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Considerable work has recently been directed toward developing resource theories of quantum
coherence. In this letter we establish a criterion of physical consistency for any resource theory.
This criterion requires that all free operations in a given resource theory be implementable by a
unitary evolution and projective measurement that are both free operations in an extended resource
theory. We show that all currently proposed basis-dependent theories of coherence fail to satisfy this
criterion. We further characterize the physically consistent resource theory of coherence and find
its operational power to be quite limited. After relaxing the condition of physical consistency, we
introduce the class of dephasing-covariant incoherent operations as a natural generalization of the
physically consistent operations. Necessary and sufficient conditions are derived for the convertibility
of qubit states using dephasing-covariant operations, and we show that these these conditions also
hold for other well-known classes of incoherent operations.

Resource theories offer a powerful framework for un-
derstanding how certain physical properties naturally
change within a physical system. A general resource
theory for a quantum system is characterized by a pair
(F ,O), where F is a set of “free” states and O is a set
of “free” quantum operations. Any state that does not
belong to F is then deemed a resource state. Entan-
glement theory provides a prototypical example of a re-
source theory in which the free states are the separable
or unentangled states, and the free operations are local
operations and classical communication (LOCC) [1, 2].
Other examples includes the resource theories of ather-
mality [3, 4], asymetry [5–7], and non-stabilizer states for
quantum computation [8].

Any pair (F ,O) defines a resource theory, provided the
operations of O act invariantly on F ; i.e. E(ρ) ∈ F for
all ρ ∈ F and all E ∈ O. However, this is just a mathe-
matical restriction placed on the maps belonging to O. It
does not imply that E ∈ O can actually be physically im-
plemented without generating or consuming additional
resource. The issue is a bit subtle here since in quan-
tum mechanics, physical operations on one system ulti-
mately arise from unitary dynamics and projective mea-
surements on a larger system, a process mathematically
described by a Stinespring dilation [9]. A resource theory
(F ,O) defined on system A is said to be physically con-
sistent if every free operation E ∈ O can be obtained by
an auxiliary state ρ̂B , a joint unitary UAB , and a projec-
tive measurement {Pk}k that are all free in an extended
resource theory (F ′,O′) defined a larger system AB, for
which F = TrBF ′ := {TrB(ρAB) : ρAB ∈ F ′}.

Arguably a physically consistent resource theory is
more satisfying than an inconsistent one. Indeed, with-
out physical consistency, the notions of “free” and “re-
source” have very little physical meaning since resources
must ultimately be consumed to implement certain oper-

Resource
Operations Physically

Consistent
Physically
Inconsistent

Entanglement LOCC SEP, NE
Coherence PIO SIO, DIO, IO, MIO

TABLE I: The class of Physically Incoherent Operations
(PIO) introduced in this article represents the coherence ana-
log to LOCC in terms of being a physically consistent resource
theory. The previously studied Strictly Incoherent Operations
(SIO), Incoherent Operations (IO) and Maximally Incoherent
Operations (MIO) represent relaxations of PIO in the same
way that Separable (SEP) and Non-Entangling (NE) opera-
tions are relaxations of LOCC. We further introduce the new
class of Dephasing-covariant Incoherent Operations (DIO).

ations that are supposed to be “ free.” As an analogy, if
a car wash offers to wash your car for free, but only after
you go across the street and purchase an oil change from
their business partner, is the “car washing operation”
really free?

At the same time, physically inconsistent resource the-
ories can still be of interest. In open quantum systems,
for instance, one may not care about whether the inter-
acting environment consumes resources; and even when
working with closed systems, it is still valuable to con-
sider relaxations of physical consistency. Consider again
entanglement. LOCC renders a physically consistent re-
source theory of entanglement since any LOCC opera-
tion can be implemented using only local unitaries and
projections. However, often one considers more general
operational classes such as separable operations (SEP)
or the full class of non-entangling operations (NE) [31].
The motivation for using SEP is that it possesses a much
nicer mathematical structure than LOCC without being
too much stronger. In contrast, one may turn to NE when
seeking maximal strength among all operations that can-
not generate entanglement. Nevertheless, despite being
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appealing objects of study, both SEP and NE represent
physically inconsistent resource theories of entanglement.

