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Abstract
Despite the fact that more than 5000 safety-related studies have been published on bisphenol A (BPA), there seems 
to be no resolution of the apparently deadlocked controversy as to whether exposure of the general population 
to BPA causes adverse effects due to its estrogenicity. Therefore, the Advisory Committee of the German Society of 
Toxicology reviewed the background and cutting-edge topics of this BPA controversy. The current tolerable daily 
intake value (TDI) of 0.05 mg/kg body weight [bw]/day, derived by the European Food Safety Authority (EFSA), is 
mainly based on body weight changes in two- and three-generation studies in mice and rats. Recently, these studies 
and the derivation of the TDI have been criticized. After having carefully considered all arguments, the Committee 
had to conclude that the criticism was scientifically not justified; moreover, recently published additional data further 
support the reliability of the two- and three-generation studies demonstrating a lack of estrogen-dependent effects 
at and below doses on which the current TDI is based. A frequently discussed topic is whether doses below 5 mg/
kg bw/day may cause adverse health effects in laboratory animals. Meanwhile, it has become clear that positive 
results from some explorative studies have not been confirmed in subsequent studies with higher numbers of 
animals or a priori defined hypotheses. Particularly relevant are some recent studies with negative outcomes that 
addressed effects of BPA on the brain, behavior, and the prostate in rodents for extrapolation to the human situation. 
The Committee came to the conclusion that rodent data can well be used as a basis for human risk evaluation. 
Currently published conjectures that rats are insensitive to estrogens compared to humans can be refuted. Data 
from toxicokinetics studies show that the half-life of BPA in adult human subjects is less than 2 hours and BPA is 
completely recovered in urine as BPA-conjugates. Tissue deconjugation of BPA-glucuronide and -sulfate may occur. 
Because of the extremely low quantities, it is only of minor relevance for BPA toxicity. Biomonitoring studies have 
been used to estimate human BPA exposure and show that the daily intake of BPA is far below the TDI for the general 
population. Further topics addressed in this article include reasons why some studies on BPA are not reproducible; 
the relevance of oral versus non-oral exposure routes; the degree to which newborns are at higher systemic BPA 
exposure; increased BPA exposure by infusions in intensive care units; mechanisms of action other than estrogen 
receptor activation; and the current regulatory status in Europe, as well as in the USA, Canada, Japan, New Zealand, 
and Australia. Overall, the Committee concluded that the current TDI for BPA is adequately justified and that the 
available evidence indicates that BPA exposure represents no noteworthy risk to the health of the human population, 
including newborns and babies.
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Introduction

For more than 10 years there has been a scientific and 
journalistic controversy whether bisphenol A (BPA) 
causes adverse effects in humans related to its estro-
genic activity (Borrell, 2010; Lorentzen and Hattan, 
2010; Aschberger et  al., 2010; Taylor et  al., 2010; Yang 
et  al., 2009). BPA, a building block of polycarbonate 
plastic and epoxy resins, was first synthesized in 1891. 
However, commercial production did not begin before 
the early 1950s when the first epoxy resins were devel-
oped (Vogel, 2009). Epoxy resins are extensively used as 
protective coatings on metal equipment, food cans, pip-
ing, and dental sealants. In 1957, it was discovered that 

polymerization of BPA with phosgene leads to polycar-
bonate. There is an unusual wealth of safety-related stud-
ies carried out on BPA. These cover nearly every possible 
endpoint. Its estrogenic properties were described as 
early as 1936 (Dodds and Lawson, 1936). To date, more 
than 5000 studies on BPA have been published. It is obvi-
ous that this should be enough information to resolve 
the controversy, but nevertheless this has not yet been 
achieved and those not directly involved in BPA research 
are usually puzzled by the never-ending and sometimes 
emotional debate. In order to contribute to a balanced 
and well-founded resolution of the seemingly dead-
locked situation, the Advisory Committee of the German 
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Society of Toxicology1 reviewed the background and the 
cutting-edge questions of the BPA controversy (Table 1) 
and offers an independent judgement.

Derivation of tolerable daily intake values

BPA has been tested in subchronic oral toxicity studies 
using rats, mice, and dogs (US EPA, 1984 a, 1984b, 1984c; 
NTP, 1982). Rats and mice were administered BPA in the 
diet for 90 days (250–4000 ppm in rats; 5000–25,000 ppm 
in mice) (NTP, 1982). Doses higher than 1000 ppm (equiv-
alent to approximately 67 mg/kg/day) lead to decreased 
body weight in both sexes of rats. In dogs (90 days; 1000–
9000 ppm BPA in the diet), the only toxic effect observed 
was an increase in mean liver weight in the high-dose 
group (US EPA, 1984a). Bisphenol A was evaluated for 
developmental toxicity in CD rats (0, 160, 320, or 640 mg/
kg bw/day) and CD-1 mice (0, 500, 750, 1000, or 1250 mg/
kg bw/day) dosed daily by gastric intubation from gesta-
tional days 6 through 15. In Charles River rats, the only 
effect observed in two-generation studies (100–9000 ppm 
BPA in the diet) was decreased body weight in the F0 
generation at 9000 ppm and in the F1 generation at doses 
equal or higher than 1000 ppm (US EPA, 1984b, 1984c). 
Also, male mice receiving doses higher than 15,000 ppm 
and the exposed females exhibited a decreased body 
weight gain compared to the controls (in mice 15,000 ppm 
is equivalent to approximately 1950 mg/kg/day based on a 
food factor of 0.13). In mice, doses of 1250 mg/kg/day led 
to maternal toxicity, including fetotoxic effects. However, 
no significant increase in the incidence of malformations 
was observed (NTP, 1985). In rats, doses equal to and 
higher than 1280 mg/kg/day were not toxic and did not 
cause malformations of the fetus (NTP, 1986).

Taken together, the toxic effects observed in labora-
tory animals after repeated BPA exposure occur at doses 
that are several magnitudes higher than the exposure of 
the general human population. Since it is not clear to 
which extent these rather early studies mentioned above 
accounted for internal quality assurance and were con-
ducted according to accepted modern testing guidelines 
(or elements of them), their validity, reliability, and thus 
value for hazard and risk assessment are considered 
limited. Modern testing guidelines represent interna-
tionally agreed-upon guidance with the goal to provide 
a reproducible set of data that can optimally satisfy all 
internationally agreed safety assessment criteria used in 

the regulatory processes. Hence, the focus of this article 
is on findings of more recent studies conducted for regu-
latory purposes.

In a three-generation rat study (Tyl et al., 2002) and a 
two-generation study in mice (Tyl et  al., 2008b, 2008c), 
BPA was found to decrease body weight, and the weights 
of the livers and kidneys. An overall no observed adverse 
effect level (NOAEL) of 5 mg BPA/kg bw/day was derived, 
based on liver weight decreases, the most sensitive end-
point. At doses leading to liver weight changes, BPA did 
not cause any effects on hormone-sensitive endpoints, 
which are the focus of concern of the current debate on 
BPA toxicity. Using an uncertainty factor of 100 (10 for 
interspecies differences, 10 for interindividual differ-
ences), a tolerable daily intake (TDI) of 0.05 mg/kg bw/
day was set by the European Food Safety Authority (EFSA, 
2006) and confirmed in 2008 and 2010 (EFSA, 2008, 2010). 
This TDI has been accepted by most regulatory agencies 
worldwide. Similarly, the United States Environmental 
Protection Agency (US EPA) derived a reference dose of 
0.05 mg/kg bw/day (reviewed by Willhite et  al., 2008). 
Perhaps the most intensively currently discussed topic is 
whether the NOAELs used for deriving the TDI are scien-
tifically valid and appropriate for risk assessment.

Are the three- and two-generation studies of 
Tyl et al. valid?

The studies of Tyl et  al. (2002, 2008b, 2008c) did not 
reveal any effects on fertility or development. Doses of 
0.001, 0.02, 0.3, 5, 50, and 500 mg/kg bw/day of BPA were 
tested in CD Sprague-Dawley rats in a three-generation 
study (Tyl et al., 2002), and 0.003, 0.03, 0.3, 5, 50, as well 
as 600 mg BPA/kg bw/day in CD-1 mice in a two-gen-
eration study (Tyl et al., 2008b). The dose ranges in the 
latter studies also cover the “low-dose range.” Another 
two-generation reproductive toxicity study performed 
under good laboratory practice (GLP) did also not 

Table 1.  Cutting edge topics of the current controversy on BPA.
Are the studies used for regulatory purposes flawed?
Do oral low doses below 5 mg/kg bw/day cause adverse health 
effects in laboratory animals?
How can differences between industry sponsored and publicly 
sponsored studies be explained?
Swallow or inject? What is the relevance of the oral route versus 
implantation of pumps or intravenous injection?
Can rodents be used to extrapolate to the human situation?
To which degree are embryos, babies, or children more 
susceptible?
How critical is exposure by intravenous infusion in intensive care 
units?
How critical is tissue deconjugation of BPA-glucuronide and 
BPA-sulfate?
How can biomonitoring support risk evaluation?
What are the mechanisms of action of BPA? Does the multitude 
of mechanisms other than estrogen receptor activation make the 
substance more dangerous?
Why are recent governmental responses inconsistent?

1   The Advisory Committee of the German Society of Toxicology is 
elected by the members of the German Society of Toxicology and 
consists of representatives from academia, industry, and administra-
tion in order to guarantee a broad range of toxicological competence. 
The Advisory Committee may consult further experts with expertise in 
specific fields of Toxicology. In case of the present work, the commit-
tee included Dr. Wolfgang Völkel as an additional expert and sent the 
manuscript to Wolfgang Dekant, and Regine Kahl for discussion. The 
Advisory Committee presents and justifies its activities to the members 
of the German Society of Toxicology, for example at the yearly plenary 
meeting. The German Society of Toxicology is the largest scientific toxi-
cological organization in Europe, with more than 1000 members..
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Table 2.  Criticisms of the studies of Tyl et al. (2008a, 2008b, 2008c) and responses.
Criticism Response
1. � Myers et al. questioned the use of CD-1 Swiss 

mice because of their “aberrant insensitivity” to 
estrogens.

Recently, Ryan et al. (2010a) used a wide range of doses from 0.05 to 50 μg/kg bw/
day for the positive control estrogen, EE2. They observed a comparable sensitivity 
for CD-1 mice, Long-Evans, and Sprague-Dawley rats for several adverse effects. 
Therefore, the use of CD-1 mice by Tyl et al. (2008a, 2008b, 2008c) is justified. Tyl 
et al. purchased their CD-1 mice from Charles River to avoid supplier effects. It 
should be considered that also vom Saal and some of his colleagues used CD-1 
mice and reported low dose effects (Timms et al., 2005). Low-dose effects of BPA 
were also reported in Long-Evans (Akingbemi et al., 2004) and in SD rats.

2. � Myers et al. considered the prostate weights 
reported in the study of Tyl et al. (2008a, 2008b, 
2008c) “abnormally high” and suggested “that 
the dissection procedures for the prostate in 
the Tyl laboratory included other nonprostatic 
tissues in the weight measurements, rendering 
them unusable….” This criticism was also 
expressed by Gies et al. (2009).

Tyl (2009a, 2009b) reported that paraffin blocks and slides of the analyzed prostates 
are still available and indicate no evidence of extraneous tissue/fat or excessive 
inflammation (all recently audited by the US FDA). In a response letter (Tyl, 2009a, 
2009b), the author documented that considering the age of the mice, prostate 
weights in their study were within the range of published data. Differences from 
vom Saal’s study may be explained by his post wean caging regimen. Vom Saal’s 
CF-1 mice were housed by sex. Pups were weaned at 23 days of age and male 
littermates were housed three per cage (Nagel et al., 1997). Prostate weight was 
determined when the mice were 6 months old. For this purpose, one male per litter 
was randomly selected and individually housed for 1 month before determination 
of prostate weights (Nagel et al., 1997). This procedure is problematic because 
the dominant cage male develops large androgen-dependent accessory organs, 
whereas subservient cage males have smaller prostates. It is questionable whether 
1 month of single housing may compensate for months of group housing and its 
influence on sexual development of male mice. In the study of vom Saal (Nagel 
et al., 1997), no controls were presented with respect to the influence of group 
housing and compensation by single housing and the authors did not report 
whether they determined prostate weight only from the dominant males or if 
all animals were included. Since the authors wrote that “one male per litter was 
randomly selected…” (Nagel et al., 1997), they likely included both, dominant and 
subservient males. This may explain the high variability of the prostate weights in 
studies from vom Saal’s lab compared to much lower variability in Tyl´s studies 
(Tables 1 and 2 in Tyl, 2009a, 2009b). It should also be taken into account that the 
number of animals exposed to BPA in vom Saal’s study (n = 7) is very low also, 
considering that an additional confounder (dominant versus subservient mice) 
may be present. Much higher numbers of animals were used in Tyl’s studies (28 
per group). After careful evaluation of Tyl’s studies, the criticism of Myers et al. 
(2009) and Gies et al. (2009) concerning prostate weights is unsubstantiated. 
However, several aspects may be critical in vom Saal’s studies, such as the 
influence of dominant versus subservient males, no available histology, and use 
of a now obsolete in-house strain preventing other researches to reproduce the 
initial positive studies. Another drawback is the statistical analysis.Concerning 
the criticism that crude mistakes were made by Tyl’s laboratory in determining 
prostate weights, it should also be considered that this laboratory has carried out 
a large number of reprotox studies (often sponored by the US Government) and 
has successfully joined interlaboratory validation studies, where the Tyl laboratory 
achieved some of the most precise prostate weight data and robust treatment-
related effects (EPA review).

3. � Myers et al. criticized the high incidence and 
severity of prostatitis in the animals from Tyl’s 
study, which may compromise their results.

