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ABSTRACT

A variety of two-equation turbulence models - including several versions of the K - e

model as well as the K- oJ model - are analyzed critically for near wall turbulent flows from

a theoretical and computational standpoint. It is shown that the K -_ model has two major

problems associated with it: the lack of natural boundary conditions for the dissipation rate

and the appearance of higher-order correlations in the balance of terms for the dissipation

rate at the wall. In so far as the former problem is concerned, either physically inconsistent

boundary conditions have been used or the boundary conditions for the dissipation rate

have been tied to higher-order derivatives of the turbulent kinetic energy which leads to

numerical stiffness. The K - w model can alleviate these problems since the asymptotic

behavior of co is known in more detail and since its near wall balance involves only exact

viscous terms. However, the modeled form of the w equation that is used in the literature

is incomplete - an exact viscous term is missing which causes the model to behave in an

asymptotically inconsistent manner. By including this viscous term - and by introducing

new wall damping functions with improved asymptotic behavior - a new K -_- model (where

I" - 1/w is turbulent time scale) is developed. It is demonstrated that this new model is

computationaUy robust and yields improved predictions for turbulent boundary layers.

*This research was supported by the National Aeronautics and Space Administration under NASA Con-
tract No. NAS1-18605 while the author was in residence at the Institute for Computer Applications in Science

and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.





1. INTRODUCTION

An increasingnumberof practical engineeringcalculationsof turbulent flows havebeen

basedon two-equation turbulence models. For many technologicallyimportant turbulent
flows, two-equationmodelsrepresenta nice compromisebetweenzeroor oneequation mod-

elsandsecond-orderclosures(the formermodelstend to requiretoo manyadhocempiricisms
whereassecond-orderclosuremodelscan be overly expensivefor designcalculations). The

K - _ model [1] is the most popular two-equation turbulence model in use today. When

utilized in conjunction with wall functions, the K - _ model is reasonably well-behaved and

has been applied to the solution of a variety of engineering problems with a moderate amount

of success. However, many important technological applications require the integration of

turbulence models directly to a solid boundary, particularly in problems where wall trans-

port properties are needed or where there is flow separation. The problem of developing

low-Reynolds-number near wall corrections to the K - c model that can be robustly and

accurately integrated to a solid boundary remains unresolved so that models along alterna-

tive lines continue to be proposed (see Patel, Rodi, and Scheuerer [2] for a recent review).

Most of these near wall K - e models involve an excessive amount of ad hoc empiricisms

and are numerically stiff in turbulent boundary layer flows. This motivated some researchers

to pursue alternative two-equation models based on a modeled transport equation for the

turbulent time scale. The most notable example is the K-w model of Wilcox and co-workers

[3, 4] where modeled transport equations for the turbulent kinetic energy K and reciprocal

turbulent time scale w are solved. There is considerable evidence that the K - w model is

more computationally robust than the K - _ model for the integration of turbulent flows

to a solid boundary. However, the K -w model yields solutions for the turbulent kinetic

energy that are asymptotically inconsistent near a solid boundary [4]. Hence, there is the

need to re-examine this problem from a basic theoretical and computational standpoint.

This establishes the motivation for the present paper.

In this paper, the near-wall asymptotics of two-equation turbulence models will be ex-

amined from a basic theoretical standpoint. It will be shown that the K -e model has

two major problems associated with it. The first arises from the lack of natural boundary

conditions for the turbulent dissipation rate which has caused modelers to use a variety of

derived boundary conditions that are either asymptotically inconsistent (e.g., the boundary

condition of vanishing normal derivative of dissipation) or numerically stiff (e.g., the bound-

ary condition that ties the dissipation to higher-order derivatives of the turbulent kinetic

energy). The second problem - which can be the source of substantial inaccuracies and

numerical stiffness - is tied to the fact that the balance of terms at the wall in the modeled

dissipation rate transport equation depends on higher-order correlations whose models have



considerable uncertainties.

It will be demonstrated that both of these problems can be largely alleviated by solving

a modeled transport equation for the turbulent time scale T ----K/e since: (a) near the wall,

"r - y2/2v which provides the needed natural boundary conditions, and (b) the balance of

terms at the wall in the modeled transport equation for _- in.volves only emact viscous terms.

