtain

and therefore

Performing the remaining integration we find the result eq. (5.7).

APPENDÏX C.

DIRECTOR FLUCTUATIONS. - If we want to take into account the fluctuations of the director we have to use

where (5n(r, t) represents the fluctuations. In section 2 we treated the case ôîî(r, t) = 0. To calculate the response
function Qn (q, w) due to fluctuations ôn(r, t) we can still use eq. (3.6) and (3.7). We treat only the imaginary
part and find
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with

where we have used the fact that we can eliminate the longitudinal part ôiî,(r, t) of the director from the free
energy and the molecular field expressions, and take gl’(r) real (see section 4). Then, in the thermal average of
eq. (C.1), we may decouple the fast motion of the modulus of the order parameter and the hydrodynamic
motion of the director bOt, in analogy to the decoupling scheme applied to binary mixtures by Ferrell [17].
Within this decoupling procedure the cross terms ( hl.(q, cv) h2P( - q, - cv) ) give no contribution. The
contribution to the rotational viscosity can then be written as

The thermal average bntx(K) l’ &#x3E; can easily be derived from the relation [8] ]

as

with [7]

The angles (cp, 8) are the polar coordinates of K, where 0 = 0 is the z direction. Taking the full elastic constants
eq. (C. 6) corresponds to the use of the renormalized propagator for the director field.

As the integral in eq. (C. 3) could not be solved analytically we deduce its temperature dependence by
neglecting the K dependence of ( It/J’(K) p ) and f(K) and integrating up to ç-l. This yields

Inserting the result for K2,3, eq. (5.5), we get

This result shows that the fluctuations of the director give an additional contribution to the rotational viscosity
with the same critical temperature dependence as Y1. Analogously, it is shown that n K2,3.

’ 
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