The paraffin slides of the prostates of the mice from Tyl’s study are still available 
and have been reanalyzed by an independent pathologist. The results have been 
published (Tyl, 2009a, 2009b). The incidence of inflammation in CD-1 mice of Tyl’s 
study matches the low incidences of prostatitis seen in many mouse strains without 
treatment. Therefore, it is extremely unlikely that the results of Tyl et al. (2008a, 
2008b, 2008c) have been compromised by prostatitis. It should be kept in mind that 
vom Saal’s laboratory did not include any histopathological examinations (Nagel 
et al., 1997). Therefore, a possible confounding influence of prostatitis could not be 
accounted for in their study.

4. � Myers et al. criticized that the diet used in Tyl’s 
study contained phytoestrogens, which they 
claim would interfere with BPA activity.

Recently, Tyl et al. have published the genistein, daidzein, and glycitein contents 
of the standard diet (Purina Certified Ground Rodent Chow No. 5002) used 
in their study. Vom Saal and colleagues have not reported the phytoestrogen 
content of their diet. The majority of “normal rodent diets have similar levels 
of phytoestrogens.” Although it is not possible to compare diets between Tyl’s 
and vom Saal’s laboratories, it is extremely unlikely that the diet in Tyl’s study 
compromised an estrogenic response, because in studies with estradiol in which 
mice were fed the same standard diet as those in the BPA studies, estradiol 
(0.5 ppm) clearly accelerated acquisition of puberty (Tyl, 2008a).

Table 2. continued on next page
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observe effects in the low-dose range (0.2–200 μg/kg 
bw/day) (Ema et al., 2001). However, criticism has been 
raised, e.g., by Myers et  al. (2009), who described the 
studies of Tyl et al. (2002, 2008; Tyl 2009a, 2009b) as “so 
flawed as to be useless.” If these studies are considered 
invalid, this would have serious consequences indeed. 
Therefore, we collected the points raised by the critics 
and carefully considered their relevance. Considering 
the arguments summarized in Table 2, we came to the 
conclusion that all criticisms were already refuted con-
vincingly by the author (R. Tyl) herself. In this context, 
it should also be considered that a further study pub-
lished recently has confirmed a complete absence of 
effects over a wide range of BPA exposures in female rats 
exposed perinatally (Ryan et  al., 2010a). In this study, 
BPA exposure 40-, 400-, or even 4000-fold higher than 
the maximum estimated exposure to humans in the gen-
eral population caused no adverse effects (Ryan et al., 
2010a; Sharpe, 2010). The endpoints in this study were 
adult sex hormone–dependent behavior and female 
reproductive development. The results are consistent 
with previously published studies that have shown an 
absence of reproductive effects in male rats and mice 
(for example: Tyl et al., 2002; Ema et al., 2001; Tinwell 
et al., 2002).

The argument of Myers et  al. (2009), claiming that 
estrogen-insensitive mouse and rat strains have been 
used by Tyl et al (2002, 2008b, 2008c), has to be judged 
as not valid. As pointed out by Ryan et al. (2010b), CD-1 
mice respond to low doses of exogenously administered 
estrogens, as do the rat strains used by these authors 
(Ryan et  al., 2010b). Nagel et  al. (1997), in vom Saal’s 
laboratory, reported enlarged prostates in F1 adult CF-1 
mice from in utero exposure to 2 and 20 μg/kg bw/day 
oral BPA. These results could not be confirmed by other 
investigators who tried to reproduce the study with 

higher numbers of animals (Cagen et  al., 1999; Ashby 
et  al., 1999). Unfortunately, vom Saal’s laboratory has 
meanwhile closed their colony of CF-1 mice, which pre-
cludes reproduction of the study. Therefore, the question 
remains open as to whether this strain was particularly 
sensitive to BPA or whether the positive result was an 
artefact.

We addressed the criticism of Gies et  al. (2009) that 
“Also no reason was found why the GLP-studies (Tyl 
et al., 2002, 2008; Tyl, 2003) used for regulatory purposes 
(by European authorities) did not find BPA effects and 
whether the reported prostate weights are inconsistent 
with literature data.” The most obvious explanation for 
the lack of BPA effects is that the compound simply does 
not cause any adverse health effects in the low-dose 
range. Also, the prostate weights reported by Tyl et  al. 
(2002, 2008) are certainly not inconsistent with literature 
data. Considering age and caging schedules, the prostate 
weights of interest are in agreement with published lit-
erature (Tables 1 and 2 in Tyl, 2009a, 2009b). Data have 
been obtained in a commercially available mouse strain 
and can therefore easily be reproduced.

In conclusion, the criticism of Myers et al. (2009) and 
Gies et  al. (2009; see also comments to this paper at: 
http://www.umweltbundesamt.de/gesundheit-e/veran-
staltungen/bisphenol-a/index.htm) regarding the value 
of the three- and two-generation studies of Tyl et al. are 
unsubstantiated.

Do oral low BPA doses below 5 mg/kg bw/day 
cause adverse health effects in laboratory 
animals?

Several guideline-compliant toxicity studies have been 
performed that resulted in a systemic NOAEL of 5 mg BPA/
kg bw/day and a reproductive/developmental NOAEL 

Criticism Response
5. � Myers et al. criticized that “Tyl et al. (2008a) did 

not examine any neurobehavioral end points,” 
which Myers et al. interpreted as a “glaring 
omission of Tyl.”

The multigeneration study performed by Tyl et al. (2008a) represents a standard 
test performed according to a specific guideline that is not designed to investigate 
neurobehavioral endpoints. Therefore, there is certainly no “glaring omission of 
Tyl,” because behavior simply is not an endpoint in this study type. However, there 
are other studies that have focussed on neurobehavioral endpoints: Ema et al. 
(2001) observed no effects in their two-generation, low-dose (0.2–200 μg BPA/kg 
bw/day) study. Similarly, Ryan et al. (2010a) obtained negative results in a detailed 
study on reproductive development, function, and behavior in female rats exposed 
perinatally to a wide range of BPA doses (see also Sharpe, 2010). Stump et al. (2010) 
published the most recent study conducted according to GLP. The results show that 
BPA, at levels of exposure 4000-fold higher than the maximum human exposure in 
the general population, does not cause any discernible adverse effects in female 
rats. By contrast, EE2, used as a positive control in this study, caused major adverse 
health effects at doses in the range of those applied in early contraceptives (Ryan 
et al., 2010a; highlight report: Sharpe, 2010).

6. � Myers et al. criticized Tyl et al. (2008a, 2008b, 
2008c) for using too many animals: “…all of 
the studies by Tyl et al. were significantly 
overpowered and this is in direct violation 
of federal guidelines for conducting animal 
research, a fact about which U.S. FDA 
regulators seem unaware.”

The consideration of animal protection aspects should certainly be an important 
point in all animal testing. But even if we assume that more animals than required 
were used, according to statistical power analysis, this would not lead to different 
or incorrect conclusions from a study. However, the numbers of animals used in 
Tyl’s studies are appropriate—28 mice/sex/group/generation. This is in line with 
the OECD and US EPA toxicity testing guidelines, which require at least 20 pregnant 
females per group.

Table 2. Continued.
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of 50 mg BPA/kg bw/day in rats and mice (Table  3). 
Consistently, no adverse health effects were observed at 
doses 5 mg BPA/kg/day.

In addition to these guideline-compliant studies, a 
high number of exploratory research studies have been 
performed that usually study early, molecular, or other 
endpoints, of which the relevance for adverse health 
effects often has not yet been validated. If these studies 
are reproducible and their interpretation is clear, they 
should be used to support risk assessment. However, 
conclusions from explorative research studies on BPA 
were inconsistent (reviewed in Goodman et  al., 2006; 
2009; Gray et al., 2004; Willhite et al., 2008; Chapin et al., 
2008; EFSA, 2006). For example, vom Saal’s laboratory 
performed a study in F1 adult mouse offspring (CF-1 
mice originally obtained from Charles River and later 
maintained as an outbred colony in the authors’ facility), 
which were orally dosed with BPA at 2 and 20 μg/kg bw/
day on gestational days 11–17 (Nagel et  al., 1997). The 
authors reported similar increases in prostate weights in 
both exposure groups (2 and 20 μg/kg bw/day) of 30–35% 
compared to controls. However, this result could not be 
reproduced in later studies with higher statistical power, 
for example by Cagen et al. (1999) and Ashby et al. (1999). 
The negative outcomes in the studies of Cagen et al. (1999) 
and Ashby et al. (1999) were later criticized by vom Saal 
and colleagues (Myers et al., 2009), because they were not 
considered useful for risk assessment by the NTP-CERHR 
(National Toxicology Program Center for the Evaluation 
of Risks to Human Reproduction). However, the studies 
of Cagen et al. (1999) and Ashby et al. (1999) had been 
designed to repeat and verify vom Saal’s study with larger 
numbers of animals. They were not intended for regula-
tory purposes and, therefore, did not follow the protocol 
of a toxicity testing guideline. Possible reasons for the 
non-reproducibility of vom Saal’s study are the small 
numbers of only seven mice per dose groups and the lack 
of control of the confounding effect of dominant versus 
subservient mice on prostate weights during group hous-
ing (Table 2, criticism 2).

In a situation with apparently contradictory data, it 
is prudent to have the complete set of data evaluated 
by a panel of experts (Chapin et  al., 2008; EFSA, 2006, 
2008, 2010 a, 2010b; Goodman et  al., 2006, 2009; US 
FDA Memorandum, 2009a, 2009b; Willhite et al., 2008). 
Therefore, the NTP-CERHR formed such an expert panel, 
including several internationally known scientists work-
ing on BPA, toxicologists, epidemiologists, and statisti-
cians (NTP, 2008). This expert panel has evaluated more 
than 700 studies trying to extract possible evidence of 
adverse health effects. Many of the studies included in 
the assessment failed to meet minimal quality criteria 
for experimental design and statistical analysis.2 Among 
the most common deficiencies was a failure to control 
for “litter effects,” although litter-based statistics have 

been specified by the US EPA. Siblings from the same lit-
ter often have similar properties. If this is not considered 
in the study design, random variation between litters 
may be misinterpreted as a signal of a treatment-related 
effect. The expert panel also did not consider studies that 
did not include a concurrent control group of animals, 
injected BPA into the brain or spinal cord, or contained 
positive control groups that did not show adverse effects. 
Finally, the NTP expert panel applied the five possible 
levels of concern (negligible concern, minimal concern, 
some concern, concern, and serious concern) and con-
cluded that there was “some concern” for BPA-associated 
effects on the brain, behavior, and prostate, whereas 
most other effects were rated as of “negligible” or “mini-
mal” concern (NTP, 2008). Consequently, further stud-
ies were designed to clarify the situation where the NTP 
expert panel expressed “some concern.” One example is 
the study by Ryan et al. (2010a) in which pregnant Long-
Evans rats were treated orally by gavage with 0, 2, 20, and 
200 μg BPA/kg bw/day from day 7 of gestation to postna-
tal day 18. In the female offspring that were examined, 
BPA did not alter sexually dimorphic behavior, puberty, 
fertility, or anatomy (Ryan et  al., 2010a). In the same 
study, ethinyl estradiol (EE2) at doses of 0.05–50 μg/
kg bw/day increased anogenital distance, reduced pup 
body weight, accelerated age at vaginal opening, reduced 
F1 fertility and F2 litter sizes, and induced malformations 
of the external genitalia (Ryan et al., 2010a). In a second 
study, BPA (2, 20, or 200 μg/kg bw/day) was administered 
by oral gavage during pregnancy from gestational day 7 
to postnatal day 18 and the male offspring were studied 
(Howdeshell et al., 2008). BPA did not affect androgen-
dependent reproductive organ weights, including 
prostate weights or epididymal sperm abundance. By 
contrast, adult body weight was reduced by EE2 at 50 μg/
kg bw/day and androgen-dependent tissue weights were 
reduced in a dose-dependent manner (Howdeshell et al., 
2008). Therefore, these new studies have addressed some 
of the endpoints about which the NTP expert panel had 
expressed “some concern.” The negative outcome of these 
large and well-designed studies prompted the question 
as to whether it is time to end concerns over the estro-
genic effects of BPA, particularly since it has repeatedly 
been impossible to reproduce the initial positive effects 
(Sharpe, 2010).

The difficulties surrounding the discussions on low-
dose effects of BPA are illustrated by a study performed 
by Schönfelder et  al. (2002a). This study is often cited 
to support the opinion that low-dose BPA exposure 
alters the development of estrogen-sensitive organs 
in rodents (for example: Somm et  al., 2009; Kum et  al., 
2009; Newbold et al., 2009; Vandenberg et al., 2008; Vom 
Saal and Welshons, 2006). Interestingly, this study has 
been classified as inadequate for the evaluation process 
by an expert panel (Chapin et  al., 2008). Therefore, we 
intensively revisited the controversially discussed study 
of Schönfelder et  al. (2002a) in which Sprague-Dawley 
dams were administered 0.1 and 50 mg/kg bw/day BPA 

2 See, for example, the criteria on reliability, relevance, and adequacy of 
data and studies by Klimisch et al., 1997.
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from gestation days 6 to 21 (Schönfelder et  al., 2002a). 
The authors report that they observed “striking morpho-
logical changes” in the vagina of postpubertal offspring” 
and “that the full-length ERalpha is not expressed during 
estrus in the vagina of female offspring….” The “thickness 
of the total epithelium was reduced…” following expo-
sure to 0.1 mg/kg BPA (Figure 1B in Schönfelder et  al., 
2002a) when compared to the control group (Figure 1A 
in Schönfelder et al., 2002a). The 50 mg/kg dose caused a 
similar effect (as the 0.1 mg/kg dose), but this was less pro-
nounced (Figure 1D in Schönfelder et al., 2002a). Taking 
these results very seriously, we, however, have to report 
that severe criticism has been expressed (Chapin et al., 
2008) arguing that the study of Schönfelder et al. (2002a) 
does not give any information on the numbers of animals 
used and the number of offspring examined. Also, it lacks 
any statistical analysis of the results. Even the number of 
litters represented was not stated. It is important that the 
litter and not the individual rodent pup be used for sta-
tistical analysis, because there may be large differences 
between individual litters (Goodman et al., 2006; Willhite 
et al., 2008). It is a critical difference if the “six offspring 
in the 50 mg/kg per day BPA group” (Schönfelder et al., 
2002a) are pups from six separate litters rather than from 
only one litter. This has not been specified by Schönfelder 

et al. (2002a). The study was criticized by the EFSA (2006) 
because the results (Schönfelder et al., 2002a) were taken 
from experiments where none of the control and BPA 
treatments were performed at the same time. Therefore, 
the EFSA expert panel came to the conclusion that this 
casts doubt on the robustness of the observations and 
makes this study unsuitable for risk assessment (EFSA, 
2006). After our own thorough assessment of this study 
we came to the same conclusions as the expert panel 
mentioned above (Chapin et al., 2008). This means that 
according to the rigorous requirements in the regulatory 
process, we have to conclude that the data of this study 
do not meet the criteria necessary for a regulatory safety 
assessment.

