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The critical exponents 11, 71 and a are derived in powers of 1/n to first order for the 
n·vector model (or n-component system) with short-range interactions. Scaling relations 
'l(q).....,e-rf(q/E•), dY=2-a and r=11(2-71) are confirmed up to the order of 1/n. 

§ I. Introduction 

In a previous paper1> (to be referred to as A), one of the present authors 
evaluated the critical exponent r exactly up to the order of 1/n. In this paper, 
generalizing the previous treatment, we will derive expressions for other critical 
exponents v, 7J and a. (We will use the conventional notation'> for critical ex­
ponents.) 

For studying the critical exponents v and 7J, it is necessary to discuss the 
wave-number dependent susceptibility X (q). In § 2 we derive the expression for 
x(q) exactly up to 1/n. On the basis of this expression, in § 3 we evaluate v 
up to 1/n and discuss the scaling form x(q) ,..._,e-7f(q/e"). In § 4 we consider 
x(q) at the critical point and obtain the expression for 7J. In this paper, we 
restrict ourselves to the case above the transition temperature and without external 
magnetic field. The critical exponent ·of specific heat a is calculated in the Ap­
pendix. Finally, § 5 is devoted to discussion. 

§ 2. Wave-number dependent susceptibility X(q) up to 1/n 

The wave-number dependent susceptibility X (q) except for a trivial factor 
ti/kT (!1: magnetic moment) is given by 

(2·1) 

If we introduce z). defined by 

Z>-= J"" exp[_!_ ~ K 0 Si·S1+l_ ~ St·S~-iq·<rH"J>]ITrY[n-~ a}(m)]Il diJk(m), -co 2 i, j N i, J J m k, m 

(2·2) 
x(q) is expressed as 

(2·3) 
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Using an integral representation for a function in Eq. (2 · 2), we have 

with an appropriate constant a. If we put 

f(J..; t1o · · ·, tN) = f"' exp[.l .L: Ki!aia1 - .L: t1a/ + l_ .L: aia ~-·q·<r;-rJ>] II da~c, 
_., 2 11 1 N iJ 1c 

(2·5) 

z),. is written as 

(2·6) 

We use the same notation for tJ.. as in A, namely tJ.. makes the exponent of Eq. 
(2 · 6) extremum. We introduce "J..-average" defined by 

(- · )J.. = f"' .. · [..!. .L: Ki!aiaJ- t),. .L: a/+ l_ .L: a.a1e-•q·<r;-rJ>]II da~c!fo (J.., t),.) 
_., 2 tJ 1 N iJ 1c 

(2·7) 

with 

fo(l, tJ..) = S"' exp[.l :E KuaiaJ-tJ.. .L: a/+ l_ .L: aif11e-iq·<r;-rJ>]II da~c. (2·8) 
_., 2 tJ 1 N ., 1c 

Introducing the Fourier transforms defined by 

a'= N-1/2 _E a ( q) eiq·rJ, 

we have 

q 

KiJ = N-1 ,L: K ( q) e-iq•(ri-rJ)' 
q 

where we have used the following change of variables as in A: 

a(k)=(x~c+iy~c)f,.J2, (k~O) a(O)=x0 , l 
X-~c=X~c, Y-~c= -yk, II da~c=dxo II' dx~cdY~c. 

It lt,PO 

The lnf0 (J.., tJ..) is calculated to be 

(2·9) 

(2·10) 

(2·11) 

(2·12) 
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444 R. Abe and S. Hikami 

ln/0 (.4., t),.) =-In n--ln t),. --K(O) -- I; In t),. --K(k) N 1 [ 1 J 1 '[ 1 J 2 2 2 . 2 k*O,q 2 

1 [ 1 l J --In t),. --K(q)-- . 
2 2 2 

(2·13) 

Choosing a path of integration with a=t),. in Eq. (2·6), making a change 
of variables t1=t),.+ix1 (j=1, 2, ···, N), and putting 

(2 ·14) 

we have 

By means of linked cluster expansion for In G, the Z),. is expressed with y 1=nlf2x 1 
as 

Here (h ( j, l) is defined by 

g),(j, l) =N-1 I; eik·<rt-rt>g),(k), 
k 

g),.(k)=<(J(k)(J( -k))),. 