It will be argued that these features are primarily responsible for the more computationally

robust performance of the K- w model of Wilcox and co-workers [3, 4]. However, the K-w

model yields results for the turbulent kinetic energy - as well as other turbulence quantities

- that are asymptotically inconsistent (e.g., near the wall, K ,,_ yS.2s instead of the expected

K ,_ y_ behavior). It will be proven that this problem arises due to the fact that an exact

viscous cross-diffusion term is missing in the modeled w-transport equation. A new K - _"

model is obtained by including this exact viscous term and by substituting improved wall

damping functions which are obtained by an asymptotic analysis using the results of direct

numerical simulations of turbulent channel flow (Mansour, Kim, and Moin [5]). The new

model will be tested for the flat plate turbulent boundary layer and comparisons will be

made with the predictions of other models (i.e., the K - ¢ models of Launder and Sharma

[6] and Chien [7] as well as the g -w model [4]) in order to assess its performance.

2. NEAR WALL ASYMPTOTIC ANALYSIS

For simplicity, we will restrict our analysis to incompressible turbulent flows (however,

the crucial conclusions that will be drawn carry over to compressible flows). The mean

velocity _ and mean pressure p are solutions of the Reynolds averaged Navier-Stokes and

continuity equations given by

(i)

0 (2)

' ' is the Reynolds stress tensor, v is the kinematic viscosity, and the usualwhere l"ij' = -uiuj

Einstein summation convention applies to repeated indices. We will consider the commonly

used two-equation models based on an eddy viscosity where

"r,j = -_K6ij + vr \O:r,j + O:r4J
(3)

g 2

=C.-- (4)
C

and
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1_ n, vau_/0acj0u_/aa_ j is the turbulentgiven that K =- -_-_i-_i is the turbulent kinetic energy, e =

dissipation rate, and 6', is a dimensionless constant at high turbulence Reynolds numbers.

In two-equation models, transport equations are solved for any two linearly independent

variables constructed from K and e. In the K -e model, modeled transport equations for K

and e are solved; in the K -w model, modeled transport equations for K and the reciprocal

turbulent time scale w = e/K are solved; and in the K - r model, modeled transport

equations for K and the turbulent time scale r = K/g are solved. The exact transport

equations for K and e are as follows [8]:

DK 0_

Dt rij Ox 5

De
= _, - ¢_ - 1), + vV_e

Dt

where D/Dt = O/0t + U. V. In (5)- (6),

all,,, -_,)- &,i t,-2_j_*ju_+

•-- - e - 7) + vV2K (5)

(, o,.,: ]o o:z:,,= 2,.,a7' \-F_j&.jJ +"-F_j &,,_)

are turbulent transport terms, and

(_)

(7)

(8)

,I,, = 2_,_ o,_,{ o,_,_ (10)
Ox,iOxk OxiOxl,

are, respectively, the production and destruction of dissipation terms.

The Taylor series expansions for the components of u_ - (u',v',w') are as follows near a

wall:

u' = aly + aay 2 + "."

v' = bay _ + bay 3 + ...

w' = cly + cay 2 + "."

(11)

(12)

(la)

where ai = ai(x,z,t),bi = bi(x,z,_) and c/= c/(_,z,*) given that the coordinate y is normal

to the wall (later, wall coordinates will be used where y+ = yu_./v given that u, is the she_r

velocity). Of course, the no slip condition at the wall eliminates ao, b0, and Co whereas the

continuity equation eliminates b_ (c.f., Hinze [8]). It is a straightforward matter to show that

near a wall

g = O(y2), e = O(1), r = O(y _) (14)
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0-_

oy o(1), u,2 o(y_), u,_, o(y3)

,,_= o(y4), _: o(y2), _, : o(y 3)

79 = (9(y), "P, = 0.(y), _, = O.(1)

79, = 0(1), V2K = O(1), V_e = (9(1)

where 7:' - _'ijo_/0_j is the turbulence production.