Because of the high public interest into the ques-
tion whether low-dose BPA may cause adverse effects 
and based on quality issues with some studies claim-
ing important adverse effects, the National Institute 
of Environmental Health Sciences (NIEHS) has just 
announced an investment of approximately 30 million 
US dollars into BPA-related research (Spivey, 2009), 
including 10 two-year studies on the potential contri-
bution of low-dose BPA to obesity, diabetes, reproduc-
tive disorders, asthma, sexually dimorphic behaviors, 
cardiovascular diseases, as well as prostate, breast, and 

Table 3.  Examples of guideline-compliant BPA studies.
Study Design Result Reference
Three-generation 
reproductive toxicity study 
in rats

Six BPA dose groups (0.001–•	
500 mg/kg/day; administration 
in diet);
OPPTS guideline 870.03800•	

No effects in the low- dose range  •	
(0.001–5 mg/kg/day)
Reduced body and organ weights at  •	
³50 mg/kg/day
Effects on renal and hepatic histopathology: •	
500 mg/kg/day
Reproductive and developmental toxicity: •	
500 mg/kg/day
At doses <500 mg/kg/day: •	 no effects on prostate 
weights, acquisition of puberty
Systemic NOAEL: 5 mg/kg/day•	
Reproductive NOAEL: 50 mg/kg/day•	

Tyl et al., 2002

Two-generation rat study Daily gavage doses of •	
0.0.2–200 μg/kg/day
US EPA GLPs and OPPTS •	
TG with added endocrine-
sensitive and neurobehavioral 
end points

•	 No effect at any dose (consider that this is 
a low-dose study with 0.2 mg/kg/day as the 
highest dose)

Ema et al., 2001

One- and two-generation 
reproductive toxicity 
studies in mice

Two vehicle control groups, •	
six BPA dose groups (0.003–
600 mg/kg/day; administration 
in diet)
Dietary estradiol as positive •	
control (0.2 μg/kg/day to 8 mg/
kg/day)
OECD GLPs•	

No effects in the low-dose range  •	
(0.003–5 mg/kg/day)
Reduced body weights, increased renal and •	
liver weights and further effects at 600 mg/
kg/day. However, no adverse effects on adult 
reproductive structures or functions at 600 mg/
kg/day.
Effects on liver histopathology at 50 mg/kg/day•	
Systemic NOAEL: 5 mg/kg/day•	
Reproductive NOAEL: 50 mg/kg/day•	

Tyl et al., 2008a, 
2008b, 2008c

Developmental 
neurotoxicity study in rats

Dietary administration of 0, •	
0.01, 0.1, 5, 50, and 150 mg/
kg/day (mean target doses) 
from gestation day 0 through 
lactation day 21. Evaluation of 
F1 offspring.
OECD test guideline 426•	

No treatment-related neurobehavioral effects•	
No evidence of neuropathology and no effects •	
on brain morphometry
NOAEL for systemic toxicity derived from •	
maternal and offspring body weight reductions: 
5.85 and 13.1 mg/kg/day (calculated) during 
gestation and lactation, respectively

Stump et al., 
2010
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uterine cancer. Although BPA is already one of the most 
intensively studied chemical compounds, the new wave 
of studies will offer the chance to achieve an even clearer 
picture and to provide the basis for a final decision on 
the existing controversy. As part of the “lessons learnt,” 
we come to the conclusion that in all future studies, as 
a minimum requirement, the following, principally 
self-evident, rules should be followed: (i) study design, 
endpoints, and statistical procedures must be defined in 
a study plan before the onset of the study; (ii) sufficient 
numbers of doses should be tested (studies with only one 
or two doses are not sufficient) and the number of ani-
mals per group, accounting also for litter effects, must be 
sufficient according to statistical power analyses; (iii) val-
idated or clearly interpreted endpoints should be tested; 
(iv) the route of exposure should be known for the expo-
sure routes in humans; (v) study plan and the obtained 
raw data should be transparent and made available to 
the scientific community—Taken into consideration the 
regulatory background, and the fact that no intellectual 
property needs to be protected, it is not acceptable if raw 
data are not made available to other scientists or compe-
tent authorities for reanalysis; and (vi) each study must 
be performed in a way such that it can be reproduced by 
others. The use of commercially available laboratory ani-
mals is preferred. If, however, in-house strains are used, 
they should be made available to scientists wishing to 
reproduce the study.

How can differences between industry-
sponsored and publicly sponsored studies 
be explained?

There is strong controversy on the weight given to stud-
ies that were performed under GLP and according to 
standard Organisation for Economic Co-operation and 
Development (OECD) protocols (mostly industry spon-
sored due to the requirement for GLP and guideline stud-
ies for regulatory submission) and exploratory studies 
(mostly sponsored by public funding). Some scientists 
(e.g., Myers et al., 2009) claim that “funding by chemical 
corporations accounts for most other studies that con-
clude low doses of BPA are safe,” whereas the majority of 
publicly funded studies show that low BPA doses cause 
harm (http://endocrinedisruptors.missouri.edu/vom-
saal/vomsaal.html) and that studies funded by industry 
“used insensitive, out-of-date protocols and assays that 
are incapable of finding many of the adverse effects.” 
They conclude that these studies are flawed (Myers et al., 
2009). However, this way of interpreting differences 
between guideline-compliant and exploratory research, 
mainly performed at universities and research institutes 
with public funding, is naive. It ignores the basically 
different conditions, goals, and strategies of both types 
of research. Explorative research at universities is often 
performed to discover new mechanisms or to analyze 
how a compound interferes with mechanisms that rep-
resent cutting-edge topics of current academic research. 

Animal numbers usually need to be low, as technical 
conditions and resources do not allow the treatment, 
observation, and analysis of high numbers of animals. 
Statistical evaluation of explorative studies is usually 
performed by tests accepting differences between com-
pound exposed samples and controls as significant if a 
p value smaller than .05 is obtained without applying an 
appropriate adjustment for multiple testing. Hence, the 
findings can only be interpreted as exploratory results 
and need at least one further study confirming the find-
ings. A p value of .05 means that for 100 endpoints in a 
study where a compound has no influence, 5 endpoints 
result in (false-)positive results. Considering that many 
more than 1000 explorative studies, with each study 
examining multiple endpoints, have been published, we 
have to expect a relatively high number of “false-positive” 
findings. Importantly, they are “false positive” only for 
statistical reasons, not because of false claims or flaws. It 
is also important to consider that it is much easier to pub-
lish positive than negative results of explorative studies in 
high-ranking journals. This leads to the well-known phe-
nomenon of publication bias. Therefore, it is not helpful 
to count how many academic studies are positive versus 
negative and to decide by majority vote whether a health 
hazard has to be expected or not. An important aspect 
is also that explorative studies may identify a chemical-
induced biological event, but this event may not translate 
into an adverse health effect. The long-term low-dose 
safety studies on BPA demonstrate this.

The conditions and the purpose of guideline-compliant 
regulatory studies are completely different from those 
of academic studies (Tyl, 2009a, 2009b). Guideline-
compliant toxicity testing aims to identify specific and val-
idated endpoints associated with adverse health effects in 
a well-characterized animal model. The study design and 
tests to be performed must be documented prior to the 
study. High numbers of animals and adequate statistical 
procedures have to be applied. Guideline-compliant tox-
icity studies also determine a wide range of parameters 
(hematology, clinical chemistry, etc.) and include full 
histopathological assessment of all organs considered 
relevant. Usually, a battery of such guideline-compliant 
and quality-controlled tests is used in risk assessment 
in order to analyze a sufficient number of different end-
points. Under conditions of guideline-compliant tests, 
the probability of false-positive results is much lower, 
particularly because of the higher number of animals, a 
priori defined study design, and highly sophiosticated 
statistics.

Usually, there is a fruitful interplay between explorative 
(university) studies and guideline-compliant (industry or 
contract research organization) studies. In principle, it is 
possible that novel effects are detected in explorative stud-
ies that are not captured by guideline-compliant studies. 
If such observations are made, the reproducibility and 
relevance with respect to adverse health effects should 
be investigated. If confirmed, observations from explor-
ative studies should indeed be used for risk assessment. 
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There are techniques initially used in explorative studies 
that were later validated and included into toxicity test-
ing guidelines. An example is the use of primary hepa-
tocytes for drug metabolism studies that, after initial use 
in explorative studies, has subsequently been approved 
by the United States Food and Drug Administration (US 
FDA) (Hewitt et al., 2007). Considering the different con-
dition and purpose as well as the fruitful interactions, it 
is not adequate to play off explorative against guideline-
compliant studies just because the percentages of posi-
tive results differ between both study types.

Toxicokinetics
Humans
BPA is well absorbed by the oral route. Völkel et  al. 
reported urinary recovery in human volunteers of 97% of 
the dose in males and 84% in females after oral admin-
istration (2002, 2005), indicating extensive absorption 
of orally administered BPA (key findings summarized 
in Tables 4 and 5). It should be underscored that Völkel 
et al. (2002, 2005, 2008) performed their studies by dos-
ing deuterated BPA in order to differentiate between BPA 
present due to contamination and BPA resulting from 
dosing. Recently, the study by Völkel has been criticized 
by Vandenberg et  al. (2010a, 2010b) who deemed it to 
be of limited validity. Therefore, we compiled all critical 
comments of these authors and assessed their relevance 
(Table 6). We came to the conclusion that the criticism by 
Vandenberg et al. (2010a, 2010b) is not justified and that 
the pharmacokinetic studies by Völkel et al. (2002, 2005), 
the results of which are consistent with those of other 
toxicokinetics studies with BPA in nonhuman primates 
(Table 5), are useful for describing BPA pharmacokinet-
ics in humans.

BPA is metabolized to its glucuronide and sulfate 
conjugates (Hanioka et  al., 2008; Kim et  al., 2003; Ye 

et  al., 2005). In humans, glucuronidation was described 
to be catalyzed by the uridine 5’-diphospho (UDP)-
glucuronosyltransferase UGT2B15 (Hanioka et al., 2008). 
More recent work was unable to determine whether 
UGT2B7 or UGT2B15 is the relevant enzyme (Mazur 
et  al., 2010) but showed that intestinal metabolism 
does not play an important role in humans. Sulfation is 
mediated most probably by the sulfotransferase isoform 
SULT1A1, as SULT1A1 preferentially conjugates phenols 
(Campbell et  al., 1987a, 1987b). In addition, among an 
array of bacterially expressed SULT isoforms, SULT1A1 
had the highest k

cat
/K

M
 value for BPA conjugation, indicat-

ing that this SULT isoform has a relevant contribution to 
the conjugation of BPA in vivo (Nishiyama et al., 2002). In 
individuals unintentionally exposed to BPA, glucuronides 
account for 85% and sulfates for 15% of the oral dose in 
urine (Ye et al., 2005), whereas sulfates were not identified 
as metabolites of BPA in experimentally exposed humans 
(Völkel et al., 2002). Similarly, in a Korean study, the aver-
age excretion of the glucuronide in adult men and women 
was determined to be 80% and 40%, respectively, whereas 
the proportion of sulfate ester excretion was higher in 
women than in men (about 40% and 20%, respectively) 
(Kim et  al., 2003). From in vitro data Kurebayashi et  al. 
(2010) calculated that 92% of hepatic clearance is due to 
glucuronidation and 8% due to sulfation. In studies with 
experimental oral exposure of 5 mg deuterated BPA, no 
parent compound but BPA-glucuronide was quantified in 
plasma and urine. In some biomonitoring urine samples, 
only small amounts of unchanged BPA were found the 
amount ranging between a few percent up to 9.5% of the 
total amount recovered in urine (Dekant and Völkel, 2008; 
Völkel et al., 2008; Ye et al., 2005). In the study of Völkel 
et  al. (2008), using the identical analytical procedure 
and equipment as for biomonitoring samples, no deu-
terated BPA was detected in the urine of a male human 

Table 4.  Key conclusions from the toxicokinetics study of Völkel et al. (2002) in human subjects using deuterated BPA [d(16)-BPA].
●  5 mg of d(16)-BPA (60–80 µg/kg/bw) were orally administered to human volunteers; blood and urine sampling was performed at 
predetermined time points.
●  Maximum blood concentrations were measured approximately 80 minutes after administration.
●  The half-life of d(16)-BPA was less than 6 hours.
●  The administered doses were completely recovered in urine as d(16)-BPA-glucuronide.
Note. Similar data were obtained by Doerge et al. (2010b), Kurebayashi et al. (2002), and Tominaga et al. (2006) in non-human primates.