In this letter, we analyze some of the recently proposed
resource theories of quantum coherence [10–19]. We ob-
serve that none of these offer a physically consistent re-
source theory, and the true analog to LOCC in coherence
theory has been lacking. We identify this hitherto miss-
ing piece as the class of physically incoherent operations
(PIO), and we provide its characterization. The opera-
tions previously used to study coherence are much closer
akin to SEP and NE in entanglement theory, and we clar-
ify what sort of physical interpretations can be given to
these operations.

While we find that PIO allows for optimal distilla-
tion of maximal coherence from partially coherent pure
states in the asymptotic limit of many copies, the pro-
cess is strongly irreversible. That is, maximally coherent
states cannot be diluted into weakly coherent states at
a nonzero rate, and they are thus curiously found to be
the least powerful among all coherent states in terms of
asymptotic convertibility. Given this limitation of PIO
and its similar weakness on the finite-copy level, it is
therefore desirable from a theoretical perspective to con-
sider more general operations. Consequently, we shift our
focus to the development of coherence resource theories
under different relaxations of PIO. To this end, we intro-
duce the class of dephasing-covariant incoherent opera-
tions (DIO), which to our knowledge has never discussed
before in literature. We provide physical motivation for
DIO and show that these operations are just as powerful
as Maximal Incoherent Operations (MIO) when acting on
qubits. Detailed proofs of our results as well as a more
detailed comparison between different incoherent opar-
tional classes can be found in an accompanying paper
[20].

Quantum coherence has traditionally referred to the
presence of off-diagonal terms in the density matrix.
For a given (finite-dimensional) system, a complete basis
{|i〉}di=1 for the system is specified, accounting for all de-
grees of freedom, and a state is said to lack coherence (or
be “incoherent”) with respect to this basis if and only if
its density matrix is diagonal in this basis [21, 22]. We
will refer to this as a basis-dependent definition of coher-
ence, and accordingly, a basis-dependent resource theory
of coherence identifies the free (or “incoherent”) states I
as precisely the set of diagonal density matrices in the
fixed incoherent basis [32]. We frequently use the “hat”
notation ρ̂ to indicate that the state is incoherent.

When it comes to identifying the free (or “incoher-
ent”) operations, different proposals have been made.
We focus on the following three operational classes. A
completely positive trace-preserving (CPTP) map E is
said to be: a Maximal Incoherent Operation (MIO) if
E(ρ) ∈ I for every ρ ∈ I [10, 23]; an Incoherent Op-
eration (IO) if E has a Kraus operator representation
{Kn}n such that KnρK

†
n/Tr[KnρK

†
n] ∈ I for all n and

FIG. 1: This figure depicts the general process of implement-
ing an incoherent operation on the joint system AB whose re-
duced action on A is the incoherent CPTP map ρA 7→ E(ρA).
A second system B is introduced in an incoherent state ρ̂B .
Both the unitary UAB and projective measurement are coher-
ence non-generating. All measurement outcomes are stored in
a classical register of system B so that the joint system is in
a QC state at time t2. Only maps E implemented in this way
are physically consistent within a resource-theoretic picture.

ρ ∈ I [12]; a Strictly Incoherent Operation (SIO) if E
has a Kraus operator representation {Kn}n such that
Kn∆(ρ)K†n = ∆(KnρK

†
n) for all n [16, 18], where ∆ is

the completely dephasing map ∆ : ρ 7→
∑d
i=1 |i〉〈i|ρ|i〉〈i|.

In each of these approaches, the allowed unitary oper-
ations and projective measurements are the same. The
set of all incoherent unitary matrices forms a group which
we denote by G. For a d-dimensional system, the group
G consists of all d × d unitaries of the form πu, where
π is a permutation matrix and u is a diagonal unitary
matrix (with phases on the diagonal). We denote by
N ∼= U(1)d the group of diagonal unitary matrices and
by Π the group of permutation matrices. Note that N is a
normal subgroup of G, and G = N oΠ is the semi-direct
product of N and Π. Likewise, an incoherent projective
measurement consists of any complete set of orthogonal
projectors {Pj} with each Pj being diagonal in the inco-
herent basis.