(15)

(16)

(17)

(18)

An asymptotic analysis of the K - c model will be conducted first. In the K - e model,

the eddy viscosity near a wall is taken to be of the form

K s
ur = C.f.--. (19)

8

The asymptotic analysis presented in this section indicates that f, : (9(l/y) near the wall

since, due to (15), vT must be of O(y a) in this region. Of course, sufficiently far from the

wall f_, assumes a value of 1. (6', is a constant which is typically taken to be 0.09). The

turbulent transport term 7:) in the kinetic energy equation (5) is modeled using a gradient

transport hypothesis:

79 = 0_i

where ag is a constant. From (14), (17), and (19), it is clear that this model is not asymp-

totically consistent. However, 7:) consists of two parts - the triple velocity term and the

pressure diffusion term - as given by (7). Direct numerical simulations of the Navier-Stokes

equations indicate that
0 _.---:7.,0 .i , , ,

except very close to the wall (i.e., inside of y+ = 2; see Mansour, Kim, and Moin [5]) and in

this region 79 is negligible in comparison to the dissipation rate and the viscous diffusion of

the turbulent kinetic energy. Hence, if we approximate 79 by

0.i,,,

79- _ (5_j_,) (21)

then the gradient transport model (20) is asymptotically consistent since the right-hand-side

of (20) and (21) are both of (9(ya) as the wall is approached. Hence, it would appear that

the asymptotic errors introduced by the use of (20) in the K - _ model are probably not

that significant.

The turbulent transport term/)_ in the dissipation rate transport equation is also modeled

by a gradient transport hypothesis:

79" = Oxi
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(where ae is a constant) in the K-_ model. This model is not asymptotically consistent since

D, = O(I) near a wall while the right-hand-side of (21) is do(y2). However, this inconsistency

is probably not of great consequence since both D, and _, are of (.9(i) near a wall but direct

numerical simulations of turbulent channel flow indicate that _D, << ¢_ (c.f. Mansour, Kim,

and Moin [5]).

The production of dissipation 7_e and the destruction of dissipation _I,, are modeled as

_2

¢I,, = C,2f2_

follows

(23)

(24)

in the K - ¢ model where the wall damping functions f_, f2 _ 1 away from the wall. It

is clear from (14) -(17) that these models are asymptotically consistent if fl = do(l) and

f2 = do(y2) near a wall. It thus follows that the K - ¢ model will generate solutions for

K, _ and _ that are asymptotically consistent if the damping functions f, = do(1/y) and

f_ = do(y2) near a wall with fl = 1.

While the K - ¢ model can be made asymptotically consistent in near wall turbulent

flows by the introduction of only two wall damping functions - namely, fu = O(1/y) and

f2 = O(Y 2) - there are still some other major problems that need to be discussed. There

are no natural boundary conditions on ¢; consequently, boundary conditions must be either

derived or postulated. One of the commonly used derived boundary conditions is

OaK

(25)

at the wall which is a rigorous consequence of the exact transport equation for K. Equation

(25) requires information at the wall on the second-order derivative of the turbulent kinetic

energy - a feature that can lead to considerable numerical stiffness [2]. Some of the stiffness

can be alleviated by utilizing the alternative version of (25):

{°4-gh 2 (26)
2.\ 0y / =c

at the wall. However, even (26) can give rise to considerable numerical problems.

Neumann boundary condition
0c

_0
Oy

has been used in a variety of applications of the K - ¢ model (c.f.

[9D.

The

(27)

Lain and Bremhorst

Although (27) is more computationally robust, it is completely ad hoc with no solid
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theoretical or experimental justification. In fact, recent direct numerical simulations of the

Navier-Stokes equations for turbulent channel flow indicate that [5]

1 0%+
- -0.25

_+ Oy+

at the wall; under such circumstances the use of (27) could lead to substantial errors.