Table 5.  Kinetic parameters of bisphenol A in blood at comparable single oral doses in primates and rodents.

Species
Dose  

(µg/kg bw) C
max

 (nmol/L) t
max

 (h) t
1/2

 (h) AUC (nmol × h × L−1) Reference

Rhesus monkeys 100 590 (BPA 
conjugates) 

0.84 (free BPA)

0.5 (total BPA) 3.5 (total BPA) 
0.39 (free BPA)

920 (BPA total)  
1.5 (free BPA)

Doerge et al., 
2010b

Cynomolgus 
monkeys

100 456 (total BPA) 1.0 (total BPB) 9.6 (total BPA) 1162 (BPA-
glucuronide)

Kurebayashi 
et al., 2002

Human subjects 60–80 820 (BPA 
conjugates) <10 

(free BPA)

1.35 (total BPA) 5.3 (terminal) 
1.5 (initial)

2792 (BPA-
glucuronide)*

Völkel et al., 
2002

Sprague-Dawley 
rats, female

100 73 (total BPA) 
0.39 (free BPA)

2 (both free and 
total)

4.6 (total BPA) 
3.0 (free BPA)

680 (total BPA) 2.6 
(free BPA)

Doerge et al., 
2010a

*Calculated based on a clearance of 7.8 L/h and an oral bioavailability of 99%.
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 c
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p

in
g 

sa
m

p
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g 
p
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h
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 b
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re
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 c
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e 
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u
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e 
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n
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ed
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f d
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u
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n
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, b
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b
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o 

b
e 

n
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at
 th

e 
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(V

öl
ke

l e
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l.,
 2

00
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er
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en
ti
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ed
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tw

o 
d

iff
er

en
t v

al
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ap
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 c
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u
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 c
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ti
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f V

an
d

en
b

er
g 

et
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01
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01
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.
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d
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n
al
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, t

h
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B
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ro

n
id

e 
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 r
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te
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lo
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h
er
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l B
PA

 c
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n
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io
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m
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re
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m
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d
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u
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b
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 c
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n
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cu
ro

n
id

e 
an

d
 to
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l d
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ft

er
 g

lu
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ro
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it
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ve
rl

ap
p
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b
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V
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ke
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t d
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g 

et
 a

l. 
m

ay
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f d
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 b
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 d
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tm
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h

e 
d

iff
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en
ce
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e 
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n
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e 
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p
er
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ta
l e
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n

 c
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u
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u
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 6
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t a
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ly
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 c
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n
tr
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n
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n
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u
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n

id
at
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 b
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 v

er
y 
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m
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r 
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n

 o
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3.
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, t

h
e 
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s 

in
d

ic
at

e 
th

at
 th

ey
 m

ea
su

re
d

 B
PA

 m
et
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is
m

 
in
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 w

om
en

, a
 g

ro
u

p
 o

f 3
 m

en
, a

n
d

 th
en

 in
 a

 s
ep

ar
at

e 
gr

ou
p

 o
f 4

 
m

en
, y

et
 th

e 
gr

ou
p

s 
of

 m
al

e 
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lu
n

te
er

s 
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ea
rl

y 
ov

er
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in

g 
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e 
d
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a 
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m

p
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d
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 c

om
b

in
in

g 
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e 
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o 
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ou

p
s 

q
u

es
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on
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le
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ac
te

ri
st
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s 
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en

d
er
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, h
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gh
t,

 b
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y 
w

ei
gh

t)
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f t
h

e 
in

d
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id
u

al
s 

w
h

o 
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in
ed

 th
e 

p
h

ar
m
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ok

in
et
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 s

tu
d

y 
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e 
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ve
n
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le
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 (

V
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ke
l e

t a
l.,

 2
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et

h
er
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it

h
 id

en
ti
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ti
on
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u

m
b

er
s.
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ri

n
ar

y 
ex

cr
et

io
n

 w
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 a
n

al
yz

ed
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 in

d
iv

id
u

al
s 

A
, B

, C
, E

, F
, a

n
d
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, a

s 
d

es
cr
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ed
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 M

at
er

ia
ls

 a
n

d
 M

et
h

od
s.

 F
ir

st
, s

in
ce

 a
 r

an
ge

-fi
n

d
in

g 
st

u
d

y 
w
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 n

ot
 

ca
rr

ie
d

 o
u

t f
or
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ll 

m
al

e 
in

d
iv

id
u

al
s,

 d
at

a 
fr

om
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u
r 

su
b
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ct

s 
h

ad
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 b
e 

h
an

d
le

d
 s

ep
ar

at
el

y.
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ec
on

d
, B

PA
-g

lu
cu

ro
n

id
e 

co
n

ce
n

tr
at

io
n

s 
in

 b
lo

od
 o

f t
h

es
e 

in
d

iv
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u
al

s 
w

er
e 
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w
ed
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ve

r 
re
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ti

ve
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n

g 
p

er
io

d
s 
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, 8

, 1
2,

 1
6,

 2
4,
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n

d
 3

2 
h

ou
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) 
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te
r 

ad
m

in
is

tr
at

io
n
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f B
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Fi
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re
 5
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in

 th
e 
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rs

t e
xp

er
im

en
t.
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 th

e 
se

co
n

d
 e

xp
er

im
en

t,
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e 
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n
et
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s 
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 b

lo
od
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e 
d

et
er

m
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ed
 u

si
n

g 
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or
te

r 
in
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s 

(F
ig

u
re
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).
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is

 s
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on
d

 e
xp

er
im

en
t w
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 p
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ed

 w
it

h
 in

d
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id
u

al
s 

G
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n
d
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ig

u
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ef
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n
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n

e 
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d
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u
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G
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 p
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n

 b
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d
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s 
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d
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e 
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m
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 c
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n
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n
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e 
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 c
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m
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h
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 c
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h
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 p
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n
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 c
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 d
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.
4.
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0b
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cr
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ed

 th
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th
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e 
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n

ow
le

d
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m
en

t o
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h
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f d
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 c
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n
u
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s 
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at
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 r
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 d
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n
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ra
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r 
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g 
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n
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 d
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ju

ga
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d
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 b
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at
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 b
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 c
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 c
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d
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 c
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 d
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 c
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 c
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at

 th
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u
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h
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 c
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n
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n
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n
d
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h
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r 

b
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n
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e 

d
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e 
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n
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n
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b
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ra
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r 
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h
e 
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 c
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n
e 
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h
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l.,

 2
00

2)
.

Ta
b

le
 6

. c
on

ti
n

u
ed

 o
n

 n
ex

t p
ag

e



Bisphenol A  273

C
ri

ti
ci

sm
A

ss
es

sm
en

t o
f t

h
e 

co
m

m
is

si
on

5.
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d
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b
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g 
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 c
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d
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at
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e 

p
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B
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h
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n
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m
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w
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 c
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d
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V
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d
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h
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e 
ai
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d
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m
m

is
si

on
 h

as
 th

e 
im

p
re

ss
io

n
 th
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d

 r
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 d
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f B
PA

 h
as

 b
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 c
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ve

rs
e 

h
ea
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t p
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m
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g 
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u

d
ie
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h
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e 
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h
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h
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d

 o
ra
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u
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r 
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n
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u
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ou
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u
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 b
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 c
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n
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n
s 
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u
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w
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n
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n
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 c
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e 
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u
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d
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R
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6.
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, t

h
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n
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s 
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u

d
y 
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 d
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n
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s 
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e 

m
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m
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w
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u

re
 b
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n
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er
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re

ce
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h
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u
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u
m
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 m

os
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u
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u

m
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w
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u
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av
e 
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 b
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n
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u
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 b
e 

d
is

co
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 b
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d
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ra
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subject who ingested deuterated BPA (dose, 60 ng/kg 
bw), whereas trace amounts of non-deuterated BPA were 
found in these urine samples. The authors attributed this 
finding to BPA contamination of the urine, e.g., by house 
dust containing BPA. Others (Doerge et al., 2010a, 2010b; 
Cao et al., 2010; Sajiki et al., 1999) have also discussed the 
problem of contamination. In addition to contamination, 
free BPA detected in urine may be formed from urinary 
BPA-glucuronide that has undergone enzymatic hydroly-
sis by autologous or bacterial β-glucuronidase in the uri-
nary bladder (Helander and Dahl, 2005; Ho and Ho, 1985; 
Paigen and Peterson, 1978; Zenser et al., 1999). Waechter 
et  al. (2007) pointed out that BPA-glucuronide may be 
unstable in urinary samples under some conditions dur-
ing storage or analytical work-up steps. Hence, there is 
overwhelming evidence that unchanged BPA is excreted 
in the urine in only very low quantities and confounding 
by artefacts cannot be excluded (Twaddle et al., 2010).

The half-life of BPA can be estimated from urinary 
excretion data, assuming that the rate-limiting step is 
metabolic transformation and not urinary excretion of 
the conjugated metabolites. From the data of Tsukioka 
et  al. (2004), a half-life of 1.5 hours can be derived in 
humans. A similar half-life, namely 2.28 hours, has been 
calculated by Shin et  al. (2004) in their physiologically 
based biokinetic (PBBK) model, whereas Cho et al. (2002) 
calculated an even shorter half-life of 0.73 hours. Using 
PBBK modeling, Shin et al. (2004) calculated a volume of 
distribution at steady state of 1.94 L/kg bw and Cho et al. 
(2002) calculated it to be 1.71 L/kg bw, with correspond-
ing clearances of 26.6 ml/min/kg bw and 29.0 ml/min/
kg bw in humans. Using their clearance value, Shin et al. 
(2004) calculated that a serum concentration of BPA of 
1.49 ng/ml (measured by Takeuchi and Tsutsumi, 2002) 
corresponds to a daily dose of 100 mg BPA, which is more 
than 2 orders of magnitude higher than the highest expo-
sure of 0.9 µg/kg/day taken from biomonitoring data of 
Calafat et al. (Calafat et al., 2005, 2008). Hence, the mea-
sured concentrations of Takeuchi and Tsutsumi (2002) 
using an unreliable enzyme-linked immunosorbent 
assay (ELISA) (see below in “How can biomonitoring 
support risk evaluation?”) are highly implausible.

Non-human primates
Following intravenous (i.v.) administration of BPA 
(13C

12
-BPA stable isotope–labeled substance to avoid 

background contamination) to adult monkeys, rapid 
elimination with a half-life of 3.6 hours was observed 
(Doerge et  al., 2010b). Five minutes after administra-
tion, more than 70% of circulating BPA was conjugated, 
suggesting a rapid metabolism. In contrast to rats 
(Doerge et  al., 2010a), no enterohepatic recirculation 
was observed in monkeys. After oral administration (100 
µg BPA/kg bw), absorption of BPA was nearly complete 
(Doerge et  al., 2010b). The concentrations of free BPA 
in serum of adult monkeys were very low (<1 nM) and 
absolute bioavailability of BPA, based on the relation of 
the areas under the plasma concentration–time curve 

(AUC
oral

/AUC
i.v.

), was 0.2%, indicating a high first-pass 
effect. The mean serum concentration–time profile for 
total BPA in rhesus monkeys administered an oral dose 
of 100 μg/kg bw was similar to that of human volunteers 
administered a dose of 50–90 μg/kg bw BPA (Völkel 
et al., 2002). The pharmacokinetic parameters of Doerge 
et al. (2010) are in fair agreement with those previously 
reported for aglycone and conjugated BPA in adult male 
and female cynomolgus monkeys (Kurebayashi et  al., 
2002; Tominaga et al., 2006). Similar results were recently 
reported by Taylor et al. (2010) in monkeys, confirming 
the findings of the other authors.

Rats
The most recent study using stable isotope–labeled 
substance showed a half-life of 0.66 hours following i.v. 
administration. In this species, more than 50% of circu-
lating BPA was already conjugated at the earliest analyzed 
time point of 5 minutes, demonstrating a high metabolic 
turnover. The plasma concentration–time profiles exhib-
ited a second peak in the concentration of total BPA, 
which points to an enterohepatic recirculation after bil-
iary excretion, as has been previously described by other 
authors (Kurebayashi et  al., 2003; Upmeier et  al., 2000; 
Pottenger et  al., 2000). The kinetic paramerets (AUC, 
elimination half-time, clearance, and volume of distribu-
tion) reported by Doerge et al. (2010a) in female rats were 
comparable to the results of Yoo et  al. (2000, 2001) for 
male Sprague-Dawley rats. A high first-pass effect can be 
assumed because peak concentrations of total BPA after 
oral administration contained much lower percentages 
of unchanged parent compound than observed after i.v. 
injections (Doerge et  al., 2010a). The absolute oral bio-
availability of BPA was reported to be 2.8%. This low bio-
availability is similar to that reported by Yoo et al. (2001) 
of 5.3% in adult male Sprague-Dawley rats.

Mice
Taylor et al. (2010) published data on aglycone and con-
jugated BPA in female CD-1 mice demonstrating linear 
kinetics over a broad range of doses (2 µg/kg to 100,000 
µg/kg), a short half-life (~4 hours), and no accumulation 
after repeated dosing. In the first serum sample (0.5 hours 
after dosing) aglycone BPA was ~1% of the total (aglycone 
plus conjugated BPA), indicating a high first pass. As in 
rats, the plasma concentration–time profiles exhibited 
a second peak in the concentration of total BPA, which 
points to an enterohepatic recirculation.