It is crucial that a physical resource theory possess a
well-defined extension to multiple systems if one allows
for generalized measurements, simply because the latter
describes a process that is carried out on more than one
system. A natural requirement for any physical resource
theory of coherence is that it satisfies the no superactiva-
tion postulate; that is, if ρ and σ lack quantum coherence,
then so must the joint state ρ⊗ σ. Combining the basis-
dependent definition of coherence with the no superacti-
vation postulate immediately fixes the structure of mul-
tipartite incoherent states. If {|i〉A}dAi=1 and {|j〉B}dBj=1

are defined to be the incoherent bases for systems A and
B respectively, then the superactivation postulate forces
{|i〉A|j〉B}dA,dBi,j=1 to be the incoherent basis for the joint
system AB.

The fact that the incoherent basis takes tensor product
form when considering multiple systems has strong con-
sequences for the physical consistency of incoherent oper-
ations. Every physical operation on some system, say A,
can be decomposed into a three-step process as depicted
in Fig. 1. If this operation is free within a physically
consistent framework, then (i) a joint incoherent unitary
UAB is applied immediately prior to time t1 on the input
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state ρA and some fixed incoherent state ρ̂B , (ii) an in-
coherent projective measurement is applied immediately
prior to time t2 with system B encoding the measurement
outcome as a classical index, and (iii) a classical process-
ing channel is applied to the measurement outcomes im-
mediately prior to t3. It can be assumed without loss
of generality that the projective measurement in step (ii)
consists of rank-one projectors Pj since the action of more
general projections can be recovered by coarse-graining
in step (iii). Also, note that at time t2, the joint state is a
quantum-classical (QC) state ωAB =

∑t
j=1 ρA,j⊗|j〉〈j|B ,

where

ρA,j = TrB [(IA ⊗ Pj)UAB(ρA ⊗ ρ̂B)U†AB ].

With the classical processing, the final state of system A

at time t3 is given by E(ρA) :=
∑t′

k=1 ρ
′
A,k⊗|k〉〈k|, where

ρ′A,k =
∑t
j=1 pk|jρA,j for some channel pk|j . We define

the class of physical incoherent operations (PIO) to be
the set of all CPTP maps E that can be obtained in this
way.

Proposition 1. A CPTP map E is a physically inco-
herent operation if and only if it can be expressed as a
convex combination of maps each having Kraus operators
{Kj}rj=1 of the form

Kj = UjPj =
∑
x

eiθx |πj(x)〉〈x|Pj , (1)

where the Pj form an orthogonal and complete set of in-
coherent projectors on system A and πj are permutations.

Proof. First consider when ρ̂B is a pure state ρ̂B =
|y′〉〈y′|. A joint incoherent unitary on AB will take
the form UAB =

∑
xy e

iθxy |π1(xy)π2(xy)〉〈xy|, where
(π1(xy), π2(xy)) is the output of a permutation π applied
to (x, y). To obtain a Kraus operator representation of
the map, we decompose the incoherent projective mea-
surement into a rank-one projection in the incoherent ba-
sis {|y〉}. Upon projecting onto |y〉, the (unnormalized)
state of system A is

〈y|UAB(ρA ⊗ |y′〉〈y′|)U†AB |y〉 = U (y′)
y P (y′)

y ρAP
(y′)
y (U (y′)

y )†

where U
(y′)
y =

∑
x∈S(y′)

y
eiθxy′ |π1(xy′)〉〈x| + W

(y′)
y . Here

we take x ∈ S(y′)
y iff π2(xy′) = y, the operator W

(y′)
y is

suitably chosen such that U
(y′)
y is unitary, and P

(y′)
y =∑

x∈S(y′)
y
|x〉〈x|. It is obvious that the set {K(y′)

y =

U
(y′)
y P

(y′)
y }y forms a complete set of Kraus operators

which characterizes the measurement. If ρ̂B were orig-
inally a mixed state ρ̂B =

∑
y′ py′ |y′〉〈y′|, then a com-

plete set of Kraus operators is given by {√py′K(y′)
y }y,y′

where again each Kraus operator has the form K
(y′)
y =

U
(y′)
y P

(y′)
y .