{ 
1/[2t), -K(k) ], 

1/[2t),-K(q) -l]. 

(k~q, -q) 

(k=q, -q) 

(2·17) 

(2·18) 

We consider 1/n expansion up to the order of 1/n. Z),' under this approxi­
mation is denoted by Z{0 : 

If we introduce the Fourier transform 

Z{0 is calculated to be 

g/..2 (j, l) = N-1 I; lh (k)eik·(rj-rt>, 
k 

(2·19) 

(2·20) 

(2· 21) 

Taking logarithm of Eq. (2 ·16) and differentiating by l, we have from Eq. (2 · 21) 

a In Z),. = n[N at),.+ a lnf0 (l, t),) J _ _!_I; a In v),. (q) + o (_l_). (2 · 22) 
al al al 2 q al n2 
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Substituting Eq. (2 · 22) into Eq. (2 · 3), using extremum condition 

1-N-1 ~ g.,.(k) =0 
k 

(2·23) 

and putting ). = 0, we obtain the following expression for X (q): 

X(q)=Xo(q)- 2~ ~[8ln;;(k)l=o+0(1/n2), (2·24) 

where Xo(q) is the wave-number dependent susceptibility of the spherical model: 

Xo(q) 
1 (2. 25) 

2t-K(q) 

The v-,.(k) is written as 

v), (k) = N-1 ~ g.,. (k') g.,. (k- k'). 
k' 

~2·26) 

Differentiating Eq. (2 · 26) by ). and using Eq. (2 ·18), we have 

~[ 8ln v.,. (k) J = 4N-l~[{g2(q) g(k -q) _(at.,.) I; g2(k')g(k-k')} jv.,.(k)] . 
k 8). .!=0 k 8). .!=0 k .!=0 

(2·27) 

Here, we denote t.,. with ). = 0 by t. g (k) and v(k) are given by 

g(k) =1/[2t-K(k)], v(k) =N-1 ~ g(k')g(k-k'). 
k' 

(2·28) 

The quantity at-,./8). is obtained by differentiating Eq. (2 · 23) with respect 
to )., 

(2·29) 

Therefore x(q) is expressed as 

2A g2(k') [g(k-q) -g(k-k')] 2 
x(q)=xo(q)-nN2d, v(k) +0(1/n), (2·30) 

where A is defined by 

(2. 31) 

In this way, the expression for x (q) up to 1/n is derived. 

§ 3. Critical exponent JJ 

We now proceed to derive the expression for the critical exponent v. We 
consider the d-dimensional simple hypercubical system with nearest-neighbor in­
teractions. For this system K(q) is given by 

K(q) = 2K(cos q1 +cos Q2 +···+cos Qa). (3·1) 
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Introducing a parameter s defined by 

s=2(z-d), 

the g (k) IS approximated as 

t=Kz, 

As shown in A, we have 

where 

eo=K.o-K 

and Kco is the critical point of the spherical model. 
In the spherical model, Xo(q) is given by 

Xo(q) =1/ K(s+q2). 

Therefore Xo (q) has the following scaling form: 

Xo (q) ~eo -roj(q/eo"') 

with 

(3·2) 

(3·3) 

(3·4) 

(3·5) 

(3·6) 

(3·7) 

ro=2vo=2/(d-2). (3·8) 

It IS generally considered that the x (q) has the scaling form3l-7l 

x(q) ~e-rf(qje") (3·9) 

with e given by Kc- K (Kc: exact critical point). 
If we assume this scaling form for x (q) up to the order of 1/n, we can 

expand x(q) as 

In actual, the amplitude C0, C2, • •• and e can depend on 1/n. However, since 
this dependence is not important in discussing the critical behavior of x(q), we 
will neglect them. Omitting these terms, we can write Eq. (3 ·10) as 

(3 ·11) 

Therefore calculating the coefficients of the term of the order [Xo (0) ]"+1q2" ln e 
(n = 1, 2, · · ·), we can obtain the deviation of v from the spherical model value. 
If these coefficients give the same vi> the scaling form of x (q), Eq. (3 · 9), is 
confirmed up to 1/n. 