Importance of the exposure route

Exposure of the general population to BPA occurs mostly 
via food and beverages that have been in contact with 
polycarbonate plastic. As oral BPA undergoes exten-
sive presystemic elimination whereby glucuronidation 
accounts to more than 90% (see above), the activity of 
the metabolites is important to know for risk asessment. 
As shown by several authors, BPA-monoglucuronide is 
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no longer active as an estrogen (Matthews et  al., 2001; 
Snyder et al., 2000). Since most of human BPA exposure 
of humans occurs via ingestion (EU, 2003, 2008; Geens 
et al., 2010; Wilson et al., 2007), laboratory animal studies 
using the oral route are the most relevant for human risk 
assessment.

Many of the studies showing adverse effects at low 
doses of BPA used subcutaneous injections. In others 
BPA was injected into discrete regions or delivered by 
osmotic pumps. Unless blood and/or tissue concentra-
tions are monitored to compare to systemic/internal BPA 
concentrations in humans, the results of such studies are 
not appropriate for risk assessment purposes. This has 
usually not been carried out in studies using injections 
or after implantation of pumps.

Plausible explanations for the effects observed follow-
ing non-oral administration of BPA are the lack of first-pass 
metabolism and the slow release of BPA from the oil sus-
pensions injected. Since the administration route in ani-
mal tests for human risk assessment should be the same 
route as human exposure, we see no reasonable argument 
why administration routes other than oral should be tested. 
The exception might be exposure by the dermal route. 
Deviation from testing animals by the oral route is only jus-
tified if laboratory animals show a much higher first-pass 
detoxification than humans. However, as we have shown 
above in “Toxicokinetics,” this is not the case for BPA.

Can rodents be used to extrapolate to the 
human situation with respect to estrogenic 
activity?

The current TDI for BPA is based on NOAELs derived from 
studies using rats and mice. Therefore, it is important to 
know if these rodent species are similarly susceptible 
to BPA as humans or—critically—whether humans are 
much more sensitive. An important aspect to consider in 
this context is the endogenous production of the estrogen 
17β-estradiol (E2) in diverse species. A comparison of 
plasma levels of E2 (taking into account different phases 
of the reproductive cycle) across mammalian species 
revealed that mouse, rat, and dog regulate their normal 
cycle at comparatively low levels of estrogen, whereas the 
estrogen levels in monkey and human during particular 
phases of the cycle are 1 to 2 orders of magnitude higher 
(Günzel et  al., 1989). Accordingly, it is plausible that 
higher exposures to exogenous estrogens will be required 
to provoke changes in the endocrine regulation of the 
human organism compared to certain animal species (if 
other factors such as the pharmacokinetics are similar—
see below). Furthermore, across species, there is a pro-
nounced variability in the number of estrogen receptors, 
even in the same organ; and the affinity of a certain xeno-
biotic to these receptors may also vary. Therefore, Günzel 
et al. (1989) concluded that even when there are effects 
that are clearly mediated via hormone receptors, a direct, 
quantitative extrapolation from experimental animals to 
humans is not justified.

A second critical question is whether there are major 
pharmacodynamic interspecies differences in suscepti-
bility to estrogens. Available data support the conclusion 
that rats exhibit a similar sensitivity to EE2 compared to 
humans, or are slightly more sensitive. In addition, the 
question of possible insensitive rat strains has been inten-
sively addressed (Gray et al., 2010; Health Canada, 2008; 
Chapin et al., 2008; NTP, 2008). Several experts came to 
the conclusion that no single rat strain is highly sensitive 
or resistant to estrogens. Finally, it should be considered 
that in current drug development, the pharmacological 
activity of new hormonal drug candidates is still charac-
terized successfully in rodent species before entering into 
clinical studies in humans. To our knowledge, results of 
such experiments have not revealed any “low-dose phe-
nomena” as they have been claimed to occur with BPA.

The misunderstanding of the “estrogen-insensitive rat” 
came from a letter (vom Saal, 2010) asserting that doses of 
EE2 (of less than 0.5 µg/kg bw/day) included in oral con-
traceptives did not cause effects in the rat study of Ryan 
et al. (2010a). It should be noted, however, that such com-
parisons on the basis of dose alone are misleading. There 
are notable differences in the oral bioavailability and, 
hence, systemic availability of EE2 in rats (approximately 
3%) and humans (approximately 45%; Kuhnz et al., 1999). 
Accordingly, a comparison of sensitivity should incorpo-
rate a correction factor accounting for differences in the 
systemic exposure (i.e., area under the curve [AUC] of 
plasma concentration over time) as a basis, rather than 
simply a comparison of the external dose based on body 
weight; it should also refer to the same endpoint of phar-
macological activity. This leads to the critical question of 
interspecies differences in BPA pharmacokinetics. It is 
well known that humans and monkeys excrete the BPA-
glucuronide predominantly via the urine (Kurebayashi 
et  al., 2002; Völkel et  al., 2002). In contrast, rats excrete 
BPA-glucuronide predominantly via the bile into the 
feces, resulting in enterohepatic circulation (Inoue et al., 
2001; Kurebayashi et  al., 2003; Upmeier et  al., 2000). In 
addition, the glucuronidation rate of BPA is higher in liver 
microsomes obtained from rats compared to humans 
(Elsby et  al., 2001a, 2001b). Considering these interspe-
cies differences—enterohepatic circulation in rodents but 
not in primates and higher glucuronidation rates for rats 
compared to humans—interspecies extrapolation from 
the rodent to the primate or human situation is complex. 
An overview of interspecies differences in BPA kinetics is 
given in Table 5. The AUC for BPA-glucuronide after single 
oral doses of BPA seems to be higher in humans compared 
to cynomolgus and rhesus monkeys as well as rats. On the 
other hand, higher exposures to exogenous estrogens may 
be required to provoke changes in the endocrine regula-
tion in humans or monkeys compared to rats, because 
rats regulate their normal cycle at lower levels of estrogen, 
as explained above (Günzel et al., 1989). Therefore, it can 
be expected that the extrapolation factor of 10 for inter-
species differences to obtain the current TDI of 50 µg/kg 
bw/day is conservative.
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Are there susceptible subpopulations?

The risk assessment of a chemical includes consideration 
of susceptible subpopulations, which require a specific 
risk assessment. Risk is determined by hazard and by 
exposure to the chemical. The hazard is expressed in 
quantitative terms by the NOAEL, which is adjusted by 
an assessment factor for interspecies differences and 
intraspecies/intersubject variability. The generally used 
default factor to account for the intraspecies variability 
is 10, which is subdivided into a factor of 3.3 for toxicoki-
netic and an additional factor of 3.3 for toxicodynamic 
variability (WHO, 2005). A factor higher than 10 may be 
necessary to cover a higher variability given in special 
subpopulations. This can be due to particular toxicoki-
netic features (mainly because of lower metabolism 
and/or excretion), or due to particular toxicodynamic 
features (concentration-response relationship shifted to 
a lower concentration range at which effects are elicited). 
Lower metabolism and/or excretion, as well as a shifted 
concentration-response relationship, may be present in 
a specific subpopulation and cause concern even if the 
subpopulation is exposed at the same exposure level as 
the general population. Conversely, a subpopulation 
with normal toxicokinetic and toxicodynamic patterns 
may be at risk because their exposure is higher than the 
worst-case exposure scenario calculated for the general 
population.

The following section discusses the toxicokinetics 
and toxicodynamics of BPA with the aim of evaluating 
whether there may be defined subpopulations at risk. 
Exposure considerations are also discussed (see “How 
can biomonitoring support risk evaluation?”), with the 
exception of the special situation in neonates in intensive 
care units and the situation in newborns and babies fed 
using polycarbonate bottles.

Toxicokinetics in children
One type of subpopulation at higher risk than the “nor-
mal” population is defined by the feature that at the same 
external exposure their internal body burden, expressed 
as concentration in blood/plasma, is higher than the 
internal body burden of the “normal” population. A higher 
internal body burden might be due to increased absorp-
tion or decreased elimination, both of which would lead 
to an increase in AUC. Because absorption of BPA is nearly 
100%, increased absorption due to factors such as age or 
disease is not a consideration for BPA. Lower metabolic 
activity would be the key underlying cause for a decrease 
in elimination as BPA undergoes extensive conjugation 
via glucuronidation and sulfation. In newborns and 
infants up to 6 months, glucuronidation activity is known 
to be reduced, whereas older children have similar activi-
ties to adults (Allegaert et al., 2008, Edginton et al., 2006, 
Gow et  al., 2001; Miyagi and Collier, 2007; Zaya et  al., 
2006). Hanioka et al. (2008) demonstrated that UGT2B15 
is one of the enzymes responsible for glucuronidation of 
BPA in microsomes from adult humans. Experimental 

data on UGT2B15 in human development have not been 
reported so far. However, data are available for UGT2B7, 
which belongs to the same UGT2B subfamily. The data 
indicate that the glucuronidation activity of UGT2B7 is 
5% of the adult level in newborns, increasing to 30% after 
3 months, 80% after 6 months, and 100% at the age of 1 
year. This information can be used with some confidence 
to describe the age-dependent pattern of UGT2B15. It is 
conceivable that at a given external exposure the inter-
nal body burden is higher in children (up to 12 months) 
compared to adults because of reduced metabolic capac-
ity. BPA plasma concentrations in newborns and infants 
were predicted by two groups using age-specific toxicoki-
netic models, which implemented the lower metabolic 
activity via glucuronidation. Using a model with elimina-
tion by glucuronidation as the only pathway, Edginton 
and Ritter (2009) simulated plasma concentrations in the 
newborn, who at a given external exposure were 11-fold 
higher compared to concentrations in adults. They, how-
ever, did not take into consideration that SULT1A1 medi-
ates sulfation of BPA and that it is already expressed at 
high levels, even in intrauterine life. Likewise, SULT1E1 
and SULT2A1, which are also capable of BPA sulfation, 
have also been detected and investigated in fetal tis-
sues (Coughtrie, 2002; Gamage et al., 2006; Pacifici and 
Marchi, 1993; Duanmu et  al., 2006; Miki et  al., 2002; 
Stanley et  al., 2005). In a second modeling approach, 
Mielke and Gundert-Remy (2009) implemented both 
metabolic pathways—glucuronidation (85% of the excre-
tion in adults) and sulfation (15% excretion in adults). 
They modified glucuronidation in an age-dependent 
manner, with 5% of the adult value for glucuronidation in 
the newborn. In the adult, they predicted similar plasma 
concentrations to those measured by Edginton and Ritter 
(2009), whereas the predicted plasma concentrations 
were only 3-fold higher in newborns than in adults and 
1.6-fold higher in 3-month-olds than in adults. The result 
is due to the fact that in subjects with reduced glucuroni-
dation, a greater proportion of BPA is metabolized to the 
sulfate metabolite. However, as SULT1A1 has a lower 
intrinsic metabolic clearance compared with UGT2B15, 
the concentration of BPA is increased (Kurebayshi et al., 
2010). Hence, by definition, newborns and infants up to 
3 months would qualify as a subpopulation at risk. In 
addition to the lower glucuronidation activity, it has to 
be taken into consideration that SULT1A1 is polymor-
phically expressed in humans. Dependent on the eth-
nicity, the prevalences of the wild-type allele *1 and the 
less active alleles *2 and *3 were reported to be 50–90%, 
10–30% and 0–3%, the latter being active only in African 
Americans in a prevalence of up to 20% (Coughtrie 2002). 
The functional consequences of this known polymor-
phism towards the metabolism of BPA are uncertain at 
this time, as 15% enzyme activity versus 50% enzyme 
activity in blood platelets have been reported versus no 
impaired functionality in the recombinant enzyme at 
all (Coughtrie, 2002). For adults, these observations are 
of no great quantitative importance, as only 15% of the 
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BPA elimination is via this pathway. For newborns and 
infants, however, where sulfation might be an important 
pathway, according to the modeling results of Mielke and 
Gundert-Remy (2009), a reduced enzyme activity would 
have consequences on the blood concentration of free 
BPA. If the polymorphism is functionally relevant for BPA 
metabolism, then the model without the sulfation path-
way used by Edginton and Ritter (2009) would describe a 
worst-case scenario, namely a totally non-functional sul-
fation pathway. To which extent this scenario is realistic 
remains open.

In conclusion, in the special subpopulation of new-
borns and babies up to 6 months, metabolism is impaired 
and intraspecies variability is greater than the default 
factor of 3.3. Two considerations play a role for the phar-
macokinetic intraspecies variability: first, the fact that 
the value of 5% glucuronidation activity in newborns 
describes the median value, which means that there 
might be newborns and specifically premature infants 
with a lower than 5% glucuronidation activity. Second, 
there is the possibility of an impaired sulfation pathway 
in newborns homozygous for SULT1A1*2 or SULT1A*3, 
but only in a small fraction of the population. From these 
facts, it follows that the default factor of 3.3, which is used 
to account for the toxicokinetic variability in the general 
population, seems to be large enough to cover the vari-
ability in the newborn population.

Toxicokinetics in other groups
Pregnant women have been stated to have a generally 
impaired metabolism of xenobiotics. This is not true; 
moreover, and specifically for glucuronidation, there 
are data showing slightly elevated activity compared 
to non-pregnant women (Anderson, 2005; Hodge and 
Tracy, 2007). Often, pregnant women are referred to 
as being at risk, whereas it is meant that the embryo/
fetus would be exposed and at a specific risk. When 
assessing the risk of in utero exposure, the exposure of 
the fetus depends on maternal blood concentrations. 
Maternal metabolism is the mechanism by which most 
xenobiotics, including BPA, are eliminated. Because 
“accumulation” of BPA in the fetus does not occur and 
the human placenta does not metabolize BPA, only a 
very limited amount of the compound gains access to 
the fetus, which has been shown by ex vivo perfusion 
of the human placenta (Balakrishnan et  al., 2010). As 
SULT1A1 activity is present from the 26th week of life, 
fetal metabolism contributes to a certain extent to the 
overall elimination of BPA (see below) (Pacifici and 
Marchi, 1993; Duanmu et  al., 2006). The elderly have 
also been stated to exhibit slower metabolism, which is 
true only to a limited extent concerning phase 1 reac-
tions (Butler and Beck, 2008; He et al., 2006) but not for 
phase 2 reactions (Court, 2010).