From the proposition above it is easy to see that PIO
⊂ SIO ⊂ IO ⊂ MIO, with PIO being a strict subset of
the other three. To understand the physical differences
between these operations let us return to Fig. 1 and
for the sake of the following discussion, assume that the
measurement between times t1 and t2 is a rank-one pro-
jection into the incoherent basis {|j〉}dBj=1. Then the joint

state at time t2 takes the form
∑dB
j=1KjρAK

†
j ⊗ |j〉〈j|B

for Kraus operators {Kj}dBj=1. Suppose now that the in-
put ρ̂A is incoherent so that initial joint state ρ̂A ⊗ ρ̂B
is also incoherent. If the final state at time t3 is always
incoherent, regardless of the coherence generated during
the intermediate times, then the operation is a maximally
incoherent operation (MIO). If the QC joint state at time
t2 is always incoherent, then the operation is an incoher-
ent operation (IO). If the joint state at time t1 is always
incoherent, then the operation is a physically incoher-
ent operation (PIO), provided the subsequent projective
measurement is incoherent. Conversely, every IO/MIO
operation can be implemented using the scheme of Fig.
1 by taking the size of system B to be sufficiently large.
Where do SIO operations fit in this picture? They are
like IO in that the joint state is always incoherent at
time t1, with the added constraint that UAB has the form
UAB =

∑
i,k cki|πk(i)〉〈i| ⊗ |k〉〈0|, for different permuta-

tions πk [18, 20].

The class PIO is a rather restricted class of operations.
For instance, suppose that |ψ〉 and |φ〉 are any two pure
states with rank[∆(ψ)] = rank[∆(φ)]. Then |ψ〉 can be
converted to another |φ〉 using PIO if and only if ∆(ψ)
and ∆(φ) are unitarily equivalent. The power of PIO is
improved somewhat on the many-copy level. One can
easily show that a state |ψ〉 can be asymptotically con-
verted via PIO into the maximally coherent qubit state
|+〉 =

√
1/2(|0〉 + |1〉) at a rate equaling the von Neu-

mann entropy of the state ∆(|ψ〉〈ψ|), which is optimal
[20]. On the other hand, the asymptotic conversion
rate of |+〉 into any weakly coherent state |ψ〉 is strictly
zero. The proof of this fact reveals an interesting rela-
tionship between quantum coherence and communication
complexity in LOCC. Observe that for any PIO trans-
formation |ψ〉 → |ϕ〉, there exists a zero communica-
tion LOCC protocol that transforms |ψ(mc)〉 → |ϕ(mc)〉,
where |ψ(mc)〉 and |ϕ(mc)〉 are maximally correlated ex-
tensions of |ψ〉 and |ϕ〉; i.e. |ψ(mc)〉 =

∑
i

√
pi|ii〉AB when

|ψ〉 =
∑
i

√
pi|i〉A. However the asymptotic transforma-

tion |+(mc)〉 → |ϕ(mc)〉 requires nonzero communication
whenever |ϕ(mc)〉 is not a product state or maximally en-
tangled [24, 25]. Hence, rather bizarrely, in PIO theory
the maximally coherent state is the weakest as it cannot
be transformed into any other state that is not related
by an incoherent unitary.

This result demonstrates once again that care is needed
when speaking of a “maximal” resource. While the state
|+〉 has maximum value according to all previously pro-
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posed coherence measures [12], its operational status as a
maximal resource depends crucially on the allowed oper-
ations. This is similar to multipartite entanglement the-
ory where the state |GHZ〉 =

√
1/2(|000〉+ |111〉) maxi-

mizes certain entanglement measures (such as the tangle
[26]), yet in certain operational settings it behaves weak-
est (such as being resistent to entanglement loss [27]).

The weakness of PIO means that the constraint of
physical consistency is too strong if one wishes to have a
less degenerate resource theory of coherence. This pro-
vides motivation to relax the constraint of physical con-
sistency and to consider more general resource theories
such as SIO/IO/MIO. We now turn to one such theory
that has not been previously discussed, but in some sense
it is the most natural one to consider.
Dephasing-Covariant Incoherent Operations. The
family of Dephasing-Covariant Incoherent Operations
(DIO) consists of all maps that commute with ∆. Re-
call that in general, for a collection of operations T , a
CPTP map E is said to be T -covariant if [E , τ ] = 0 for all
τ ∈ T . DIO can be seen as a natural extension of PIO
in light of the following theorem, whose proof is given in
Theorem 27 of [20].