We firstly consider the coefficient of q 2 in Eq. (2 · 30). It is convenient to 
divide the second term on the right-hand side of Eq. (2 · 30) into two parts: 
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_ 2A :E g2 (k') [g(k-q) -g(k-k')] 
nN2k,k' v(k) 

2 g2 (q) g2 (0) g2 (k') {g(k) -g(k-k')} 
=- nN2 g2 (0) · v(O) k~' v(k) 

2g2(q) . {g(k-q) -g(k)} (3·12) 
- nN ~ v(k) · 

The first term of Eq. (3·12) except for the factor g2(q)/g2(0) is the 1/n-order 
term of the susceptibility X (0). (See Eq. (5 ·19) of A.) Therefore the first 
term of Eq. (3 ·12) has the logarithmic term 

- (g2 (q) jng2 (0)) r!Xo(O) ln e. 

Expanding g2 (q)jg2 (0), we have the coefficient of q2 in Eq. (3·13) 

(2r!KXo2 (0) ln e) /n, 

where Xo (0) = 1/ Ks, and 

r~= 
6sin(dn/2)T(d -1) 
(2-d)n[T(d/2) ]2 

For the calculation of the second term of Eq. (3·12), we expand 

g(k- )-g(k)=K-1{2qcos() + (4cos28-1) 2+o(l_)}. 
q k8 k4 q kb 

In A, v (k) was calculated to be 

(3 ·13) 

(3 ·14) 

(3·15) 

(3 ·16) 

v(k)= K-22-d.,.-df2T(2 -d/2)F(2 -d/2, 1/2, 3/2, k2/(4s + k2)) /(s + P/4)2-d/2• (3 ·17) 

From Eq. (3 ·17) we have 

1 _ K 22dndf2T[(d-1)/2]2d-4 
--- +"', 
v(k) T(2-d/2)T(3/2)T(d/2-1)kd-4 

(3·18) 

The summation over k in Eq. (3 ·12) is changed to the integral by means of 
the formula8l 

~ lt~ (2~)d J dak= (2n)-1Kd-l f" dk f' d()kd-1(sin ())d- 2, 

(3 ·19) 

Kd= 2-<d-!).,.-d12 [T(d/2) ]-1• 

Since our expansions, Eqs. (3 ·16) and (3 ·17), are valid for s<.k2, we set the 
lower limit of the integration of k to be s112• 

The logarithmic term is derived only from the second term of Eq. (3 ·16). 
The first term of Eq. (3 ·16) vanishes after the integration over {}, Thus, we 
calculate the following term: 

2g2 (q) K2dndf2T[(d-1)/2] 2d-4 (4cos28-1)q2 

- nN ltT[2-(d/2)]T(3/2)T[(d/2)-1] ka (3 ' 20) 
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From Eqs. (3 ·19) and (3 · 4), Eq. (3 · 20) is calculated to be 

_ 2Kg2 (q) (i_ _ ) T(d-1)sin(dn"/2)ln e·q2 
n d 1 [T(d/2)]2n(d-2) 

(3. 21) 

With the use of the expression of r1 (Eq. (3 ·15)), Eq. (3 · 21) is written as 

Expanding g2 (q) as 

g2(q) = K2(s~q2)2 
we obtain the desired term from Eq. (3 · 22) 

_}£ (.! -1) Xo2 (0)rlln e · q2• 
3n d 

From Eqs. (3·14) and (3·24), we have the q2 term for Eq. (3·12): 

~ [2-! (! -1)]Kr!Xo2 (0)lne·l. 