The other major problem with the dissipation rate transport equation lies in the balance

of terms at the wall. At a solid boundary, (6) reduces to

(92¢ _¢

= ¢"+ + o-7 (28)

For a fully-developed turbulent boundary layer, 0s/0i = 0 and D_ << @, as discussed earlier;

hence, (28) simplifies to
vo2e

%-_y_ = _,. (29)

Both (28) and (29) have a major deficiency: the balance of terms at the wall involves higher-

order correlations. This puts significant pressure on the accuracy of the near wall modehng

of the destruction of dissipation term that can further exasperate the numerical stiffness

problem.

On the other hand, the turbulent time scale r -= K/s, has a variety of natural boundary

conditions. It is a simple matter to show that close to a wall

• y2

z = 2-_ (30)

and, hence, at the wall
dr d2r 1

(311
Equations (30) - (31) have the advantage of being valid for any near wall turbulence where

the fluctuating velocity is expandable in a Taylor series. Furthermore, the balance at the

wall in the transport equation for r only involves ezact viscous terms. This can be seen

directly from the exact r-transport equation which takes the form

DT T 0-ffi

D--'_ = KTOOmj

T T 2 T 2 7 .2

2v OK Or 2v Or Or
+ vV2r

K Ozi Ozi r Ozi Oz_

(32)

and, hence, at the wall !/= O, the leading terms are

2v OK Or 2v Or Or O2r
+ 1 O.

K i)y cgy r Oy cgy V_y 2
(33)



Here, each term on the left-hand-sideof (33)is O(1). The balance of terms in (33) is

guaranteed if r - y2/2v near the wall. It therefore appears that the two major problems with

the K - e model - namely, the lack of natural boundary conditions for _ and the appearance

of higher-order correlations in the balance of terms at the wall - can be overcome by the use

of a K - r model.

While the development of a two-equation turbulence model based on the turbulent time

scale has been discussed in the literature (c.f. Reynolds [10] and Bardina [11]), no systematic

study of such models has been conducted for near wall turbulence. Only the K - w model

- which is based on a modeled transport equation for the reciprocal turbulent time scale

w = 1/_" - has been studied in these flows to any extent (see Wilcox and Traci [3] and

Wilcox [4]). In the K - w model, a modeled transport equation for the reciprocal time scale

w is solved which is of the form [4]

where vT = C,,Z/w and C_1, C_2 and a_, are constants which assume the values of 5/9, 5/6,

and 2, respectively (again, C_, = 0.09). However, we will now show that (34) is inconsistent

with the exact transport equation for w near a wall: an exact viscous term is missing and

Cw2 must be damped. The exact transport equation for w takes the form

Dw "P_ _, T), w7_ j w2P 2v Ow OK
D_ - K K K K 4- 4- "_ 4- K Oz_ Ox_ 4- _'V2w" (35)

Hence, it is clear that an exact viscous cross-diffusion term- given by (2v/g)ow/Ox_og/oxi

in (35) - is missing in the modeled w-transport equation of Wilcox and co-workers. From

(35), it is a simple matter to show that the leading terms in the near wM1 balance of w are

as follows:

2v Ow OK O_w w 2 (36)
K Oy Oy 4- v'-_y 2 4- 0

at the plane solid boundary y = 0. Equation (36) is consistent with asymptotic solutions for

K and w that behave correctly near the wall, i.e.,

2v
K-ay _, w---. (37)

y2

In stark contrast to (36), the K - w model of Wilcox based on (34) yields the balance of

terms 02 w

- =0 (38)
at the wall, which is incompatible with (37). Hence, the K - w model of Wilcox yields

asymptotically inconsistent solutions in near wall turbulence (e.g., K ,-- ya.2a; see Wilcox

[4]).



The K - w model can be made asymptotically consistent by the addition of the viscous

cross-diffusion term
2v Ow OK

K Oz_ Oz_

and by decomposition of C,,2 as follows

C_2 = C_2 - 1 (39)

where C" 2 must be damped of (D(y 2) near the wall. However, we feel that it is preferable

to derive a modeled transport equation for r = 1/w since r is not singular near the wall. A

new K - r model will be derived in the next section which is asymptotically consistent.