Theorem 2. (a) Let G be the group of incoherent uni-
taries. Then, [U ,∆] = 0 iff U ∈ G, where U(ρ) := UρU†.
(b) A CPTP map E is G-covariant iff

E(ρ) = q1ρ+
q2

d− 1
(I −∆(ρ)) +

q3

d− 1
(d∆(ρ)− ρ) (2)

for some qi ≥ 0 with
∑3
i=1 qi = 1. (c) A CPTP map E is

PIO-covariant iff it has the form of Eq. (2) with q2 = 0.

From part (c) of Theorem 2, the commutant of PIO con-
sists of the family of channels ∆λ(ρ) := (1−λ)ρ+λ∆(ρ)
for λ ∈ [0, 1]. The class DIO therefore generalizes PIO
in that it is largest operational class sharing the same
commutant as PIO.

Operational covariance is an important physical prop-
erty as it describes an order invariance in performing a
two-step process. DIO are of particular interest when
observing how the probabilities pi = 〈i|ρ|i〉 transform
under a map E . If E is DIO, then an experimenter can
put ρ through any channel ∆λ before applying E without
changing the probabilities pi. Note that DIO can also be
seen as an extension of SIO to general channels.

What is the operational power of DIO? While we leave
a thorough investigation of the this question for future
work, here we just consider the task of transforming one
qubit state ρ into another σ. It turns out that all classes
of incoherent operations behave equivalently for this task,
and in fact, state convertibability depends on just two
incoherent monotones. The first is the Robustness of Co-
herence [28], and is defined as

CR(ρ) = min
t≥0

{
t
∣∣∣ ρ+ tσ

1 + t
∈ I, σ ≥ 0

}
.

FIG. 2: Heuristic comparison between the 5 classes of inco-
herent operations MIO/DIO/IO/SIO/PIO.

Here we introduce a new type of robustness measure that
we call the ∆-Robustness of Coherence:

C∆,R(ρ) = min
t≥0

{
t
∣∣∣ ρ+ tσ

1 + t
∈ I, σ ≥ 0, ∆(σ − ρ) = 0

}
.

While CR is a monotone under MIO in general, for qubits
C∆,R is also a MIO monotone. These two measures
completely characterize qubit state transformations, as
proven in Theorem 26 of [20].

Theorem 3. For qubit state ρ and σ, the transformation
ρ→ σ is possible by either SIO, DIO, IO, or MIO if and
only if both CR(ρ) ≥ CR(σ) and C∆,R(ρ) ≥ C∆,R(σ).

Already in qutrit systems, state transformations ex-
ist that are possible by MIO but not either IO or DIO
[20]. Recently, Bu and Xiong have demonstrated a state
transformation this can be performed by DIO but not IO
[29]. While it is easy to construct IO maps that are not
DIO, it remains an open question whether or not there
exists state transformations that can be implemented by
IO but not by SIO or even DIO.

In conclusion, we have introduced a criterion of phys-
ical consistency for a general quantum resource the-
ory. When applied to quantum coherence, the class PIO
emerges as the physically consistent resource theory of
coherence. In light of PIO’s sharply limited abilities, it is
desirable to enlarge the free operations. This desire may
even be experimentally motivated if one is not be con-
cerned with physical implementations, but instead just
wants to know what can be accomplished with a “black
box” that performs SIO/IO/DIO/MIO. Because of this,
one may contest that resource theories based on the lat-
ter operations are indeed physical resource theories. But
such a statement should be accompanied by a precise
definition of what it means for a resource theory to be
“physical.” We have offered one such definition in this
letter and hope it stimulates further discussion on the
physical meaning of coherence resource theories.

Note Added: In the preparation of this article we
became aware of independent work by Marvian and
Spekkens [30], where the physical meaning of incoher-
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ent operations is analyzed and the class of dephasing-
covariant incoherent operations is presented.
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