In conclusion, the fetus is not at risk during the pre-
natal phase, because it is protected by the maternal 
metabolism. The relevance of BPA exposure via baby 
bottles for this subpopulation is discussed below. There 

is no indication that the elderly or pregnant women are at 
risk, since their metabolic capacity is not impaired.

Tissue deconjugation of BPA-glucuronide and BPA-
sulfate
Ginsberg and Rice (2009) opened up the discussion that 
tissue BPA concentrations might be higher than cal-
culated due to deconjugation of BPA-glucuronide and 
BPA-sulfate in tissues. Although there is no doubt on the 
presence of the deconjugation enzymes b-glucuronidase 
and sulfatase in several tissues, it should be emphasized 
that for risk assessment, quantification of reactions and 
the chemical species present in equilibrium are indis-
pensable. Recently, experimental data on deconjugation 
of BPA-glucuronide have been published, which allows 
quantification of this process in the rat fetus (Nishikawa 
et  al., 2010). According to this publication, uterine 
(maternal) exposure to 113 nmol BPA-glucuronide 
resulted in a fetal exposure of 147 pmol BPA-equivalents 
(109.26 pmol BPA-glucuronide in the fetus plus 31.35 
pmol BPA in the amniotic fluid plus 6.45 pmol BPA in 
the fetus), corresponding to 0.13% of the given dose. In 
the further quantification, we assume that BPA is pres-
ent in the amniotic fluid because it is excreted by the fetal 
kidneys as BPA-glucuronide and then converted back to 
BPA. This assumption leads to the conclusion that 6.45 
pmol BPA (in the fetus) are formed from of 147 pmol 
BPA-glucuronide, which accounts for 4.4% of the dose 
passed through the placental membrane. Since 0.13% 
of BPA-glucuronide passes the placental membrane and 
from this, 4.4% is converted back to BPA in the fetus, 
it can be estimated that only 0.006% of the maternal 
BPA-glucuronide is converted back to BPA in the fetus. 
Edginton and Ritter (2009) simulated an average BPA-
glucuronide concentration of 0.15 µg/L (375 pM) for a 
realistic worst-case external exposure of 1 µg/kg bw/day 
in a human adult. Using the rat data of 0.006% conver-
sion in the fetus, this would mean that due to the expo-
sure with BPA-glucuronide, the fetal BPA concentration 
would be 0.0225 pM. Balakrishnan et al. (2010) reported 
that in human placenta perfusion experiments, BPA does 
cross the placenta. The concentration at the fetal side is 
0.9-fold the concentration at the maternal side. Hence, 
for a dose of 1 µg/kg bw/day and a resulting concentra-
tion of 0.003 µg/L (Edginton and Ritter, 2009; Mielke and 
Gundert-Remy, 2009), fetal BPA exposure via blood is 
0.0027 µg/L (0.9 × 0.003 µg/L) (11.8 pM). The BPA con-
centration is added to the BPA concentration formed by 
the deglucuronidation of BPA-glucuronide, giving a value 
of 0.0225 pM at 1 µg/kg bw/day (see above). This estimate 
reveals that at a maternal exposure of 1 µg/kg bw/day 
(which represents a highly conservative estimate; see 
below in “How can biomonitoring support risk evalua-
tion?”), fetal BPA exposure is 11.8 pM, whereby passage 
of BPA-glucuronide through the placenta and deconjuga-
tion contributes to the exposure with an amount of 0.2%.

Deconjugation of estrone sulfate by steroid sulfatase 
(STS) is an important mechanism for the intracellular 
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availability of estrone. Estrogen sulfatase is a microsomal 
enzyme and is ubiquitously distributed in several mam-
malian tissues, among which the liver, placenta, and 
endocrine tissues exhibit relatively high activity (Iwamori, 
2005). Tan and Pang (2001) characterized the process in 
liver cells in vitro by reporting K

M
 and V

max
 values. Valle 

et  al. (2006) found that the specific enzymatic activity 
of STS in adipocytes was 118 pmol/106 cells per hour, 
approximately 50–100 times lower than in the placenta. 
According to Stowell et al. (2006), BPA-sulfate (BPAS) and 
-disulfate are substrates for STS. In their in vitro system 
exposing MCF-7 cells to BPAS, desulfation BPA-disulfate 
and uptake of BPA were observed. Stowell et  al. (2006) 
concluded that sulfation may increase the estrogenic 
potential of xenobiotics. They observed increased lev-
els of BPA in their cellular system after incubation with 
BPA-sulfate, because of intracellular deconjugation to 
the active form. However, given the fact that sulfation is 
a minor pathway in infants older than 1 year and adults, 
with only 15% of a BPA dose being sulfated, even a rapid 
and complete cellular uptake and deconjugation by STS 
would increase the available amount by 15%, which is 
not a dramatic increase. In newborns and infants up to 3 
months, conjugation to BPA-sulfate becomes an impor-
tant metabolic pathway because of the lower glucuroni-
dation activity. Hence, deconjugation by STS might have 
a relevant impact on the availability of BPA at the cellular 
level. Data in humans on expression and activity of STS 
are not available. However, the maturation of sulfatase 
activity has been investigated in developing rats by using 
triiodothyronin sulfate (T

3
S) as a substrate (Huang et al., 

1996). In hepatic microsomal preparations from fetal 
rats, desulfation activity was extremely low. There was a 
non-significant trend of increasing desulfation activity 
in rats after birth until 1 month of age. Desulfating activ-
ity increased between the 1- and 2-month-old groups to 
reach adult levels at the end of the second month, mainly 
due to increased enzyme capacity. If the results in the rats 
are applicable to humans, it could be concluded that due 
to lacking STS during the first months of life, deconjuga-
tion of BPA-sulfate does not occur to a significant extent. 
Hence, even in the age groups in which conjugation to 
BPA-sulfate becomes an important metabolic pathway, 
availability of BPA at the cellular level is not increased 
due to low expression of STS in this age group.

Toxicodynamics
Due to its estrogenic property, BPA is expected to have an 
impact on physiological processes that are influenced by 
estrogens. To obtain an insight into the possible impact 
of BPA, it is helpful to compare BPA levels in maternal 
blood with their levels of estrogens during pregnancy. 
Increasing gestagen and estrogen concentrations are 
observed in the course of pregnancy. Whereas 17β-
estradiol serum levels in women in the reproductive age 
vary between 50 pg/ml (menstruation) and 200 pg/ml 
(follicular development) (0.18 nM and 0.73 nM), they are 
3000 pg/ml (11 nM) at 12 weeks and increase to 25,000 

pg/ml (92 nM) at week 40 of pregnancy (Salas et  al., 
2006). When the concentrations of estradiol are com-
pared with the predicted concentration of BPA of 0.003 
µg/L (11 pM) at the highest exposure levels in adults 
(1 µg/kg bw/day), the ratio between estradiol and BPA 
increases from 60-fold (persistent follicle) to 8000-fold at 
week 40. Taking into account the much lower estrogenic 
potency of BPA, it is obvious that BPA does not contrib-
ute to a biologically relevant extent to the total estrogen 
exposure during pregnancy.

Specific exposure conditions

Neonatal intensive care unit
Specific exposure conditions to BPA were reported by 
Calafat et al. (2009) in patients of a neonatal intensive care 
unit. The mean urinary concentration of BPA-glucuronide 
in a single urine sample of this population was 30.3 µg/L, 
with the highest individual measured value was 946 µg/L. 
Unfortunately, no clinical details on the neonates were 
reported, so a number of assumptions have to be made 
for further calculations. Taking 300 ml as the urine volume 
per day and a neonate body weight of 3 kg (International 
Commission on Radiological Protection, 2002), this gives 
a median intake of 3.03 µg/kg (maximum intake of 94.6 
µg/kg) and a median BPA steady-state plasma concen-
tration of 0.026 ng/ml (maximum steady state concen-
tration 0.83 ng/ml). An intake of 94.6 µg/kg exceeds the 
TDI of 50 µg/kg bw/day derived for the adult based on 
oral rat data. Hence, neonates in intensive care units may 
have a specifically high exposure to BPA, most probably 
because of intravenous exposure to products containing 
polycarbonates. Exposure on a neonatal intensive care 
unit is not for the whole life and this has to be taken into 
consideration for risk assessment. However, 20% of the 
calculated concentrations range above 1 nM (= 0.23 ng/
ml). In in vitro studies with human adipocytes, this con-
centration has been reported to stimulate mouse β-cell 
insulin production and secretion by activation of the 
extracellular signal-related protein kinase 1/2 pathway 
and to inhibit adiponectin release (Vom Saal and Myers, 
2008). In conclusion, neonates in intensive care units 
may be exposed to BPA by the intravenous route in high 
amounts. Under those conditions, calculated internal 
BPA concentrations are in the concentration range that 
elicits effects in in vitro studies.

Polycarbonate (PC) bottles
There are several studies demonstrating that BPA migrates 
from PC feeding bottles. Leaching varies among products 
and experimental conditions such as temperature and 
duration of the procedure (Brede et  al., 2003; Cao and 
Corriveau, 2008; EFSA, 2006). Migration can increase 
with repeated use of the bottles because of cleaning 
procedures. An upper value of migration of 50 µg BPA/L 
was identified in the EU (2003), whereas in two migra-
tion studies conducted under realistic conditions of use, 
the highest level of BPA migration in used PC bottles was 
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measured to be 22 µg/L (Tan and Mustafa, 2003; Brede 
et al., 2003). Using the worst-case estimate concentration 
of 50 µg BPA/L from the EU risk assessment report (infant 
formulae in used bottles), EFSA (EFSA, 2006) calculated 
an exposure of 11 µg/kg bw/d BPA for a 3-month infant 
who was fed with infant formula with a PC bottle. The 
estimate is conservative and represents a realistic worst-
case scenario. Infants up to 3 months belong to a sub-
population at higher internal exposure according to their 
altered toxicokinetics. However, the exposure level of 11 
µg/kg bw/day does not exceed the TDI modified by an 
additional factor of 3 to account for interindividual differ-
ences in toxicokinetics (TDI of 50 µg/kg bw/day divided 
by 3  =  17 µg/kg bw/day). Hence, although the exposure 
in the age group of 3-month-old infants fed with infant 
formula with polycarbonate bottles is enhanced com-
pared to breast-fed infants, it does not raise concern.

How can biomonitoring support risk 
evaluation?

Results and interpretation of biomonitoring studies 
with BPA
Biomonitoring is a direct approach to estimate human 
exposures to chemicals from environmental and occupa-
tional sources. Due to highly sensitive analytical chem-
istry, biomonitoring has developed into a valuable tool 
in exposure assessment (Angerer et al., 2007; Boogaard, 
2007; Calafat and Needham, 2007, 2009; Needham et al., 
2007) However, transforming biomonitoring data to a 
daily dose requires a detailed understanding of the toxi-
cokinetics of an agent. Moreover, due to the high sensi-
tivity of modern analytical chemistry, detailed quality 
control and reduction of potential contamination with 
the analyte from other sources is needed (Calafat and 
Needham, 2007; Dekant and Völkel, 2008; Hoppin et al., 
2006).

Regarding BPA, a large number of biomonitoring 
studies are available (for overviews see Dekant and 
Völkel, 2008; Vandenberg et  al., 2007, 2010a, 2010b). 
Concentrations of BPA present in both urine and plasma 
of the general population are often close to the limits of 
quantification (LOQs), even using highly sensitive meth-
ods, and this, together with the many confounding fac-
tors associated with these methods, has raised specific 
issues in data generation and evaluation that need to 
be addressed (Calafat and Needham, 2009; Dekant and 
Völkel, 2008; Markham et al., 2010; Ye et al., 2007):

Stability of BPA and BPA conjugates in the sample •	
matrix and during sample processing.
Sample handling and sample work up; for example, •	
avoidance of polycarbonate-containing plastic tools 
such as tubes or syringes.
Measures to reliably reduce background of BPA in •	
sample blanks to levels below the LOD.
Variability of background present in blanks.•	

Use of appropriate internal standards, especially •	
stable isotope–labeled derivatives.
Description of sensitivity and specificity of the •	
applied analytical method.
Detailed quality control of the analytical method and •	
sample processing including recovery, precision, 
and reproducibility.

 The results of the many biomonitoring studies on BPA 
have recently been reviewed and will not be reiterated in 
detail here (Dekant and Völkel, 2008; EFSA, 2006; US FDA 
Memorandum, 2009a, 2009b; Vandenberg et  al., 2010a, 
2010b). Moreover, since only urine or blood concentra-
tions of BPA and its metabolites are useful in exposure 
assessment, the comments concentrate on these two 
matrices.

In the large number of urine samples analyzed for 
BPA (>10,000), most reported concentrations of total BPA 
were well below 10 µg/L (Bushnik et  al., 2010; Calafat 
et al., 2005, 2008; Lakind and Naiman, 2008, 2010); higher 
concentrations were present in a very limited number of 
samples (Garcia-Prieto et  al., 2008; Moors et  al., 2007). 
Very high concentrations of BPA and BPA conjugates 
were only observed in the urine of newborns from one 
intensive care unit (Calafat et  al., 2009) and in a study 
from China (Mao et al., 2004). The high urinary excretion 
of BPA conjugates in the newborns are likely to be related 
to BPA release from medical equipment (see above). 
Most of the BPA in urine is present in the form of conju-
gates when separate analysis for free BPA and BPA conju-
gates was performed. This observation is consistent with 
results from toxicokinetics studies in both humans and 
non-human primates with BPA after oral administration 
(Kurebayashi et al., 2002; Tominaga et al., 2006; Tsukioka 
et al., 2003, 2004; Uchida et al., 2002; Völkel et al., 2002, 
2005, 2008).