3. A NEW K- r MODEL

The exact transport equation for the turbulent time scale r takes the form

D7 _- T T 2 T 2 T 2

D"--_= KP - 1 - _T_- _P, + _q_, + _P. +

2v OK Or 2v Or Or

K Oxi cOxi r Oxi Ozi
+ vV_'r (40)

which is obtained from a straightforward combination of (5) and (6). Models for "P,, ¢,, T_e

and l) are needed for closure. The production of dissipation term will be modeled as it is in

the K - e model, i.e.,

where C_1 = 1.44. As mentioned earlier, this model is asymptotically consistent.

destruction of dissipation term, _ will also be modeled similarly, i.e.,

c 2 K• , = C,2/2 - C,2A •

(41)

The

(42)

Here, asymptotic consistency with (17) requires that f_ be damped of O(y 2) near a wall. We

will use a variation of the form for C_2 suggested by Hanjalic and Launder [12]:

2 exp(_Ret/6)21 (43)C,_ = 1.8311-

where Ret = K2/v¢ is the turbulence Reynolds number. Here, we set the high turbulence

Reynolds number value of C,2 = 1.83 since it yields a somewhat more accurate value for

the decay rate of grid turbulence than the traditional value of 1.92 (c.f. Reynolds [10]). An

exponential form is chosen for the wall damping function f_ as follows

f2 = [1 - exp(-y +/A,)] _ (44)



which is O(y 2) near the wall. Since at the wall

av÷---z = c, A . (45)

A2 can be evaluated if 02e+/Oy +2, _+ and K + are known. By using the wall values of these

quantities from direct numerical simulations of turbulent channel flow [5] we obtain

A_ -4.9.

The resulting model for (I). is quite similar to that proposed recently by Myong and Kasagi

[131.

The turbulent diffusion term for r is defined by

T 2 T

v. = - (46)

This term will be modeled by the gradient transport hypothesis

2VT OK Or 2vT OT Or 0 ( VT 0_" ) (47)

where VT is eddy viscosity and an and a,.2 are turbulent Prandtl numbers. In deriving (47)

it has been assumed that the turbulent transport processes parallel the molecular ones (i.e.,

each turbulent transport term is coupled with a molecular diffusion term of the same general

form). The turbulent Prandtl numbers for the last two terms on the right-hand-side of (47)

are taken to be equal so that this pairing of molecular and turbulent diffusion terms is also

true if the reciprocal time scale w is chosen as a variable instead of y (the choice of w as a

variable instead of z should not alter the basic physics of the model). Of course, the eddy

viscosity is taken to be of the form

VT -- Cj_,K'r (48)

where C_, = 0.09 and f_, is a wall damping function which is O(1/y) near the wall. By

an analysis of the two distinct effects of low turbulence Reynolds number and near wall

proximity, Myong and Kasagi [13] proposed the model

f, = (1 + 3.45/x/-R-_,)[1 - exp(-y+/70)]. (49)

This model fits the experimental data [2] reasonably well with one exception - it is asymptotes

to one somewhat too slowly. Hence, we will consider the alternative model

f_, = (1 + 3.45/RX/-_-,) tanh(y+/70 ) (50)



since the hyperbolic tangent asymptotes to one faster by the necessary amount.

Now, for the purposes of clarity, we will summarize the K - -r model derived in this

section:

"rii = -_ K6ii + u:r k cOxi + c3xi ] (51)

UT= O,f,K'r (52)

D----_= n10x_, r _ u -t- (53)

Dr-(1Dt _.r _ u=,0_, K2( __,r)OKO'r0=,- + - 1)+ ,,+
o=_

-- v+ + v+
r 0=_Oxi _ "

(54)

In (51)- (54), 6', = 0.09, C,1 = 1.44, while C,2, f,, and ]'2 are given by (43), (44) and

(50), respectively. However, to complete the model, values for the turbulent Prandtl numbers

an, a_, and at< must be provided. In this regard, we first note that if

a_ = O'-r_ = U K = O'e

then the modeled r-transport equation (54) is equivalent the e transport equation

D'-"_= C,l'_r,i-ff-_x j - C,,f2--_ + _ u + _ _ . (55)

Since the standard e-transport equation (55) is known to perform well in several high-