This term should be equal to the following term of Eq. (3 ·11) 

n-1 Cr1 + 2Jh) Kxo2 (0) In e · q 2• 

Therefore we obtain the expression for critical exponent JJ1 

(3·22) 

(3·23) 

(3·24) 

(3·25) 

(3·26) 

(3·27) 

Since the logarithmically divergent term is derived only from the second 
term of Eq. (3 ·16) multiplied by the first term of Eq. (3 ·18), it is sufficient to 
consider Eq. (3·22) as the contribution of the second term of Eq. (3·12) for 
our purpose. Therefore, by the use of Eq. (3 ·13), Eq. (3 ·12) is reduced to 

~ g2(q) - Kg2(q) (i_-1) 2 
-ng2(0)r!Xo(O)lne 3n d r1qlne. (3·28) 

Using Eq. (3 · 23), we find that the above equation is expanded as 

- _!_r!Xo(O)ln e + _!_ t ( -1)m+l[ (m + 1)rl- r1 (.! -1) m] Kmxom+l (0) In e · q2m. n n m=l 3 d 

(3·29) 

From Eq. (3 ·11) the coefficient of q2"' term should be equal to 

(3·30) 

Therefore we have 
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r1 +2mJJt= (m + 1)rl- ~I(! -1 )m, m=1, 2, .... (3. 31) 

From Eq. (3 · 31) we can derive the same ).11 for any m as 

(3. 32) 

Thus the scaling form for X(q) of Eq. (3·9) is confirmed up to 1/n. 

§ 4. Critical exponent 1J 

At the exact critical point, 'X (q) of Eq. (2 · 30) is considered to have the form 

(4·1) 

Since s is related to eo as in Eq. (3 · 4), s is not zero similarly to eo at the exact 
critical point. We denote e which vanishes at the critical point by 

e=K.-K. (4·2) 

We expand e as 

e= Kco+-c -K+O- , K I ( 1) 
n n2 

(4·3) 

where Kco denotes the critical value of the spherical model. 
and (3 · 4), we can also expand s in powers of 1/ n, 

From Eqs. (4·3) 

S=Str+~+ o(l__). 
n n2 

(4·4) 

The quantity Str becomes zero at the exact critical point. 
Putting s=s1/n, we consider X(q) of Eq. (2·30) up to 1/n order: 

_ [ 2A g2 (k'){g(k-q)-g(k-k')}] + o(l__). 
X(q)-[Xo(q)].=•tfn- nN2k~' v(k) •=•tfn n2 

The critical exponent 7J is expanded in powers of 1/n 

7J=7Jo+ r}!/n + 0(1/n2). 

Using this expansion, we have from Eq. (4·1) 

x(q) =Cq-2 +C7J~n-1q-2 ln q + 0(1/n2), 

C=K-1• 

(4·5) 

(4·6) 

(4·7) 

For obtaining 7Jh we need to get lnq term from Eq. (4·5). The first term of 
Eq. ( 4 · 5) includes no ln q term, and the second term of Eq. ( 4 · 5) is of the 
order 1/ n. Therefore we can neglect the difference of s and take s = 0 up to 
1/n order. 

From Eq. ( 4 · 5) we can easily see the term including ln q to be 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/49/2/442/1856932 by guest on 21 August 2022
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- 2g2 (q) :E g(k-q). 
nN k v(k) 

Putting s = 0, g (k- q) is expanded as 

[g(k- )]_ =_!_{_!_+2cose + (4cos20-1). 2 +o(l.)·} q •-O K k2 k8 q k4 q k6 . 

From Eq. (3 ·17), we have 

[ 1 J _ K 22ttntt12T[ (d -1) /2] 4df2- 2 

v(k) .• = 0 -T(3/2)T(d/2-1)T(2-dj2). ktt-' . 

We can obtain the desired term from Eq. (4·8), 

-~{ 2 sin(dn/2)T(d-1) (..! _1)}. 
nKq2 n[T(d/2)]2 d 

(4·8) 

(4·9) 

(4·10) 

(4·11) 

Using the expression of r1o Eq. (3·15), and comparing with Eq. (4·7), we have 

2-d (4 ) rj!=-3- d"-1 r1. (4·12) 

From Eqs. (3 · 32) and ( 4 ·12), we can verify the following scaling relation up 
to 1/n: 

v(2-1j)= (vo+n-1Vt) (2-n-11jt) +0(1/n2) 

= ro + n-lrl + 0 (1/n2). 