Blood concentrations of “free” BPA of up to 22 µg of free 
and 66.48 µg of “total” BPA/L have been reported in mater-
nal and fetal blood samples at delivery (Padmanabhan 
et  al., 2008; Schönfelder et  al., 2002b), whereas many 
other studies reported much lower concentrations of 
BPA (usually less than a few micrograms of “total” BPA/L) 
in blood of the general population. It has been claimed 
that the high concentrations reported in maternal or fetal 
blood at delivery suggest high exposures of the general 
population to BPA from unknown sources, likely through 
pathways where BPA is not metabolized by an intensive 
first pass. However, a detailed analysis of the database on 
reported blood concentrations of BPA, considering the 
strengths and weaknesses of the analytical methodolo-
gies, sampling procedures, background contamination, 
and biological plausibility based on the toxicokinetics, 
needs to be performed to draw conclusions.

A part of the database on blood, serum, or plasma 
concentrations of BPA is based on ELISAs (enzyme-
linked immunosorbent assays). Some ELISA-based 
report concentrations of “free BPA” in the range of a few 
micrograms per liter. However, ELISA assays have been 
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demonstrated to widely overestimate BPA concentra-
tions actually present and are cross-reactive with BPA-
glucuronide and other constituents in blood or plasma 
(Lee et  al., 2008). Moreover, different ELISA kits gave 
widely differing results with identical samples, and the 
BPA concentrations indicated by ELISA were inconsis-
tent with BPA concentrations determined by instrumen-
tal analytics (Fukata et al., 2006; Tominaga et al., 2006). 
Therefore, ELISAs are not reliable to quantify the low 
concentrations of BPA present in blood samples of the 
general population.

The studies examining BPA in maternal and fetal 
blood samples also have a number of drawbacks that 
renders them unsuitable for an assessment of popula-
tion exposures (Lee et  al., 2008; Padmanabhan et  al., 
2008; Schönfelder et al., 2002b; Vandenberg et al., 2010a, 
2010b):

The extent of medical intervention during delivery •	
is not reported. BPA may be released from medical 
devices (Calafat et  al., 2009). Thus, exposure may 
have occurred by the intravenous route, therefore 
representing a specific situation (see above); the 
measured concentrations of BPA may therefore have 
no relevance for the general population.
The publications have major problems regarding •	
methods and reporting. Enzymatic cleavage of BPA 
conjugates was not carried out, thus only “free” BPA 
was determined.
Despite considerable efforts to reduce BPA concen-•	
trations in blanks and contrary to statements made in 
the text, BPA peaks remain in blanks presented in the 
figures (Schönfelder et al., 2002b) and the variability 
of the background is not given. Moreover, a number 
of inconsistencies between the text and the figures 
regarding calibration were identified (e.g., a limit 
of detection [LOD] cannot be determined with BPA 
appearing in the blanks; the peak area of the internal 
standard varies widely, suggesting low reliability of 
the reported BPA concentrations).
In the second paper (•	 Padmanabhan et  al., 2008), 
a very short solvent gradient is applied and pure 
methanol is used as eluting solvent during most 
of the separation. Due to the high eluting capac-
ity of methanol, separation efficiency is low. BPA is 
also eluted from the column long after the gradient 
is reversed back to initial conditions. This is incon-
sistent with theory and practice of reversed phase 
liquid chromatography. Therefore, this methodology 
cannot be considered as reliable.

 A third study (Lee et al., 2008), which reported blood lev-
els of BPA at delivery, determined BPA after hydrolysis by 
high-performance liquid chromatography with postcol-
umn fluorescence derivatization (HPLC-FLD). Some of 
the results were confirmed either by gas chromatography–
mass spectrometry (GC/MS) after derivatization or by 
liquid chromatography–mass spectrometry (LC-MS) (no 

details given). No information on background induced 
by the derivatization for GC/MS was given (which may be 
expected to be high). In addition, HPLC-FLD has the dis-
advantage of low specificity and separation efficiency.

In blood/serum/plasma samples of the general popu-
lation, most studies report lower concentrations (usually 
<1 µg/L) either “total” or “free” BPA; if detected, BPA con-
centrations were often close to the LODs of the methods 
applied. Many of these studies did not use specific proce-
dures to reduce contamination and do not give BPA con-
centrations in blank. Studies with more elaborate quality 
control and low or absent BPA contamination in blanks 
often report BPA levels below the LODs or well below 
1 µg/L. Interestingly, blank concentrations of free BPA 
using a sensitive LC/MS-MS system were consistently 
in the range of 1 ng/L of plasma, identical to the “back-
ground” exposure in human blood often cited (Twaddle 
et al., 2010) and studies with eleborate quality control did 
not detect BPA in human blood samples with an LOD of 
0.3 μg/L (Ye et al., 2009).

Biomonitoring and exposure assessment
The reliable estimate of systemic doses by biomonitor-
ing may represent an important part of the exposure 
assessment if a sufficient number of samples have been 
analyzed. Usually, biomonitoring is more precise than 
indirect exposure assessments relying on assumption 
of food consumptions and migration from food con-
tact material or other sources such as breathable air. 
However, biomonitoring has to transform concentra-
tions measured in biological samples into a daily expo-
sure/dose. For compounds such as BPA that are rapidly 
metabolized and completely eliminated in the urine, 
urinary concentrations are much more useful indicators 
of human exposure compared to blood concentrations. 
Concentrations of BPA in blood rapidly decline after 
intake due to the short half-life of “free” BPA. Any expo-
sure assessment based on blood concentrations has to 
calculate back to consider infrequent food intake, which 
is very difficult to perform without having very detailed 
information.

One of the problems of biomonitoring urinary BPA 
is the variability between different collection periods. 
However, possible variations in estimates based on uri-
nary concentrations due to urine collection intervals 
will be averaged due to the availability of a large data 
set. Concentrations of BPA and its metabolites in spot 
urine samples may therefore be used to calculate daily 
BPA exposures based on average 24-hour urine volumes. 
Using measured urinary concentrations of BPA and 
considering toxicokinetics, total daily doses of BPA well 
below 1 µg/kg bw have been derived (Dekant and Völkel, 
2008; Miyamoto and Kotake, 2006). The daily exposure 
of humans to BPA, established by biomonitoring, is thus 
well below the daily exposure, as derived from indirect 
estimates of exposure based on food consumption. Such 
assessments are based on conservative assumptions 
of food intake and migration data, and, furthermore, 
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integrate the high end of food concentrations of the agent 
under study. Most regulatory agencies prefer to use such 
data because they rely on conservative approaches for 
exposure assessment. However, the US FDA, EFSA, and 
the Japanese government have evaluated the available 
biomonitoring studies and concluded that the exposure 
estimates based on food concentrations and migration of 
BPA are conservative compared to daily intakes based on 
biomonitoring.

When translating blood or urine concentrations from 
biomonitoring to daily intakes, the data should also be 
consistent with results obtained by other means of expo-
sure assessment. This is the case for BPA:

The daily dose of BPA derived by biomonitoring •	
of urinary excretion and average daily excretion 
equates to similarly low mean daily intakes to expo-
sure assessments based on food concentrations of 
BPA and food consumption patterns, 0.008 µg/kg 
bw/day (Thomson and Grounds, 2005) or 0.002 µg/
kg bw/day (Miyakawa et al., 2004) for a 60-kg adult. 
Calculated daily doses of BPA based on measured 
concentrations in air, dust, and food were between 
0.052 and 0.074 µg/kg bw/day in preschool children 
(Wilson et al., 2007).
The good agreement of daily BPA intake based on •	
food consumption with intakes based on urinary 
biomonitoring further support the conclusions that 
food is the major exposure pathway for BPA. This is 
consensus among all regulatory authorities perform-
ing such exposure assessments.
Claims that daily human exposure to BPA is much •	
higher from unknown sources by poorly defined path-
ways are not substantiated. Concentrations of BPA 
in house dust are low. BPA is not used in cosmetics 
and dermal absorption of BPA is limited. The dermal 
contact area for potentially BPA-containing materials 
(e.g., credit card slips) is small, dermal penetration of 
BPA is limited, and the contact time of human skin 
with such articles is short (EU, 2003). Due to the very 
low volatility of BPA, exposure via inhalation can also 
not be considered as a relevant pathway.
In a recent publication, it was postulated that human •	
exposures to BPA from unknown sources are much 
higher than previously assumed based on the rapid 
elimination of “free” BPA from the blood of monkeys 
after oral administration (Taylor et  al., 2010). The 
authors suggested that the background blood levels 
of “serum unconjugated BPA” (0.3–4 ng/ml) indicate 
that human exposures to BPA would have to be at 
least 0.5 mg/kg bw, which is orders of magnitude 
above those estimated by a number of regulatory 
agencies. However, this analysis is highly deficient. 
Although the authors acknowledge that a significant 
part of orally administered BPA is excreted with urine 
in primates, they do not provide any explanation of 
what happens to the large assumed daily doses as 
well as completely neglect the consistent urinary 

biomonitoring data. Exposures to BPA in the range 
of 0.5 mg/kg bw/day should result in urine concen-
trations well above 10 mg/L of BPA/BPA conjugates. 
Such concentrations (1000-fold higher than maximal 
concentrations reported) have never been reported in 
urine biomonitoring with samples from more than 
10,000 human subjects. Therefore, there is no valid 
basis for the conclusions of exposures to daily doses 
of BPA in the range of 0.5 mg/kg bw.

 In addition to being in agreement with other exposure 
assessments, biomonitoring data should also be biologi-
cally plausible. The high blood concentrations of “free” 
BPA reported in some biomonitoring studies are incon-
sistent with predicted blood levels of “free” BPA even 
when using the high end of estimated intakes based on 
food concentrations nutritional habits. Very low blood 
concentrations of “free” BPA are predicted by PBBK 
modeling based on the toxicokinetics of BPA in humans 
and primates (Edginton and Ritter, 2009; Mielke and 
Gundert-Remy, 2009; Teeguarden et  al., 2005). Even a 
simple calculation using pharmacokinetic parameters 
for BPA support the conclusion that high blood levels of 
BPA claimed in some studies are not realistic. The volume 
of distribution of BPA is 2 L/kg (NTP-CERHR, 2007) and 
the half-life in blood is around 1 hour (Kurebayashi et al., 
2002; Taylor et al., 2010; Doerge et al., 2010b; Völkel et al., 
2002). Therefore, a blood concentration of 10 µg/L BPA 
corresponds to an intravenous dose of approximately 
3 mg BPA within 1 hour before blood sampling for a 70-kg 
person. Adjusting to an oral uptake and considering a 
bioavailability of “free” BPA of 1%, the resulting intake is 
300 mg BPA for a 70-kg person, which is inconsistent with 
all exposure estimates.

What are the mechanisms of action of BPA? 
Does the multitude of mechanisms besides 
estrogen receptor activation make the 
substance more hazardous?

The estrogenic activity of BPA was first described in 1936 
(Dodds and Lawson, 1936). BPA interacts with estrogen 
receptors ERa and ERb, with a slightly higher affinity for 
ERb. BPA has also been reported to show antiandrogenic 
activity at approximately 5-fold higher concentrations than 
those causing estrogenic activity (reviewed in Bondesson 
et al., 2009). Moreover, low activities have been reported 
for the pregnane X receptor (PXR), the estrogen receptor–
related receptor (ERR), and the thyroid hormone receptor 
(TR) (Mnif et al., 2007; Okada et al., 2008; Abad et al., 2008; 
Matsushima et al., 2007; Moriyama et al., 2002; Liu et al., 
2010). BPA was also reported to inhibit TH signaling but at 
higher concentrations than those that interact with estro-
gen receptors (Fini et al., 2009), and to cause increases in 
levels of uterine heat shock proteins (hsps), mainly hsp90α 
and glucose-regulated protein (grp) 94 (Papaconstantinou 
et al., 2002). The fact that BPA, in addition to its effect on 
estrogen receptors, also interferes with other receptors 
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has been used to argue that “the risk assessment of endo-
crine disrupting compounds, such as BPA, is hampered 
by large scientific uncertainties” (Bondesson et al., 2009). 
However, does the interaction with other receptors make 
the compound more hazardous? It should be considered 
that it is not surprising that a hormonally active chemi-
cal is not specific for a single receptor that is known also 
for several hormonal drugs. The potential to interact with 
a receptor is not per se indicative of a toxicologically rel-
evant effect. The fact that BPA activates estrogen receptors 
as well as other receptors fits into a scenario frequently 
observed for hormonally active chemicals as well as for 
hormonal drugs interacting with several receptors with 
different affinities. In addition, it can never be excluded 
with certainty that further relevant toxic mechanisms have 
not yet been discovered. However, an important argument 
is that current risk assessment of BPA is based on a large 
number of adverse endpoints in a multitude of animal 
experiments (see above). These in vivo studies capture 
adverse health effects potentially induced by all receptor 
interactions, without requiring an a priori knowledge on 
the involved mechanisms. Of course, it is an advantage if 
the mechanisms responsible for observed adverse health 
effects are known because this offers the opportunity to 
refine risk evaluation, for example by comparing critical 
mechanisms in rodent and humans in order to identify 
possible interspecies differences. However, the risk to 
humans is only underestimated if critical toxic mecha-
nisms are more active in humans compared to the animal 
species that were used for the toxicity studies. Considering 
the available studies on BPA, there is no evidence for such 
a critical (toxic) mechanism that is specific for humans or 
where human cells or tissues are more sensitive than the 
respective tissues or cells from animals.