Reynolds-number turbulent flows, it is reasonable to believe that an, an, a_: and ae must

a_sume values that are reasonably close to one another. Furthermore, for local equilibrium

flows with zero pressure gradient and logarithmic velocity profile, we must have [2]

c., = - (56)

where _ - 0.4 is the Von Karman constant. Hence, for the values of O,1, _2 and C'. chosen

herein, it follows that

a, - 1.36

and, hence,

a,_ - a,_ - gg -- 1.36. (57)
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It should be noted that the new modeled transport equation for r given by (54) is

equivalent to the w-transport equation

Dw (C,1 w 0-_
= - - (C' A -

(58)

which differs from that of Wilcox and co-workers by the presence of a cross diffusion term

and by the damping of the coefficient of w 2 to one at the wall.

Calculations will be presented in the next section using the common value of 1.36 for

an, a,., and aK which seems to be adequate for the present study. However, future research

is needed to optimize these constants over a range of benchmark turbulent flows.

4. COMPARISON OF THE MODELS

Now, the performance of this new K - 7" model will be examined for the flat plate

turbulent boundary layer at zero pressure gradient. Comparisons will be made initially with

the g-w model of Wilcox [4] and the g-_ model of Launder and Sharma [6] (a comparison

with the K - ¢ model of Chien [7] will be made later). The calculations to be presented were

done with a two-dimensional boundary layer code based on the implicit marching scheme

of Edwards et al. [14]. In the fully developed turbulent regime, approximately 100 grid

points were used in the direction normal to the wall with the first grid point at y+ - 0.2.

The profiles of the turbulent fields to be discussed in the figures are for a Reynolds number

Rea ,_ 16,000 based on the momentum thickness (this will allow for comparisons with the

experimental data described by Patel, Rodi, and Scheuerer [2] which was compiled from a

variety of sources including Coles [15] and Schubauer [16]).

In Figure 1, the predictions of the K - r, K -w, and K - e model for the mean velocity

are compared with experimental data [2]. It is clear that each model yields a logarithmic

velocity profile for 30 < y+ < 300 that is well within the range of the experimental data.

Furthermore, each model correctly yields u + = y+ close to wall (i.e., for y+ < 5) and

predicts the deviations from the law of the wall for y+ > 1000. In Figure 2, the Reynolds

shear stress predicted by these three models is shown. The predictions of the various models

are extremely close for y+ > 10. However, for y+ < 10 the differences between the model

predictions are significant. Among these models, only the K - -r model yields a profile where

u,v-w ,,., y3 for y+ < 10 as indicated by experiments; see Figure 3 and Patel et al. [2]. In

Figure 4, the predictions of the K - r, K - w, and K - _ models for the turbulent kinetic

energy are compared. The K -_" model yields a peak in K + of approximately 4 which is well

11



within the range of the experimental data [2] and the results of direct numerical simulations

for turbulent channel flow [5]. On the other hand, the K - w model - as well as the K -

model of Launder and Sharma - appear to yield peaks in the turbulent kinetic energy that

are rather low. The turbulent kinetic energy near the wall is shown on a logarithmic plot

in Figure 5. Only the K - r model yields K ,,_ y2 for the entire interval 0 < y+ < 10; it

yields the proportionality constant a + - 0.05 - a result that is well within the range of the

experimental data.

In Figure 6, the profile of the turbulent dissipation rate predicted by the K - r, K - w

and K - _ models are compared. Although the results are fairly close for y+ > 20, there

are some significant differences close to the wall. The K - r model yields a value for the

turbulent dissipation rate at the wall of _+ - 0.1 which is quite close to the value obtained

from experiments [2]. Likewise, the peak in _+ is quite close to the value obtained from

experiments [2]. In contrast to these results, the K - ca model and K - _ model of Launder

and Sharma yield values for the wall dissipation c+ that are substantially too small. In

Figure 7, the variation of f_, with y+ is shown for these three models. Only the K - 7"model

is within the range of the experimental data compiled by Patel, Rodi, and Scheuerer [2].