§ 5. Discussion 

(4·13) 

The critical exponent of specific heat a is evaluated in the Appendix. The 
expression for a is given by 

d-4 2 (1) a=----(d-1)rr+O - . 
d-2 3n n2 

(5·1) 

Therefore the following scaling relation 

a=2-dv (5·2) 

can be also verified up to the order of 1/n. 
The specific heat of the spherical model does not diverge at the critical 

point. Namely, the first term of Eq. (5 ·1) has the negative value for 2<d< 4. 
Putting n = 3, this corresponds to classical Heisenberg model, a yields the positive 
value for three dimension: 

a=0.08076+ 0(1/n2). (5·3) 

For other critical exponents, putting d = 3 and n = 3, we have r = 1.18943, v = 0.63975, 
1f = 0.09006. The numerical estimates from high-temperature expansions for clas­
sical Heisenberg model yield: r = 1.375, v = 0.703, 1f = 0.043.7> Our lowest-order 
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terms in 1/n expansion thus lead to fair agreements with the numerical values. 
We hope that the agreement would be improved if the higher-order terms are 
taken into account; this is a future problem. 

Wilson and Fisher,9l firstly, obtained critical exponents in powers of e(=4-d), 
by the renormalization group method which was introduced by Wilson.10l After­
wards, Wilson developed expansion using Feynman graph calculation.8l He ob­
tained the critical exponents r, r; and cp up to the order of s2• 

Recently Ma11l calculated the exponents of the Bose system by Wilson's ex­
pansion method. He obtained the critical exponents r and r;, assuming the scaling 
law. His results coincide with ours for r and r;. 

In this paper, we have restricted ourselves to the case above transition 
temperature and without external magnetic field. We hope that we are able to 
extend the present treatment to the case with external magnetic field or below 
transition temperature. 

Appendix 

--Calculation of critical exponent a-­
Putting ). = 0 in Eq. (2 ·16), (nN)- 1 ln Z is given up to 1/n by 

ln Z/nN= t + N- 1 Info+ (2n)-1 ln n- (2nN)- 1 ::E ln v (q) - n- 1 In(2nn112). 
q 

(A·1) 
Here we define the energy E by 

E = kT2 __§____ (__!_ In z) . 
aT nN 

(A·2) 

For the spherical model (n~oo), we have 

ln ZjnN=t+N-1 lnf0 (A·3) 
and 

2 a { 1 [ K(q)]} E=kT aT t- 2N ~ ln t--2 -

= -J{z-1/2K}. (A·4) 

We note that E can be expanded as 

E= A1 + A2s1-" + · ... (A·5) 

Omitting the shifts of critical temperature and. amplitude, Eq. (A· 5) is given in 
the expansion of 1/n by 

E=A1 + A2s1-"' -A2s1-"' (~1 )1n s + o(:2 ). (A·6) 

The third term of Eq. (A· 6) can be derived from 
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From Eq. (A· 2), we have 

R. Abe and S. Hikami 

1 
--~lnv(q). 

2nN q 
(A·7) 

_kT2 _§_~lnv( )=-kT2 ~-1-{(as)(-2K ~g2 (k)g( -k)) 
2N aT q q 2N q v (q) aT N k q 

-~(~;)v(q)}. (A·S) 

The logarithmic term is given from the first term of Eq. (A· 8), 

JTN- 1 ~ r;(q) (!!__) 
q v(q) aT ' 

r;(q) =N-1 ~ g2 (k)g(q-k). 
k 

This term can be calculated to be 

JT(as)( n-<d+l)/2 )( 1 1 ) df2-l(1-d)T[(d-1)/2] 
aT 2T[(d-1)/2] -2 n s s 2T(3/2)T(d/2-1) 

Noting that 

we can write Eq. (A ·10), using the expression of rh as 

From Eq. (A·4) we have 

(A·9) 

(A·10) 

(A·ll) 

(A·12) 

(A·13) 

Therefore, comparing Eq. (A ·12) with Eq. (A· 6), we have the expression for 
critical exponent a 1 : 

(A·14) 
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