Evaluating the relevance of ERα- and ERβ-mediated 
toxicities, it should be noted that BPA is about 10,000-fold 
less potent than estradiol (Gray, 2008). Because of the 
low levels of human exposure to BPA, it is unlikely that 
toxicity is mediated via estrogen receptors in humans. It 
should also be considered that genomic studies in rodents 
exposed to low doses of BPA did not result in expression 
of estrogen receptor–dependent genes in rat uterus or 
fetal rat testis (Ashby and Odum, 2004; Naciff et al., 2005, 
2010). Induction of estrogen receptor–dependent genes 
by BPA was only observed at moderate to high dose levels 
with no evidence of non-linear dose-response. Evaluating 
the relevance of the weak estrogenicity of BPA, it should 
also be considered that humans are exposed to a variety 
of dietary natural compounds with higher estrogenic 
activity and at higher doses than BPA (Bolt et  al., 2001; 
Safe 2000, 2004).

Epidemiological studies in the general population
In a limited number of epidemiological studies BPA 
exposure data were related to health outcomes. The 
majority of the studies have a cross-sectional design 
where a single urinary BPA level is used as exposure 
estimate. Health outcomes were analyzed mostly by 

self-reported methods (e.g., questionnaires), and had a 
long latency period such as for cardiovascular disease 
(Melzer et al., 2010) or diabetes (Lang et al., 2008; Melzer 
et al., 2010). The same holds true for cross-sectional stud-
ies on semen quality and sperm DNA damage (Meeker 
et al., 2010a, 2010b), serum testosterone, estradiol, and 
sex hormone–binding globulin (Galloway et  al., 2010). 
Given the short half-life of BPA and the long latency of 
the health outcomes addressed, the results of the cross-
sectional studies concurrently are hard to interpret. 
Therefore, the above-mentioned studies report asso-
ciations that can at best raise hypotheses rather than 
demonstrate causal relationships. Also the case-control 
studies on breast cancer with relatively small case num-
bers (Yang et al., 2009) suffer from the time lag between 
an actual single urinary excretion of BPA as the expo-
sure estimate and the time of occurrence of the disease. 
At present, there are no studies confirming the results 
available.

Recent governmental responses

Risk management is a decision-making process to select 
the optimal measures for reducing a risk to an accept-
able level. It follows the risk assessment step (optimally 
incorporating the description of uncertainties in the risk 
assessment process) and involves consideration of politi-
cal, social, economic, and engineering factors. Risk per-
ception by society and hence regulatory authorities also 
reflects the knowledge of toxicology and the culture of 
the society and may change with time as more informa-
tion becomes available. The risk management process is 
iterative, taking into account any new information. Risk 
management decisions can therefore involve measures 
to prevent the process producing the risk, measures to 
reduce or eliminate exposures, and activities to alter per-
ceptions or valuation. The basic options in risk manage-
ment are setting toxicologically based guidance values or 
applying a more rigorous precautionary approach, e.g., 
restricting concentrations/doses to levels achievable by 
the best available technology.

National bans on BPA in baby bottles, which have been 
adopted in recent months by some countries, are based 
on a precautionary approach. There is no scientifically 
proven increased risk discernable for the age group of 
infants fed with polycarbonate bottles. Against the back-
ground of an ongoing controversy, it is easily understood 
that the current heterogeneous situation in governmental 
responses reflects political motivations in the respective 
countries rather than a scientifically justified systematic 
risk management. The committee therefore refrains from 
any scientific comment but tries to present an objective 
overview on the actual situation.

European Union
BPA is permitted for use in food contact materials in the 
European Union, under Commission Directive 2002/72/
EC of 6 August 2002 relating to plastic materials and 
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articles intended to come into contact with foodstuffs. In 
its risk assessment on BPA published in January 2007, the 
EFSA set a TDI of 0.05 mg/kg bw/day for BPA. EFSA found 
that intakes of BPA through food and beverages were well 
below the TDI, even for infants and children. EFSA’s risk 
assessment of BPA was updated in July 2008 and October 
2010 and the TDI (0.05 mg/kg bw/day) was reconfirmed 
(EFSA, 2008, 2010a, 2010b).

EFSA found that intakes of BPA through food and 
beverages were well below the TDI, even for infants and 
children. Typical BPA migration levels from BPA-based 
food contact materials are <10 μg/kg food and thus are 
well below the regulatory specific migration level for BPA 
of 600 μg/kg food (based on the TDI, assuming a person 
of 60 kg eating 1 kg of food per day, with an additional 
safety factor of 5). Using conservative migration levels, 
EFSA concluded in their 2007 opinion that the dietary 
exposure to BPA from polycarbonate plastic bottles and 
epoxy resin–coated food and beverage cans is well below 
the TDI. The updated risk assessment of JunE 2008, as 
well as EFSA’s updated opinion of July 2008, states that 
food contact materials such as polycarbonate plastic 
baby bottles, drinking bottles, and epoxy resin–coated 
food and beverage cans are safe for their intended uses 
(EFSA, 2008). In its opinion, EFSA examined the safety of 
BPA-based food contact applications for all age groups, 
including fetuses and newborns.

EFSA updated its advice on BPA in September 2010. 
Following a review of recent human toxicity data and ani-
mal studies on the toxicity of BPA at low doses, scientists 
of EFSA’s Panel on Food Contact Materials, Enzymes, 
Flavourings and Processing Aids (CEF) concluded they 
could not identify any new evidence that would lead 
them to revise the current TDI for BPA of 0.05 mg/kg bw 
set by EFSA in its 2006 opinion and reconfirmed in its 
2008 opinion (EFSA, 2010 a, 2010b). The Panel also stated 
that the data currently available do not provide convinc-
ing evidence of neurobehavioral toxicity as an endpoint 
of concern for BPA. The present opinion follows the 
requests of the European Commission to the CEF Panel 
to evaluate the dietary developmental neurotoxicity study 
of BPA in rats by Stump et al. (2010) and recent scientific 
literature (2007 to July 2010) in terms of relevance for the 
risk assessment of BPA and impact on the current toler-
able daily intake (TDI) of 0.05 mg BPA/kg bw/day and to 
provide advice on the Danish risk assessment underly-
ing the Danish ban of BPA in food contact materials for 
infants aged 0–3 years.

Denmark
On the basis of an assessment by the National Food 
Institute at the Technical University of Denmark (DTU 
Food) (http://www.food.dtu.dk/Default.aspx?ID = 8590) 
released 22nd March 2010, the Danish government 
decided on 26th March 2010 to invoke the principle of 
precaution and introduce a temporary national ban on 
BPA in materials in contact with food for children aged 

0–3 years (infant feeding bottles, feeding cups, and 
packaging for baby food). From 1st July 2010, BPA is not 
allowed in the products covered by the ban.

The overall assessment of DTU Food concluded that 
the new neurodevelopmental study by Stump et al. (2010) 
does not shed new light nor change the uncertainties 
about the impact of small doses of BPA on the develop-
ment of the nervous system and the behavior of rodents. 
The conclusion from DTU Food is that this study does not 
give clear evidence of BPA harming the behavioral end-
points examined. However, it raises uncertainties about 
the impact on learning capacity. In their opinion, the 
study revealed reduced learning capacity of young male 
rats at low doses of BPA. According to the opinion of DTU 
Food, the finding of reduced learning capacity of newborn 
males may be a sign of low-dose effect of BPA. However, 
they also discuss that this observation may just be coinci-
dental. The Danish Veterinary and Food Administration 
adopted DTU Food’s opinion. On this basis, the Danish 
Veterinary and Food Administration concluded that the 
precautionary principle dictates the introduction of pro-
tective measures with respect to children aged 0–3 years 
until new studies document that low doses of BPA do not 
have an impact on development of the nervous system or 
on the behavior of rats.

France
On 25th March 2010, the French Senate called on the 
government to suspend the commercialization of BPA-
based polycarbonate baby bottles in France, until the 
French Food Safety Authority (AFSSA) issued conclu-
sions on their ongoing assessments of BPA. A ban on 
manufacturing, importing, exporting, and selling of 
baby bottles made of BPA-based products has been 
approved by the National Assembly on 11th May 2010. 
The ban was endorsed under the Grenelle II sustain-
able development initiative. This is a temporary ban 
until AFSSA develops new methods for evaluating risks 
linked to BPA in food containers used by children under 
the age of 3. The French ban came into force on 30th 
June 2010 (http://www.legifrance.gouv.fr/affichTexte.d
o;jsessionid=?cidTexte=JORFTEXT000022414734&date
Texte=&oldAction=rechJO&categorieLien=id).

Switzerland
The Swiss Federal Office of Public Health (FOPH) 
(February 2009) evaluated the scientific assessments of 
various international governmental agencies and came 
to the conclusion that exposure to BPA poses no risk for 
consumers including neonates and infants.

Australia and New Zealand
Food Standards Australia New Zealand (FSANZ) has eval-
uated the safety of BPA and plasticizers in baby bottles 
and concluded that levels of intake of BPA or plasticizers 
are very low and do not pose a risk to infant health. In 
contrast, a voluntary phase out by major retailers began 
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on 1st July 2010. It is the result of discussions between the 
Australian Government and retailers.

The Australian Government appreciates there has 
been a level of public concern relating to BPA in baby 
bottles and, therefore, has worked with retailers to 
introduce the phase out (http://www.foodstandards.
gov.au/scienceandeducation/newsroom/ mediar-
eleases/mediareleases2010/governmentannounc-
esb4822.cfm).

Canada
Under the Government of Canada’s Chemicals 
Management Plan (December 2006), BPA was identified 
as a high-priority substance for assessment of human 
health risk. Environment Canada and Health Canada 
considered in their joint Screening Assessment from 
October 2008 that the neurodevelopmental and behav-
ioral data set of BPA for rodents, though highly uncertain, 
is suggestive of potential effects at doses of the same order 
of magnitude to 1–2 orders of magnitude higher than 
exposures to BPA of the general population. Given that 
toxicokinetics and metabolism data from experimental 
animal and limited human studies indicate potential 
sensitivity to the maternal-fetal unit and infant, and that 
animal studies suggest a trend towards heightened sus-
ceptibility during early stages of development in rodents, 
it is considered appropriate to apply a precautionary 
approach when characterizing risk. In conclusion, BPA 
should be considered as a substance that may be entering 
the environment in a quantity or concentration or under 
conditions that constitute or may constitute a danger to 
human life or health in Canada.

A provisional TDI of 25 μg/kg bw/day was preestab-
lished by Health Canada as a conservatively safe level 
for BPA presence in food and was confirmed in the 2008 
Health Risk Assessment of BPA from Food Packaging 
Applications (Health Canada, 2009b). The prohibition of 
polycarbonate baby bottles that contain BPA came into 
force on 11th March 2010 (Canada Gazette Part II, 31st 
March 2010), thus prohibiting the advertisement, sale, 
and import of these products in Canada. Furthermore, 
the Canadian Government works to develop and imple-
ment codes of practice to reduce levels of BPA in infant 
formula as low as reasonably achievable. The ban was 
enforced after the market for polycarbonate baby bottles 
had virtually disappeared. The decision was made in 
spite of the results of four migration studies carried out 
by Health Canada and published in 2009. The studies 
specifically investigated migration from polycarbonate 
baby bottles, canned soda, canned infant formula, and 
bottled water, and found no or extremely low migration 
levels, thus confirming existing data of very low exposure 
(Health Canada, 2009a, 2009b, 2009c, 2009d).

USA
The National Toxicology Program Center for the 
Evaluation of Risks to Human Reproduction, part of 
the National Institutes of Health, completed a review of 

BPA in September 2008 and expressed “some concern” 
for effects on the brain, behavior, and prostate gland in 
fetuses, infants, and children at current human expo-
sures to BPA. In the update of the draft assessment “BPA 
for Use in Food Contact Applications” in January 2010, 
the FDA shares at this interim stage the perspective of 
the National Toxicology Program that recent studies pro-
vide reason for some concern. The FDA also recognizes 
substantial uncertainties with respect to the overall 
interpretation of these studies and their potential impli-
cations for human health effects of BPA exposure. These 
uncertainties relate to issues such as the routes of expo-
sure employed, the lack of consistency among some of 
the measured endpoints or results between studies, the 
relevance of some animal models to human health, dif-
ferences in the metabolism (and detoxification) of and 
responses to BPA both at different ages and in different 
species, and limited or absent dose response informa-
tion for some studies. The rating “some concern” about 
potential effects of BPA based on studies using novel 
approaches to test for subtle effects, which had been 
stated by the FDA/NHIES in 2008, will be addressed by 
a specific ongoing FDA research program. Regarding 
interim public health recommendations, the FDA sup-
ports reasonable steps to reduce exposure of infants to 
BPA in the food supply. In addition, the FDA will work 
with industry to support and evaluate manufacturing 
practices and alternative substances that could reduce 
exposure of the population and is supporting the indus-
try’s actions to stop producing BPA-containing bottles 
and infant feeding cups for the US market. The FDA is 
facilitating the development of alternatives to BPA for 
the linings of infant formula cans. But FDA still consid-
ers the TDI as valid.

Japan
The human health risk assessment of the Japanese 
New Energy and Industrial Technology Development 
Organization (NEDO), the Research Center for Chemical 
Risk Management (CRM), and the National Institute of 
Advanced Industrial Science and Technology (AIST) 
from November 2007 concluded that both the human 
health risks and ecological risks posed by BPA were below 
the levels of concern. MOEs (margin of exposure) for the 
endpoints reduction in body weight gain, multinucleated 
giant hepatocytes in the liver, and reproductive toxic-
ity were sufficiently large, even in the highest exposure 
group. Therefore, it will be unnecessary to prohibit or 
restrict the use of BPA at this time.
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