We did not compare directly with the results of the K -_ model of Chien [7] since Chien's

model was calibrated by (and, hence, forced into agreement.with) the experimental data for

the fiat plate turbulent boundary layer at zero pressure gradient. However, the fact that this

model has some inconsistencies can be seen in the results for f_,. In Figure 8, a comparison

of the predictions of the K - 7"model and the K - _ model of Chien [7] for f_, is shown. It

is clear from this figure that the model of Chien yields values for f_, that are far removed

from the experimental data. Furthermore, the K - _ model of Chien [7] has more ad hoc

empiricisms than the K - _"model presented herein.

The skin friction predicted by the K - r model is shown as a function of the coordinate

x along the plate in Figure 9. It is clear that the results are in excellent agreement with the

experimental data [17]. In Table 1, the fully-developed skin friction and wall dissipation rate

are tabulated for the four models considered in this study. Only the K - _"model and K - e

model of Chien yield results that are within the range of the experimental data. However, it

must be remembered that the Chien model was calibrated by forcing it into agreement with

the experimental data for this flow.

The more desirable features of r as a variable instead of _ can be seen by a comparison

of Figure 10 with Figure 6. It is clear from Figure 10 that the turbulent time scale varies

much more smoothly with the distance from the wall; its first derivative with respect to y

does not change sign.

12



5. CONCLUSIONS

A basic theoretical and computational study of two-equation models for near wall tur-

bulent flows has been conducted. The major findings of this study can be summarized as

follows:

(1) The K- w model of Wilcox and co-workers [3, 4] is missing an exact viscous cross

diffusion term. Furthermore, the destruction of dissipation term is not properly damped

near a wall. These two inconsistencies give rise to asymptotically incorrect solutions for

the turbulent kinetic energy (K .-_ y3._3) near a solid boundary.

(2) The K - e model can be made asymptotically consistent by the satisfaction of two

constraints: the coefficient of the destruction of dissipation term must be damped of

O(y 2) near a wall, and the coefficient in the eddy viscosity must be damped of O(1/y)

near a wall. Most existing corrections to the K - e model yield poor results in near wall

turbulent flows due to the violation of these constraints.

(3) There are numerical stiffness problems with the K - ¢ model due to the lack of natural

boundary conditions for the dissipation rate and the fact that the balance of terms for

the dissipation at the wall involves unknown higher-order correlations which need to be

modeled. These problems can, to a large extent, be overcome by the use of the turbulent

time scale r ==_K/c as a variable since r has natural boundary conditions arising from

the no-slip condition and since the wall balance for r only involves exact viscous terms.

(4) A new K - r model was developed by making use of these ideas combined with a

variation of wall damping functions for f2 and f_, that were recently developed by Myong

and Kasagi [13]. A preliminary test of this K - r model for the turbulent flat plate

boundary layer yielded results that are quite encouraging. However, further tests and

possible refinements are required before more definitive conclusions can be drawn.

Future research will be directed on two fronts. The K - r model will be subjected to

more stringent tests involving adverse pressure gradients (with possible flow separation) and

high speed compressible flows. The turbulent Prandtl numbers a_-i and a,2 will be optimized

over a range of such flows. In addition, the modeled r-transport equation will be used in

conjunction with a nonlinear algebraic stress model as well as a second-order closure model.

One of the major goals in undertaking this research was to ultimately develop second-order

closure models that can be integrated directly to a solid boundary in complex turbulent

flows that involve separation. These more complex issues will be the subject of our ongoing

research effort on turbulence modeling.
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Model e_ Cf

K - r 0.094 0.00245

Z-g

Launder-Sharma

g-g

Chien

g-w

Experiments [2, 17]

0.021

0.113

0.05 - 0.10

0.00238

0.00244

0.00244

0.00243

Table 1. Comparison of the model predictions for the wall dissipation rate e_, and skin

friction Cf (x = 4.987re, Re = 16,465, and Re_ = 1.156 x 107).
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Figure 1. Mean velocity profile predictions for the flat plate turbulent boundary layer (Re0

16,000): _ K -, model; - - - K - w model; .. • K - _ model of Launder and Sharma

[6]; _ experimental data [2].
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